
 

Collins-Soper kernel for TMD evolution from lattice QCD

Phiala Shanahan,1,* Michael Wagman,1,2,† and Yong Zhao1,3,‡
1Center for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts, USA 02139
2Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

3Physics Department, Brookhaven National Laboratory, Building 510A, Upton, New York 11973, USA

(Received 4 April 2020; accepted 8 July 2020; published 22 July 2020)

The Collins-Soper kernel relates transverse momentum-dependent parton distribution functions
(TMDPDFs) at different energy scales. For small parton transverse momentum qT ∼ ΛQCD, this kernel
is nonperturbative and can only be determined with controlled uncertainties through experiment or first-
principles calculations. This work presents the first exploratory determination of the Collins-Soper kernel
using the lattice formulation of quantum chromodynamics. In a quenched calculation, the Nf ¼ 0 kernel is
determined at scales in the range 250 MeV < qT < 2 GeV, and an analysis of the remaining systematic
uncertainties is undertaken.
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I. INTRODUCTION

Understanding the structure of matter has been a defining
goal of physics for centuries. In the modern context, a
primary objective is imaging the three-dimensional spatial
andmomentumstructure of the proton, and of other hadrons.
Some important aspects of this structure related to the
transverse momentum of quarks and gluons in a hadron
state are encoded in transverse-momentum-dependent par-
ton distribution functions (TMDPDFs) [1–3]. Experi-
mentally, these quantities can be constrained for the proton
by Drell-Yan production and semi-inclusive deep inelastic
scattering (SIDIS) of electrons off protons; the best current
constraints are achieved via global fits to experimental data
[4–15], with improvements expected in the coming years
from measurements at COMPASS [16], the Thomas
Jefferson National Accelerator Facility [17], RHIC [18],
and an Electron-Ion Collider [19]. Additional experimental
information from dihadron production in eþe− collisions at
Belle, and new ways of looking at hadrons inside jets
[20,21], may also help constrain these fits.
Key to global fits of TMDPDFs is the ability to relate these

distributions determined in different processes, including
those at different scales. That is, for a TMDPDF

fTMD
i ðx; b⃗T; μ0; ζ0Þ, defined for a parton of flavor i with

longitudinal momentum fraction x, transverse displacement
b⃗T (the Fourier conjugate of the transverse momentum q⃗T),
virtuality scale μ0, and hadron momentum scale ζ0 which is
related to the hard scale of the scattering process, it is critical
to understand its evolution to scales ðμ; ζÞ:

fTMD
i ðx; b⃗T; μ; ζÞ
¼ fTMD

i ðx; b⃗T; μ0; ζ0Þ

× exp

�Z
μ

μ0

dμ0

μ0
γiμðμ0; ζ0Þ

�
exp

�
1

2
γiζðμ; bTÞ ln

ζ

ζ0

�
;

ð1Þ

where bT ¼ jb⃗T j. The first exponential in this equation
governs the μ-evolution of the TMDPDF, which is perturba-
tive for scales fμ0; μg ≫ ΛQCD. The evolution in ζ governed
by the second exponential, however, is encoded in the
Collins-Soper kernel1 γiζðμ; bTÞ, which is inherently non-
perturbative for qT ∼ b−1T ∼ ΛQCD, even for μ ≫ ΛQCD.
Experimentally, the Collins-Soper kernel can be extracted
by simultaneous global fits with the TMDPDF, and recent
global analyses show some discrepancy in determinations
of the kernel in the region qT ≤ 500 MeV [22]. It would
greatly improve systematic control if theCollins-Soper kernel
could be independently determined from first-principles
QCD calculations, and taken as input for global fits of
experimental data.
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1The Collins-Soper kernel is also often denoted by KðbT; μÞ
[3], and it is defined as −DðbT; μÞ in Ref. [12].
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Since TMDPDFs are defined in terms of light-cone
correlation functions, they are challenging to calculate
directly in the lattice formulation of QCD on a discrete
Euclidean spacetime, which is the only known systemati-
cally improvable first-principles approach to nonperturba-
tive QCD. Nevertheless, efforts to calculate aspects of
TMD physics from equal-time correlation functions in
boosted hadron states have been made in Refs. [23–27],
and the large-momentum effective theory (LaMET) frame-
work [28,29] provides a promising pathway toward the
determination of TMDPDFs by matching these matrix
elements to the desired light-cone correlation functions
at large hadron momentum [30–37]. In particular, it was
recently shown in Refs. [32,33] how this approach may be
used to extract the Collins-Soper kernel nonperturbatively
from computations of matrix elements of nonlocal quark
bilinear operators with staple-shaped Wilson lines. Here,
this approach is implemented numerically for the first time,
in a proof-of-principle calculation in quenched QCD. The
Collins-Soper kernel is extracted at a range of qT scales,
including in the nonperturbative region.
Section II outlines the procedure, developed in

Refs. [32,33], for constraining the Collins-Soper kernel
using lattice QCD and LaMET. Section III details the
quenched lattice QCD calculation undertaken here, includ-
ing discussion of the systematic uncertainties in the
calculation, while Sec. IV outlines the requirements for a
fully controlled calculation of the Collins-Soper kernel to
be achieved by this method.

II. COLLINS-SOPER KERNEL
FROM LATTICE QCD

In Refs. [32,33] a method was proposed to determine the
quark Collins-Soper kernel using lattice QCD and LaMET.
Precisely, it was shown that γqζðμ; bTÞ can be extracted from
a ratio of nonsinglet quasi TMDPDFs f̃TMD

ns at different
momenta, which are defined using equal-time correlation
functions within hadron states at large momentum in the z-
direction:

γqζðμ; bTÞ ¼
1

lnðPz
1=P

z
2Þ

× ln
CTMD
ns ðμ; xPz

2Þf̃TMD
ns ðx; b⃗T; μ; Pz

1Þ
CTMD
ns ðμ; xPz

1Þf̃TMD
ns ðx; b⃗T; μ; Pz

2Þ
; ð2Þ

up to power corrections which are discussed further below.
In this expression, Pz

i ≫ ΛQCD are the z-component of the
hadron momenta and CTMD

ns is a perturbative matching
coefficient that has been obtained at one-loop order [32,33].
The quasi TMDPDF f̃TMD

ns , defined below, approximates
the physical TMDPDF involving lightlike paths, as detailed
in Ref. [33], and complications involving matching in the
soft sector [31,33,35,36] are eliminated in the ratio that

gives the Collins-Soper kernel. Similar constructions have
been used in calculations of ratios of x-moments of
TMDPDFs from lattice QCD [23–27].
The unpolarized quasi TMDPDF is defined in terms of a

quasibeam function B̃Γ
i and a quasisoft factor Δ̃S [30–33],

both of which are calculable in lattice QCD:

f̃TMD
i ðx; b⃗T; μ; PzÞ≡ lim

a→0
η→∞

Z
dbz

2π
e−ib

zðxPzÞZMS
γ4Γðμ; bz; aÞ

×
Pz

EP⃗

B̃Γ
i ðbz; b⃗T; a; η; PzÞΔ̃SðbT; a; ηÞ;

ð3Þ

where a denotes the lattice spacing, the subscript i is the
flavor index, and summation over Dirac structures is
implied. This summation accounts for the operator mixings
among different Dirac structures in lattice QCD calcula-
tions defined on a hypercubic space-time lattice [38–40].
Additional mixing with gluon operators, not shown in
Eq. (3), cancels in the flavor nonsinglet combination used
in Eq. (2), which is defined as f̃TMD

ns ¼ f̃TMD
u − f̃TMD

d . Both
B̃Γ
i and Δ̃S include logarithmic (∼ ln a) and linear (∼1=a)

ultraviolet divergences, with the latter proportional to the
total lengths of the Wilson lines. Both functions also
include contributions diverging linearly as ∼η=bT in the
limit η → ∞ [33]. The η=a and bT=a divergences, as well
as η=bT-dependence, cancel between B̃Γ

i and Δ̃S in Eq. (3).

The factor ZMS
γ4Γðμ; bz; aÞ renormalizes the remaining linear

(∼bz=a) and logarithmic divergences in the quasi
TMDPDF and matches it to the quasi TMDPDF with
Dirac structure γ4 (where “4” indexes the temporal direc-
tion) in the MS scheme at scale μ [34,38,39]. An alternate
choice is to consider the quasi TMDPDF with Dirac
structure γ3; both γ4 and γ3 can be boosted onto γþ and
thus define quasi TMDPDFs which can be matched to the
spin-independent TMDPDF in the infinite-momen-
tum limit.
Quasibeam function: The quasibeam functions in Eq. (3)

are defined as matrix elements of quark bilinear operators
with staple-shaped Wilson lines:

B̃Γ
i ðbz; b⃗T; a; η; PzÞ ¼ hhðPzÞjOi

Γðbμ; 0; ηÞjhðPzÞi: ð4Þ

Here hðPzÞ denotes a boosted hadron state with four-

momentum Pμ ¼ ð0; 0; Pz; EðhÞ
P⃗
Þ, with EðhÞ

P⃗
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P⃗2 þm2

h

q
and where mh is the mass of the hadron h. States are

normalized as hhðP⃗0ÞjhðP⃗Þi ¼ 2EðhÞ
P⃗
ð2πÞ3δð3ÞðP⃗ − P⃗0Þ. It is

convenient to define a dimensionless “bare” nonsinglet
beam function:
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Bbare
Γ ðbz; b⃗T; a; η; PzÞ ¼ 1

2EP⃗

ðB̃Γ
uðbz; b⃗T; a; η; PzÞ

−B̃Γ
dðbz; b⃗T; a; η; PzÞÞ: ð5Þ

The operator Oi
Γðbμ; 0; ηÞ in Eq. (4) is defined as a quark

bilinear with a staple-shaped Wilson line, depicted in
Fig. 1:

Oi
Γðbμ; zμ; ηÞ ¼ q̄iðzμ þ bμÞΓ

2
Wẑðzμ þ bμ; η − bzÞ

×W†
Tðzμ þ ηẑ; bTÞW†

ẑðzμ; ηÞqiðzμÞ

≡ q̄iðzμ þ bμÞΓ
2
W̃ðη; bμ; zμÞqiðzμÞ; ð6Þ

where W̃ðη; bμ; zμÞ is a spatial Wilson line of staple length η
in the e⃗z direction connecting endpoints separated by
bμ ¼ ðb⃗T ; bz; 0Þ. Here T denotes a direction transverse to
e⃗z, and all spatial Wilson lines are defined as

Wα̂ðxμ; ηÞ ¼ P exp

�
ig
Z

η

0

dsAαðxμ þ sα̂Þ
�
: ð7Þ

Quasisoft factor: The quasisoft factor Δ̃SðbT; a; ηÞ can
be computed as the vacuum matrix element of a closed
spatial Wilson loop, whose definition and properties are
detailed in Refs. [30–33]. This factor cancels in the ratios of
quasi TMDPDFs which define the Collins-Soper evolution
kernel by Eq. (2), and will thus not be discussed fur-
ther here.

Renormalization factor: The renormalization factor ZMS
γ4Γ

can be separated into two parts which renormalize the
quasibeam function and soft factor respectively, denoted by

ZMS
Oγ4Γ

and ZMS
S :

ZMS
γ4Γðμ; bz; aÞ ¼ ZMS

O
γ4Γ
ðμ; bz; bT; a; ηÞZMS

S ðμ; bT; a; ηÞ: ð8Þ

Both ZMS
Oγ4Γ

and ZMS
S include linear power divergences

proportional to η=a and bT=a that cancel between the
two terms, such that the complete renormalization factor

ZMS
γ4Γ is independent of η and bT . ZMS

Oγ4Γ
can be computed

nonperturbatively using the regularization independent
momentum subtraction (RI0=MOM) scheme, with a per-
turbative matching to the MS scheme via a multiplicative

factorRMS
Oγ4Γ

as described in Refs. [34,38]. In this approach,

ZMS
O

γ4Γ
can be expressed as

ZMS
O

γ4Γ
ðμ; bz; bT; a; ηÞ ¼ RMS

O
γ4Γ
ðμ; pR; bz; b⃗T; ηÞ

× ZRI0=MOM
Oγ4Γ

ðpR; bz; b⃗T; a; ηÞ; ð9Þ

where ZRI0=MOM
O

γ4Γ
is the RI0=MOM renormalization factor

and pR denotes the matching scale introduced in the
RI0=MOM scheme. At all orders in perturbation theory,

the scheme conversion factorRMS
Oγ4Γ

cancels the dependence

of ZRI0=MOM
Oγ4Γ

on pR and on the direction of b⃗T (up to

discretization artefacts).
The authors have previously calculated ZRI0=MOM

Oγ4Γ
, and

thereby ZMS
Oγ4Γ

, by this approach in a quenched lattice QCD

study [39]; those results are used for the numerical study in

this work. The renormalization factor ZMS
S does not need to

be evaluated for a computation of the Collins-Soper kernel,
as detailed in the following subsection.
Collins-Soper kernel: In the ratio of quasi TMDPDFs

which gives the Collins-Soper kernel in Eq. (2), Δ̃S and its

renormalization factor ZMS
S , which do not depend on bz,

cancel between the numerator and denominator. As a result,
γqζðμ; bTÞ can be expressed in terms of the quasibeam
function and its renormalization only, at the cost of
introducing power-law divergences in η and bT separately
in the numerator and denominator (divergences which were
canceled by the quasisoft factor and its renormalization in
the original expression for the kernel). Moreover, to ensure
that the renormalization and matching between RI0=MOM
andMS is performed in the perturbative region, the scale bT
must be taken to be much smaller than Λ−1

QCD, a condition
which does not permit an extraction of the Collins-Soper
kernel at bT values in the nonperturbative region. A
perturbative renormalization matching scale bT ¼ bRT ≪
Λ−1
QCD in Eq. (8) can, however, be defined by exploiting the

bT-independence of ZMS
γ4Γðμ; bz; aÞ, as described in

Ref. [34]. In this approach, for the choice Γ ¼ γ4 in
Eq. (3), the Collins-Soper kernel can be expressed as

FIG. 1. Illustration of the staple-shaped Wilson line structure of
the nonlocal quark bilinear operators Oi

Γðbμ; zμ; ηÞ defining
quasibeam functions, see Eq. (6).
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γqζðμ; bTÞ

¼ 1

lnðPz
1=P

z
2Þ
ln

�
CTMD
ns ðμ; xPz

2Þ
CTMD
ns ðμ; xPz

1Þ

×

R
dbze−ib

zxPz
1Pz

1lim a→0
η→∞

BMS
γ4

ðμ; bz; b⃗T; a; η; Pz
1ÞR

dbze−ib
zxPz

2Pz
2lim a→0

η→∞
BMS
γ4

ðμ; bz; b⃗T; a; η; Pz
2Þ

�
;

ð10Þ

where a modified MS-renormalized quasibeam function

BMS
Γ has been defined as

BMS
γ4

ðμ; bz; b⃗T; a; η; PzÞ
¼ ZMS

Oγ4Γ
ðμ; bz; bRT ; a; ηÞ

× R̃ðbT; bRT ; a; ηÞBbare
Γ ðbz; b⃗T; a; η; PzÞ: ð11Þ

Here, the additional factor R̃ has been introduced into the
modified MS-renormalized quasibeam function to com-
pensate for the power-law divergences ∼jbT − bRT j=a which
would otherwise affect both the numerator and denomi-
nator of Eq. (10):

R̃ðbT; bRT ; a; ηÞ ¼
ZRI0=MOM
Oγ4γ4

ðpR ¼ p̃R; bz ¼ 0; b⃗T ; a; ηÞ
ZRI0=MOM
Oγ4γ4

ðpR ¼ p̃0
R; b

z ¼ 0; b⃗RT ; a; ηÞ
:

ð12Þ
In this definition, fixed choices of p̃R, p̃0

R, and of the

directions of b⃗T and b⃗RT , are taken. Since the factor R̃ is
independent of bz, and thus cancels between the numerator
and denominator of Eq. (10), the specific choice of
definition will not affect the determination of the
Collins-Soper kernel.2 In the numerical study in this work,
an average over b⃗T and b⃗RT orientations, and over several
choices of p̃R and p̃0

R, is performed in the same manner
detailed in the Appendix C in the numerator and denom-
inator of R̃.3

Several observations are pertinent to the computation of the
Collins-Soper evolution kernel by Eq. (10). First, since the
kernel is independent of the external state [32], one may
calculate the quasibeam functions in the state with the best
signal-to-noise properties in a latticeQCDcalculation, e.g., for
the pion. In a quenched calculation, a heavier-than-physical
valence quark mass can be chosen for the same reason.
Moreover, since although the kernel is state-independent, the

power-corrections to the kernel are not, and so variation of the
choice of external state, and external statemomenta, provides a
test of systematic effects in a numerical calculation. Second,
the Collins-Soper kernel does not depend on the longitudinal
momentum fraction x or on the hadron momenta Pz

i , at
OðbT=η; 1=ðbTPzÞÞ. Although the truncation in the bz-space
Fourier integral will induce oscillatory behavior in x-space,
varying these parameters provides insight into these additional
systematic uncertainties.
An alternative approach to extracting the Collins-Soper

kernel by transforming the product of the matching
coefficient and MS quasibeam function in Eq. (10) into
a convolution integral in bz-space was advocated in
Ref. [34]. Appendix E provides an investigation of this
approach and finds that it suffers from significant system-
atic uncertainties.

III. LATTICE QCD STUDY

The Collins-Soper evolution kernel is computed by
Eq. (10) in a lattice QCD calculation using a single
quenched ensemble, detailed in Table I. The calculation
is undertaken on gauge fields that have been subjected to
Wilson flow to flow-time t ¼ 1.0 [41], in order to increase
the signal-to-noise ratio of the numerical results, and
gauge-fixed to Landau gauge, in order to permit the use
of gauge noninvariant quark wall sources. Quasibeam
functions are constructed for a pion external state using
valence quark propagators that are computed with the tree-
levelOðaÞ improved Wilson clover fermion action [42] and
a κ value that corresponds to a heavy pion mass of 1.207
(3) GeV. This choice may be made without introducing
systematic bias, since the Collins-Soper kernel is indepen-
dent of state. Three external state momenta are studied,
P⃗ ¼ Pze⃗z with Pz ¼ nz2π=L for nz ∈ f2; 3; 4g, corre-
sponding to Pz ∈ f1.29; 1.94; 2.58g GeV, allowing the
kernel to be computed from three different momentum
ratios. To improve the overlap of boosted pion interpolating
operators onto their respective ground states and improve
statistical precision, a combination of wall sources and
momentum-smeared sinks [43] are used to construct two-
point and three-point correlation functions.

TABLE I. The ensemble of quenched QCD gauge field
configurations used in this work [44,45]. The lattice spacing a
is determined from an analysis of scale setting in Ref. [46], and
the lattice geometry parameters L and T are specified in units of
a. For operator structures with Dirac index Γ ¼ γ4, ncfg configu-
rations are analyzed, with nsrc source locations chosen on each.
For other operator Dirac structures Γ ≠ γ4, a subset with 25
configurations is analyzed, with 1 source location computed on
each.

Label β a [fm] L3 × T κ nsrc ncfg

E32 6.3017 0.06 323 × 64 0.1222 2 200

2The definition of R̃ used here differs from that in Ref. [34] by
the omission of the quasisoft factor and by allowing p̃0

R to be
different from p̃R.

3In the numerical study presented here, a set of ten momenta
pR with p2

R ranging from 5.7 to 28 GeV2, as described in
Ref. [39], are used to construct R̃.
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Bare quasibeam functions Bbare
Γ ðbz; b⃗T; a; η; PzÞ are

extracted for nonlocal quark bilinear operators [Eq. (6)]
withWilson line staple geometries defined by staple extents
η ranging between 0.6 and 0.8 fm (η=a ∈ f10; 12; 14g),
and with staple widths and asymmetries corresponding to
jbT j and bz ranging from −ðη − aÞ to (η − a). In order for
the mixing contributions to Eq. (10) to be consistently
included, bare quasibeam functions are computed for all
Dirac operator structures Γ. As detailed in the caption of
Table I, however, lower statistics are used for operators with
Dirac structures Γ ≠ γ4, whose contributions to the Collins-
Soper kernel are suppressed by the renormalization factors.
Previously, the 16-dimensional vector of MS renormaliza-

tion factors ZMS
Oγ4Γ0

ðμ; bz; b⃗T; a; ηÞ was computed for the

same ensemble and operator parameters as studied here
[39], and those results are used in this work.
The two-point correlation function for the pion, pro-

jected to a given three-momentum P⃗, is defined as:

C2ptðt; P⃗Þ ¼
X
x⃗

eiP⃗·x⃗h0jπP⃗;Sðx⃗; tÞπ†P⃗;Wð0Þj0i

!t≫0 ZP⃗

2aEP⃗

e−EP⃗t þ � � � ; ð13Þ

where ZP⃗ denotes the combination of overlap factors for the
source and sink interpolation operators and the ellipsis in
Eq. (13) denotes contributions from higher excitations,
which are exponentially suppressed for large t and dis-
cussed further in Appendix A. Wall-source interpolating
operators πP⃗;WðtÞ ¼ ūðt; P⃗=2Þγ5dðt; P⃗=2Þ are used as
sources for correlation functions, where momentum pro-

jected quark fields are defined by qðt; P⃗Þ ¼ P
x⃗ e

iP⃗·x⃗qðx⃗; tÞ
for q ¼ fu; dg. Momentum-smeared interpolating opera-
tors πP⃗;Sðx⃗; tÞ ¼ ūSðP⃗=2Þðx⃗; tÞγ5dSðP⃗=2Þðx⃗; tÞ are used as

sinks, where qSðP⃗Þðx⃗; tÞ are quasilocal smeared quark fields

obtained through iterative application of the Gaussian
momentum-smearing operator defined in Ref. [43]. In
particular, 50 steps of iterative momentum-smearing with
smearing radius ε ¼ 0.25, as defined in Ref. [43], are used
to construct momentum-smeared sinks for each momentum
corresponding to nz ∈ f2; 3; 4g. An effective energy func-
tion that asymptotes to EP⃗ can be defined from the two-
point correlation function by

Eeff
P⃗
ðtÞ ¼ 1

a
arc cos h

�
C2ptðtþ a; P⃗Þ þ C2ptðt − a; P⃗Þ

2C2ptðt; P⃗Þ

�

!t≫0
EP⃗ þ…: ð14Þ

Two-point correlation functions for the three momenta
which are considered here are displayed in Fig. 2. The
extracted energies are slightly smaller than those obtained
with the continuum dispersion relation, with relative

deviations from EP⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jP⃗j2
q

ranging from 1.5
(4)% for nz ¼ 2 to 3.5(4)% for nz ¼ 4. These deviations
are consistent with the expected size of lattice artifacts
which are neglected in this exploratory work.

A. Quasibeam functions

Bare quasibeam functions can be computed from three-
point correlation functions with insertions of the nonlocal
quark bilinear operators Oi

Γðbμ; zμ; ηÞ, defined in Eq. (6).
For the special case where pion momenta are taken only in
the z-direction [i.e., consistent with the definition of
quasibeam functions in Eq. (4)], three-point correlation
functions are defined as

CΓ;i
3ptðt; τ; bμ; a; η; P⃗ ¼ Pze⃗zÞ
¼

X
x⃗;z⃗

eiP⃗·x⃗h0jπP⃗;Sðx⃗; tÞOi
Γðbμ; ðz⃗; τÞ; ηÞπ†P⃗;Wð0Þj0i

!t≫τ≫0 ZP⃗

4aE2

P⃗

e−EP⃗tB̃Γ
i ðbz; b⃗T; a; η; PzÞ þ � � � : ð15Þ

A ratio of three- and two-point correlation functions then
enables the bare isovector quasibeam functions of Eq. (5) to
be extracted:

RΓðt; τ; bμ; a; η; PzÞ

¼ CΓ;u
3pt ðt; τ; bμ; a; η; Pze⃗zÞ − CΓ;d

3pt ðt; τ; bμ; a; η; Pze⃗zÞ
C2ptðt; Pze⃗zÞ

!t≫τ≫0
Bbare
Γ ðbz; b⃗T; a; η; PzÞ þ � � � : ð16Þ

FIG. 2. Effective energy function defined by Eq. (14) for pion
states with momenta jP⃗j ¼ nz2π=L. Shaded bands display the
result of single-exponential fits to the two-point correlation
functions for each nonzero momentum, and a two-exponential
fit at zero momentum; the number of states in each fit is chosen to
maximize an information criterion as described in the text, and
the fit ranges shown correspond to the highest-weight fits in the
weighted average over successful two-point function fits as
discussed in Appendix A.
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Constraining the bare quasibeam functions Bbare
Γ from

ratios of two- and three- point functions RΓ for all staple
geometries (specified by fη; bμg), all Dirac structures Γ,
and all momenta Pz, considered in this work, requires fits
for a very large number of operators (35,660) to be
performed. These fits are automated using a fit procedure
discussed in Appendix A. An example of the result of these
fits, for Γ ¼ γ4, and specific choices of bT and η, is given in
Fig. 3(a); a second example figure holding bz fixed, but
showing all Dirac structures, is shown in Fig. 3(b).
Additional examples of the real and imaginary parts of
the extracted bare quasibeam functions are displayed in
Appendix B.
The bare quasibeam functions obtained by Eq. (16) are

renormalized to the MS scheme by Eq. (11), using

renormalization factors ZMS
O

γ4Γ
which were computed for

the same ensemble and operators as studied here in
Ref. [39]. The fractional contributions to the renormalized
quasibeam function from the bare quasibeam functions
with different Dirac structures Γ is shown in Fig. 3(c), for a
particular choice of parameters. The size of these contri-
butions is observed to grow with increasing bT and with
increasing ðη − bzÞ; while the relative magnitudes of bare
beam functions with different Γ do not vary significantly
with these parameters, the relative importance of the off-
diagonal renormalization factors varies significantly as
discussed in Ref. [39]. Across the parameters studied,
the combined contributions from mixing to the renormal-
ized quasibeam function with Dirac structure Γ ¼ γ4 are at
the 5%–25% level. Calculations of the quasibeam func-
tions, and the Collins-Soper evolution kernel, to better than
this precision thus require bare quasibeam functions to be
computed for several Dirac structures Γ.
The functional dependence of the renormalized quasi-

beam function BMS
γ4

ðμ; bz; b⃗T; a; η; bRT ; PzÞ [defined in

Eq. (11)] is shown in Fig. 4. The factor R̃ðb⃗T ; bRT; a; ηÞ
[Eq. (12)] was included in the definition of the renormal-
ized quasibeam function to cancel the dependence of the
bare beam function on η and on bRT . It is clear that over
choices of bRT within the perturbative region, this depend-
ence is indeed removed to better than the statistical
uncertainties of this study. A weighted average of the
renormalized quasibeam function over these parameters, as
well as over different directions of b⃗T , is thus taken as
detailed in Appendix C to define averaged quasibeam

functions B̄MS
γ4

ðμ; bz; bT; a; PzÞ. Examples of the Pzbz-

dependence of the resulting quasibeam functions are shown
in Fig. 5, and additional examples are shown in
Appendix C. These are the key results used to extract
the Collins-Soper kernel, as discussed in the next
subsection.

FIG. 3. Examples of the extracted bare quasibeam functions
Bbare
Γ ðbz; b⃗T ¼ bTe⃗x; a; η; Pz ¼ nz2π=LÞ, defined in Eq. (5), for

various parameter choices. Additional examples of the bare
quasibeam functions with different parameter choices are dis-
played in Appendix B. (a) Example of the computed bare quasi
beam functions. (b) Comparison of the values of bare quasi beam
functions for different Dirac structures Γ, at the bz parameter
indicated by the orange dotted vertical line in subgure (a).
(c) Contribution to the renormalized quasi beam function

BMS
γ4

=R̃ from each of the bare quasi beam functions shown in

subgure (b), as a fraction of the dominant contribution. The large
relative uncertainties result from the lower statistics used to
compute the off-diagonal renormalization factors and the bare
beam functions with Dirac structures Γ ≠ γ4.
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(a) (b)

(c) (d)

FIG. 4. Renormalized quasibeam function BMS
γ4

ðμ; bz; b⃗T ; a; η; bRT ; PzÞ in Eq. (11) (right column), and the same quantity divided by the
factor R̃ðbT; bRT ; a; ηÞ in Eq. (12) (left column), similarly averaged, for various parameter choices. The horizontal shaded bands show the
results of constant fits in bRT and η to the renormalized quasibeam function as a function of bz and Pz (at the fixed a of the calculation), as
described in the text.

(a) (b)

FIG. 5. Averaged renormalized quasibeam function B̄MS
γ4

ðμ; bz; bT; a; Pz ¼ nz2π=LÞ at small (a) and large (b) bT , after averaging over
directions of b⃗T , and weighted averaging over bRT and η, as detailed in Appendix C. Further examples of the averaged renormalized
quasibeam functions at different choices of bT are also given in Appendix C.
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B. Collins-Soper kernel

Computing the Collins-Soper evolution kernel by
Eq. (10) requires taking the Fourier transform of the
MS-renormalized quasibeam function with respect to bz.
It is clear from the results shown in Fig. 5, however, that
with the parameter ranges explored in this study the Fourier
transform will suffer from significant truncation effects
since the quasibeam function is not yet consistent with zero
within uncertainties at the largest bz values that are used.
For this reason, models are used to fit the Pzbz-dependence
of the lattice data for the quasibeam function before the
Fourier transform is taken to evaluate the Collins-Soper
kernel. The results obtained by taking discrete Fourier
transforms instead are shown in Appendix D, and a
discussion of what will be required for future calculations
to achieve robust results for the Collins-Soper kernel
without this modeling step is presented in Sec. IV.
Two models of the Pzbz-dependence of the quasibeam

functions are considered, based on Hermite and Bernstein
polynomial bases. The models are constructed to yield x-
independent Collins-Soper kernels, as would be expected
in the absence of systematic artifacts, assuming the leading
order value for the perturbative matching coefficient, i.e.,
CTMD
ns ¼ 1. Including higher orders in the matching factor

while guaranteeing an x-independent kernel would require
more complicated functional forms to be fit to the quasi-
beam functions to compensate for the x-dependence of the
matching. It is expected that the matching uncertainties are
small relative to the systematic uncertainties inherent in
introducing models for the Pzbz-dependence of the quasi-
beam functions, and these effects are thus neglected in this
work. While a model-independent result for the Collins-
Soper kernel cannot be achieved from the data presented
here, the comparison between results obtained using the
two different models considered nevertheless provides
some indication of the severity of the model-dependence,
and the quality of fits to these functional forms not
including power corrections also provides a measure of
their importance.
The first functional form which is fit to the MS-

renormalized quasibeam function is

FHerm
N ðPz;bzPz;fakg;γ;ω;σÞ

¼
XN
k¼1

ak

Z
∞

−∞
dxeiðbzPzÞxe−ðx−ωÞ2=2σðPzxÞγHk−1ðxÞ; ð17Þ

where HnðxÞ is the nth Hermite polynomial. The fit
parameter ω is taken to be complex, while the other free
parameters are real. Allowing ImðωÞ ≠ 0 allows the Fourier
transform of FHerm

N ðPz; bzPz; fakg; γ;ω; σÞ with respect to
bzPz to be complex, and correspondingly enables
FHerm

N ðPz; bzPz; fakg; γ;ω; σÞ to be an asymmetric function
of bzPz. The real and imaginary parts of the quasibeam
function are symmetric and antisymmetric functions of bz

respectively in the η → ∞ limit; however, the numerical
results presented in this work show significant departures
from these expectations, particularly for large bT , as shown
in Fig. 5(b). The observed asymmetry could arise from
finite-volume effects: effective field theory calculations [47]
have demonstrated that finite-volume effects for pionmatrix
elements of nonlocal operators with separationl generically
take the form e−mπðL−lÞ. In this work, one therefore expects
bz-dependent finite-volume effects of the form e−mπðL−ηþbzÞ
aswell as additionalbz independent finite-volume effects. In
addition, exponential dependence on bz could arise from an
imperfect cancellation between power-law-divergent lattice

artifacts in Bbare
Γ ðbz; b⃗T; a; η; PzÞ and ZMS

O
γ4Γ
ðμ; bz; b⃗T;

a; ηÞR̃ðbT; bRT ; a; ηÞ. Taking ImðωÞ ≠ 0 allows the fit form
in Eq. (17) to include exponential dependence on bz and is
found to significant improve the quality of fits to the
numerical results with large bT ≳ 0.5 fm.
The second model considered assumes that the Fourier

transform of the quasibeam function has compact support
on the interval 0 < x < 1 [30,31,33], which is expected to
become valid for large Pz, and takes the form

FBern
N ðPz; bzPz; farng; γ; A; BÞ

¼
XN−1

r¼0

ar

Z
1

0

dxeiðbzPzÞxxAð1 − xÞBðPzxÞγBr;N−1ðxÞ;

ð18Þ

where Br;N−1, for r ∈ f0;…N − 1g are the N Bernstein
basis polynomials of degree N − 1 normalized as in
Ref. [48], and asymmetry in bz is accommodated by taking
ImðarÞ ≠ 0.
Using either functional form, FHerm

N or FBern
N , as a model

for B̄MS
γ4

, and evaluating Eq. (10) with the tree-level

matching factor CTMD
ns ¼ 1, gives the result γq;MS

ζ ¼ γ,
where γ is the model parameter appearing in Eqs. (17)–
(18). That is, the resulting Collins-Soper kernel is inde-
pendent of x by construction. The full procedure by which
each functional form is fit to the numerical results for the
quasibeam function is described in Appendix C, and
examples of the resulting fits are shown both in Fig. 6
and in Appendix C. Briefly, the fits are undertaken
simultaneously at all Pz and bz values for a given bT ,
and an information criterion is used to choose the model
truncation N for each fit. While both models fit the
quasibeam function well within the range of Pzbz values
constrained by the lattice data (with an average χ2=Ndof
over all fits of 0.9, tabulated in Appendix C), it is clear from
Fig. 6 that they correspond to substantially different models
outside this range.
The Collins-Soper kernel determined from each set of

model fits is shown in Fig. 7. The results obtained using the

SHANAHAN, WAGMAN, and ZHAO PHYS. REV. D 102, 014511 (2020)

014511-8



two model forms, i.e., the Hermite polynomial model, in
which the quasibeam function has support on
−∞ < x < ∞, and the Bernstein polynomial model, with
support on 0 < x < 1, are consistent. This encouragingly

suggests that γq;MS
ζ is well-constrained by the numerical

results at the Pz and bz values of this calculation, and that
the model-dependence introduced in the Fourier transform
is relatively mild. Perturbative results for the 0-flavor
Collins-Soper kernel [49,50] are also shown in Fig. 7
for comparison.4 It is noteworthy that the lattice QCD

results for γq;MS
ζ obtained here are consistent with

perturbative calculations of the 0-flavor Collins-Soper
kernel [49,50] in the region bT ∼ 0.2 fm. For
bT < 0.2 fm, the results differ significantly from the
perturbative calculation, which is likely due to power
corrections to the lattice QCD results of the form
1=ðbTPzÞ, which have not been estimated here.
Although the Collins-Soper kernel shown in Fig. 7 has

been obtained in a 0-flavor calculation, it can also be
compared qualitatively with the results of fits to exper-
imental data, in which several different parametrizations of
the nonperturbative behavior of the kernel at large bT have
been used. In early fits to Drell-Yan data [4–6], the Collins-
Soper kernel was parametrized as a quadratic function in bT
in the nonperturbative region. It was later found in
Refs. [53,54], however, that these fits cannot describe

SIDIS data. More recently, it has been argued that γq;MS
ζ

should approach a constant as bT → ∞; phenomenological
fits to Drell-Yan data under this assumption suggest that
this constant is ∼ − 0.6 [55]. Finally, in a recent fit to both
SIDIS and Drell-Yan data [14], the kernel was parametrized
to behave linearly at large bT . The results of this numerical
study are qualitatively consistent with constant or linear
behavior of the kernel in the nonperturbative region. Once
lattice QCD results with controlled systematic uncertainties
are available, it will be possible to test these and other
phenomenological expectations for the large-bT behavior
of the Collins-Soper kernel with QCD predictions, and
begin incorporating lattice QCD constraints in phenom-
enological analyses. The requirements for a fully controlled

(a)

(b)

FIG. 6. Examples of fits to the averaged renormalized quasi-

beam functions B̄MS
γ4

ðμ; bz; bT; a; PzÞ using functional forms

based on Hermite and Bernstein polynomials (Eqs. (17)–(18)).
Further examples of fits at different choices of the bT and Pz

parameters are shown in Appendix C.

FIG. 7. Collins-Soper evolution kernel obtained using fits to the
renormalized quasibeam functions based on Hermite and Bern-
stein polynomial bases [Eqs. (17)–(18)], computed as described
in the text. The background shading density is proportional to
1=ðbTPzÞ þ bT=η, indicating regions of greater and lesser sensi-
tivity to power corrections which are not included in the
uncertainties presented. The black dotted, dashed and solid lines
show perturbative results for the 0-flavor Collins-Soper kernel up
to three-loop order [49,50]. Perturbative results become singular
at bT ∼ 0.25 fm because they reach the Landau pole associated

with ΛMS;Nf¼0

QCD ¼ 639 MeV.

4In this work, α
MS;Nf¼0
s is determined by evolving α

MS;Nf¼5
s ×

ðμ ¼ MZÞ from Ref. [51] to lower scales using the four-loop β
function [52], integrating out bottom and charm quarks, and

finally matching α
MS;Nf¼0
s ðμÞ to α

MS;Nf¼3
s ðμÞ at the scale

μ ¼ 2 GeV where ZMS
OΓΓ0

ðμ; bz; bT; a; ηÞ is calculated in Ref. [39].

This procedure gives the result ΛMS;Nf¼0

QCD ¼ 639 MeV, which

determines α
MS;Nf¼0
s ðμÞ at all μ; throughout this work

α
MS;Nf¼0
s ðμ ¼ 2 GeVÞ ¼ 0.293951.
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lattice QCD determination of the Collins-Soper kernel are
discussed in the following section.

IV. OUTLOOK

This manuscript presents an exploratory calculation of
the nonperturbative Collins-Soper kernel in quenched
lattice QCD based on the method developed in
Refs. [32–34]. In this approach, the kernel is computed
from quasibeam functions defined from matrix elements of
quark bilinear operators with staple-shaped Wilson lines in
boosted hadron states. These beam functions are renor-
malized to the MS scheme via the RI0=MOM prescription,
and a ratio of Fourier-transformed quasibeam functions at
different hadron boost momenta determines the Collins-
Soper kernel. In this calculation, the kernel is extracted over
a range of scales bT ∈ ð0.1; 0.8Þ fm. The final results
presented here rely on modeling the bz-space quasibeam
functions to control truncation effects in the Fourier trans-
form. Nevertheless, the results are robust under the varia-
tion of models considered here.
For a future controlled and model-independent determi-

nation of the Collins-Soper kernel by this method, several
improvements will be essential. Critically, larger lattice
volumes must be studied; the overwhelming systematic in
this calculation arises from modeling to facilitate the
Fourier transform, which is necessary because of truncation
effects suffered due to the limited bz range over which
quasibeam functions could be computed on the lattice
volume used here. One measure of truncation effects is
given by the model truncation error defined as

δtruncB̄MS ¼
����DFTbzmax

½FHerm
N �ðPz; xÞ

FT∞½FHerm
N �ðPz; xÞ − 1

����; ð19Þ

where the truncated discrete Fourier transform (DFT) and
untruncated Fourier transform are defined as

DFTbzmax
½FHerm

N ðPz; bzPzÞ�ðPz; xÞ

¼ Pz
Xbzmax

bz¼−bzmax

e−ixP
zbzFHerm

N ðbzPzÞ; ð20aÞ

FT∞½FHerm
N ðbzPzÞ�ðPz; xÞ

¼
Z

∞

−∞

Pzdbz

2π
e−ixP

zbzFHerm
N ðbzPzÞ: ð20bÞ

Equation (19) is evaluated by applying both the DFT and
untruncated Fourier transform to the best-fit model
FHerm

N ðPz; bzPz; fakg; γ;ω; σÞ obtained by fitting the lat-
tice QCD results at fixed bT , as described in Sec. III.
This provides an estimate, based on the model, of the
effects of extending bzmax to larger values of η than those
used for the numerical calculations in this work. Figure 8
shows δtruncB̄MSðxÞ for x ¼ 0.5 and two values of bT over
the range of Pz values used in this work, and at values
of bzmax both comparable to the value used here and
considerably larger. For the value of bzmax used here,
truncation effects in the DFT results are Oð1Þ for large
bT and prevent a reliable determination of the Collins-
Soper kernel using a DFT approach. Results with signifi-
cantly larger Pzbzmax, however, could be used to obtain a

(a) (b)

FIG. 8. Fractional truncation effects in the MS-renormalized quasibeam functions, defined by Eq. (19), evaluated at x ¼ 0.5 for two
different bT values shown. The red vertical line denotes the maximum bz used in this study; the vertical axis range corresponds to the Pz

range of this study.
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model independent prediction of the Collins-Soper kernel
directly from a DFT of lattice QCD results (see
Appendix D). For example, based on the results of the
present study, quasibeam function calculations with
ðbzmax; PzÞ ∼ ð2.5 fm; 2.5 GeVÞ are likely to suffer from
truncation effects of less than 5% for bT scales across the
range of those studied in this work.
In addition to truncation artifacts, extractions of the

Collins-Soper kernel by the method pursued here suffer
from power corrections at OðbT=η; 1=ðbTPzÞÞ [33,36].
These effects could not be resolved by model fits in this
study, and as such, the coefficients of these power correc-
tions could not be constrained. Nevertheless, larger physi-
cal lattice volumes, as needed to reduce truncation artifacts,
will simultaneously enable OðbT=η; 1=ðPzηÞÞ effects to be
reduced by allowing larger staple extents η to be inves-
tigated at fixed bT . Larger boost momentum, again needed
to control truncation effects, will also simultaneously
enable control over power corrections of Oð1=ðbTPzÞÞ.
These artifacts make comparison of the Collins-Soper
kernel extracted by the method pursued here with pertur-
bative predictions, which are accurate in the region
bT ≪ Λ−1

QCD, challenging. Precise comparisons in this
region will be an important test of systematics in the lattice
QCD approach. The infinite volume and continuum limits
must also ultimately be taken for a fully controlled result.
Future studies would also gain significantly by exploit-

ing the state-independence of the Collins-Soper kernel to
obtain multiple constraints on the kernel from the same
calculation and thus test systematic effects. An alternative,
complementary, approach to extracting the Collins-Soper
kernel from Eq. (2) was proposed in Ref. [37]. This strategy
uses the Mellin moments of the expressions so that one
only needs to calculate the quasibeam function or its
derivatives at bz ¼ 0, which reduces the computational
cost and has the advantage that renormalization factors
cancel in the ratio. This approach also, however, requires a
nontrivial integration over the TMDPDF that is extracted
from experiments over a limited kinematic range.
Comparison of results of the two approaches will also
be valuable in future calculations.
Despite the significant challenges described above, the

results presented here suggest that controlled first-
principles calculations of the Collins-Soper kernel at non-
perturbative scales as large as bT ∼ 1 fm are tractable with
current methods. Reference [11,13–15] indicate that such a
calculation at 10% precision at scales bT ∈ ð0.2; 1.0Þ fm
will be sufficient to differentiate different models of the
Collins-Soper kernel and will thereby provide important
input for fitting low-energy SIDIS data. Ultimately, larger
values of bT , e.g., bT ≲ 2 fm, will be important input for
determinations of the TMDPDFs; this will be attainable
with larger lattice volumes in the future.
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APPENDIX A: FITS TO THREE-
AND TWO-POINT FUNCTIONS

As shown in Eq. (16), ratios of three-point and two-point
correlation functions asymptote to the bare quasibeam
function in the double limit fτ; t − τg → ∞. Ratios com-
puted at finite t and τ, however, will include contributions
from matrix elements in excited states. Two-point correla-
tion functions have the spectral representation

C2ptðt; P⃗Þ ¼
X
n

Zn
P⃗

2aEn
P⃗

ðe−En
P⃗
t þ e−E

n
P⃗
ðT−tÞÞ; ðA1Þ

where n labels QCD energy eigenstates with the quantum
numbers of a pion with momentum P⃗, En

P⃗
is the energy of

state n,
ffiffiffiffiffiffi
Zn
P⃗

q
¼ 2En

P⃗
h0jπP⃗jni are overlap factors for the

interpolating operator πP⃗ onto state n, and thermal effects
arising from the finite Euclidean time extent T are included.
Dependence of Zn

P⃗
on the type of source/sink interpolating

operators used (wall or momentum-smeared) is suppressed
in Eq. (A1) and throughout this section. Fits of lattice QCD
two-point correlation function results to Eq. (A1) can be
used to extract the ground-state energies E0

P⃗
shown in

Fig. 2, as well as excited-state energies and overlap factors.
Three-point functions have an analogous spectral

representation
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CΓ;i
3ptðt; τ; bμ; a; η; P⃗Þ ¼

X
m;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZm

P⃗
Þ�Zn

P⃗

q
4aEm

P⃗
En
P⃗

e−E
m
P⃗
ðt−τÞe−E

n
P⃗
τhmjOi

Γðbμ; zμ; ηÞjni; ðA2Þ

where n, m index energy eigenstates. Combing Eq. (A1) and Eq. (A2) and isolating the ground-state contributions yields a
spectral representation for ratios of three- and two-point functions:

CΓ;i
3ptðt; τ; bμ; a; η; P⃗Þ
C2ptðt; a; P⃗Þ

×

�X
n

Zn
P⃗

En
P⃗

�Z0

P⃗

E0

P⃗

�−1

ðe−ðEn
P⃗
−E0

P⃗
Þt þ e−E

n
P⃗
TeðE

n
P⃗
þE0

P⃗
ÞtÞ
�

¼ Bbare
Γ ðbz; b⃗T; a; η; PzÞ

�
1þ

X
ðn;mÞ≠ð0;0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZm

P⃗
Þ�Zn

P⃗

q
ðE0

P⃗
Þ2

Em
P⃗
En
P⃗
Z0

P⃗

e−ðE
m
P⃗
−E0

P⃗
Þðt−τÞe−ðE

n
P⃗
−E0

P⃗
Þτ hmjOi

Γðbμ; zμ; ηÞjni
h0jOi

Γðbμ; zμ; ηÞj0i
�
: ðA3Þ

After determining the spectral quantities appearing on
the left-hand side of Eq. (A3) from fits to lattice QCD
results for C2pt, where in practice the sum over states is
truncated at n ¼ Nstates as discussed below, the bare
quasibeam functions and other parameters appearing on
the right-hand side of Eq. (A3) can be determined from fits
to lattice QCD results for three-point to two-point function
ratios. Fitting directly to these ratios has the advantages that
ground-state overlap factors cancel exactly between three-
and two-point functions and that correlated ratios are
determined more precisely than three-point functions alone.
Including the additional factor on the left-hand side of
Eq. (A3), which depends only on energies and overlaps
obtained in two-point function fits, removes the need to
model excited-state contamination in the two-point func-
tion during fits to the ratio (which would require fitting
several additional parameters entering χ2-minimization
nonlinearly) without spoiling these correlations.
Three-point correlation functions are computed for six

source/sink separations t=a ∈ f9; 12; 15; 18; 21; 24g and
all operator insertion points 0 < τ < t. Signal-to-noise
ratios of two-point and three-point correlation functions

are proportional to e−ðE
0

P⃗
−mπÞt, where mπ is the pion mass,

and for nz ≥ 3 the large-separation results are very noisy
and so only results with t=a ∈ f9; 12; 15; 18g are used in
fits. Correlated χ2-minimization fits of two-point functions
to Eq. (A1), followed subsequently by fits to Eq. (A3), are
performed in an automated manner as follows:

(i) The minimum source/sink separation tmin are varied
over the range 2 ≤ tmin ≤ tmax − tplateau, where tmax

is chosen to be the largest t for which the signal-to-
noise ratio of C2ptðt; a; P⃗Þ is greater than a fixed
value (a threshold of 2 is used in the results
presented here) and tplateau is a free parameter
specifying the minimum number of points in a fit
(results presented here use tplateau ¼ 3). The restric-
tion tmin ≥ 2 is set by the degree of nonlocality in the

lattice action. For every possible choice of tmin

within this range, correlated χ2-minimization fits
to Eq. (A1) are performed using two-point function
results with tmin ≤ t ≤ tmax. The two-point function
fitting procedure is identical to that described in
Appendix B of Ref. [58]. To summarize, one-state
fits are performed first, followed by two-state fits. If
the Akaike information criterion (AIC) [59] is
improved sufficiently by the addition of a second
state to the fit (a threshold of ΔAIC < −2Ndof ,
where Ndof is the number of degrees of freedom in
the fit, is used in the final results), then a three-state
fit is performed and the same criterion is used to
judge whether the three-state fit is preferred. This
procedure is repeated until adding additional states
does not sufficiently improve the fit, in order to
select the optimal number of states to include in the
fit for each tmin. The best-fit parameters are deter-
mined using nonlinear optimization for the energies
En
P⃗
, with linear systems of equations solved to

determine Zn
P⃗
at each iteration. Covariance matrices

are determined using optimal shrinkage [60] as
described in Refs. [58,61] in order to reduce
finite-statistic effects leading to poorly conditioned
sample covariance matrices. Several checks on
numerical χ2 optimization described in Ref. [58]
are then performed to verify the reliability of the fit.
If these checks are passed, an acceptable two-point
function model has been found for this choice of
tmin, and three- to two-point function ratios are
subsequently analyzed using fits to Eq. (A3).

(ii) The minimum source/operator and source/sink sep-
arations corresponding to τ ∈ ½τmin; τmax� are varied
over the ranges 2 ≤ τmin ≤ ðtmin − tplateauÞ=2 and
2 ≤ t − τmax ≤ ðtmin − tplateauÞ=2. Three-point to
two-point ratios using all available t ∈ ½tmin; tmax�
and τ ∈ ½τmin; τmax� are multiplied by the factor in
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FIG. 9. Examples of fits to the ratio of three- and two-point functionsRΓðt; τ; bμ; a; η; PzÞ [Eq. (16)], obtained as described in the text.
Shaded bands of the same colors as the points show 68% bootstrap confidence intervals of the τ and t-dependent fits from the fit range
(specifically the choice of tmin, τmin, and τmax) that had the highest weight in the weighted average of successful fits. Gray horizontal
bands show the total uncertainty on the bare quasibeam functions extracted from the fits, including the statistical uncertainty and the
systematic uncertainty from variation of the results between different fit range choices.
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brackets on the left-hand side of Eq. (A3). A
correlated χ2-minimization fit is performed to extract
the parameters on the right-hand side of Eq. (A3)
using the same methods applied to two-point func-
tions. The excited-state matrix elements appearing in
Eq. (A3) enter the χ2 function linearly, and their
optimal values are determined by solving a linear
system of equations at each step of iterative non-
linear optimization for the energies appearing in
Eq. (A3) as done in variable projection methods
[62,63]. Because the low-lying spectrum is imper-
fectly modeled by few-state fits, the energies ex-
tracted from fits to Eq. (A3) are not constrained to
identically equal the energies extracted from fits to
Eq. (A1) (although the spectrum determined from
Eq. (A1) is used to provide initial conditions for
nonlinear optimization). Optimal shrinkage is used
to define the covariance matrix. The best-fit ground-
state matrix element defines ðBbare

Γ Þf for fit range
choice f defined by tmin, τmin and τmax. Fits where
two solvers disagree on ðBbare

Γ Þf by more than a
specified tolerance (10−5 is used in final results) are
discarded in analogy to the reliability checks applied
to fits to two-point functions [58].

(iii) Confidence intervals for ground-state matrix ele-
ments and other fit parameters are determined
using bootstrap resampling; see Refs. [64,65] for
reviews. Fits to Eq. (A3) are repeated Nboot times
(Nboot ¼ 200 is used in final results) using ensem-
bles constructed by randomly resampling with
replacement from the two- and three-point functions
in a correlated manner. Statistical uncertainties on fit
parameters are obtained from empirical confidence
intervals of bootstrap fit results as detailed in
Ref. [58]. The 68% confidence interval defines
ðδBbare

Γ Þf. Further reliability checks are applied:
the median of the bootstrap distribution is verified
to be within a specified tolerance of ðBbare

Γ Þf (2σ is
used in final results), and uncorrelated fit results are
verified to be within a specified tolerance of ðBbare

Γ Þf
(5σ is used in the final results). Fits passing all
reliability checks define an ensemble of f ¼
f1;…; Nsuccessg successful fit range choices.

(iv) A weighted average of ground-state matrix element
results from all successful fits is used to determine
the final results. Each fit result ðBbare

Γ Þf provides an
unbiased estimate of the bare quasibeam function (in
the infinite-statistics limit), and the relative weights
between successful fits are arbitrary in the large
statistics limit. Given a finite statistical ensemble, it
is advantageous to define a weighted average that
penalizes fits with worse goodness-of-fit and fits
with larger uncertainties. The weighted average
procedure used in Refs. [58,61] is followed: aver-
ages are defined by

Bbare
Γ ≡ XNsuccess

f¼1

wfðBbare
Γ Þf; ðA4aÞ

ðδstatBbare
Γ Þ2 ≡ XNsuccess

f¼1

wfððδBbare
Γ ÞfÞ2; ðA4bÞ

ðδsysBbare
Γ Þ2 ≡ XNsuccess

f¼1

wfððBbare
Γ Þf − Bbare

Γ Þ2; ðA4cÞ

ðδBbare
Γ Þ2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδstatBbare

Γ Þ2 þ ðδsysBbare
Γ Þ2

q
; ðA4dÞ

where the weights wf are defined as

wf ≡ w̃fPNsuccess
f¼1 w̃f

; ðA5aÞ

w̃f ≡ pfððδBbare
Γ ÞfÞ−2PNsuccess

f0¼1
pf0 ððδBbare

Γ ÞfÞ−2 : ðA5bÞ

Here, pf ¼ ΓðNdof=2; χ2f=2Þ=ΓðNdof=2Þ where Γ is
the gamma function (not to be confused with the
Dirac spinor index elsewhere in this work) in order
to penalize fits with large χ2=Ndof and large
ðδBbare

Γ Þf. See Refs. [58,61] for further discussion
of this procedure.

The resulting average values and uncertainties computed
as in Eq. (A4d) define the bare quasibeam functions
Bbare
Γ ðbz; b⃗T; a; η; PzÞ and δBbare

Γ ðbz; b⃗T; a; η; PzÞ used in
this work. A representative sample of three- and two-point
function ratio fit results are shown in Fig. 9 for the smallest
and largest momenta used in this work and for both small
and large Wilson-line extents among the set studied here.

APPENDIX B: BARE QUASIBEAM FUNCTIONS

Additional examples of the real and imaginary parts of
the extracted bare quasibeam functions Bbare

Γ ðbz; b⃗T;
a; η; PzÞ, defined in Eq. (5), and determined as described
in Sec. III, are shown for various parameter choices in
Fig. 10. A general trend can be observed that at increasing
bT both the real and imaginary parts of the functions
become more asymmetric in Pzbz. This asymmetry arises
primarily from linear divergences in the bare quasibeam
function that are canceled when the renormalization factors

ZMS
O4

γΓ
are included, as can be seen by comparing Fig. 10 and

Fig. 11. As discussed in Sec. III B, residual bz asymmetries

in BMS
γ4

visible in Fig. 11 could arise from finite-volume

effects coupled with imperfect cancellation of exponential
bz dependence between the bare quasibeam functions and
the renormalization factors.
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FIG. 10. Bare quasibeam functions Bbare
Γ ðbz; b⃗T ¼ bTe⃗x; a; η; Pz ¼ nz2π=LÞ, defined in Eq. (5), for various parameter choices.
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FIG. 11. Averaged renormalized quasibeam function B̄MS
γ4

ðbz; bT; a; Pz ¼ nz2π=LÞ, for various parameter choices. The bands show
fits to a functional form based on Bernstein polynomials [Eq. (18)], as described in the text.
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APPENDIX C: RENORMALIZED BEAM
FUNCTIONS

The renormalized quasibeam function is computed by
combining the bare quasibeam function determined from
three- to two-point function ratios as described in
Appendix A with the renormalization factors computed
in Ref. [39], as shown in Eq. (11). The uncertainty on the
renormalized quasibeam function is obtained by combining
the total uncertainties of the bare quasibeam function and

the renormalization factors in quadrature. Results are
computed using two different staple orientations corre-
sponding to b⃗T ¼ bTe⃗x and b⃗T ¼ bTe⃗y. Interchanging

these orientations e⃗x ↔ e⃗y is an exact symmetry of BMS
γ4

but is not a symmetry of Bbare
Γ for some Γ, and thus results

with both orientations can be averaged only after renorm-
alization. A weighted average [66] is used to combine the

BMS
γ4

results with b⃗T ¼ bTe⃗x and b⃗T ¼ bTe⃗y by

B0MS
γ4

ðμ; bz; bT; a; η; bRT; PzÞ≡X2
k¼1

wkBMS
γ4

ðμ; bz; bTe⃗k; a; η; bRT ; PzÞ;

δstatB0MS
γ4

ðμ; bz; bT; a; η; bRT ; PzÞ2 ≡X2
k¼1

wkδBMS
γ4

ðμ; bz; bTe⃗k; a; η; bRT ; PzÞ2;

δsysB0MS
γ4

ðμ; bz; bT; a; η; bRT ; PzÞ2 ≡X2
k¼1

wk½B0MS
γ4

ðμ; bz; bT; a; η; bRT ; PzÞ − BMS
γ4

ðμ; bz; bTe⃗k; a; η; bRT ; PzÞ�2;

δB0MS
γ4

ðμ; bz; bT; a; η; bRT ; PzÞ2 ≡ δstatB0MS
γ4

ðμ; bz; bT; a; η; bRT ; PzÞ2 þ δsysB0MS
γ4

ðμ; bz; bT; a; η; b⃗RT ; PzÞ2; ðC1Þ

where the weights are chosen to sum to unity and to be proportional to the inverse variance of each result:

wk ≡ w̃kP
2
k¼1 w̃k

; w̃k ≡ 1

δBMS
γ4

ðμ; bz; bTe⃗k; a; η; b⃗RT ; PzÞ2
: ðC2Þ

As shown for one example in Fig. 4, the renormalized quasibeam functions do not depend on η or bRT within uncertainties.
The formal extrapolation to η → ∞, and an average over possible choices of bRT in the window a ≪ bRT ≪ Λ−1

QCD, are thus
implemented with an analogous weighted average:

B̄MS
γ4

ðμ; bz; bT; a; PzÞ≡ X
η=a∈f10;12;14g

X5
ðbRT=aÞ¼2

wη;bRT
B0MS
γ4

ðμ; bz; bT; a; η; bRT; PzÞ;

δstatB̄MS
γ4

ðμ; bz; bT; a; PzÞ2 ≡ X
η=a∈f10;12;14g

X5
ðbRT=aÞ¼2

wη;bRT
δB0MS

γ4
ðμ; bz; bT; a; η; bRT ; PzÞ2;

δsysB̄MS
γ4

ðμ; bz; bT; a; PzÞ2 ≡ X
η=a∈f10;12;14g

X5
ðbRT=aÞ¼2

wη;bRT
½B̄MS

γ4
ðμ; bz; bT; a; η; bRT; PzÞ − B0MS

γ4
ðμ; bz; bT; a; η; bRT ; PzÞ�2;

δB̄MS
γ4

ðμ; bz; bT; a; PzÞ2 ≡ δstatB̄MS
γ4

ðμ; bz; bT; a; PzÞ2 þ δsysB̄MS
γ4

ðμ; bz; bT; a; PzÞ2; ðC3Þ

where the weights are

wη;bRT
≡ w̃η;bRTP

η=a∈f10;12;14g
P

5
ðbRT=aÞ¼2

w̃η;bRT

;

w̃η;bRT
≡ 1

δB0MS
γ4

ðμ; bz; bT; a; η; bRT ; PzÞ2
: ðC4Þ

The resulting renormalized quasibeam functions are shown
in Fig. 11 along with fits to the Hermite and Bernstein
functional forms shown in Eqs. (17)–(18).
Joint fits to Eqs. (17)–(18) for the real and

imaginary parts of B̄MS
γ4

ðbz;bT;a;PzÞ for fixed bT , all

bz∈½−ηþa;η−a�, and all Pz corresponding to
nz ∈ f2; 3; 4g, are performed using uncorrelated
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χ2-minimization.5 In order to determine the appropriate
polynomial to use in Eqs. (17)–(18), the AIC is employed.
Fits to Eq. (17) with Hermite polynomials of degree N ¼
f0; 1; 2g are performed, and minimum-AIC fits with
bT=a ∈ ½1; 13� are obtained with minimum χ2=Ndof as
given in Table II. Fits to Eq. (18) with Bernstein poly-
nomials of degree N ¼ f0; 1; 2; 3g are similarly performed,
and minimum-AIC fits are obtained with minimum χ2=Ndof
as given in Table III. Both fit forms describe the numerical
quasibeam function results, although the Hermite form
achieves a lower χ2=Ndof in particular for small bT .
Substituting either of the fit forms in Eqs. (17)–(18) into

Eq. (10) and analytically performing the Fourier transforms

gives the result γq;MS
ζ ¼ γ where γ is the fit parameter

appearing in Eqs. (17)–(18) (neglecting one-loop matching
effects as discussed in Sec. III B). Best-fit values for γ from

these fits therefore provide determinations of γq;MS
ζ . The

statistical uncertainties of these determinations are calcu-
lated by bootstrap resampling renormalized quasibeam
function results from a Gaussian distribution with mean

BMS
γ4

and width δBMS
γ4

, refitting each resampled ensemble,

and taking 68% empirical confidence intervals of γ in the

resulting fits. This procedure provides the results for γq;MS
ζ

for the Hermite and Bernstein fit forms shown in Fig. 7.

APPENDIX D: CS KERNEL FROM DFT

In this Appendix, a strategy to extract the Collins-Soper
kernel from the quasibeam function via the DFT method, as
proposed in Refs. [32–34], is discussed. Naively taking a
DFT of the quasibeam function obtained in this study at
different momenta (Fig. 12), and extracting the Collins-
Soper evolution kernel using Eq. (10), yields the results
shown in Fig. 12(b). Clearly, the results from ratios formed
using three different momentum pairs have significant
x-dependence, and are different from each other by over
3σ at the peak values; convergence is not apparent. For this
reason, untruncated Fourier transforms using models of the
large Pzbz behavior of the quasibeam function are used as
described in the main text, rather than the DFT approach.
The instability in Fig. 12(b) can be understood as a

consequence of the limited range of bz and η considered in
this study. From Eq. (10), the ratio of quasibeam functions
should stabilize in a certain x-region for a given momentum
pair fPz

1; P
z
2g. Given a limited range of bz in the Fourier

transform, this stabilization can be expected to be robust for
values of x ∼ 0.5 only. One might naively choose the peak
at around x ∼ 0.5 as the central value, and take some
variation around the peak to define the systematic uncer-
tainties. However, since jbzj ≤ ðη − aÞ in this calculation,
the Fourier transform will introduce an oscillatory term to
the quasibeam function with frequency Pzðη − aÞ. The
same issue has been encountered in lattice QCD calcu-
lations of collinear PDFs [67–70], and certain model
assumptions have been suggested to avoid this challenge
[71,72]. For Pz ¼ 6π=L, η ¼ 12a, as in this calculation, the
period of this oscillation is T ¼ 2π=ðPzðη − aÞÞ ∼ 1.0, and
the oscillatory behavior is not apparent within the region
0 < x < 1, as shown in Fig. 12(a). The oscillatory behavior
will persist in ratios of quasibeam functions at different
momenta Pz

1, P
z
2, as an interference between oscillations

with frequencies Pz
1ðη − aÞ and Pz

2ðη − aÞ. As a result, the
Collins-Soper kernel extracted from the peak can be shifted

TABLE II. OrderN and minimum χ2=Ndof obtained in fits of the quasibeam functions to the Hermite polynomial based model form of
Eq. (17), performed as described in the text.

bT 1 2 3 4 5 6 7 8 9 10 11 12 13

N 2 2 0 2 0 0 0 0 0 0 0 0 0
χ2=Ndof 1.3 1.1 1.5 1.2 1.3 1.2 1.0 0.7 0.5 0.3 0.2 0.1 0.1
γ −0.27ð2Þ −0.29ð2Þ −0.25ð3Þ −0.24ð7Þ −0.28ð3Þ −0.33ð3Þ −0.38ð4Þ −0.42ð3Þ −0.45ð3Þ −0.44ð4Þ −0.44ð4Þ −0.46ð4Þ −0.50ð7Þ

TABLE III. As in Table II, for the Bernstein polynomial based model form of Eq. (18).

bT 1 2 3 4 5 6 7 8 9 10 11 12 13

N 1 3 3 2 0 3 2 2 2 1 3 1 2
χ2=Ndof 2.0 2.0 1.3 1.1 1.0 1.1 0.9 0.8 0.7 0.8 0.6 0.8 0.6
γ −0.14ð3Þ −0.19ð3Þ −0.22ð2Þ −0.22ð2Þ −0.27ð2Þ −0.32ð3Þ −0.41ð3Þ −0.43ð4Þ −0.47ð5Þ −0.45ð8Þ −0.58ð12Þ −0.43ð11Þ −0.73ð28Þ

5Uncorrelated fits are performed because correlations between
quasibeam functions with different staple geometries are not
accounted for in the total statistical plus systematic uncertainties
of each fΓ; bz; b⃗T ; ηg, which are determined using weighted
averages over multiple fit range choices as described in Appen-
dix A. Although nonzero correlations exist for different matrix
elements computed using the same gauge field configurations, the
systematic uncertainties arising from using uncorrelated χ2-
minimization are expected to be small compared to those inherent
in modeling the bz dependence of the quasibeam function.
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significantly, which adds an important systematic error to
numerical calculations via this approach.
In future calculationswith increased ranges of η orPz, such

that there are more rapid oscillations of the DFTs of
quasibeam functions within the range 0 < x < 1, this
approach may nevertheless be used robustly. For example,
if the frequency Pzðη − aÞ were doubled, then the Collins-
Soper kernel would oscillate around the true value for at least
two cycles, which would allow it to be determined by taking
an average of the central localmaximumandminimumwithin
the oscillating region. To illustrate this point, a toy model for
the quasibeam function B̃ns in x-space is constructed:

B̃nsðx; bT; μ; PzÞ
¼ 104Cnsðμ; xPzÞx2ð1 − xÞ2
× exp ½−0.005ðbT=aÞ2 ln ðxPzaÞ2 − 0.2ðbT=aÞ2�;

ðD1Þ

where x ∈ ½0; 1�, and Pz and bT are in lattice units. The MS
scale is set to μ ¼ 2.0 GeV, and the lattice spacing and size
are a ¼ 0.06 fm and L ¼ 32a.
To study the oscillatory behavior in this toy model, the

inverse FT of the quasibeam function B̃nsðx; bT; μ; PzÞ is
taken first. Then, a DFT of the truncated quasibeam
functions back to x-space is performed for η ¼ f12a;
24a; 36ag, and the Collins-Soper kernel is computed using
Eq. (10). The results are shown in Fig. 13. It is apparent that
the kernel suffers from oscillations due to the truncated
DFT, and for η ¼ 12a the shape of the curve is qualitatively
similar to those in Fig. 12(b). Moreover, the peaks or local
maximums around x ¼ 0.5 are significantly shifted from
the true value of the Collins-Soper kernel for all η choices.
Nevertheless, for η ¼ 24a and 36a, taking the average of
the central peak and trough values provides a close
approximation to the Collins-Soper kernel, as shown in
Fig. 14. With more rapid oscillations, this averaging

FIG. 13. Extraction of the Collins-Soper kernel from the toy
model of Eq. (D1) with the DFT method at
fPz

1; P
z
2g ¼ f3; 4g × ð2π=32Þ. The exact Collins-Soper kernel

is γq;toyζ ðbTÞ ¼ −0.01b2T=a2 with the μ-dependence suppressed.

FIG. 14. Collins-Soper kernel from the toy model of Eq. (D1)
with the DFT method at fPz

1; P
z
2g ¼ f3; 4g × ð2π=32Þ and

different η values. The Collins-Soper kernel is determined by
taking the average of the central peak and trough values near
x ¼ 0.5, and the result converges to the original value with
increasing η.

FIG. 12. Fourier transformed quasibeam functions and a DFT
calculation of the Collins-Soper kernel. (a) The points show the
DFT of the averaged renormalized quasi beam function

B̄MS
γ4

ðbz; bT; a; Pz ¼ nz2π=LÞ. The bands show the results of

an untruncated Fourier transform applied to the Bernstein
polynomials t to the data [Eq. (18)]. (b) Collins-Soper kernel
extracted based on the DFT of the quasi beam function shown in
(a). The solid grey line shows the result obtained using the
Bernstein polynomial model fit.
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method will lead to more accurate results. Future calcu-
lations with larger lattices sizes and higher pion momenta
will thus likely enable reliable determination of the Collins-
Soper kernel with the DFT method, although the toy model
results shown in Fig. 14 suggest that very large η values
may be required to achieve percent-level precision.

APPENDIX E: ALTERNATE APPROACH IN
POSITION SPACE

In this Appendix an alternate approach to extract the
Collins-Soper kernel in bz-space is investigated, as sug-
gested in Ref. [34]. By taking the FTof the matching kernel
Cnsðμ; xPzÞ, the Collins-Soper kernel can be expressed as

γq;FIζ ðμ; bTÞ ¼
1

lnðPz
1=P

z
2Þ
ln

R
dbzC̄nsðμ; y − bzPz

1; P
z
1ÞPz

1B
MS
γ4

ðbz; b⃗T; μ; Pz
1ÞR

dbzC̄nsðμ; y − bzPz
2; P

z
2ÞPz

2B
MS
γ4

ðbz; b⃗T; μ; Pz
2Þ
; ðE1Þ

where

C̄nsðμ; bzPz; PzÞ≡
Z

dxeixðbzPzÞ½Cnsðμ; xPzÞ�−1; ðE2Þ

and the inverse of the matching kernel Cnsðμ; xPzÞ is obtained by expanding in αs. An alternative form is

γq;FIIζ ðμ; bTÞ ¼
1

lnðPz
1=P

z
2Þ
ln

R
dbzC̄0

nsðμ; y − bzPz
1; P

z
2ÞPz

1B
MS
γ4

ðbz; b⃗T; μ; Pz
1ÞR

dbzC̄0
nsðμ; y − bzPz

2; P
z
1ÞPz

2B
MS
γ4

ðbz; b⃗T; μ; Pz
2Þ
; ðE3Þ

FIG. 15. Collins-Soper kernel for the toy model of Eq. (D1)
determined using the position space approach at fPz

1; P
z
2g ¼

f3; 4g × ð2π=32Þ. Upper panel: extraction with Form I [Eq. (E1)];
lower panel: extraction with Form II [Eq. (E3)].

FIG. 16. Collins-Soper kernel computed in the position space
approach from the lattice data. Upper panel: extraction with Form
I [Eq. (E2)]; lower panel: extraction with Form II [Eq. (E4)].
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where

C̄0
nsðμ; bzPz; PzÞ≡

Z
dxeixðbzPzÞCnsðμ; xPzÞ: ðE4Þ

Equations (E1) and (E3) are denoted as Form I and Form II,
respectively; studying both forms enables a consistency
check. Similar to the results obtained via the DFT method
outlined in Appendix D, the Collins-Soper kernel obtained
by either Form I or Form II should not depend on the value
of y or on the momentum pair fPz

1; P
z
2g, which provides

another handle on the relevant systematic uncertainties.
Collins-Soper kernels extracted with the position-space

approach for the toy model of Eq. (D1) are shown in
Fig. 15. The two forms do not yield consistent answers,
which indicates that they are not numerically equivalent
and that the perturbative convergence is lost in either or
both of the convolution integrals. Nevertheless, it is clear
that with Form I the extracted Collins-Soper kernel does not
stabilize to the correct result with increasing η, while with
Form II the ratio stabilizes around the true value for

sufficiently large η. With sufficiently large η it is possible
that this approach may provide a reliable determination of
the Collins-Soper kernel, although this will need to be
investigated carefully in future work.
The results of applying the position space approach to

the lattice QCD results in this study are shown in Fig. 16,
which is compared to the Collins-Soper kernel extracted
from the fits with the Bernstein polynomial model, dis-
cussed in the main text. With the range of η values
computed in the numerical study there is no plateau in
the y-space Collins-Soper kernels, and the different choices
of momentum pairs do not appear to converge. Although
the result extracted at fPz

1; P
z
2g ¼ f3; 4g × 2π=L is con-

sistent with the results extracted using the model fits at the
minimum value, this consistency is not found at different
bT values. Further investigation is needed to confirm
whether the position-space approach via Form I or II
can provide a valuable consistency check against the
DFT approach with larger physical lattice volumes used
in calculations.

[1] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381 (1981);
B213, 545(E) (1983).

[2] J. C. Collins and D. E. Soper, Nucl. Phys. B197, 446
(1982).

[3] J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys.
B250, 199 (1985).

[4] F. Landry, R. Brock, G. Ladinsky, and C. P. Yuan, Phys.
Rev. D 63, 013004 (2000).

[5] F. Landry, R. Brock, P. M. Nadolsky, and C. P. Yuan, Phys.
Rev. D 67, 073016 (2003).

[6] A. V. Konychev and P. M. Nadolsky, Phys. Lett. B 633, 710
(2006).

[7] P. Sun, J. Isaacson, C. P. Yuan, and F. Yuan, Int. J. Mod.
Phys. A 33, 1841006 (2018).

[8] U. D’Alesio, M. G. Echevarria, S. Melis, and I. Scimemi,
J. High Energy Phys. 11 (2014) 098.

[9] M. G. Echevarria, A. Idilbi, Z.-B. Kang, and I. Vitev, Phys.
Rev. D 89, 074013 (2014).

[10] Z.-B. Kang, A. Prokudin, P. Sun, and F. Yuan, Phys. Rev. D
93, 014009 (2016).

[11] A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, and
A. Signori, J. High Energy Phys. 06 (2017) 081; 06 (2019)
051(E).

[12] I. Scimemi and A. Vladimirov, Eur. Phys. J. C 78, 89
(2018).

[13] V. Bertone, I. Scimemi, and A. Vladimirov, J. High Energy
Phys. 06 (2019) 028.

[14] I. Scimemi and A. Vladimirov, J. High Energy Phys. 06
(2020) 028.

[15] A. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi, F.
Delcarro, F. Piacenza, and M. Radici, arXiv:1912.07550.

[16] F. Gautheron et al. (COMPASS Collaboration),
COMPASS-II Proposal (2010), https://inspirehep.net/files/
64c1195bfb9b04742b66b25d4faaa32d.

[17] J. Dudek et al., Eur. Phys. J. A 48, 187 (2012).
[18] E.-C. Aschenauer et al., arXiv:1501.01220.
[19] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).
[20] M. G. A. Buffing, Z.-B. Kang, K. Lee, and X. Liu,

arXiv:1812.07549.
[21] D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn, and L.

Zoppi, J. High Energy Phys. 10 (2019) 031.
[22] A. A. Vladimirov, arXiv:2003.02288.
[23] B. U. Musch, P. Hagler, J. W. Negele, and A. Schafer, Phys.

Rev. D 83, 094507 (2011).
[24] B. U. Musch, P. Hagler, M. Engelhardt, J. W. Negele, and A.

Schafer, Phys. Rev. D 85, 094510 (2012).
[25] M. Engelhardt, P. Hägler, B. Musch, J. Negele, and A.

Schäfer, Phys. Rev. D 93, 054501 (2016).
[26] B. Yoon, T. Bhattacharya, M. Engelhardt, J. Green, R.

Gupta, P. Hägler, B. Musch, J. Negele, A. Pochinsky, and S.
Syritsyn, Proc. Sci., LATTICE2015 (2016) 116 [arXiv:1601
.05717].

[27] B. Yoon, M. Engelhardt, R. Gupta, T. Bhattacharya, J. R.
Green, B. U. Musch, J. W. Negele, A. V. Pochinsky, A.
Schäfer, and S. N. Syritsyn, Phys. Rev. D 96, 094508
(2017).

[28] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
[29] X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014).
[30] X. Ji, P. Sun, X. Xiong, and F. Yuan, Phys. Rev. D 91,

074009 (2015).
[31] X. Ji, L.-C. Jin, F. Yuan, J.-H. Zhang, and Y. Zhao, Phys.

Rev. D 99, 114006 (2019).

COLLINS-SOPER KERNEL FOR TMD EVOLUTION FROM … PHYS. REV. D 102, 014511 (2020)

014511-21

https://doi.org/10.1016/0550-3213(81)90339-4
https://doi.org/10.1016/0550-3213(83)90235-3
https://doi.org/10.1016/0550-3213(82)90453-9
https://doi.org/10.1016/0550-3213(82)90453-9
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1103/PhysRevD.63.013004
https://doi.org/10.1103/PhysRevD.63.013004
https://doi.org/10.1103/PhysRevD.67.073016
https://doi.org/10.1103/PhysRevD.67.073016
https://doi.org/10.1016/j.physletb.2005.12.063
https://doi.org/10.1016/j.physletb.2005.12.063
https://doi.org/10.1142/S0217751X18410063
https://doi.org/10.1142/S0217751X18410063
https://doi.org/10.1007/JHEP11(2014)098
https://doi.org/10.1103/PhysRevD.89.074013
https://doi.org/10.1103/PhysRevD.89.074013
https://doi.org/10.1103/PhysRevD.93.014009
https://doi.org/10.1103/PhysRevD.93.014009
https://doi.org/10.1007/JHEP06(2017)081
https://doi.org/10.1007/JHEP06(2019)051
https://doi.org/10.1007/JHEP06(2019)051
https://doi.org/10.1140/epjc/s10052-018-5557-y
https://doi.org/10.1140/epjc/s10052-018-5557-y
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2019)028
https://arXiv.org/abs/1912.07550
https://inspirehep.net/files/64c1195bfb9b04742b66b25d4faaa32d
https://inspirehep.net/files/64c1195bfb9b04742b66b25d4faaa32d
https://inspirehep.net/files/64c1195bfb9b04742b66b25d4faaa32d
https://doi.org/10.1140/epja/i2012-12187-1
https://arXiv.org/abs/1501.01220
https://doi.org/10.1140/epja/i2016-16268-9
https://arXiv.org/abs/1812.07549
https://doi.org/10.1007/JHEP10(2019)031
https://arXiv.org/abs/2003.02288
https://doi.org/10.1103/PhysRevD.83.094507
https://doi.org/10.1103/PhysRevD.83.094507
https://doi.org/10.1103/PhysRevD.85.094510
https://doi.org/10.1103/PhysRevD.93.054501
https://arXiv.org/abs/1601.05717
https://arXiv.org/abs/1601.05717
https://doi.org/10.1103/PhysRevD.96.094508
https://doi.org/10.1103/PhysRevD.96.094508
https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1007/s11433-014-5492-3
https://doi.org/10.1103/PhysRevD.91.074009
https://doi.org/10.1103/PhysRevD.91.074009
https://doi.org/10.1103/PhysRevD.99.114006
https://doi.org/10.1103/PhysRevD.99.114006


[32] M. A. Ebert, I. W. Stewart, and Y. Zhao, Phys. Rev. D 99,
034505 (2019).

[33] M. A. Ebert, I. W. Stewart, and Y. Zhao, J. High Energy
Phys. 09 (2019) 037.

[34] M. A. Ebert, I. W. Stewart, and Y. Zhao, J. High Energy
Phys. 03 (2020) 099.

[35] X. Ji, Y. Liu, and Y.-S. Liu, Nucl. Phys. B955, 115054
(2020).

[36] X. Ji, Y. Liu, and Y.-S. Liu, arXiv:1911.03840.
[37] A. A. Vladimirov and A. Schäfer, Phys. Rev. D 101, 074517

(2020).
[38] M. Constantinou, H. Panagopoulos, and G. Spanoudes,

Phys. Rev. D 99, 074508 (2019).
[39] P. Shanahan, M. L. Wagman, and Y. Zhao, Phys. Rev. D

101, 074505 (2020).
[40] J. R. Green, K. Jansen, and F. Steffens, Phys. Rev. D 101,

074509 (2020).
[41] M. Lüscher, J. High Energy Phys. 08 (2010) 071; 03 (2014)

092(E).
[42] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572

(1985).
[43] G. S. Bali, B. Lang, B. U. Musch, and A. Schäfer, Phys.

Rev. D 93, 094515 (2016).
[44] W. Detmold and M. G. Endres, Phys. Rev. D 97, 074507

(2018).
[45] M. G. Endres, R. C. Brower, W. Detmold, K. Orginos, and

A. V. Pochinsky, Phys. Rev. D 92, 114516 (2015).
[46] M. Asakawa, T. Hatsuda, T. Iritani, E. Itou, M. Kitazawa,

and H. Suzuki, arXiv:1503.06516.
[47] R. A. Briceño, J. V. Guerrero, M. T. Hansen, and C. J.

Monahan, Phys. Rev. D 98, 014511 (2018).
[48] L. Piegl and W. Tiller, The NURBS Book, 2nd ed.

(Springer-Verlag, New York, 1996).
[49] Y. Li and H. X. Zhu, Phys. Rev. Lett. 118, 022004 (2017).
[50] A. A. Vladimirov, Phys. Rev. Lett. 118, 062001 (2017).
[51] S. Bethke, Eur. Phys. J. C 64, 689 (2009).
[52] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin,

Phys. Lett. B 400, 379 (1997).

[53] P. Sun and F. Yuan, Phys. Rev. D 88, 034016 (2013).
[54] P. Sun and F. Yuan, Phys. Rev. D 88, 114012 (2013).
[55] J. Collins and T. Rogers, Phys. Rev. D 91, 074020 (2015).
[56] A. Pochinsky, Qlua, https://usqcd.lns.mit.edu/qlua.
[57] R. G. Edwards and B. Joo (SciDAC, LHPC, and UKQCD

Collaborations), Nucl. Phys. B, Proc. Suppl. 140, 832
(2005).

[58] S. R. Beane et al., arXiv:2003.12130.
[59] H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).
[60] O. Ledoit and M.Wolf, J. Multivariate Anal. 88, 365 (2004).
[61] E. Rinaldi, S. Syritsyn, M. L. Wagman, M. I. Buchoff,

C. Schroeder, and J. Wasem, Phys. Rev. D 99, 074510
(2019).

[62] G. Golub and V. Pereyra, Inverse Probl. 19, R1 (2003).
[63] D. P. O’Leary and B. W. Rust, Comput. Optim Appl. 54,

579 (2013).
[64] A. C. Davison and D. V. Hinkley, The Basic Bootstraps,

Cambridge Series in Statistical and Probabilistic Mathemat-
ics (Cambridge University Press, Cambridge, England,
1997), p. 11–69.

[65] P. Young, arXiv:1210.3781.
[66] S. Aoki et al. (Flavour Lattice Averaging Group), Eur. Phys.

J. C 80, 113 (2020).
[67] M. Constantinou and H. Panagopoulos, Phys. Rev. D 96,

054506 (2017).
[68] J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B. Yang, J.-H.

Zhang, and Y. Zhao, Phys. Rev. D 97, 014505 (2018).
[69] T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee,

P. Petreczky, C. Shugert, and S. Syritsyn, Phys. Rev. D 100,
034516 (2019).

[70] B. Joó, J. Karpie, K. Orginos, A. Radyushkin, D. Richards,
and S. Zafeiropoulos, J. High Energy Phys. 12 (2019)
081.

[71] T. Ishikawa, L. Jin, H.-W. Lin, A. Schäfer, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, Sci. China Phys. Mech. Astron. 62,
991021 (2019).

[72] H.-W. Lin, J.-W. Chen, T. Ishikawa, and J.-H. Zhang (LP3
Collaboration), Phys. Rev. D 98, 054504 (2018).

SHANAHAN, WAGMAN, and ZHAO PHYS. REV. D 102, 014511 (2020)

014511-22

https://doi.org/10.1103/PhysRevD.99.034505
https://doi.org/10.1103/PhysRevD.99.034505
https://doi.org/10.1007/JHEP09(2019)037
https://doi.org/10.1007/JHEP09(2019)037
https://doi.org/10.1007/JHEP03(2020)099
https://doi.org/10.1007/JHEP03(2020)099
https://doi.org/10.1016/j.nuclphysb.2020.115054
https://doi.org/10.1016/j.nuclphysb.2020.115054
https://arXiv.org/abs/1911.03840
https://doi.org/10.1103/PhysRevD.101.074517
https://doi.org/10.1103/PhysRevD.101.074517
https://doi.org/10.1103/PhysRevD.99.074508
https://doi.org/10.1103/PhysRevD.101.074505
https://doi.org/10.1103/PhysRevD.101.074505
https://doi.org/10.1103/PhysRevD.101.074509
https://doi.org/10.1103/PhysRevD.101.074509
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1103/PhysRevD.93.094515
https://doi.org/10.1103/PhysRevD.93.094515
https://doi.org/10.1103/PhysRevD.97.074507
https://doi.org/10.1103/PhysRevD.97.074507
https://doi.org/10.1103/PhysRevD.92.114516
https://arXiv.org/abs/1503.06516
https://doi.org/10.1103/PhysRevD.98.014511
https://doi.org/10.1103/PhysRevLett.118.022004
https://doi.org/10.1103/PhysRevLett.118.062001
https://doi.org/10.1140/epjc/s10052-009-1173-1
https://doi.org/10.1016/S0370-2693(97)00370-5
https://doi.org/10.1103/PhysRevD.88.034016
https://doi.org/10.1103/PhysRevD.88.114012
https://doi.org/10.1103/PhysRevD.91.074020
https://usqcd.lns.mit.edu/qlua
https://usqcd.lns.mit.edu/qlua
https://usqcd.lns.mit.edu/qlua
https://usqcd.lns.mit.edu/qlua
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://arXiv.org/abs/2003.12130
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/S0047-259X(03)00096-4
https://doi.org/10.1103/PhysRevD.99.074510
https://doi.org/10.1103/PhysRevD.99.074510
https://doi.org/10.1088/0266-5611/19/2/201
https://doi.org/10.1007/s10589-012-9492-9
https://doi.org/10.1007/s10589-012-9492-9
https://arXiv.org/abs/1210.3781
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1103/PhysRevD.96.054506
https://doi.org/10.1103/PhysRevD.96.054506
https://doi.org/10.1103/PhysRevD.97.014505
https://doi.org/10.1103/PhysRevD.100.034516
https://doi.org/10.1103/PhysRevD.100.034516
https://doi.org/10.1007/JHEP12(2019)081
https://doi.org/10.1007/JHEP12(2019)081
https://doi.org/10.1007/s11433-018-9375-1
https://doi.org/10.1007/s11433-018-9375-1
https://doi.org/10.1103/PhysRevD.98.054504

