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We study thermodynamic properties of Nf ¼ 2þ 1 QCD on the lattice adopting a nonperturbatively
OðaÞ-improved Wilson quark action and the renormalization group-improved Iwasaki gauge action. To
cope with the problems due to explicit violation of the Poincaré and chiral symmetries, we apply the small
flow-time expansion (SFtX) method based on the gradient flow, which is a general method to correctly
calculate any renormalized observables on the lattice. In this method, the matching coefficients in front of
operators in the small flow-time expansion are calculated by perturbation theory thanks to the asymptotic
freedom around the small flow-time limit. In a previous study using one-loop matching coefficients, we
found that the SFtXmethod works well for the equation of state extracted from diagonal components of the
energy-momentum tensor and for the chiral condensates and susceptibilities. In this paper, we study the effect
of two-loop matching coefficients which have been calculated by Harlander et al. recently. We also test the
influence of the renormalization scale in the SFtXmethod. We find that, by adopting the μ0 renormalization

scale of Harlander et al. instead of the conventional μd ¼ 1=
ffiffiffiffi
8t

p
scale, the linear behavior at large flow-times

is improved so that we can perform the t → 0 extrapolation of the SFtX method more confidently. In the
calculation of the two-loop matching coefficients by Harlander et al., the equation of motion for quark fields
was used. For the entropy density inwhich the equation ofmotion has no effects, we find that the results using
the two-loop coefficients agree well with those using one-loop coefficients. On the other hand, for the trace
anomaly which is affected by the equation of motion, we find discrepancies between the one- and two-loop
results at high temperatures. By comparing the results of one-loop coefficients with and without using the
equation of motion, the main origin of the discrepancies is suggested to be attributed to contamination of
OððaTÞ2Þ ¼ Oð1=N2

t Þ discretization errors in the equation of motion at Nt ≲ 10.

DOI: 10.1103/PhysRevD.102.014510

I. INTRODUCTION

The gradient flow (GF) opened us a variety of new
methods to significantly simplify the calculation of physi-
cal observables on the lattice [1–5]. For reviews, see
Refs. [6–8]. In this paper, we study finite-temperature
QCD with 2þ 1 flavors of dynamical quarks by applying
the small flow-time expansion (SFtX) method based on the
GF [9–12].
The GF modifies the fields according to a flow equation,

which is given by the gradient of the action in the case of
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pure Yang-Mills theory and is a kind of diffusion equation
in term of a fictitious time (flow-time) t. Fields at positive
flow-time t > 0 can be viewed as smeared fields averaged
over a mean-square physical radius of

ffiffiffiffi
8t

p
in four dimen-

sions. Salient features of the GF are the UV-finiteness and
the absence of short-distance singularities in the expect-
ation values of operators constructed by flowed fields at
t > 0. This finiteness enables us to identify these expect-
ation values and corresponding operators as renormalized
ones. We call this renormalization scheme as GF-scheme.
At small flow-times, operators in the GF-scheme

(“flowed operators”) can be expanded in terms of operators
at t ¼ 0 in a conventional renormalization scheme, say the
MS-scheme [4]. By inverting the relation, we can also
expand correctly renormalized physical observables in
conventional schemes in terms of flowed operators at small
t. Thanks to the asymptotic freedom of QCD around the
small flow-time limit, we can calculate the matching
coefficients relating the operators in two schemes by
perturbation theory. Basic idea of the SFtX method is that,
because the flowed operators are finite, we can evaluate
their expectation values directly on the lattice without
further renormalization [9]. We can thus extract the values
of correctly renormalized physical observables by extrapo-
lating proper combinations of expectation values in the
GF-scheme to the small flow-time limit t → 0. In these
extrapolations, the matching coefficients act not only to
match the renormalization schemes but also to make the
t-dependence milder by removing calculable part of oper-
ator mixings and t-dependences around the small flow-time
limit. Note that the method is applicable also to observables
whose founding symmetry is violated explicitly on the
lattice, provided that the lattice theory has the correct
continuum limit in which the symmetry is restored.
The SFtX method was first tested in quenched QCD to

calculate the energy-momentum tensor (EMT) [13–16],
which has not been easy to evaluate on the lattice due to the
explicit violation of the Poincaré invariance by the lattice
regularization.1 It was found that the equation of state (EoS)
calculated from the diagonal components of the EMT
correctly reproduces previous estimation using the conven-
tional integral methods [19–22]. The SFtX method was
tested successfully also in solvable models [23,24].
We note that the SFtXmethod is applicable also to chiral

observables [11,12]. We thus apply the method to QCD
with dynamical Wilson-type quarks, with which the correct
continuum limit is guaranteed, to cope with the problems
due to explicit violation of the chiral symmetry on the
lattice [25–28]. To reduce the finite lattice spacing effects,
we adopt the renormalization-group improved Iwasaki
gauge action [29,30] and the OðaÞ-improved Wilson quark

action [31] with a nonperturbatively estimated clover
coefficient using the Schrödinger functional method [32].
In our previous study of (2þ 1)-flavor QCD with

slightly heavy u and d quarks (mπ=mρ ≃ 0.63) and approx-
imately physical s quark (mηss=mϕ ≃ 0.74), we calculated
the EMT as well as chiral condensates and disconnected
chiral susceptibilities in the temperature range of T ≃
174–697 MeV (Nt ¼ 16–4, where Nt is the lattice size
in the temporal direction) [25]. The lattices are relatively
fine with the lattice spacing a ≃ 0.07 fm. Adopting one-
loop matching coefficients calculated in Refs. [10,12], we
found that the EoS extracted from diagonal components
of EMT by the SFtX method is well consistent with that
estimated with the conventional T-integration method
at T ≲ 280 MeV (Nt ≳ 10) [33]. At the same time, the
two estimates of EoS deviate at T ≳ 348 MeV, suggest-
ing contamination of a-independent lattice artifacts of
OððaTÞ2 ¼ 1=N2

t Þ at Nt ≲ 8 in the EMT. We also found
that the chiral condensates bend sharply and the discon-
nected chiral susceptibilities show peak at T ≃ 190 MeV
which was suggested as the pseudocritical temperature
from other observables [33]. We have further studied
topological properties of QCD by the SFtX method on
these lattices [26]. We found that the topological suscep-
tibilities estimated with the gluonic and fermionic defini-
tions agree well with each other at T ≲ 279 MeV even at
finite lattice spacing of a ¼ 0.07 fm. This is in clear
contrast to their conventional lattice estimations: For
example, a study with improved staggered quarks reports
more than hundred times larger gluonic susceptibility than
fermionic one at similar lattice spacings [34].2 These
suggest that the SFtX method is powerful in calculating
observables from lattice simulations.
Recently, Harlander, Kluth, and Lange have completed

the calculation of the matching coefficients for EMT up to
the two-loop order [35]. Some details of their calculation
are given in [36]. Removing more known small-t behaviors,
we may perhaps expect milder t-dependence in the t → 0
extrapolation. The two-loop coefficients were first tested in
quenched QCD [15]. It was found that the results of EoS
with one- and two-loop coefficients are well consistent with
each other. It was also noted that the two-loop coefficients
lead to a milder t-dependence such that systematic errors
from the t → 0 extrapolation are reduced.
In this paper, we extend the test of two-loop coefficients

to QCD with (2þ 1)-flavors of dynamical quarks. The
lattice setup is the same as in Ref. [25]. A point to be noted

1For a recent development in lattice determination of the EMT,
see Refs. [17,18].

2In Ref. [34], unlike the study of Ref. [26] with the SFtX
method, the topological susceptibilities with the fermionic
definition were measured by approximating the disconnected
pseudoscalar susceptibility by the disconnected scalar suscep-
tibility. This approximation should be valid in the continuum
limit at high temperatures where the chiral symmetry is well
restored. However, significant cutoff effects were observed in the
results of topological susceptibilities up to Nt ¼ 12 they studied.
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here is that, unlike the one-loop coefficients of Ref. [10], in
the calculation of two-loop coefficients of Ref. [35], the
equation of motion (EoM) in the continuum,

ψ̄fðxÞ
�
1

2
=D
↔
þm0;f

�
ψfðxÞ ¼ 0; ð1Þ

is used for quark operators, where D
↔

μ ≡Dμ − D⃖μ and m0;f

is the bare quark mass for the f’th flavor. With this EoM,
we can reduce the number of independent operators and
coefficients for EMT. This should cause no effects after
taking the continuum limit when the EMT operators are
isolated. On finite lattices, however, the EoM gets OðaÞ
lattice corrections which may shift the results for the EMT.
Another point to be addressed in this paper is a technical

issue of the choice of the renormalization scale in the
matching coefficients of the SFtX method. As shown
explicitly in Sec. II, the matching coefficients are written
in terms of the flow-time t, the running coupling g and
massesmf in the MS scheme at the renormalization scale μ,
and μ itself. Here, μ is free to choose as far as the
perturbative expansion is valid—the final results for physi-
cal observables should be insensitive to the choice of μ. In
numerical procedures, however, the perturbative expansion
is truncated at a finite order and neglected higher-order
corrections in the matching coefficients may cause errors in
the results. Because the quality of the perturbative expan-
sion is affected by the choice of μ, we may control these
errors to some extent by an appropriate choice of μ. We
show that the μ0-scale proposed by Harlander et al. [35]
helps us to have better signals over the conventional
choice μd ¼ 1=

ffiffiffiffi
8t

p
.

This paper is organized as follows: In Sec. II, we
summarize the essence of the SFtX method and introduce
the one- and two-loop matching coefficients. Our simu-
lation parameters are given in Sec. III. We then discuss the
issue of the renormalization scale in Sec. IV. Our test of
two-loop matching coefficients are shown in Sec. V. A
summary is given in Sec. VI. In Appendix A, we define the
group factors appearing in perturbative expressions of the
matching coefficients. In Appendix B, we confirm that
the one-loop coefficients of Ref. [10] are consistent with the
one-loop part of Ref. [35].

II. THE SFtX METHOD

A. Gradient flow

Our flow equations are identical to those given in
Refs. [3,5]. That is, for the gauge field, we set3

∂tBμðt; xÞ ¼ DνGνμðt; xÞ; Bμðt ¼ 0; xÞ ¼ AμðxÞ; ð2Þ

where the field strength and the covariant derivative of the
flowed gauge field are

Gμνðt;xÞ¼∂μBνðt;xÞ−∂νBμðt;xÞþ½Bμðt;xÞ;Bνðt;xÞ�; ð3Þ

and

DνGνμðt; xÞ ¼ ∂νGνμðt; xÞ þ ½Bνðt; xÞ; Gνμðt; xÞ�; ð4Þ

respectively. For the quark fields, we set

∂tχfðt; xÞ ¼ Δχfðt; xÞ; χfðt ¼ 0; xÞ ¼ ψfðxÞ; ð5Þ

∂tχ̄fðt; xÞ ¼ χ̄fðt; xÞΔ⃖; χ̄fðt ¼ 0; xÞ ¼ ψ̄fðxÞ; ð6Þ

where f ¼ u, d, s, denotes the flavor index, and

Δχfðt; xÞ≡DμDμχfðt; xÞ;
Dμχfðt; xÞ≡ ½∂μ þ Bμðt; xÞ�χfðt; xÞ; ð7Þ

χ̄fðt; xÞΔ⃖≡ χ̄fðt; xÞD⃖μD⃖μ;

χ̄fðt; xÞD⃖μ ≡ χ̄fðt; xÞ½∂⃖μ − Bμðt; xÞ�: ð8Þ

Note that our flow equations are independent of the flavor.

B. Energy-momentum tensor with two-loop
matching coefficients

In terms of unflowed operators, the EMT under the
dimensional regularization is given by

TμνðxÞ ¼
1

g20

�
O1;μνðxÞ −

1

4
O2;μνðxÞ

�
þ 1

4
O3;μνðxÞ

−
1

2
O4;μνðxÞ −O5;μνðxÞ; ð9Þ

where

O1;μνðxÞ≡ Fa
μρðxÞFa

νρðxÞ; ð10Þ
O2;μνðxÞ≡ δμνFa

ρσðxÞFa
ρσðxÞ; ð11Þ

O3;μνðxÞ≡
X
f

ψ̄fðxÞðγμD
↔

ν þ γνD
↔

μÞψfðxÞ; ð12Þ

O4;μνðxÞ≡ δμν
X
f

ψ̄fðxÞ=D
↔
ψfðxÞ; ð13Þ

O5;μνðxÞ≡ δμν
X
f

mf;0ψ̄fðxÞψfðxÞ; ð14Þ

with Fa
μνðxÞ the field strength of unflowed gauge field

Aa
μðxÞ. Here and in what follows, we assume for notational

3In what follows, summations are always understood over
repeated Lorentz indices, μ; ν;…, and adjoint indices, a; b;….
On the other hand, without stated otherwise, summation over
repeated flavor indices, f, f0 ¼ u, d, s is not assumed.
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simplicity that the vacuum expectation value (VEV), i.e.,
the expectation value at zero-temperature, is subtracted in
each operator.
In terms of flowed operators,

Õ1;μνðt; xÞ≡Ga
μρðt; xÞGa

νρðt; xÞ; ð15Þ

Õ2;μνðt; xÞ≡ δμνGa
ρσðt; xÞGa

ρσðt; xÞ; ð16Þ

Õ3;μνðt; xÞ≡
X
f

χ̄
∘
fðt; xÞðγμD

↔

ν þ γνD
↔

μÞχ∘fðt; xÞ; ð17Þ

Õ4;μνðt; xÞ≡ δμν
X
f

χ̄
∘
fðt; xÞ=D

↔
χ
∘
fðt; xÞ; ð18Þ

Õ5;μνðt; xÞ≡ δμν
X
f

mf χ̄
∘
fðt; xÞχ∘fðt; xÞ; ð19Þ

the EMT is expressed as [10,25]

TμνðxÞ¼ c1ðtÞ
�
Õ1;μνðt;xÞ−

1

4
Õ2;μνðt;xÞ

�
þc2ðtÞÕ2;μνðt;xÞ

þc3ðtÞ½Õ3;μνðt;xÞ−2Õ4;μνðt;xÞ�þc4ðtÞÕ4;μνðt;xÞ
þc5ðtÞÕ5;μνðt;xÞþOðtÞ; ð20Þ

where

χ
∘
fðt; xÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 dimðRÞ

ð4πÞ2t2hχ̄fðt; xÞ=D
↔
χfðt; xÞi

vuut χfðt; xÞ; ð21Þ

χ̄
∘
fðt; xÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 dimðRÞ

ð4πÞ2t2hχ̄fðt; xÞ=D
↔
χfðt; xÞi

vuut χ̄fðt; xÞ; ð22Þ

are “ringed” quark fields introduced in Ref. [10] to carry
out a wave function renormalization of quark fields
nonperturbatively, where the operators in the denomi-
nator are not VEV-subtracted. The OðtÞ term in the
right-hand side of Eq. (20) can be removed by a t → 0
extrapolation. Explicit forms of the matching coeffi-
cients c1, � � �, c5 to the one-loop order (NLO) are given
in Ref. [10].
Recently, two-loop (NNLO) calculation of the matching

coefficients has been completed by Harlander, Kluth, and
Lange [35]. Unlike the calculation of Ref. [10], the EoM (1)
was used in Ref. [35] assuming that the EMT operators are
spatially separated from other composite operators. See

also Sec. 5 of Ref. [10]. In terms of unflowed operators,
Eq. (1) reads as

1

2
O4;μνðxÞ þO5;μνðxÞ ¼ 0: ð23Þ

Note that Eq. (23) implies that the last two terms of Eq. (9)
cancel with each other:

TμνðxÞ ¼
1

g20

�
O1;μνðxÞ −

1

4
O2;μνðxÞ

�
þ 1

4
O3;μνðxÞ: ð24Þ

In terms of the flowed operators, the EoM is

δμν
X
f

½ψ̄fðxÞð=D
↔
þ 2mf;0ÞψfðxÞ�

¼ d2ðtÞÕ2;μνðt; xÞ þ d
∘
4ðtÞÕ4;μνðt; xÞ

þ d
∘
5ðtÞÕ5;μνðt; xÞ þOðtÞ ¼ 0; ð25Þ

where, in the one-loop level, the coefficients diðtÞ are given
by (cf. Eqs. (5.3)–(5.5) of Ref. [10])

d2ðtÞ ¼
1

4g2
g2

ð4πÞ2
�
−
20

3

�
TF; ð26Þ

d
∘
4ðtÞ ¼ 1þ g2

ð4πÞ2 CF

�
−
1

2
þ ln 432

�
; ð27Þ

d
∘
5ðtÞ ¼ 2

�
1þ g2

ð4πÞ2 CF½3Lðμ; tÞ þ 2þ ln 432�
�
; ð28Þ

where g is the running coupling in the MS-scheme at the
renormalization scale μ, and

Lðμ; tÞ≡ lnð2μ2tÞ þ γE ð29Þ

with γE the Euler-Mascheroni constant. The definitions
of the group factors (TF etc.) are summarized in
Appendix A.
Using Eq. (25), we can eliminate Õ5;μνðt; xÞ order

by order in perturbation theory (up to OðtÞ terms), to
obtain

TμνðxÞ¼ č1ðtÞÕ1;μνðt;xÞþ č2ðtÞÕ2;μνðt;xÞ
þ č

∘
3ðtÞÕ3;μνðt;xÞþ č

∘
4ðtÞÕ4;μνðt;xÞþOðtÞ: ð30Þ

The matching coefficients č1ðtÞ and č2ðtÞ to the two-loop
order are given in Ref. [35] as
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č1ðtÞ ¼
1

g2

�
1þ g2

ð4πÞ2
�
−β0Lðμ; tÞ −

7

3
CA þ 3

2
TF

�
þ g4

ð4πÞ4
�
−β1Lðμ; tÞ þ CA

2

�
−
14482

405
−
16546

135
ln 2þ 1187

10
ln 3

�

þ CATF

�
59

9
Li2

�
1

4

�
þ 10873

810
þ 73

54
π2 −

2773

135
ln 2þ 302

45
ln 3

�

þ CFTF

�
−
256

9
Li2

�
1

4

�
þ 2587

108
−
7

9
π2 −

106

9
ln 2 −

161

18
ln 3

���
; ð31Þ

č2ðtÞ ¼
1

4g2

�
−1þ g2

ð4πÞ2
�
β0Lðμ; tÞ þ

25

6
CA − 3TF

�
þ g4

ð4πÞ4
�
β1Lðμ; tÞ þ CA

2

�
56713

1620
−
1187

10
ln 3þ 16546

135
ln 2

�

þ CATF

�
−
59

9
Li2

�
1

4

�
−
6071

405
−
73

54
π2 þ 2287

135
ln 2 −

361

90
ln 3

�

þ CFTF

�
220

9
Li2

�
1

4

�
−
1757

54
þ 10

9
π2 −

164

9
ln 2þ 247

9
ln 3

���
; ð32Þ

where Li2ðzÞ is the dilogarithm function with Li2ð1=4Þ ¼ 0.26765263908 � � �, and β0 and β1 are the first two coefficients of
the beta function,

β0 ¼
11

3
CA −

4

3
TF; ð33Þ

β1 ¼
34

3
CA

2 −
�
4CF þ 20

3
CA

�
TF: ð34Þ

The matching coefficients č
∘
3ðtÞ and č

∘
4ðtÞ are given by

č
∘
iðtÞ≡ čiðtÞζχðtÞ−1; for i ¼ 3; 4; ð35Þ

using

č3ðtÞ ¼
1

4

�
1þ g2

ð4πÞ2
�
3

2
CF þ γχ;0

2
Lðμ; tÞ

�
þ g4

ð4πÞ4
�
γχ;0
4

�
β0 þ

γχ;0
2

�
½Lðμ; tÞ2 þ Lðμ; tÞ� þ γχ;1

2
Lðμ; tÞ

þ C2
F

�
−
137

9
Li2

�
1

4

�
−
559

216
þ 103

108
π2 −

1736

27
ln 2þ 122

3
ln 3 − 4ðln 2Þ2

�

þ CFTF

�
−
136

9
Li2

�
1

4

�
−
3377

810
−
7

9
π2 þ 1232

135
ln 2 −

136

15
ln 3

�

þ CACF

�
−
365

9
Li2

�
1

4

�
þ 261829

3240
þ 77

108
π2 þ 5788

45
ln 2 −

2102

15
ln 3 − 4ðln 2Þ2

���
; ð36Þ

and

č4ðtÞ ¼
CF

2

�
g2

ð4πÞ2 þ
g4

ð4πÞ4
��

β0 þ
γχ;0
2

�
Lðμ; tÞ þ CF

�
−
161

18
Li2

�
1

4

�
−
41

54
−

55

108
π2 −

1105

27
ln 2þ 101

6
ln 3

�

þ TF

�
25

9
Li2

�
1

4

�
−
20573

1620
þ 5

18
π2 þ 6559

135
ln 2 −

679

30
ln 3

�

þ CA

�
257

36
Li2

�
1

4

�
−
137

405
þ 11

216
π2 −

419

90
ln 2þ 1157

60
ln 3

���
; ð37Þ

given in Ref. [35], where

γχ;0 ¼ 6CF; ð38Þ
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γχ;1 ¼ CACF

�
223

3
− 16 ln 2

�
− C2

Fð3þ 16 ln 2Þ − 44

3
CFTF: ð39Þ

Here, ζχðtÞ adjusts the normalization of quark fields to that of the ringed variables in Eqs. (21) and (22), and is given by

ζχðtÞ ¼ 1þ g2

ð4πÞ2
�
γχ;0
2

Lðμ; tÞ − 3CF ln 3 − 4CF ln 2

�

þ g4

ð4πÞ4
�
γχ;0
4

�
β0 þ

γχ;0
2

�
Lðμ; tÞ2 þ

�
γχ;1
2

−
γχ;0
2

�
β0 þ

γχ;0
2

�
ln 3 −

2

3
γχ;0

�
β0 þ

γχ;0
2

�
ln 2

�
Lðμ; tÞ þ C2

�
; ð40Þ

with

C2 ≡ −23.8CACF þ 30.4C2
F − 3.92CFTF: ð41Þ

Its inverse reads as

ζχðtÞ−1¼ 1þ g2

ð4πÞ2
�
−
γχ;0
2

Lðμ; tÞþCF ln432

�

þ g4

ð4πÞ4
�
γχ;0
4

�
−β0þ

γχ;0
2

�
Lðμ; tÞ2þ

�
−
γχ;1
2

þ γχ;0
6

�
β0þ

γχ;0
2

−6CF

�
ln432

�
Lðμ; tÞ−C2þC2

Fðln432Þ2
�
: ð42Þ

We then obtain

č
∘
3ðtÞ¼

1

4

�
1þ g2

ð4πÞ2CF

�
3

2
þ ln432

�
þ g4

ð4πÞ4
�
γχ;0
6

�
β0þ

γχ;0
2

−3CF

��
3

2
þ ln432

�
Lðμ; tÞþC2

F

�
3

2
þ ln432

�
ln432−C2

þC2
F

�
−
137

9
Li2

�
1

4

�
−
559

216
þ103

108
π2−

1736

27
ln2þ122

3
ln3−4ðln2Þ2

�

þCFTF

�
−
136

9
Li2

�
1

4

�
−
3377

810
−
7

9
π2þ1232

135
ln2−

136

15
ln3

�

þCACF

�
−
365

9
Li2

�
1

4

�
þ261829

3240
þ 77

108
π2þ5788

45
ln2−

2102

15
ln3−4ðln2Þ2

���
; ð43Þ

where

č
∘
4ðtÞ ¼

CF

2

�
g2

ð4πÞ2 þ
g4

ð4πÞ4
�
β0Lðμ; tÞ þ CF ln 432þ CF

�
−
161

18
Li2

�
1

4

�
−
41

54
−

55

108
π2 −

1105

27
ln 2þ 101

6
ln 3

�

þ TF

�
25

9
Li2

�
1

4

�
−
20573

1620
þ 5

18
π2 þ 6559

135
ln 2 −

679

30
ln 3

�

þ CA

�
257

36
Li2

�
1

4

�
−
137

405
þ 11

216
π2 −

419

90
ln 2þ 1157

60
ln 3

���
: ð44Þ

In Appendix B, we confirm that the results of Ref. [10]
are consistent with the one-loop parts of Eqs. (31)–(44).
From the diagonal components of the EMT, we compute

the pressure and the energy density as

p=T4 ¼
X3
i¼1

hTiii=ð3T4Þ; ϵ=T4 ¼ −hT00i=T4: ð45Þ

The entropy density and trace anomaly are then computed
as ðϵþ pÞ=T and ϵ − 3p, respectively.

C. Extrapolation to t → 0

To extract physical results of EMT in Eqs. (20), (30),
etc., we remove contamination of OðtÞ terms in the
right-hand side of these equations by extrapolating them
to t → 0. On finite lattices, lattice artifacts contaminate
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additionally. WithOðaÞ-improvedWilson quarks we adopt,
the lattice artifacts start withOða2Þ and we expect the EMT,
for example, to be

Tμνðt;x;aÞ¼TμνðxÞþ tSμνðxÞþAμν
a2

t

þ
X
f

Bf
μνðamfÞ2þCμνðaTÞ2þDμνðaΛQCDÞ2

þa2S0μνðxÞþOða4; t2Þ; ð46Þ

where TμνðxÞ is the physical EMT, Sμν and S0μν are
contaminations of dimension-six operators with the same
quantum number, and Aμν, B

f
μν, Cμν, andDμν are those from

dimension-four operators. Though both a → 0 and t → 0
extrapolations are needed to extract the physical EMT, it is
often attractive to reserve the a → 0 extrapolation for a late
stage of numerical analyses. To perform a t → 0 extrapo-
lation on finite lattices a ≠ 0, the influence of singular
terms such as a2=t must be suppressed. This will be
possible when we have a window in t in which the linear
terms dominate (“linear window”) [25].
We found in the study of Ref. [25] that, depending on the

observable and simulation parameters, we do have ranges
of t in which the data show well linear behavior. We
performed linear t → 0 extrapolation of observables when a
linear window is available and obtained reasonable results,
as introduced in Sec. I. We think that the success of the
SFtX method in Ref. [25] is largely due to the fineness of
the lattices studied. In this paper, we adopt the same
strategy. We also discuss a method which may be used
to improve linear behaviors in Sec. IV.
We identify linear windows as follows: First of all, we

require the flow-time to satisfy
ffiffiffi
2

p
a ≤

ffiffiffiffi
8t

p
≤ minðNta=2;

Nsa=2Þ, i.e., the smearing range
ffiffiffiffi
8t

p
by the gradient flow

covers the minimal lattice separations to make the smearing
effective, and, simultaneously, is smaller than the half of the
smallest lattice extent to avoid finite-size effects due to
overlapped smearing. In terms of the dimensionless flow-
time t=a2, these conditions read4

1

4
≤

t
a2

≤ t1=2 ≡ 1

8

�
min

�
Nt

2
;
Ns

2

��
2

: ð47Þ

For each observable O, we then look for a range of t in
which terms linear in t look dominating, and try linear
extrapolations of the form

hOðt; aÞi ¼ hOi þ tSO ð48Þ

with various choices of the fitting range. We then select a
temporally best linear fit whose fitting range is the widest
within the range (47), under the condition that χ2=Ndof is
smaller than a cutoff value. In this study, due to limitation
of the statistics, we could not obtain a statistically reliable
correlation matrix among data at different flow-times t.
We thus disregard the correlation among different t’s in the
calculation of χ2=Ndof . This means that the absolute value
of χ2=Ndof does not have a strong sense—we can reduce it
below any desired value by adding correlated data at
intermediate t’s. To obtain reasonable fits, we thus repeat
the test varying the cutoff value widely. In Fig. 1, we show
some typical results of this test. One-loop matching coef-
ficients of Ref. [10] and the μ0-scale discussed in Sec. IVare
adopted. The cutoffs for the linear fits 1, 2, 3, � � �, and 8 are
10−5, 10−4, 10−3, � � �, and 10þ2, respectively. The selected
fitting range for each fit is shown by a line at the bottom of
each plot with the same color. From Fig. 1, we note that the
linear fits are stable when the cutoff value is large. On the
other hand, whenwe require χ2=Ndof < 10−3 or smaller, our
selection procedure for the temporal linear windowbecomes
sometimes unstable and fails to give a window. Consulting
these plots and also requiring that the resulting linear
windows are common among similar observables, we
decide to choose the fits 5 which require χ2=Ndof < 0.1
to select optimum linear windows, for all observables we
study in this paper.
To confirm the validity of the linear window and to

estimate a systematic error due to the fit ansatz, we also
make additional fits using the data within the samewindow:
One is a “nonlinear fit” inspired from Eq. (46),

hOðt; aÞi ¼ hOi þ AO
a2

t
þ tSO þ t2RO: ð49Þ

Another is a “linear+log fit” to estimate the effects of
neglected higher-order loop corrections in the matching
coefficients. For the case of one-loop matching coefficients,
possible corrections are Oðg4Þ ∼Oð1= log2 μÞ. Because
μ ∼ 1=

ffiffi
t

p
(see Sec. IV), the leading t-dependence of

Oðg4Þ terms may be taken by fits of the form

hOðt; aÞi ¼ hOi þ tSO þ QO

log2ð ffiffiffiffi
8t

p
=aÞ : ð50Þ

For the case of two-loop matching coefficients, we
instead try

hOðt; aÞi ¼ hOi þ tSO þ Q0
O

log3ð ffiffiffiffi
8t

p
=aÞ ð51Þ

to estimate the Oðg6Þ contaminations. We take the differ-
ence between the linear fit and the nonlinear or linear þ log
fits as an estimate of the systematic error due to the choice
of the fit ansatz.

4In practice, t=a2 is bounded also by the maximum value of
t=a2 in the calculation of flowed fields. In this study, we calculate
them up to t=a2 ¼ 2.0.
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III. SIMULATION PARAMETERS AND OUR
NUMERICAL METHODS

The numerical setup for this study is the same as that of
Ref. [25]. We study 2þ 1 flavor QCDwith slightly heavy u
and d quarks (mπ=mρ ≃ 0.63) and approximately physical s
quark (mηss=mϕ ≃ 0.74) on a relatively fine lattice with
the lattice spacing a ≃ 0.07 fm (a−1 ≃ 2.79 GeV) [33,37].
To reduce the finite lattice spacing effects, we adopt
the renormalization-group improved Iwasaki gauge action

[29,30] and the OðaÞ-improved Wilson quark action
[31]. For the clover coefficients of the improved Wilson
quark action, we adopt nonperturbatively evaluated
values [32]. The bare gauge coupling parameter and the
hopping parameters are set to β ¼ 2.05, κud ¼ 0.1356,
and κs ¼ 0.1351.
Finite temperature configurations in the range of T ≃

174–348 MeV (Nt ¼ 16–8) have been generated adopting
the fixed-scale approach [21,33]. The values of temperature
at each Nt are given in Table I. The spatial box size is 323

FIG. 1. Typical results of the linear fits with the fitting ranges shown by the bands at the bottom of each plot. These fitting ranges
are selected by the procedure discussed in Sec. II C. The cutoff values of χ2=Ndof for the linear fits 1, 2, 3, � � �, and 8 are 10−5, 10−4,
10−3, � � �, and 10þ2, respectively. Results of corresponding linear fits are shown by dashed lines with the same color. The dashed lines
with the same fitting range are overlapped with each other, and only the color with the largest fit number is visible. One-loop matching
coefficients of Ref. [10] and the μ0-scale are adopted. Errors are statistical only.
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for T > 0 and 283 for T ¼ 0. Although we have configu-
rations also at T ≃ 464 MeV (Nt ¼ 6) and T ≃ 697 MeV
(Nt ¼ 4) [25], limitations by t1=2 ¼ 1.125 and 0.5, respec-
tively, are too severe to obtain a stable linear window.
It was also noted that the EoS on Nt ≲ 8 lattices has large
OððaTÞ2 ¼ 1=N2

t Þ lattice artifacts [25]. We thus just omit
these configurations in this study.
Our numerical algorithm for gradient flow is given in

Ref. [25]. We adopt the third order Runge-Kutta method
with the step size of ϵ ¼ 0.02. For the quadratic terms of the
field strength tensor GμνðxÞ, we adopt clover operator with
four plaquette Wilson loops and that with eight 1 × 2
rectangle Wilson loops such that the tree-level improved
field strength squared is obtained [38]. To calculate the MS
running coupling and masses in the matching coefficients,
we adopt five-loop beta and gamma functions [39], instead of
the four-loop functions adopted in our previous study [25].
We evaluate fermionic observables by the noisy estima-

tor method. The number of noise vectors we adopt is 20 for
each color and spinor component. To measure fermionic
bi-linear observables at t > 0, instead of the adjoint Runge-
Kutta integration adopted in Ref. [25] (see Appendix B of
Ref. [25]), we apply an alternative method using usual
forward Runge-Kutta integrations only by locating the
noise vectors at t ¼ 0. See Appendix C for details. We
confirm that the both methods give consistent results within
statistical errors of the noise method. This alternative
method is applicable to fermionic bilinear observables
and reduces the computational cost. On the other hand,
because the data at all t’s are estimated with the same noise
vector at t ¼ 0, the correlation among different t’s is
stronger than the study of Ref. [25] in which independent
noise vectors were generated at each t. The gauge observ-
ables are measured every 5 trajectories at T > 0 and every
10 trajectories at T ¼ 0, while the fermionic observables
are measured every 50 trajectories at T > 0 and every 100
trajectories at T ¼ 0. The statistical errors are estimated by
the standard jackknife analysis with the bin size of 100
trajectories for the energy-momentum tensor and 300
trajectories for the chiral condensates and susceptibilities.

IV. RENORMALIZATION SCALE

Our matching coefficients, Eqs. (31)–(44), are functions
of the renormalization scale μ and the MS running coupling
constant g at the renormalization scale μ. Here, the
renormalization scale μ is free to choose as long as the
perturbative expansion of the matching coefficients is valid
because the final physical observables are independent of μ.
A conventional choice of μ is

μ ¼ μdðtÞ≡ 1ffiffiffiffi
8t

p ; ð52Þ

which is a natural scale of flowed operators because
ffiffiffiffi
8t

p
is

the physical smearing extent of flowed fields. On the other
hand, the authors of Ref. [35] argued that the choice

μ ¼ μ0ðtÞ≡ e−γE=2ffiffiffiffi
2t

p ; ð53Þ

which sets Lðμ; tÞ ¼ 0 in Eqs. (31)–(44), keeps the relative
contribution of two-loop terms small in a similar level as
the μd-scale.
We note that, since

μ0ðtÞ ≃ 1.4986 × μdðtÞ; ð54Þ

the μ0-scale is more perturbative than the μd-scale in
asymptotically free theories. Thus, the μ0-scale may
improve the quality of perturbative expressions, in particular
at large t.5

A. Test of renormalization scales using one-loop
matching coefficients

In Fig. 2, we examine effects of the renormalization scale
by comparing the results for the entropy density,

ϵþ p
T4

¼ −
4

3T4

	
T00 −

1

4
Tμμ



; ð55Þ

at finite t with μ0- and μd-scales. Corresponding results for
the trace anomaly,

ϵ − 3p
T4

¼ −
1

T4
hTμμi; ð56Þ

are shown in Fig. 3. We adopt one-loop matching coef-
ficients of Ref. [10] in this test.
Consulting Figs. 2 and 3, we find that, though some

dependence on the choice of the renormalization scale is
visible, the difference become smaller as we decrease t=a2.
We also note that the slight curvatures visible sometimes

TABLE I. Simulation parameters: Temperature in MeV, T=Tpc
assuming Tpc ¼ 190 MeV, the temporal lattice size Nt, t1=2
defined by Eq. (47), and the number of configurations used in
gauge and fermion measurements. Spatial box size is 323 for
T > 0 and 283 for T ¼ 0.

T [MeV] T=Tpc Nt t1=2
Gauge

configurations
Fermion

configurations

0 0 56 24.5 650 65
174 0.92 16 8 1440 144
199 1.05 14 6.125 1270 127
232 1.22 12 4.5 1290 129
279 1.47 10 3.125 780 78
348 1.83 8 2 510 51

5One may try even larger μ, such as 2μd or 3μd, as the
renormalization scale. On the other hand, adopting a too big value
for μ will make Lðμ; tÞ large and thus may invalidate the
perturbative expansion, i.e., μ should be OðμdÞ.
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with the μd-scale data become smaller with the μ0-scale,
and the linear behavior is much improved by adopting the
μ0-scale in particular at large t=a2. This is consistent with
our expectation that the μ0-scale extends the perturbative
region over the μd-scale toward larger t=a2. The μ0-scale
enables us to carry out t → 0 extrapolations based on the
linear window more confidently.
In Figs. 2 and 3, we also show our t → 0 extrapolations

using the data with the μ0-scale. The arrow at the bottom of
each plot is the linear window we adopt determined by the

procedure discussed in Sec. II C. Solid lines, dashed curves,
and dotted curves are the results of linear, nonlinear, and
linear þ log fits, respectively. The symbols at t ∼ 0 shows
the results of t → 0 extrapolations, from the right to the left,
using linear, nonlinear, and linear þ log fits, respectively.
In Table II, we summarize our results for the physical

values of ðϵþ pÞ=T4 and ðϵ − 3pÞ=T4, obtained in the
t → 0 limit using the one-loop matching coefficients of
Ref. [10] with the μ0-scale.We take the result of the linear fit
as our central value and take the difference with other fits as

FIG. 2. Entropy density ðϵþ pÞ=T4 with μ0 (blue) and μd (green) scales as function of the flow-time. One-loop matching coefficients
of Ref. [10] are used. Also shown are the results of the t → 0 extrapolations using the data with the μ0-scale: Solid line is the linear fit
using the linear window indicated by the arrow at the bottom of each plot, and the symbol at t=a2 ¼ 0 is the result of the linear fit for the
physical entropy density in the t → 0 limit. Fit results with the nonlinear ansatz (49) and linear þ log ansatz (50) are shown by dashed
and dotted curves together with the symbols at t=a2 < 0 to the right and to the left, respectively. Errors are statistical only.
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an estimate of the systematic error due to the t → 0 extra-
polation. In the same table, we also list the results for ϵ=T4

and p=T4 obtained by independent t → 0 extrapolations
using data of −hT00i=T4 and

P
ihTiii=ð3T4Þ, respectively.

Corresponding results of the equation of state with the
μd-scale are summarized in Table III. We find that the results
with the μd-scale are consistent within the errors with both
those given in Table II and also in Ref. [25].

FIG. 3. The same as Fig. 2 but for the trace anomaly ðϵ − 3pÞ=T4.

TABLE II. Results for EoS by the SFtX method with the μ0-scale using the one-loop matching coefficients of Ref. [10]. The first
parenthesis is for the statistical error, and the second for the systematic error due to the fit ansatz.

T [MeV] ðϵþ pÞ=T4 ðϵ − 3pÞ=T4 ϵ=T4 p=T4

174 3.24ð68Þð þ10
−1.19Þ −0.96ð1.56Þð þ00

−03 Þ 2.27ð65Þð þ06
−95 Þ 1.10ð43Þð þ03

−00 Þ
199 8.30ð57Þð þ00

−35 Þ 8.09ð1.03Þð þ13
−1.75Þ 8.25ð56Þð þ03

−67 Þ −0.00ð27Þð þ43
−02 Þ

232 13.64ð27Þð þ17
−1.15Þ 7.44ð46Þð þ40

−80 Þ 12.05ð23Þð þ23
−1.14Þ 1.48ð15Þð þ39

−05 Þ
279 16.84ð25Þð þ08

−92 Þ 4.41ð86Þð þ51
−00 Þ 13.46ð28Þð þ20

−1.29Þ 3.07ð25Þð þ02
−15 Þ

348 21.13ð13Þð þ04
−00 Þ −1.49ð35Þð þ68

−3.52Þ 15.91ð12Þð þ00
−03 Þ 4.87ð20Þð þ21

−1.44Þ

NF ¼ 2þ 1 QCD THERMODYNAMICS WITH GRADIENT FLOW … PHYS. REV. D 102, 014510 (2020)

014510-11



Results for the chiral condensate hfψ̄fψfgi for f ¼ u or
d quark and for s quark are shown in Figs. 4 and 5,
respectively, where the VEV’s are subtracted from the

chiral condensates to remove singularities like m2=t
[12,25]. Figures 6 and 7 show the results for the discon-
nected chiral susceptibility,

FIG. 4. The same as Fig. 2 but for the chiral condensate hfψ̄fψfgi for f ¼ u or d with VEV subtraction. The vertical axis is in
unit of GeV3.

TABLE III. The same as the Table II but with the μd-scale.

T [MeV] ðϵþ pÞ=T4 ðϵ − 3pÞ=T4 ϵ=T4 p=T4

174 3.14ð66Þð þ14
−1.41Þ −1.15ð1.70Þð þ10

−01 Þ 2.14ð65Þð þ09
−82 Þ 1.14ð43Þð þ02

−00 Þ
199 8.22ð56Þð þ34

−12 Þ 7.80ð1.04Þð þ88
−03 Þ 8.02ð54Þð þ77

−02 Þ 0.10ð26Þð þ00
−17 Þ

232 13.45ð27Þð þ1.13
−00 Þ 7.43ð52Þð þ1.86

−00 Þ 12.03ð24Þð þ96
−00 Þ 1.53ð15Þð þ00

−19 Þ
279 16.19ð24Þð þ1.31

−00 Þ 4.76ð99Þð þ05
−59 Þ 13.38ð31Þð þ12

−03 Þ 3.06ð26Þð þ06
−13 Þ

348 21.25ð13Þð þ00
−04 Þ 2.36ð75Þð þ91

−4.63Þ 15.57ð12Þð þ14
−34 Þ 4.92ð20Þð þ28

−1.54Þ
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χdisc:
f̄f

¼
	�

1

NΓ

X
x
fψ̄fψfgðxÞ

�
2



disc:

−
�	

1

NΓ

X
x
fψ̄fψfgðxÞ


�
2

; ð57Þ

where connected quark loop contribution is dropped from
the scalar density two-point function and NΓ is the lattice
volume. Here, because the VEV-subtraction is not required
for χdisc:

f̄f
, we also study the case of T ¼ 0.

We find that, though a linear window is sometimes not
clear with the conventional μd-scale, the linear behavior is
much improved by adopting the μ0-scale in particular at
large t=a2. The μ0-scale extends the applicability of the

t → 0 extrapolation method based on the linear window. In
the followings, we perform t → 0 extrapolations with the
μ0-scale only.6

FIG. 5. The same as Fig. 4 but for the s quark (f ¼ s).

6Similar but more drastic improvement with the μ0-scale was
observed in our preliminary study of 2þ 1 flavor QCD at the
physical point on a less fine lattice [40]. On the other hand, no
apparent improvement with the μ0-scale was reported in the study
of quenched QCD [15]. This may be understood as follows:
Because Tc in quenched QCD is higher than Tpc in full QCD, the
effective coupling in quenched QCD is smaller at similar T=Tc=pc,
and thus the relevant range of t is well perturbative already with
the μd-scale. We also note that Tpc in full QCD decreases as we
decrease the quark mass toward the physical point.
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In Figs. 4, 5, 6, and 7, the arrow at the bottom of
each plot is the linear window we adopt, and the
symbols at t ∼ 0 shows the results of t → 0 extrapola-
tions, from the right to the left, using linear, nonlinear,
and linear þ log fits, respectively. In Table IV, we
summarize the final results for the chiral condensates
and disconnected chiral susceptibilities, obtained in the
t → 0 limit using the one-loop matching coefficients of
Ref. [10] with the μ0-scale.

B. Results with the μ0-scale using one-loop
matching coefficients

In Fig. 8, we summarize the physical results for EoS as
function of temperature, obtained by t → 0 extrapolations
of the data with the μ0-scale shown in Sec. IVA. The central
values are taken from the linear fits and difference with the
results of nonlinear and linear þ log fits are taken as
estimates of the systematic error due to the fit ansatz for
the t → 0 extrapolation.

FIG. 6. The same as Fig. 2 but for the disconnected chiral susceptibility χdisc:
f̄f

in the MS-scheme at 2 GeV for f ¼ u or d quark. The
vertical axis is in unit of GeV6.

YUSUKE TANIGUCHI et al. PHYS. REV. D 102, 014510 (2020)

014510-14



FIG. 7. The same as Fig. 6 but for the s quark.

TABLE IV. Results for chiral condensates and disconnected chiral susceptibilities by the SFtXmethod with the μ0-scale using the one-
loop matching coefficients of Ref. [10]. The chiral condensates are in unit of GeV3, and the disconnected chiral susceptibilities are in
unit of GeV6. The first parenthesis is for the statistical error, and the second for the systematic error due to the fit ansatz.

T [MeV] hfψ̄uψugðxÞi × 102 hfψ̄ sψsgðxÞi × 102 χdisc:ūu × 105 χdisc:s̄s × 105

174 0.21ð4Þð þ0
−7 Þ 0.15ð3Þð þ0

−5 Þ 0.84ð11Þð þ08
−54 Þ 0.49ð6Þð þ06

−37 Þ
199 1.02ð6Þð þ03

−18 Þ 0.81ð5Þð þ03
−14 Þ 2.16ð28Þð þ13

−1.14Þ 1.32ð17Þð þ11
−75 Þ

232 2.00ð3Þð þ11
−18 Þ 1.68ð3Þð þ10

−12 Þ 0.72ð8Þð þ08
−53 Þ 0.51ð5Þð þ07

−41 Þ
279 2.72ð3Þð þ17

−18 Þ 2.51ð3Þð þ18
−10 Þ 0.33ð6Þð þ07

−38 Þ 0.30ð5Þð þ07
−36 Þ

348 3.40ð4Þð þ23
−26 Þ 3.52ð3Þð þ24

−26 Þ 0.26ð6Þð þ08
−40 Þ 0.27ð6Þð þ08

−40 Þ
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Black dots in Fig. 8 show the results of EoS obtained
previously by the conventional T-integration method using
the same configurations [33]. Our conclusions are the same
as Ref. [25]: At T ≲ 279 MeV (Nt ≥ 10), the SFtXmethod
leads to EoS which is well consistent with the result of the
conventional method, while a-independent lattice artifacts
of OððaTÞ2 ¼ 1=N2

t Þ are suggested for Nt ≲ 8. Because
the continuum extrapolation is not taken yet, the good
agreement of different estimations at Nt ≥ 10 suggests that
the remaining Oða2T2; a2m2; a2Λ2

QCDÞ lattice artifacts are
small with our lattice action at a ≃ 0.07 fm.

Results for the VEV-subtracted chiral condensates are
shown in the left panel of Fig. 9. In the right panel of Fig. 9,
we show the results for disconnected chiral susceptibilities
as function of temperature. Because the VEV-subtraction
has no effects in this quantity, we also show the results at
T ¼ 0. We find a clear peak at T ≃ 199 MeV, which may
be indicating the pseudocritical point around Tpc ∼
190 MeV previously suggested using the Polyakov loop
etc., [33]. We also note that, although the errors are large
yet, the height of the peak looks increasing as we decrease
the valence quark mass from s quark to u (or d) quark.

FIG. 8. Results of the SFtX method for EoS with the μ0-scale as function of temperature. One-loop matching coefficients of Ref. [10]
are used. Black circles are the results of the T-integration method [33]. Left panel: entropy density. Right panel: trace anomaly. Errors
include systematic error due to the fit ansatz for the t → 0 extrapolation. The symbols are slightly shifted horizontally to avoid
overlapping.

FIG. 9. Results of the SFtX method with the μ0-scale for the VEV-subtracted chiral condensates hfψ̄fψfgi and disconnected chiral
susceptibilities χdisc:

f̄f
in the MS-scheme at 2 GeV, as function of temperature. One-loop matching coefficients of Ref. [10] are used. Left

panel: −hfψ̄fψfgi with the vertical axis in unit of GeV3. Following a convention, we plot −hfψ̄fψfgi. Right panel: χdisc:f̄f
with the

vertical axis in unit of GeV6. Errors include systematic error due to the fit ansatz for the t → 0 extrapolation. The symbols are slightly
shifted horizontally to avoid overlapping.
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V. TEST OF TWO-LOOP MATCHING
COEFFICIENTS

We now test the effects of two-loop matching coeffi-
cients for EMT by Harlander et al. [35] in QCD with 2þ 1
flavors of dynamical quarks. Following the discussion in
Sec. IV, we adopt the μ0-scale in this test. As mentioned in
Sec. I, unlike the one-loop coefficients of Ref. [10], the
EoM is used in the two-loop coefficients of Refs. [35].

A. Entropy density

In Fig. 10, we compare the results of the entropy density
at finite t using the one-loop matching coefficients of
Ref. [10] (blue squares) and those using the two-loop
coefficients of Ref. [35] (red circles). Note that, because
the contribution of the EoM to the EMT given by
Eq. (23) is proportional to δμν, only the trace part of
the EMT is affected by the use of the EoM. Thus, the

FIG. 10. Entropy density ðϵþ pÞ=T4 with the μ0-scale as function of the flow-time. Results using one-loop matching coefficients of
Ref. [10] are compared with those using two-loop matching coefficients of Ref. [35]. The arrows at the bottom indicate the linear
windows at each temperature. Symbols at t=a2 ¼ 0 and solid lines with the same color are the results of the linear fits. Fit results with the
nonlinear ansatz (49) and linear þ log ansatz (50) are shown by dashed and dotted curves together with the symbols at t=a2 < 0 to the
right and to the left, respectively. Errors are statistical only.
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EoM has no effects in the entropy density which is a
traceless combination of the EMT. We find that the
entropy density with the two-loop coefficients is larger
than its one-loop value at finite t, but the difference
becomes smaller in the t → 0 limit.
In the previous test in quenched QCD, it was reported

that the use of two-loop matching coefficients generally
makes the data flatter in the flow-time t and thus makes
the t → 0 extrapolation more stable [15]. In our study, we
find in Fig. 10 that, though a similar general tendency may
be visible, we do not see an apparent improvement in the
t → 0 extrapolation with the use of two-loop coefficients.
This is caused by the fact that we have sufficiently wide
linear windows for t → 0 extrapolation with the one-loop
coefficients—not much room was left for drastic improve-
ment on our fine lattice. Two-loop matching coefficients
may help a study of other observables or on coarser lattices.
Physical results for the entropy density with one- and

two-loop matching coefficients are shown in Fig. 11. The
errors include the systematic error due to the t → 0
extrapolation. Here, it should be recalled that EMT data
at T ≳ 348 MeV are contaminated with OððaTÞ2 ¼ 1=N2

t Þ
lattice artifacts at Nt ≲ 8 [25]. We find that one-
and two-loop results agree well within the errors at
T < 279 MeV (Nt > 10).

B. Trace anomaly

In Fig. 12, we show the results for the trace anomaly
ðϵ − 3pÞ=T4 as function of the flow-time. The trace

anomaly is just the trace part of the EMT and thus will
be sensitively affected by the EoM on finite lattices. In
order to identify the effects of EoM clearly, we also
compute the trace anomaly using the one-loop part of
the matching coefficients of Ref. [35] in which the EoM is
used. We find that one- and two-loop results both using the
EoM are close with each other, while the one-loop results
without using the EoM deviates from the results using the
EoM. We thus conclude that the deviation is mainly due to
the use of the EoM. The deviation increases with increasing
T (decreasing Nt) and becomes sizable at high temper-
atures, T ≳ 279 MeV (Nt ≲ 10).
Physical results of the trace anomaly extracted by

the t → 0 extrapolation are summarized in Fig. 13. We
find that though the analyses with and without using the
EoM lead to consistent results within errors at low temper-
atures, they show visible discrepancy at high temperatures,
T ≳ 279 MeV (Nt ≲ 10). Even with disregarding the
data at T ≳ 348 MeV ðNt ¼ 8Þ where contamination of
OððaTÞ2 ¼ 1=N2

t Þ lattice artifacts is suggested in EMT, we
see discrepancy at T ≃ 279 MeV (Nt ¼ 10). TheOððaTÞ2Þ
lattice artifacts will contaminate the EoM too. Our results
suggest that the EoM suffers from largerOððaTÞ2 ¼ 1=N2

t Þ
discretization errors than the EMT, and has visible effect
at Nt ≲ 10.
Final results for EoS extracted by the t → 0 extrapolation

with the μ0-scale are summarized in Tables II, V and VI.

VI. CONCLUSIONS

We presented the results of our tests of the μ0 ¼
e−γE=2=

ffiffiffiffi
2t

p
renormalization scale and two-loop matching

coefficients recently calculated by Harlander et al. [35]. For
this test, we revisited the case of QCD with heavy u and d
quarks [25].
We find that, comparing with the results using the

conventional μd ¼ 1=
ffiffiffiffi
8t

p
scale, the μ0-scale improves

the quality of perturbative expressions, in particular at
large t, and thus leads to clearer and wider linear windows
so that we can carry out t → 0 extrapolations much
confidently. We also find that, for observables for which
the linear window is clear with the conventional μd-scale,
the results using μ0- and μd-scales are consistent with each
other, i.e., the results extrapolated to the t → 0 limit are
insensitive to the choice of the renormalization scale, as
expected.
Concerning the test of two-loop matching coefficients,

unlike the case of the one-loop matching coefficients of
Ref. [10], the equation of motion for quark fields in the
continuum limit is used by Harlander et al. in their
calculation of the two-loop matching coefficients [35].
For the entropy density in which the equation of motion has
no effects, we found that the results using the two-loop
coefficients are well consistent with the results using one-
loop coefficients. On the other hand, for the trace anomaly

FIG. 11. Results of the SFtX method for the entropy density
ðϵþ pÞ=T4 with the μ0-scale, as function of temperature. Results
using one-loop matching coefficients of Ref. [10] without
using the EoM are compared with results using two-loop
matching coefficients of Ref. [35] in which the EoM is used.
Black dots are the results of the T-integration method [33]. Errors
include systematic error due to the fit ansatz for the t → 0
extrapolation. The symbols are slightly shifted horizontally to
avoid overlapping.
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in which the equation of motion does affect, we found
discrepancies between the one- and two-loop results at high
temperatures (small Nt’s). The main origin of the discrep-
ancies was identified as the use of equation of motion by a
direct comparison of the results of one-loop coefficients
with and without using the equation of motion. Our results
suggest that the equation of motion suffers from large
OððaTÞ2Þ ¼ Oð1=N2

t Þ discretization error at Nt ≲ 10.
Therefore, one should be cautious when extracting physical
quantities such as the trace anomaly which are affected
by the use of the equation of motion. This point is not,
however, the problem of the two-loop coefficients

themselves, and as our results illustrate this point should
be regarded as a more general problem caused by discre-
tization errors.
We are attempting to extend applications of the SFtX

method in various directions: thermodynamics of 2þ 1
flavor QCD at the physical point [27,40], shear and bulk
viscosities from two-point correlation functions of the
energy-momentum tensor [28], endpoint of first-order
deconfining transition region in QCD near the quenched
limit [41], PCAC quark masses [42], etc. The choice of the
μ0-scale as well as higher order coefficients may help
improving these calculations too.

FIG. 12. The same as Fig. 10 but for the trace anomaly ðϵ − 3pÞ=T4. Also shown are the results using one-loop part of the matching
coefficients of Ref. [35] in which the EoM is used.
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APPENDIX A: GROUP FACTORS

We normalize the gauge group generators as

trðTaTbÞ ¼ −
1

2
δab: ðA1Þ

The structure constant defined by ½Ta; Tb� ¼ fabcTc has
quadratic Casimirs as

FIG. 13. Results of the SFtX method for the trace anomaly
ðϵ − 3pÞ=T4 with the μ0-scale, as function of temperature.
Results using one-loop matching coefficients of Ref. [10] without
using the EoM are compared with results using two-loop
matching coefficients of Ref. [35] in which the EoM is used.
Also shown are the results using one-loop part of the matching
coefficients of Ref. [35] in which the EoM is used. Black dots are
the results of the T-integration method [33]. Errors include
systematic error due to the fit ansatz for the t → 0 extrapolation.
The symbols are slightly shifted horizontally to avoid over-
lapping.

TABLE V. Results for EoS by the SFtX method with the μ0-scale using the two-loop matching coefficients of Ref. [35]. The first
parenthesis is for the statistical error, and the second for the systematic error due to the fit ansatz.

T[MeV] ðϵþ pÞ=T4 ðϵ − 3pÞ=T4 ϵ=T4 p=T4

174 3.40ð75Þð þ48
−1.32Þ 1.46ð1.24Þð þ38

−75 Þ 2.90ð60Þð þ44
−1.22Þ 0.57ð39Þð þ10

−00 Þ
199 8.67ð61Þð þ37

−24 Þ 9.18ð93Þð þ1.00
−00 Þ 8.81ð56Þð þ45

−00 Þ −0.12ð26Þð þ00
−13 Þ

232 14.22ð29Þð þ53
−81 Þ 8.85ð34Þð þ51

−1.28Þ 12.86ð24Þð þ52
−99 Þ 1.38ð12Þð þ04

−00 Þ
279 17.58ð27Þð þ30

−1.03Þ 7.89ð40Þð þ01
−09 Þ 15.14ð22Þð þ20

−75 Þ 2.44ð12Þð þ11
−00 Þ

348 22.16ð14Þð þ00
−01 Þ 5.26ð34Þð þ00

−23 Þ 18.00ð13Þð þ00
−06 Þ 4.03ð06Þð þ04

−73 Þ

TABLE VI. Results for EoS by the SFtX method with the μ0-scale using the one-loop part of the matching coefficients of Ref. [35].
The first parenthesis is for the statistical error, and the second for the systematic error due to the fit ansatz.

T[MeV] ðϵþ pÞ=T4 ðϵ − 3pÞ=T4 ϵ=T4 p=T4

174 3.24ð68Þð þ10
−1.19Þ 1.33ð1.27Þð þ00

−75 Þ 2.75ð56Þð þ07
−1.13Þ 0.56ð39Þð þ01

−00 Þ
199 8.30ð57Þð þ00

−35 Þ 9.56ð96Þð þ1.01
−09 Þ 8.55ð52Þð þ02

−11 Þ −0.30ð26Þð þ01
−13 Þ

232 13.64ð27Þð þ17
−1.15Þ 9.14ð35Þð þ16

−1.44Þ 12.50ð23Þð þ17
−1.26Þ 1.16ð12Þð þ01

−00 Þ
279 16.84ð25Þð þ08

−92 Þ 8.01ð36Þð þ03
−32 Þ 14.61ð21Þð þ07

−76 Þ 2.25ð11Þð þ02
−00 Þ

348 21.13ð13Þð þ04
−00 Þ 5.37ð29Þð þ49

−00 Þ 17.26ð12Þð þ03
−00 Þ 3.85ð05Þð þ01

−75 Þ

YUSUKE TANIGUCHI et al. PHYS. REV. D 102, 014510 (2020)

014510-20



facdfbcd ¼ C2ðGÞδab; TaTa ¼ −C2ðRÞ1: ðA2Þ
In the perturbative expressions in Sec. II B, group factors

are defined by

CA≡C2ðGÞ; TF≡TðRÞNf; CF≡C2ðRÞ: ðA3Þ
For G ¼ SUðNÞ and R ¼ N,

CA ¼ N; TF ¼ 1

2
Nf; CF ¼ N2 − 1

2N
: ðA4Þ

In particular, for the Nf ¼ 2þ 1 QCD,

CA ¼ 3; TF ¼ 3

2
; CF ¼ 4

3
; ðA5Þ

and for the quenched QCD (the SUð3Þ pure Yang–Mills)

CA ¼ 3; TF ¼ 0; CF ¼ 0: ðA6Þ

APPENDIX B: CONSISTENCY OF
MATCHING COEFFICIENTS

In this Appendix, we confirm that the matching coef-
ficients of Refs. [10,35] for EMT are consistent with
each other.

1. One-loop confirmation

We confirm that Eqs. (31)–(44) restricted to the one-loop
level is consistent with the results of Ref. [10].
One way to see this is to construct the small flow time

expansion of the “reduced EMT” in Eq. (24). Using the
matrix ζðtÞ defined by

Õiμνðt; xÞ ¼ ζijðtÞOjμνðxÞ þOðtÞ; ðB1Þ
the coefficients c̃iðtÞ in

TμνðxÞ ¼ c̃1ðtÞÕ1;μνðt; xÞ þ c̃2ðtÞÕ2;μνðt; xÞ
þ c̃3ðtÞÕ3;μνðt; xÞ þ c̃4ðtÞÕ4;μνðt; xÞ
þ c̃5ðtÞÕ5;μνðt; xÞ þOðtÞ; ðB2Þ

where the left-hand side is Eq. (24), are given by

c̃iðtÞ¼
1

g20

�
ðζ−1Þ1iðtÞ−

1

4
ðζ−1Þ2iðtÞ

�
þ1

4
ðζ−1Þ3iðtÞ: ðB3Þ

Compare this to Eq. (4.16) of Ref. [10]. The one-loop ζðtÞ
obtained in Ref. [10] then yields

c̃1ðtÞ ¼
1

g2

�
1þ g2

ð4πÞ2
�
−β0Lðμ; tÞ −

7

3
CA þ 3

2
TF

��
;

ðB4Þ

c̃2ðtÞ ¼
1

4g2

�
−1þ g2

ð4πÞ2
�
β0Lðμ; tÞ þ

25

6
CA − 3TF

��
;

ðB5Þ

c̃3ðtÞ ¼
1

4

�
1þ g2

ð4πÞ2 CF

�
3

2
þ ln 432

��
; ðB6Þ

c̃4ðtÞ ¼
g2

ð4πÞ2 CF

�
−
1

4

�
; ðB7Þ

c̃5ðtÞ ¼
g2

ð4πÞ2 CF

�
−
3

2

�
: ðB8Þ

Note that c̃4ðtÞ and c̃5ðtÞ are one-loop quantities
because Eq. (24) does not contain O4;μνðxÞ and O5;μνðxÞ
and Õ4;μνðt; xÞ and Õ5;μνðt; xÞ appear only through loop
diagrams. To translate these coefficients c̃iðtÞ in Eq. (B2) to
the coefficients in Eq. (30), we have to eliminate the
operator Õ5;μνðt; xÞ from Eq. (B2) in favor of Õ4;μνðt; xÞ
and Õ2;μνðt; xÞ by using the relation (25). In the present
order of approximation, this is easy because we can use the
relation

1

2
Õ4;μνðt; xÞ þ Õ5. μνðt; xÞ ¼ 0 ðB9Þ

that holds in the tree-level in Eq. (B2) because c̃4ðtÞ and
c̃5ðtÞ are already one-loop quantities. After this elimination,
we have

č1ðtÞ ¼ c̃1ðtÞ; ðB10Þ

č2ðtÞ ¼ c̃2ðtÞ; ðB11Þ

č
∘
3ðtÞ ¼ c̃3ðtÞ; ðB12Þ

č
∘
4ðtÞ ¼ c̃4ðtÞ −

1

2
c̃5ðtÞ: ðB13Þ

We see that these precisely coincide with Eqs. (31), (32),
(43), and (44) in the one-loop level.
Another way to see the consistency is the following. The

one-loop result of Ref. [10] [cf. Eqs. (4.60)–(4.64)] gives,
for the coefficients in Eq. (20),

cold1 ðtÞ ¼ 1

g2

�
1þ g2

ð4πÞ2
�
−β0Lðμ; tÞ −

7

3
CA þ 3

2
TF

��
;

ðB14Þ

cold2 ðtÞ ¼ 1

4g2
g2

ð4πÞ2
�
11

6
CA þ 11

6
TF

�
; ðB15Þ

cold3 ðtÞ ¼ 1

4

�
1þ g2

ð4πÞ2 CF

�
3

2
þ ln 432

��
; ðB16Þ

cold4 ðtÞ ¼ g2

ð4πÞ2
3

4
CF; ðB17Þ
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cold5 ðtÞ ¼ −
�
1þ g2

ð4πÞ2 CF

�
3Lðμ; tÞ þ 7

2
þ ln 432

��
:

ðB18Þ

They differ from the coefficients obtained from Eq. (30):

c1ðtÞ ¼ č1ðtÞ

¼ 1

g2

�
1þ g2

ð4πÞ2
�
−β0Lðμ; tÞ−

7

3
CA þ

3

2
TF

��
;

ðB19Þ

c2ðtÞ ¼ č2ðtÞ þ
1

4
č1ðtÞ ¼

1

4g2
g2

ð4πÞ2
�
11

6
CA −

3

2
TF

�
;

ðB20Þ

c3ðtÞ ¼ č
∘
3ðtÞ ¼

1

4

�
1þ g2

ð4πÞ2 CF

�
3

2
þ ln 432

��
; ðB21Þ

c4ðtÞ ¼ č
∘
4ðtÞ þ 2č

∘
3ðtÞ ¼

1

2

�
1þ g2

ð4πÞ2 CF

�
5

2
þ ln 432

��
;

ðB22Þ

c5ðtÞ ¼ 0: ðB23Þ

These differences arise from the backreaction of the

elimination of Õ5 μνðt; xÞ. Inserting Õ5;μν ¼ −d
∘−1
5 d2Õ2;μν−

d
∘−1
5 d

∘
4Õ4;μν [see Eq. (25)] into Eq. (20) with the old

coefficients (B14)–(B18) to eliminate cold5 Õ5;μν, we confirm
that the old coefficients (B14)–(B18) precisely reproduce
the new coefficients (B19)–(B22).

2. Two-loop confirmation

As pointed out in Ref. [9], in the case of the pure Yang-
Mills theory, a certain part of the two-loop order co-
efficients can be extracted by using the trace anomaly
without any higher order calculations. The expression in
our present notation is (see Eq. (4.69) of Ref. [10]),

c2ðtÞ≡ č2ðtÞ þ
1

4
č1ðtÞ

¼ 1

4g2

�
g2

ð4πÞ2
β0
2
þ g4

ð4πÞ4
�
β1
2
−
7

4
CAβ0

��
; ðB24Þ

where the second term in the right-hand side contains the
information in the two-loop order. This coincides with the
result obtained from Eqs. (31) and (32) for the pure Yang-
Mills theory.
We can similarly deduce three-loop c2ðtÞ for the pure

Yang-Mills theory from the two-loop coefficients. A con-
crete form is given in Ref. [15].

APPENDIX C: ALTERNATIVE METHOD FOR
FLOWED FERMIONIC BILINEAR

OBSERVABLES

As discussed in Appendix A of Ref. [25], fermionic parts
of the EMT are given in terms of

tfμνðtÞ≡ 1

NΓ

X
x

hχ̄fðt;xÞγμðDν−D⃖νÞχfðt;xÞi

¼−
1

NΓ

X
x;v;w

�	X
α;i

½γμDx
νKðt;x;0;vÞSfðv;wÞKðt;x;0;wÞ†�αi;αi



−
	X

α;i

½Kðt;x;0;vÞSfðv;wÞKðt;x;0;wÞ†D⃖x
νγμ�αi;αi


�
;

ðC1Þ
and

sfðtÞ≡ 1

NΓ

X
x

hχ̄fðt; xÞχfðt; xÞi ¼ −
1

NΓ

X
x;v;w

	X
α;i

fKðt; x; 0; vÞ½Sfðv; wÞ − cflδv;w�Kðt; x; 0; wÞ†gαi;αi


; ðC2Þ

where the covariant derivatives in Eq. (C1) refer to the
flowed gauge field Bμðt; xÞ, NΓ ¼ P

x is the number of
lattice points, α and i denote the spinor and color indices,
respectively, and cfl is an improvement coefficient asso-
ciated with the flowed quark field [5]. Sfðx; yÞ is the quark
propagator with the bare mass mf0, and Kðt; x; s; yÞ is the
fundamental solution to the flow equation defined by

ð∂t − ΔÞKðt; x; s; yÞ ¼ 0; Kðt; x; t; yÞ ¼ δx;y: ðC3Þ

The dagger (†) in Eqs. (C1) and (C2) implies the Hermitian
conjugation with respect to the gauge and spinor indices
only. Note that K and Dν have no spinor indices. In
Ref. [25], we have computed them by introducing noise
vectors to evaluate the trace over space-time points in
Eqs. (C1) and (C2). Expressions for other local fermionic
bilinear operators can be written down similarly.
Here, we note that Eqs. (C1) and (C2) can be equally

written as
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trμνðtÞ ¼ −
1

NΓ

X
x;y;v;w

�	X
α;i

½Kðt; x; 0; yÞ†γμDx
νKðt; x; 0; vÞSrðv; wÞ�αi;αiδw;y




þ
	
δy;w

X
α;i

½Srðv; wÞ†Kðt; x; 0; vÞ†D⃖x
νγμKðt; x; 0; yÞ�αi;αi


�
; ðC4Þ

where we have used the relation Srðv; wÞ ¼ γ5Srðw; vÞ†γ5, and

srðtÞ ¼ −
1

NΓ

X
x;y;v;w

	X
α;i

fKðt; x; 0; yÞ†Kðt; x; 0; vÞ½Srðv; wÞ − cflδv;w�gαi;αiδw;y


: ðC5Þ

We thus introduce a new noise field

hηαiðxÞiη ¼ 0; hηαiðxÞηβjðyÞ�iη ¼ δαβδijδx;y; ðC6Þ

and define

Ξðt; xÞ≡X
y

Kðt; x; 0; yÞηðyÞ; ðC7Þ

Zrðt; xÞ≡
X
v;w

Kðt; x; 0; vÞSrðv; wÞηðwÞ; ðC8Þ

where contraction of spinor and color indices is understood.
We then obtain compact expressions as

trμνðtÞ¼−
1

NΓ
2Re

		X
x
Ξðt;xÞ†γμDνZrðt;xÞ



η



; ðC9Þ

where the gauge field in the covariant derivative Dν is the
flowed Bμðt; xÞ, and

srðtÞ ¼ −
1

NΓ

		X
x
Ξðt; xÞ†Zrðt; xÞ



η




þ cfl
1

NΓ

		X
x
Ξðt; xÞ†Ξðt; xÞ



η



: ðC10Þ

The building blocks obey the forward flow equations as

ð∂t − ΔÞΞðt; xÞ ¼ 0; Ξð0; xÞ ¼ ηðxÞ; ðC11Þ

ð∂t−ΔÞZrðt;xÞ¼0; Zrð0;xÞ¼
X
y

Srðx;yÞηðyÞ; ðC12Þ

which can be solved by the time-forward Runge–Kutta
method as explained in Appendix D. 2 of Ref. [5]. That is,
setting ∂tχt ¼ ΔðVtÞχt, the Runge–Kutta proceeds as

ϕ0 ¼ χt;

ϕ1 ¼ ϕ0 þ
1

4
Δ0ϕ0;

ϕ2 ¼ ϕ0 þ
8

9
Δ1ϕ1 −

2

9
Δ0ϕ0;

ϕ3 ¼ ϕ1 þ
3

4
Δ2ϕ2; ðC13Þ

where

Δi ¼ ϵΔðWiÞ; i ¼ 0; 1; 2; ðC14Þ

and

χtþϵ ¼ ϕ3 þOðϵ4Þ: ðC15Þ

These new representations are advantageous in the sense
that they do not require the Runge–Kutta steps proceeding
backward in the flow time (see Appendix B of Ref. [25])
which is numerically demanding.
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