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We present the first study of the Abelian-projected gluonic-excitation energies for the static quark-
antiquark (QQ̄) system in SU(3) lattice QCD at the quenched level, using a 324 lattice at β ¼ 6.0. We
investigate ground-state and three excited-state QQ̄ potentials, using smeared link variables on the lattice.
We find universal Abelian dominance for the quark confinement force of the excited-state QQ̄ potentials as
well as the ground-state potential. Remarkably, in spite of the excitation phenomenon in QCD, we find
Abelian dominance for the first gluonic-excitation energy of about 1 GeV at long distances in the
maximally Abelian gauge. On the other hand, no Abelian dominance is observed for higher gluonic-
excitation energies even at long distances. This suggests that there is some threshold between 1 and 2 GeV
for the applicable excitation-energy region of Abelian dominance. Also, we find that Abelian projection
significantly reduces the short-distance 1=r-like behavior in gluonic-excitation energies.
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I. INTRODUCTION

Since quantum chromodynamics (QCD) has been estab-
lished as the fundamental theory of the strong interaction,
analytical derivation of quark confinement directly from
QCD has been an open problem. The difficulty originates
from non-Abelian dynamics and nonperturbative features
of QCD, which are largely different from QED.
In 1970s, Nambu, ’t Hooft, and Mandelstam proposed

an interesting idea that quark confinement might be
physically interpreted with the dual version of the super-
conductivity [1]. In the dual-superconductor picture for the
QCD vacuum, there takes place one-dimensional squeezing
of the color-electric flux among (anti)quarks by the dual
Meissner effect, as a result of condensation of color-
magnetic monopoles.
As for the possible connection between QCD and the

dual-superconductor theory, ’t Hooft proposed an interest-
ing concept of Abelian gauge fixing, a partial gauge fixing
which diagonalizes some gauge-dependent quantity [2].
In particular, in the maximally Abelian (MA) gauge [3–9],
which is a special Abelian gauge, the off-diagonal gluon
has a large effective mass of about 1 GeV [6], and Abelian
dominance of quark confinement is observed in lattice

QCD [4,5,8,9]. Then, infrared QCD in the MA gauge
becomes an Abelian gauge theory including the color-
magnetic monopoles, of which condensation leads to the
dual superconductor [10].
For other nonperturbative QCD quantities such as

spontaneous chiral-symmetry breaking, Abelian domi-
nance is observed in lattice QCD [11]. However, it is
nontrivial whether Abelian dominance holds for excitation
phenomena in QCD or not, because this Abelianization
scheme is conjectured to be valid only for low energies and
long distances. For instance, Abelian dominance is shown
to be decreasing with larger momentum or smaller distance
from the gluon propagator in the MA gauge in both SU(2)
and SU(3) lattice QCD [6,7], although the propagator itself
is not physical observable.
Then, in this paper, we study Abelian dominance for

excited-state interquark potentials and gluonic-excitation
energies in the MA gauge in SU(3) color QCD at the
quenched level. Here, the excited-state potentials are
important for the description of excitation phenomena
of QCD [12–14], and the gluonic-excitation energies are
interesting physical observables appearing in hybrid
hadrons [15]. They have been investigated in lattice
QCD [12–14], and the lattice results have been compared
as stringy modes in the string picture of hadrons for the
static quark-antiquark system. In fact, apart from the linear
confinement part, the excited-state potential has 1=r part
with a positive coefficient in long distances of r ≥ 2 fm,
and this 1=r behavior can be a signal of the stringy mode,
although the stringy behavior is significantly suppressed in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 014512 (2020)

2470-0010=2020=102(1)=014512(7) 014512-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.014512&domain=pdf&date_stamp=2020-07-23
https://doi.org/10.1103/PhysRevD.102.014512
https://doi.org/10.1103/PhysRevD.102.014512
https://doi.org/10.1103/PhysRevD.102.014512
https://doi.org/10.1103/PhysRevD.102.014512
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


shorter distances than 2 fm [12,14]. The gluonic-excitation
energies are defined by the differences between the ground-
state and excited-state potentials, and the lowest gluonic-
excitation energy takes a larger value than about 1 GeV
both for static quark-antiquark (QQ̄) and 3Q systems in
lattice QCD [12,13]. This large gluonic-excitation energy
explains success of the quark model [13].
The organization of this paper is as follows. In Sec. II, we

briefly review the Abelian projection in lattice QCD in
the MA gauge. In Sec. III, we present our calculation
procedure for the ground- and excited-state potentials in
the static QQ̄ system. In Sec. IV, we show the lattice
QCD result for the excited-state potentials and the gluonic-
excitation energies. Section V is devoted to summary and
conclusion.

II. MAXIMALLY ABELIAN GAUGE FIXING
AND ABELIAN PROJECTION

We perform SU(3) lattice QCD simulations at the
quenched level with the standard plaquette action [16].
In lattice QCD, the gauge variable is described as the
link variable UμðsÞ≡ eiagAμðsÞ ∈ SUð3Þ, with the gluon
field AμðsÞ ∈ suð3Þ, QCD gauge coupling g, and the
lattice spacing a. In this paper, we use the lattice size of
L3 × Lt ¼ 324 at β≡ 6=g2 ¼ 6.0.
As for the lattice spacing a, we take a ≃ 0.1022ð5Þ fm

from Ref. [9], where a is determined to reproduce the string
tension σ ≃ 0.89 GeV=fm with large-number gauge con-
figurations. Using the pseudo-heat-bath algorithm, we
generate 150 gauge configurations which are taken every
500 sweeps after a thermalization of 5000 sweeps. For the
estimate of the gluonic-excitation energies, it is found to be
enough to use such number of configurations, although
much higher statistics would be desired for more accurate
analysis.
We perform MA gauge fixing by maximizing the norm

RMA½UμðsÞ�≡
X

s

X4

μ¼1

trðU†
μðsÞH⃗UμðsÞH⃗Þ

¼
X

s

X4

μ¼1

�
1 −

1

2

X

i≠j
jUijj2

�
ð1Þ

under the SU(3) gauge transformations for each gauge
configuration. Here, H⃗ ≡ ðT3; T8Þ is the Cartan subalgebra
of SU(3), i.e., T3 ¼ 1

2
diagð1;−1; 0Þ and T8 ¼

1

2
ffiffi
3

p diagð1; 1;−2Þ. When link variables are diagonal, one

finds RMA=ð4L3LtÞ ¼ 1.
We numerically perform MA gauge fixing using the

over-relaxation method for rapid achievement in the maxi-
mization algorithm. As for the stopping criterion, we
stop the maximization algorithm when the deviation

ΔRMA=ð4L3LtÞ becomes smaller than 10−5. The converged
value hRMA=ð4L3LtÞi is 0.7322(2) for 150 configurations,
where the value in parentheses denotes the standard
deviation. Judging from the small deviation, our procedure
seems to escape bad local minima, and we expect that the
Gribov ambiguity does not affect our results.
Finally, we extract the Abelian part of the link variable,

uμðsÞ ¼ exp fiθ3μðsÞT3 þ iθ8μðsÞT8g ∈ Uð1Þ3 × Uð1Þ8;
ð2Þ

from the link variable in the MA gauge, UMA
μ ðsÞ ∈ SUð3Þ,

by maximizing the norm

RAbel ≡ Re trfUMA
μ ðsÞu†μðsÞg ∈

�
−
1

2
; 1

�
; ð3Þ

so that the distance between uμðsÞ andUMA
μ ðsÞ becomes the

smallest in the SU(3) manifold. We thus find “microscopic
Abelian dominance,” i.e., hRAbeli ¼ 0.9027ð1Þ as a local
indicator [17]. Of course, this does not necessarily mean
“macroscopic Abelian dominance” in long distances,
because, for instance, the quark confinement is judged
by the exponential damping behavior in the Wilson loop
[16], and any component can be dominant if its damping is
small. Actually, we will see a counterexample in the second
gluonic-excitation energy.
The Abelian projection is defined by the replacement of

the SU(3) link variable UμðsÞ by the Abelian part uμðsÞ for
each gauge configuration, i.e., O½UμðsÞ� → O½uμðsÞ� for
QCD operators.

III. LATTICE QCD CALCULATION OF
EXCITED-STATE INTERQUARK POTENTIALS

In this section, we briefly mention the lattice QCD
formalism to obtain the excited-state QQ̄ potentials and our
numerical procedure.

A. Formalism

We explain the variational and diagonalization method
to calculate the ground- and excited-state potentials, origi-
nally reported in Ref. [18], in the same manner with
Ref. [13]. We denote the QCD Hamiltonian Ĥ and the
physical eigenstates jniðn ¼ 0; 1; 2;…Þ for the static QQ̄
system. As the eigenvalues Ĥjni ¼ Vnjni, we define the
nth excited-state potential Vn with V0 ≤ V1 ≤ V2 ≤ � � � in
the static QQ̄ system, where the eigenvalues physically
mean ground and excited potentials between the quark and
the antiquark. For the simple notation, the ground state is
often regarded as the “zeroth excited state.”
As sample states for the static QQ̄ system, we prepare

arbitrary given independent QQ̄ states, jΦkiðk¼0;1;2;…Þ.
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In general, each state can be expressed with a linear
combination of the eigenstates jni as

jΦki ¼ ck0j0i þ ck1j1i þ ck2j2i þ � � � : ð4Þ

Let us consider time evolution of the sample states jΦki
with the spatial locations of the quark and the antiquark
being fixed. The Euclidean time evolution of the QQ̄ state
jΦkiðtÞ is expressed with the operator e−Ĥt, and we
introduce the generalized Wilson loop

Wjk
T ≡ hΦjðTÞjΦkð0Þi; ð5Þ

¼ hΦjje−ĤT jΦki

¼
X∞

m¼0

X∞

n¼0

c̄jmcknhmje−ĤT jni

¼
X∞

n¼0

c̄jnckne−VnT: ð6Þ

Here, we define the matrixC and the diagonal matrix ΛT by
Cnk ¼ ckn, Λmn

T ¼ e−VnTδmn, and rewrite the above relation
as WT ¼ C†ΛTC. Note that C is not a unitary matrix, and
hence this relation does not mean the simple diagonaliza-
tion by the unitary transformation.
In the lattice QCD simulations, we numerically calculate

the generalized Wilson loop Wjk
T and extract the potentials

V0; V1; V2;… from WT and WTþ1 by using the formula

W−1
T WTþ1 ¼ ðC†ΛTCÞ−1C†ΛTþ1C

¼ C−1diagðe−V0 ; e−V1 ;…ÞC: ð7Þ

In fact, e−V0 ; e−V1 ; e−V2 ;… can be obtained as the eigen-
values of the matrix W−1

T WTþ1, i.e., W−1
T WTþ1ψn ¼

e−Vnψn, and they are also the solutions of the secular
equation

det ðW−1
T WTþ1 − tÞ ¼

Y

n

ðe−Vn − tÞ ¼ 0: ð8Þ

In the lattice QCD calculation, we use the above-
mentioned method and extract low-lying excited-state
potentials numerically for SU(3) QCD and Abelian-
projected QCD, respectively.

B. Numerical procedure

In the practical calculation, we prepare four sample
states jΦki for each gauge configuration by using the APE
smearing method [19]. Originally, the smearing method
was developed as a useful technique to reduce the higher
excitation components in a gauge-invariant manner. Here,
the gauge-invariant QQ̄ system consists of a quark, an
antiquark, and gauge-covariant product of link variables

connecting them, and, in the APE smearing method, gauge-
covariant smeared link variables are used instead of original
link variables [19,20]. We note that the smeared link
variables depends on the iteration number Nsmr of the
smearing, and the Nsmr-times smeared states are generally
linear independent each other when Nsmr is different [20].
Furthermore, the smeared states have only small compo-
nents for highly excited states, and therefore they are
appropriate as the sample states jΦki for the study of
low-lying excitations [13].
Next, let us consider the quantum number of the QQ̄

states obtained in this procedure with the APE smearing
method, in terms of their parity (P), charge conjugation (C),
and angular momentum (Λ), using the standard notation
from the physics of diatomic molecules. Here, the parity
transformation means spatial inversion about the midpoint
between the static quark and antiquark. The excitation
modes obtained in this procedure are even (g) under charge-
parity (CP) conjugation operation [12], since the general-
ized Wilson loop WT with the reflection-symmetrically
smeared states is invariant under CP transformation and all
the CP-odd (u) components are canceled in calculating
the WT . For the CP-odd potentials, one needs to prepare
CP-odd sample states, as is done in Ref. [12]. As for the
total angular momentum Jg of gluons, the projection Jg · R̂
onto the molecular axis R gives a good quantum number
and the magnitude of the eigenvalue of Jg · R̂ is denoted by
Λ [12]. In this procedure with the APE smearing method,
only Σ states with Λ ¼ 0 are expected to be obtained, since
the smeared states are constructed in an axial-symmetric
manner on the lattice. Also, there is a sign quantum number
� under a reflection in a plane containing the molecular
axis [12], and our axial-symmetric procedure makes only
even (þ) states. In fact, in our procedure, we generate only
CP-even (g), reflection-even (þ), and Λ ¼ 0 states, which
are denoted by the Σþ

g states [12] in the notation of the
physics of diatomic molecules.
In the actual calculation, we prepare 8,16,24,32 times

smeared states with the smearing parameter α ¼ 2.3, which
is the standard value for the measurement of the SU(3)
interquark potential [20,21]. Owing to the 8 times interval
of the smearing, in most cases, the sample states jΦki seem
to be practically linear independent with different patterns
of the coefficients ckn, since the secular equation (8) can be
numerically solved. [If two of the sample states are not
linearly independent, Eq. (8) cannot be solved.] In this
analysis, we make an assumption that higher excitation
components jni with n ≥ 4 in the sample states jΦki are
small enough and can be dropped off, and solve the
eigenvalue problem of the 4 × 4 matrix W−1

T WTþ1.
As for the Abelian projection, we repeat just the same

procedure by using Abelian link variables uμðsÞ instead
of SU(3) link variables UμðsÞ. Hereafter, we add the label
“Abel” for the Abelian-projected physical quantities.
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In this way, we obtain the effective masses Veffðr; tÞ,
VAbel
eff ðr; tÞ for the zeroth-, first-, second-, and third-excited

states, respectively. The measurement is done for the on-
axis and off-axis interquark directions as (1,0,0), (1,1,0),
(2,1,0), (1,1,1), (2,1,1), and (2,2,1). As the statistical error
estimate, we adopt the jack-knife error estimate.
In calculating the potentials, higher excited states suffer

larger systematic errors because the assumption of absence
of higher modes becomes relatively more subtle. Hence, we
do not make quantitative analysis of the third-excited-state
potentials, although preparing the four sample states
definitely contributes to the significant error reduction
for all the results. To reduce the systematic errors further,
we pick effective masses Veffðr; tÞ at larger t as long as the
error is small.

IV. LATTICE QCD RESULT

In this section, we show the excited-state potentials and
their Abelian projection in the static QQ̄ system.
Figure 1 shows the effective mass plots Veffðr; tÞ for the

SU(3) potentials VnðrÞ with n ¼ 0, 1, 2. Owing to the
variational and diagonization method, for the low-lying
states, t dependence is small and an approximate plateau is
observed even in small t region, although higher excited
state suffers larger statistical errors. In this paper, we do not
show the meaningless data with too large errors in figures.
Here, we pick effective masses at t ¼ 4, 3, 2 as ground-,
first-excited-, and second-excited-state SU(3) potentials,
respectively.
Figure 2 shows the effective mass plots VAbel

eff ðr; tÞ for the
Abelian potentials VAbel

n ðrÞ with n ¼ 0, 1, 2. Compared
with the SU(3) case, VAbel

eff ðr; tÞ is slightly increasing as a
function of t, and this might cause a systematic error of
about 0.1 GeV on the choice of t. On the other hand, the
statistical errors are smaller, because Abelian projection

enhances the expectation value of the Wilson loop. We pick
effective masses at t ¼ 4, 3, 2 as ground-, first-excited-, and
second-excited-state Abelian potentials, respectively.
Now, we show the ground-, first-excited-, and second-

excited-state potentials Vn (n ¼ 0, 1, 2) in the CP-even QQ̄
system, and first and second gluonic-excitation energies
ΔEn ≡ Vn − V0 (n ¼ 1, 2) for both SU(3) and Abelian
cases in Fig. 3.
In the SU(3) case, the lattice results of Vn (n ¼ 0, 1, 2)

are consistent with those of three low-lying Σþ
g states in

Refs. [12,14], in terms of the overall behavior of VnðrÞ, the
infrared slope σn ∼ 1 GeV=fm of VnðrÞ, and the interval
Vnþ1 − Vn ≃ 1 GeV at r ¼ 1 fm, except that the short-
distance behavior of V2ðrÞ is somehow different from
Ref. [14] because of the 0þþ glueball mixture.
As shown in Fig. 3(a), all the SU(3) and Abelian

potentials have approximately the same linear slope (the
string tension) in long distances, which is also observed for
the third-excited potential. This indicates universal Abelian
dominance for the quark confinement force of the excited-
state QQ̄ potentials as well as the ground-state potential.
For more quantitative argument, we evaluate the string

tension σn and the Abelian string tension σAbeln from Vn and
VAbel
n , respectively, for n ¼ 0, 1, 2. For the ground-state

potentials, V0 and VAbel
0 , we consider the best fits with the

Cornell potential −A=rþ σrþ C (curves in Fig. 3). From
the fit for 2a < r ≤ 16a, we evaluate the string tension
σ0 ≃ 0.89ð1Þ GeV=fm and A ≃ 0.291ð9Þ, and the Abelian-
projected string tension σAbel0 ≃ 0.812ð2Þ GeV=fm and
AAbel ≃ 0.064ð2Þ. (Reference [9] shows σAbel ≃ σ from
the long-distance data with a large number of gauge
configurations.) For the excited-state potentials Vn, we
evaluate the string tensions σn from the fit with σrþ C
for large r > 0.8 fm, and find σ1 ≃ 0.70ð3Þ GeV=fm
and σ2 ≃ 0.92ð3Þ GeV=fm. For the Abelian excited-state

FIG. 1. Effective mass plots Veffðr; tÞ of the SU(3) potential VðrÞ for (a) the ground state, (b) the first-excited state, and (c) the second-
excited state in the static QQ̄ system. Here, we display on-axis data of r ¼ 3, 6, 9, 12, 15 in the lattice unit. Larger r data are a bit shifted
horizontally for visibility.
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potentials VAbel
n , we evaluate the Abelian string tensions

σAbeln from the fit with σrþ C for large r > 0.6 fm, and find
σAbel1 ≃ 0.676ð7Þ GeV=fm and σAbel2 ≃ 0.80ð1Þ GeV=fm.
Thus, we find σAbeln ≳ 0.9σn for n ¼ 0, 1, 2.
The gluonic-excitation energies are defined by the rela-

tive difference between the ground-state and excited-
state potentials, ΔEnðrÞ≡ VnðrÞ − V0ðrÞ. Therefore,
their absolute values are physically meaningful, while
all potentials have ambiguity of an overall constant shift.
For the gluonic-excitation energies, we expect can-
cellation of systematic errors on Vn, especially for the
Abelian part.

From Fig. 3(b), the SU(3) gluonic-excitation energies
ΔEnðrÞ seem to be roughly approximated with the ansatz
an=rþ Eth

n (the curves), and the best fit parameters are
a1 ¼ 0.54ð2Þ, Eth

1 ¼ 0.98ð2Þ GeV for ΔE1ðrÞ, and
a2 ¼ 0.451ð9Þ, Eth

2 ¼ 1.818ð7Þ GeV for ΔE2ðrÞ. On the
other hand, the Abelian-projected gluonic-excitation
energies ΔEAbel

n ðrÞ seem to be approximately constant:
ΔEAbel

1 ðrÞ≃1GeV and ΔEAbel
2 ðrÞ ≃ 1.4 GeV. If ΔEAbel

n ðrÞ
is forced to be fit with the ansatz aAbeln =rþ Eth;Abel

n , the best
fit parameters are aAbel1 ¼ 0.14ð2Þ, Eth;Abel

1 ¼ 1.00ð1Þ GeV
for ΔEAbel

1 ðrÞ, and aAbel2 ¼0.10ð1Þ, Eth;Abel
2 ¼1.323ð6ÞGeV

for ΔEAbel
2 ðrÞ.

FIG. 2. Effective mass plots VAbel
eff ðr; tÞ of the Abelian potential VAbelðrÞ for (a) the ground state, (b) the first-excited state, and (c) the

second-excited state in the static QQ̄ system. Here, we display on-axis data of r ¼ 3, 6, 9, 12, 15 in the lattice unit. Larger r data are a bit
shifted horizontally for visibility.

FIG. 3. (a) The ground-state potential and two excited-state potentials in the static QQ̄ system. The circles and the squares denote the
SU(3) potentials V0, V1, V2 and the Abelian potentials VAbel

0 ; VAbel
1 ; VAbel

2 , respectively. The solid curves are the best fits with the Cornell
potential −A=rþ σrþ C for V0 and VAbel

0 for r > 2a. The dashed lines are the best fits with σrþ C for excited-state potentials V1, V2,
VAbel
1 , VAbel

2 at long distances. For the clear display, an irrelevant overall constant (þ0.2 GeV) is added to VAbel
n . (b) Gluonic-excitation

energies ΔEnðrÞ≡ VnðrÞ − V0ðrÞ. The circles and squares denote gluonic-excitation energies ΔE1, ΔE2 and the Abelian parts ΔEAbel
1 ,

ΔEAbel
2 , respectively. The curves are the best fits with the ansatz a=rþ Eth for SU(3) gluonic-excitations.
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Thus, we find three significant features for the gluonic-
excitation energies ΔEnðrÞ and ΔEAbel

n ðrÞ as follows:
(1) Abelian dominance is observed in the first gluonic-

excitation energy in longer distances than about
0.7 fm: ΔEAbel

1 ≃ ΔE1 ≃ 1 GeV. In fact, a large
gluonic-excitation energy of about 1 GeV is found
even in Abelian-projected QCD.

(2) No Abelian dominance is observed in the second
gluonic-excitation energy, and the Abelian part is
significantly smaller than the SU(3) result:
ΔEAbel

2 < ΔE2. (This feature is also found for the
third gluonic-excitation energy as ΔEAbel

3 < ΔE3.)
(3) The short-distance 1=r-like behavior is significantly

reduced in the Abelian-projected gluonic-excitation
energies ΔEAbel

n ðrÞ.
From the first two features, we conjecture that there is

some threshold between 1 and 2 GeV for the applicable
excitation-energy region of Abelian dominance, and
Abelian dominance holds below the threshold. This seems
to be qualitatively consistent with the behavior of the
MA-gauge gluon propagator, which shows decreasing of
Abelian dominance with larger momentum or smaller
distance [6,7].
Here, Abelian dominance holds for nonperturbative

properties such as confinement and spontaneous chiral-
symmetry breaking, but does not hold for perturbative
QCD. Then, as an interesting conjecture, we expect that
the first gluonic-excitation energy of about 1 GeV in long
distances is nonperturbative, since it exhibits Abelian
dominance.
On the other hand, the higher gluonic-excitation energies,

which do not show Abelian dominance, might have pertur-
bative ingredients, which would obey ΔEAbel

pQCD ≃ 1
4
ΔEpQCD,

according to the gluon-number reduction through
Abelianization.
Finally, let us consider the significant reduction of the

short-distance 1=r-like behavior in the Abelian-projected
gluonic-excitation energies. If one considers the above-
mentioned best fit with the ansatz a=rþ Eth for ΔEn and
ΔEAbel

n to be serious, one finds aAbeln ≃ 1
4
an, which agrees

with the gluon-number reduction through Abelianization,
as is also seen in the perturbative one-gluon exchange.
Then, as an interesting possibility, the short-distance
1=r-like behavior might originate from perturbative
QCD, instead of nonperturbative QCD. In any case, this
finding would be a key to understanding the short-distance
1=r behavior in the excited SU(3) potentials for the static
QQ̄ system.

V. SUMMARY AND CONCLUSION

In this paper, we have presented the first study of the
Abelian-projected gluonic-excitation energies in the static
QQ̄ system in SU(3) lattice QCD at the quenched level.
Using smeared link variables on the lattice, we have
examined four low-lying CP-even QQ̄ potentials. We have
found universal Abelian dominance for the quark confine-
ment force also in the excited-state QQ̄ potentials.
As a remarkable fact, we have found Abelian dominance

in the first gluonic-excitation energy of about 1 GeV in long
distances in the maximally Abelian gauge, although it is an
excitation phenomenon in QCD. In contrast, no Abelian
dominance has been observed in the second and higher
gluonic-excitation energies. From these two findings, we
have conjectured that there is some threshold for the
applicable excitation-energy region of Abelian dominance
between 1 and 2 GeV.
In addition, we have found that the short-distance 1=r

behavior in gluonic-excitation energies is significantly
reduced by the Abelian projection. This finding would
be a key to understand the short-distance 1=r behavior in
the excited SU(3) potentials for the static QQ̄ system.
As a future work, it is interesting to perform the similar

study for the baryonic 3Q system. It is also meaningful to
examine Abelian projection for CP-odd excited-state QQ̄
potentials, using asymmetric sample states as in Ref. [12].
It is also interesting to investigate the long-distance

behavior of the gluonic-excitation energies in Abelian-
projected QCD and to compare with the stringy mode of the
QQ̄ flux tube. In SU(3) lattice QCD, the stringy modes
grow up and appear in longer distances than 2 fm [12].
Since Abelian-projected QCD also exhibits quark confine-
ment and the flux-tube formation [8], the stringy modes are
expected also in the Abelian part in longer distances.
Also, it is meaningful to analyze our result in terms of

low and high momentum gluon modes, since the gluon
propagator shows that Abelian dominance decreases with
larger momentum or smaller distance in the MA gauge in
both SU(2) and SU(3) lattice QCD [6,7].
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