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First principles calculations of the form factors of baryon excitations are now becoming accessible
through advances in lattice-QCD techniques. In this paper, we explore the utility of the parity-expanded
variational analysis (PEVA) technique in calculating the Sachs electromagnetic form factors for excitations
of the proton and neutron. We study the two lowest-lying odd-parity excitations and demonstrate that at
heavier quark masses, these states are dominated by behavior consistent with constituent quark models for
the N�ð1535Þ and N�ð1650Þ, respectively. We also study the lowest-lying localized even-parity excitation
and find that its form factors are consistent with a radial excitation of the ground-state nucleon. A
comparison of the results from the PEVA technique with those from a conventional variational analysis
exposes the necessity of the PEVA approach in baryon excited-state studies.
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I. INTRODUCTION

Investigating the structure of hadronic excited states is
recognized as an important frontier in the field of non-
perturbative QCD. At present, very little is known about
how QCD composes the structure of these excitations. With
regard to the excitations of the nucleon investigated herein,
most of our intuition is based on models of QCD as
opposed to QCD itself. The intriguing question is, how
does the quantum field theory of QCD construct these
states and how does this composition compare with the
expectations of current models? Can something as simple
as a constituent quark model capture the essence of these
states? What role do meson-baryon dressings play in
describing these states? Our aim is to address these most
fundamental questions by examining the electromagnetic
structure of nucleon excited states as observed in lattice
QCD. The results are fascinating, validating quark-model
predictions in some cases and demanding a more important
role for meson-baryon interactions in others.
A longer-term goal is to confront experiment. While

experimental measurements of resonance transition ampli-
tudes have been made, it is much harder to measure elastic
form factors in the resonance regime. This is because elastic

form factors parameterize interactions where both the initial
and final state are the same. To measure them for an
(unstable) resonance, one needs to first produce that
resonance and then probe it during the extremely short
time window before it decays. On the other hand, the
transition form factors parameterize the transformation of
one state into another. We can probe a stable target such as a
ground-state proton and measure how it is excited into the
unstable resonance of interest through an examination of its
decay products.
It has been suggested that the magnetic dipole moment of

the N�ð1535Þ resonance could be measured through the
γp → γηp process [1] using the Crystal Barrel/Two-Arm
Photon Spectrometer detector at the Electron Stretcher
Accelerator or Crystal Ball at Mainz Microtron, but this
measurement has yet to be realized. The difficulty of
measuring such quantities experimentally provides the
opportunity for lattice QCD to lead experiment and create
new knowledge.

A. Structure of excited states

Here we take the first step and examine the structure of
nucleon excitations as observed in the finite volume of
lattice QCD. Using local three-quark operators on the
lattice, both the Special Research Centre for the
Subatomic Structure of Matter (CSSM) [2,3] and
the Hadron Spectrum Collaboration (HSC) [4,5] observe
two low-lying odd-parity states in the resonance regimes of
the N�ð1535Þ and N�ð1650Þ.
As these finite-volume states have good overlap with

local three-quark operators, we wish to examine the
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extent to which these states, created in relativistic quantum
field theory, resemble the quark-model states postulated
to describe these resonances [1,6,7]. We anticipate the
lattice-QCD states excited by such operators to be either
quark-model-like states dressed by a meson cloud, similar
to the ground-state nucleon, or perhaps bound meson-
baryon molecular states, such as the Λð1405Þ [8].
In Ref. [9], we presented a method for extracting the

form factors of a baryonic state on the lattice using the
parity-expanded variational analysis (PEVA) technique and
established its effectiveness for accessing the structure of
the ground-state nucleon. We now use this method (as
summarized in Sec. II) to investigate the structure of the
excitations of the proton and neutron observed in the finite
volume of lattice QCD.
In this paper we present a determination of the Sachs

electric and magnetic form factors for three spin-½ nucleon
eigenstates on the lattice. Two of these states are negative-
parity nucleon excitations, which we label N�

1 (or p
�
1 for the

proton excitation and n�1 for the neutron excitation) and N�
2

(or the equivalent labels for the excited proton and neutron).
The remaining eigenstate is a positive-parity excitation and
is denoted N0, p0, or n0.
We compare the magnetic moments drawn from the

negative-parity lattice-QCD results to constituent-quark-
model predictions for the magnetic moments of the
N�ð1535Þ and N�ð1650Þ resonances [1,6]. Such quark-
model calculations can be extended to include effects from
the pion cloud. We also compare our lattice results to two
such extensions [6,7]. From these comparisons, we make
connections to the basis states to be considered in future
Hamiltonian effective field theory (HEFT) analyses [10].
Finally, we examine the extent to which the electromag-
netic form factors of the positive-parity excitation at
∼1900 MeV are consistent with a constituent-quark-model
radial excitation of the ground-state nucleon.

B. Toward baryon resonance structure

In determining resonance properties from lattice-QCD
calculations, one requires a comprehensive understanding
of the spectrum of excited states in the finite periodic
volume of the lattice. This spectrum includes all single,
hybrid, and multiparticle contributions having the quantum
numbers of the resonance of interest. This finite-volume
spectrum composes the input into the Lüscher method [11]
or its generalizations [12,13] which relate the finite-volume
energy levels to infinite-volume momentum-dependent
scattering amplitudes. The application of these methods
is a necessary step in connecting lattice QCD to the
resonance properties measured in experiment.
Obtaining an accurate determination of the finite-volume

nucleon spectrum is challenging. It requires an extensive
collection of baryon interpolating fields and robust corre-
lation function analysis techniques. Many collaborations
have explored the nucleon spectrum excited by local single-

particle operators [2,4,5,14–19]. Hybrid nucleon interpo-
lators have been investigated in Ref. [20], where additional
states were found in the spectrum. Nonlocal multiparticle
interpolating fields are necessary to quantify avoided level
crossings and determine the lattice energy eigenstates to the
level of accuracy [21] required for the implementation of
the Lüscher formalism, bringing lattice-QCD results to
experiment. In light of these challenges, the main approach
has been to bring experimental measurements to the finite
volume of the lattice [18,22,23]. It is only recently that the
first applications of the Lüscher formalism to the lattice-
baryon spectrum have emerged [24,25].
The computational challenges in the baryon sector con-

trast the tremendous progress madewithin the meson sector.
For example, using the formalism for connecting precision
finite-volume lattice-QCD matrix-element calculations to
the transition amplitudes of experiment [26,27], the resonant
πþγ → πþπ0 amplitudewas first explored inRef. [28].More
recently, the ππ → πγ⋆ amplitude [29], the resonant ρ →
πγ⋆ transition [29], the πγ → ππ transition [30] and ρ-meson
radiative decay [30] have been studied. In these calculations,
the finite-volume lattice matrix elements are related to the
physical momentum-transfer and energy-dependent scatter-
ing observables of experiment. Here a resonance appears as
an enhancement as a function of the scattering energy.
A formalism for connecting the finite-volume matrix

elements under investigation herein to experiment has been
presented inRefs. [31,32].While our lattice-QCDformalism
for matrix-element determination respects the subtleties of
the finitevolume, the calculations are not sufficiently precise
to engage in the connection to experimental scattering
observables. There, one needs the contributions of multi-
particle scattering states to ensure eigenstate-projected cor-
relation functions contain no contaminations, to quantify the
exacteigenstateenergies,and to include theircontributions to
resonances, which can be spread over several finite-volume
energy eigenstates, particularly for large lattice volumes
where the quantized momentum spacing becomes narrow.
The calculation of lattice matrix elements for momen-

tum-projected meson-baryon interpolators has yet to be
reported in the literature. However, their calculation for
nonforward momentum transfers will be founded on the
formalism presented and utilized herein.

C. Overview

In this paper we calculate the Sachs electric and magnetic
form factors for three spin-½ nucleon excitations observed
on the finite-volume lattice. We commence with a brief
summary of the parity-expanded variational analysis for
matrix elements in Sec. II. There, the highlights of how the
PEVA projectors alter the standard formalism is presented.
Lattice-QCD gauge fields, parameters and associated
analysis techniques are summarized in Sec. III.
Section IV presents calculations of the electromagnetic

form factors for the two low-lying negative-parity
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excitations observed on the lattice. There, the focus is on
the utility of the PEVA formalism in removing opposite-
parity contaminations from the lattice correlation functions.
The importance of the formalism is quantified by compar-
ing with a conventional variational analysis where oppo-
site-parity contaminations are not addressed through an
expansion of the correlation matrix. Of particular note is a
comparison of the magnetic moments drawn from the
negative-parity lattice-QCD results to constituent-quark-
model predictions in Sec. IV E.
Finally, the electromagnetic structure of the first positive-

parity excitation observed at ∼1900 MeV in our lattice-
QCD calculations is presented in Sec. V. The extent to
which this excitation is consistent with a constituent-quark-
model radial excitation of the ground-state nucleon is of
particular interest. In accord with other studies [33,34], we
find the structure to be consistent with a radial excitation,
further strengthening the case that the Roper resonance is
not associated with a quark-model-like state [18,23,35].
A summary and outline of future work is provided in the

conclusions of Sec. VI.

II. PARITY-EXPANDED VARIATIONAL
ANALYSIS

The process of extracting finite-momentum matrix ele-
ments of baryonic excited states via the PEVA technique is
presented in full in Ref. [9]. We provide here a brief
summary of this process to introduce the notation and
concepts necessary to present our results.
The idea of using operator overlaps to project onto

excited states [36–38] and separate opposite parities
[39,40] has also been considered in the meson sector. In
this case, matrix elements can be extracted using standard
techniques [36–38] as the intricacies of parity mixing
within the spinor components of the correlator are absent.
In the baryon sector, one must take the PEVA projectors
into account in identifying the appropriate Dirac-index
combinations required to isolate the covariant vertex
functions and associated Sachs form factors.
We begin with a basis of n conventional spin-½ operators

fχiðxÞg that couple to the states of interest. Adopting the
Pauli representation of the gamma matrices, we introduce
the PEVA projector [41] Γ� ≡ 1

4
ðI þ γ4ÞðI � iγ5γkp̂kÞ and

construct a set of basis operators:

χ�piðxÞ≡ Γ�pχiðxÞ; ð1aÞ

χ�pi0 ðxÞ≡�Γ�pγ
5χiðxÞ: ð1bÞ

We note that we use a Euclidean metric δμν, and hence
there is no need to distinguish between contravariant and
covariant indices.
We then seek an optimized set of operators ϕα

�pðxÞ that
each couple strongly to a single energy eigenstate α. These
optimized operators are constructed as linear combinations

of the basis operators. The optimum linear combinations
are found by solving a generalized eigenvalue problem with
Gðp; tþ ΔtÞ and Gðp; tÞ, where the correlation matrix

Gijðp; tÞ≡ Tr

�X
x

e−ip·xhΩjχ�piðxÞχ̄�pið0ÞjΩi
�
; ð2Þ

with i and j ranging over both the primed and unprimed
operators. This process is described in detail in Ref. [41].
Using the optimized operators, we can construct the

eigenstate-projected two-point correlation function

Gðp; t; αÞ≡ Tr

�X
x

e−ip·xhΩjϕα
�pðxÞϕ̄α

�pð0ÞjΩi
�

¼ vαi ðpÞGijðp; tÞuαj ðpÞ; ð3Þ

and the three-point correlation functions

G3
�ðJ ;p0; p; t2; t1; αÞ≡

X
x2;x2

e−ip
0·x2eiðp0−pÞ·x1

× hΩjϕα
�p0 ðx2ÞJ ðx1Þϕ̄αþpð0ÞjΩi;

ð4Þ

whereJ ðxÞ is somecurrent operator,which is insertedwith a
momentum transfer q ¼ p0 − p. The consideration of
G3−ðJ ;p0; p; t2; t1; αÞ (where the sink operator uses the
opposite PEVA projector sign convention to the source
operator) is required to optimize the extraction of the form
factors for general kinematics. We note that it is sufficient to
consider this change of projector for the sink operator alone,
leaving the sourceoperator as ϕ̄αþpð0Þ in all cases considered.
In this paper, we investigate the electromagnetic proper-

ties of the proton and neutron by choosing the current
operator J ðxÞ to be the vector current. In particular, we use
the OðaÞ-improved [42] conserved vector current used in
Ref. [43]:

jμCIðxÞ≡ jμCðxÞ þ
r
2
aq̄ðxÞð∇⃖ρ þ ∇⃗ρÞσρμqðxÞ; ð5Þ

where r is the Wilson parameter and jμCðxÞ is the standard
conserved vector current for the Wilson action.
This choice of current operator gives the matrix element

hα;p0; s0jjμCIð0Þjα;p; si ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mα

EαðpÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mα

Eαðp0Þ

s
ūαðp0; s0Þ

×

�
γμFα

1ðQ2Þ − σμνqν

2mα Fα
2ðQ2Þ

�

× uαðp; sÞ; ð6Þ

where Q2 ¼ q2 − ðEαðp0Þ − EαðpÞÞ2 is the squared four-
momentum with the conventional sign, and the invariant
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scalar functions F1ðQ2Þ and F2ðQ2Þ are, respectively,
the Dirac and Pauli form factors. Here uαðp; sÞ is the
spinor for the lattice eigenstate α moving with momentum
p and spin s. As α is an eigenstate of the lattice
Hamiltonian, this spinor takes the form of a conventional
single-particle spinor with the center-of-momentum energy
ECM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EαðpÞ2 − p⃗2

p
playing the role of mass in the finite

volume. The states considered in this work display an
energy-momentum relation consistent with a single-particle
dispersion relation [41]. As such, ECM ≈mα throughout
this work. However, the techniques presented respect the
subtleties of the finite volume and are applicable for states
where ECM ≠ mα.

To extract our desired signal from this spinor structure,
we can take the spinor trace with some spin-structure
projector ΓS. This trace is then called the spinor-projected
three-point correlation function

G3
�ðΓS; j

μ
CI;p

0; p; t2; t1; αÞ
≡ TrðΓSG3

�ðjμCI;p0; p; t2; t1; αÞÞ: ð7Þ

These spinor-projected correlation functions have a
nontrivial time dependence, which can be removed by
constructing the ratio [44]

R�ðp0; p; α; r; sÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� r

μG3
�ðsνΓν; jμCI;p

0; p; t2; t1; αÞrρG3
�ðsσΓσ; jρCI;p; p

0; t2; t1; αÞ
Gðp0; t2; αÞGðp; t2; αÞ

����
s

× sgnðrλG3
�ðsηΓη; jλCI;p

0; p; t2; t1; αÞÞ; ð8Þ

where Γ4 ¼ ðI þ γ4Þ=2 and Γk ¼ ðI þ γ4Þðiγ5γkÞ=2 form
the basis for the spin projectors we use and rμ and sμ are
coefficients selected to determine the form factors.
We can then define the reduced ratio

R̄�ðp0; p;α; r; sÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EαðpÞ

EαðpÞ þmα

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eαðp0Þ

Eαðp0Þ þmα

s

× R�ðp0; p; α; r; sÞ: ð9Þ

By investigating the rμ and sσ dependence of this ratio,
we find that the clearest signals are given by

RT
� ¼ 2

1� p̂ · p̂0 R̄�ðp0; p; α; ð1; 0Þ; ð1; 0ÞÞ; ð10aÞ

RS∓ ¼ 2

1� p̂ · p̂0 R̄∓ðp0; p; α; ð0; r̂Þ; ð0; ŝÞÞ; ð10bÞ

where ŝ is chosen such that p · ŝ ¼ 0 ¼ p0 · ŝ, r̂ is equal to
q̂ × ŝ, and the sign � in Eq. (10) is chosen such that 1�
p̂ · p̂0 is maximized. This choice maximizes the signal in
the lattice determination of the correlation function ratios.
We can then find the Sachs electric and magnetic form

factors

Gα
EðQ2Þ≡ Fα

1ðQ2Þ − Q2

ð2mαÞ2 F
α
2ðQ2Þ; ð11aÞ

Gα
MðQ2Þ≡ Fα

1ðQ2Þ þ Fα
2ðQ2Þ; ð11bÞ

through appropriate linear combinations of RT
� and RS∓.

We have shown how the PEVA technique can be applied
to the calculation of elastic baryon form factors for arbitrary

kinematics. We now proceed to investigate the Sachs
electric and magnetic form factors of several excitations
of the nucleon.

III. LATTICE-QCD PARAMETERS AND
ANALYSIS TECHNIQUES

A. Gauge field configurations

The results presented in this paper are calculated on
the PACS-CS (2þ 1)-flavor full-QCD ensembles [45],
made available through the International Lattice Data
Grid [46]. These ensembles use a 323 × 64 lattice and
employ a renormalization-group improved Iwasaki gauge
action with β ¼ 1.90 and nonperturbatively OðaÞ-
improved Wilson quarks, with CSW ¼ 1.715. We use five
ensembles, with stated pion masses from mπ ¼ 702 to
156 MeV [45], and set the scale using the Sommer
parameter with r0 ¼ 0.4921ð64Þ fm [45]. More details of
the individual ensembles are presented in Table I, including
the squared pion masses in the Sommer scale. When fitting
correlators, the χ2=d:o:f: is calculated with the full covari-
ance matrix, and the χ2 values of all fits are consistent with
an appropriate χ2 distribution.
The three heaviest pion masses available among these

ensembles span mπ ¼ 411–702 MeV, a typical range for
contemporary studies of baryon excitations. As such, these
masses are appropriate for this world-first study of the
electromagnetic structure of nucleon excitations in lattice
QCD. In presenting our discoveries, we will focus on the
results at these three heaviest pion masses. There are two
lighter masses, at mπ ¼ 156 and 296 MeV. These approach
the physical point, presenting a significant challenge in
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terms of gauge noise and computational cost, but offer the
possibility of insight into important chiral physics.

B. Conventional and PEVA techniques

For the variational analyses in this paper, we begin with
the same eight-interpolator basis as in Ref. [9], in which we
studied the electromagnetic form factors of the ground-state
nucleon. This basis is formed from the conventional spin-½
nucleon interpolators

χ1 ¼ ϵabc½ua⊤ðCγ5Þdb�uc and

χ2 ¼ ϵabc½ua⊤ðCÞdb�γ5uc; ð12Þ

with 16, 35, 100, or 200 sweeps of gauge-invariant
Gaussian smearing [47] with a smearing fraction of
α ¼ 0.7, applied at the quark source and sinks in creating
the propagators. Before performing the Gaussian smearing,
the gauge links to be used are smoothed by applying four
sweeps of three-dimensional isotropic stout-link smearing
[48] with ρ ¼ 0.1. We will refer to analyses based on this
8 × 8 correlation matrix, without opposite-parity interpo-
lators, as the conventional variational analysis. For the
PEVA technique, this basis is expanded to 16 operators as
described in Sec. II.
We study the first three excitations extracted by this

basis, consisting of one positive-parity state and two
negative-parity states. As we will see in the results
presented below, the PEVA technique is very important
in correctly extracting form factors of these excitations.

C. Three-point function techniques

To extract the form factors, we fix the source at time slice
Nt=4 ¼ 16 relative to a fixed boundary condition in time,
and (utilizing the sequential source technique [49]) invert
through the current, fixing the current insertion at time slice
21. We choose time slice 21 by inspecting the two-point
correlation functions associated with each state and observ-
ing that excited-state contaminations in the eigenstate-
projected correlators are suppressed by time slice 21.
This is evaluated by fitting the effective mass in this region
to a single-state ansatz verifying that the full covariant

χ2=d:o:f: is satisfactory. We then extract the form factors as
outlined in Sec. II for every possible sink time and once
again look for a plateau consistent with a single-state
ansatz.

D. Multiparticle scattering-state contributions

The quasilocal operators used to excite the states of
interest do not have good overlap with multiparticle
scattering eigenstates. As such, a particular concern in this
analysis is the possibility of contamination of our corre-
lation functions by nearby multiparticle scattering states
that have not been isolated in the current correlation-matrix
analysis using local operators.
Fortunately, significant mixing of one- and two-particle

basis states gives rise to avoided level crossings creating a
large energy separation between the lattice energy eigen-
states. This difference in energies leads to a rejection of
single-state ansatz fits [16] signified by a large covariance-
matrix χ2=d:o:f.
However, when the mixing of the basis states is small,

the avoided level crossing effects are significantly reduced.
This can allow lattice eigenstates with closely spaced
energy levels. Such nearby eigenstates are more problem-
atic as simple Euclidean time evolution cannot expose
separate states. If one is interested only in the energies of
the eigenstates, the mixing can shift the observed energies
by an small amount, typically within the width of the
associated resonance. On the other hand, it is these subtle
shifts that are central to the Lüscher formalism [21]. This
issue of subtle state mixing applies to form factors in a
more significant manner as the form factors of the scatter-
ing states may differ significantly from the energy eigen-
states having good overlap with the local interpolators.
Thus it is important to estimate the extent of this mixing.
For the two low-lying negative-parity states, an exami-

nation of the two-particle threshold energies relative to the
energies of the observed excitations can provide some
insight. Table II presents Sommer-scale masses and two-
particle infinite-volume threshold energies which can be
compared with the masses of the first and second negative-
parity states observed on the lattice [10]. While one does
not have any insight into how the πN threshold energy gets

TABLE I. Details of the gauge field ensembles used in this analysis. For each ensemble we list both the pion mass
given in Ref. [45], with the lattice spacing set by hadronic inputs, and our determination of the squared pion mass
with the lattice spacing listed in the table, which is set by the Sommer parameter with r0 ¼ 0.4921ð64Þ fm [45]. We
also include information on the statistics used, listing the number of gauge field configurations in each ensemble,
and the number of unique quark propagator source locations used on each configuration.

PACS-CS mπ=MeV a=fm m2
π=GeV2 No. of conf. No. sources per conf.

702 0.1022(15) 0.3884(113) 399 1
570 0.1009(15) 0.2654(81) 397 1
411 0.0961(13) 0.1525(43) 449 2
296 0.0951(13) 0.0784(25) 400 2
156 0.0933(13) 0.0285(12) 197 4
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dressed in the finite volume relative to N�
1 and N

�
2 negative-

parity states, one can see that at the largest quark mass
considered, the threshold is above the two energies
observed on the lattice. In light of the volume suppression
of two-particle couplings to local interpolating fields,
scattering-state contamination is not a significant concern
at this heaviest quark mass.
At the second heaviest mass considered, the situation is

more complicated and one must turn to calculations that do
account for the mixing of the πN threshold basis state with
other states in the system. HEFT calculations for odd-parity
nucleon excitations can provide considerable insight
[10,50]. Figures 2 and 3 of Ref. [50] indicate the πN basis
state is strongly mixed in creating the two lowest-lying odd-
parity states observed on the lattice. Once again, we observe
that there is no low-lying πN scattering-state contaminant.
At the middle quark mass considered, the πN scattering

state lies well below the two states seen in lattice QCD.
Here, HEFT can provide some insight if one uses the
overlap of the local bare basis state with the energy
eigenstates in HEFT as a proxy for the overlap of the local
lattice interpolating fields with the lattice energy eigen-
states. The idea is that the bare basis state in HEFT is the
only localized basis state in the theory. Drawing on chiral
perturbation theory, one can show the overlap of a smeared
interpolating field with nonlocal momentum-projected πN
basis states is suppressed by factor of ∼10−3 relative to the
ground state [51] for our current lattice parameters. Thus,
the optimized smeared interpolating field of lattice QCD is
associated with the bare basis state of HEFT, jm0i, and the
element jhm0jEαij2 of the HEFT eigenvector governs the
relative probability of exciting eigenstate jEαi. With this
approximation, Fig. 3 of Ref. [50] suggests a 5% scattering-
state contribution to our projected correlators.
At the second lightest of the quark masses considered

herein, the mixing of the low-lying two-particle πN
scattering state is large enough to be quantified [52].
While no scattering-state contamination is manifest in
the eigenstate-projected correlator associated with the
N�ð1535Þ, the correlator associated with the second
negative-parity excitation did reveal a small contamina-
tion. By extending the Euclidean-time fit regime into the
tail of the projected two-point correlator, the high-

precision analysis of Ref. [52] resolves a second low-
lying state consistent with a πN scattering state at the
10% level. This contribution is consistent with expect-
ations from HEFT [50]. Our present calculation avoids
the tail of this projected correlator and our use of the
single-state ansatz [16] ensures that these contributions to
the effective energy are contained within the statistical
uncertainties of the results. However, as shown in
Ref. [9], contaminants that do not significantly perturb
the extracted mass can still have a significant effect on
the extracted form factors. As such, we must be cautious
when interpreting results from this state at this mass.
Finally, at the lightest quark mass considered, we

anticipate a similar contribution from πN scattering states.
However, statistical uncertainties at the lightest quark mass
are large and we have been unable to resolve any evidence
of scattering-state contamination. As one moves toward a
precise examination of these states, one must also accom-
modate KΛ and KΣ scattering states in the analysis as the
energies of these scattering-state thresholds are in the
regime of the N� states under examination at this near-
physical quark mass.
With regard to the positive-parity excitation examined in

Sec. V, the formidable challenge of extracting full knowl-
edge of the many possible scattering-state contributions to
the spectrum of eigenstates on the lattice is well beyond the
current capabilities of the lattice community and may only
be realized with the benefit of significant algorithmic and/
or computational advances. For example, at the lightest
quark mass considered, there is a multiparticle scattering
state associated with a nucleon plus five pions which lies
below the first excitation observed on the lattice at
≃1.9 GeV. Again, using the overlap of the bare basis state
with the energy eigenstates in HEFT as a proxy for the
overlap of the local lattice interpolators with the lattice
energy eigenstates, Figs. 3 and 5 of Ref. [23] indicate the
only states having significant overlap with local interpolat-
ing fields are the states under examination herein.
This expectation is in accord with the results of Ref. [19]

based on the same PACS-CS lattices examined herein.
There Fig. 4 illustrates how the inclusion of low-lying
momentum-projected two-particle πN and σN interpolators
has a marginal effect on the mass of the state determined
with local interpolators alone.
In summary, the contamination of our correlation func-

tions by nearby multiparticle scattering states that have not
been isolated in the current correlation-matrix analysis
using local operators is expected to be small. At the
heaviest quark masses, there is no issue with low-lying
scattering states. At the lightest quark masses, a small
contamination of approximately 10% may be found in the
projected correlator of the second negative-parity excitation
most associated with the N�ð1650Þ resonance. As our main
focus is on the heaviest three masses and quark-model
comparisons, scattering-state contributions do not pose a

TABLE II. Sommer-scale masses and two-particle infinite-
volume threshold energies in units of GeV are compared with
the masses of the first, N�

1, and second, N�
2, negative-parity states

observed on the lattice.

mπ=GeV mN=GeV ðmN þmπÞ=GeV mN�
1=GeV mN�

2=GeV

0.623(9) 1.41(1) 2.03(1) 1.90(4) 1.95(2)
0.515(8) 1.27(1) 1.78(1) 1.78(5) 1.82(2)
0.391(6) 1.15(1) 1.54(1) 1.71(3) 1.77(3)
0.280(4) 1.06(1) 1.34(1) 1.56(5) 1.75(9)
0.169(4) 1.01(4) 1.18(4) 1.49(12) 1.55(8)
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significant issue in this first examination of excited-state
electromagnetic structure. However, future calculations
seeking a quantitative connection to the scattering observ-
ables of experiment will require the inclusion of nonlocal
multiparticle interpolating fields.

IV. NEGATIVE-PARITY EXCITATIONS

A. GE for the first negative-parity excitation

1. Quark-flavor contributions

Beginning with the lowest-lying negative-parity excita-
tion observed in this study, we examine how extractions
of GEðQ2Þ by both the PEVA technique and the conven-
tional analysis defined in Sec. III B depend on the
Euclidean time of the sink. In Fig. 1, we plot the connected
contributions to GEðQ2Þ from single quarks of unit charge
for both quark flavors present in the nucleon interpolator.
This plot is at the heaviest quark mass considered with
mπ ¼ 702 MeV and the lowest-momentum kinematics of
p ¼ ð0; 0; 0Þ and p0 ¼ ð1; 0; 0Þ.
We see that the conventional extraction sits well below

the PEVA extraction for all time slices between the current
insertion and the point at which the signal is lost to noise.
The conventional extraction also has a more significant
time dependence than the PEVA extraction, forcing the
conventional fit one time slice later. Both of these effects
indicate that the conventional analysis is affected by
opposite-parity contaminations, which are having a

significant effect on the extracted form factor, introducing
a systematic error of 12(4)% for the singly represented
quark flavor and 25(5)% for the doubly represented flavor.
The lighter pion masses show a similar behavior. The

conventional analysis consistently has a plateau which starts
later than thePEVAapproachandsits significantly lower.For
example, atmπ ¼ 411 MeV, the magnitudes of the conven-
tional plateaus with these low-momentum kinematics are
systematically underestimatedby19(6)%and26(6)%for the
singly and doubly represented quark flavors, respectively.
We can also consider changing the momenta to access

different kinematics. By boosting the initial and final states
while keeping the momentum transfer constant, we can
access smaller values ofQ2. We can also increase the three-
momentum of the current insertion, giving access to larger
values ofQ2. For such kinematics at all masses we find that,
in general, the conventional plateaus are later in time and
take smaller values than the PEVA plateaus.
These results indicate that the PEVA technique is critical

to the correct extraction of the electric form factors of this
nucleon excitation. The conventional analysis is contami-
nated by opposite-parity states, and when these states are
removed by the PEVA technique it has a significant effect
on the extracted form factor values. Hence, we now focus
our attention only on the PEVA results for the remainder of
this subsection.
In Fig. 2, we plot the Q2 dependence of the electric form

factor at mπ ¼ 411 MeV. The set of kinematics used to
access the various Q2 values is listed in Table III, and we
exclude any fits for which there is no acceptable plateau or
the variational analysis fails. We see that the two quark
flavors have very similar contributions to the electric form
factor. They both agree well with a dipole ansatz

FIG. 1. Quark-flavor contributions to the electric form factor
for the first negative-parity excitation of the nucleon at mπ ¼
702 MeV for the lowest-momentum kinematics, providing
Q2 ¼ 0.1424ð41Þ GeV2. We plot the conventional analysis with
open markers and the new PEVA technique with filled markers.
Our fits to the plateaus are illustrated by shaded bands, with
dashed fit lines for the conventional analysis and solid fit lines for
PEVA. The source is at time slice 16, and the current is inserted at
time slice 21, as indicated by the vertical dashed line. Both PEVA
fits are from time slice 25, whereas the conventional fits both start
at 26 and have significantly lower values than the PEVA fits.

FIG. 2. Quark-flavor contributions to the electric form factor
for the first negative-parity excitation at mπ ¼ 411 MeV. The
curves are dipole fits to the form factors, with the y intercept fixed
to unity. They correspond to rms charge radii of 0.654(20) fm for
the doubly represented quark flavor (up�

1
) and 0.670(26) fm for

the singly represented quark flavor (dp�
1
).
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GDðQ2Þ ¼ G0

ð1þQ2=Λ2Þ2 ; ð13Þ

with G0 fixed to one, as we are working with single quarks
of unit charge. These fits correspond to a rms charge radius
of 0.654(20) fm for the doubly represented quark flavor and
0.670(26) fm for the singly represented quark flavor. These
charge radii are similar to the charge radii of the individual
quark sectors in the ground state examined in Ref. [9],
[0.662(12) fm for the doubly represented quark flavor and
0.633(12) fm for the singly represented quark flavor]. The
doubly represented quark sector agrees to within one
standard deviation. However, the singly represented quark
sector in the excitation has a charge radius approximately
1.5 standard deviations larger than the ground state.
We see similar behavior for the other four masses. In all

cases, the quark distributions are much smaller than the
lattice length L ∼ 3 fm. The plots for these masses are
omitted from this paper for the sake of brevity.

2. Constituent-quark-model expectations

Within the context of a simple constituent quark
model, the near equivalence of the electric charge radii
of quark sectors within the ground-state nucleon and
the first negative-parity excitation seems truly remark-
able. Considering the effective potential of the radial
Schrödinger equation, one expects the repulsive centripetal
term proportional to lðlþ 1Þ to force the quarks to larger
radii for odd-parity l ¼ 1 states.
However, one needs to recall that these radii are from

quantum field theory where dynamical quark-antiquark
pairs enable the creation of meson-nucleon components
in the N� states. The meson provides the negative parity
such that all quarks can reside in relative s waves within

the hadrons, forming an S-wave meson-baryon molecule.
In this way the centripetal barrier is avoided and the
negative-parity states can have a size similar to the
ground-state nucleon. Relevant meson-baryon channels
for the odd-parity states include KΣ and KΛ in addition
to the standard ηN and πN meson-baryon channels.

3. Baryon electric form factors

In order to compute the form factors of the first negative-
parity excitation of the proton, G

p�
1

E ðQ2Þ, and neutron,

G
n�
1

E ðQ2Þ, we need to take the correct linear combinations
of the contributions from the doubly represented quark
flavor and the singly represented quark flavor to reintro-
duce the multiplicity of the doubly represented quark and
the physical charges of the up and down quarks. To this end
we define

G
p�
1

E ðQ2Þ≡þ 4

3
G

up�
1

E ðQ2Þ − 1

3
G

dp�
1

E ðQ2Þ; ð14aÞ

G
n�
1

E ðQ2Þ≡ −
2

3
G

up�
1

E ðQ2Þ þ 2

3
G

dp�
1

E ðQ2Þ: ð14bÞ

In Fig. 3, we plot the nucleon electric form factors
obtained by taking these combinations of the form factors
at mπ ¼ 411 MeV. The form factor for the neutron
excitation is close to zero, reflecting the similar charge
radii of the individual quark flavors. By combining the
dipole fits to the individual quark sectors in the sameway as
the data points one obtains a model for the Q2 dependence
of the electric form factors of the excited proton and
neutron that includes full information from both quark
sectors. If we do this for all five pion masses, we extract

TABLE III. Different kinematics used in our analysis to access a range ofQ2 values. The Q2 value listed is for the
first negative-parity nucleon excitation at the middle pion mass ofmπ ¼ 411 MeV. The statistical error listed forQ2

comes from both the determination of the mass of the state and the conversion to physical units. In the so-called
Breit frame kinematics, where the incoming and outgoing energies are equal, the correlated statistical errors from the
mass cancel exactly, and as such the only source of errors is uncertainty in the lattice spacing used in converting to
physical units.

Source momentum p Sink momentum p0 Momentum transfer q Q2=GeV2

(2, 0, 0) (3, 0, 0) (1, 0, 0) 0.1224(35)
(2, 0, 1) (3, 0, 1) (1, 0, 0) 0.1239(35)
(1, 0, 0) (2, 0, 0) (1, 0, 0) 0.1454(40)
(1, 0, 1) (2, 0, 1) (1, 0, 0) 0.1462(40)
(0, 0, 0) (1, 0, 0) (1, 0, 0) 0.1604(44)
(0, 0, 1) (1, 0, 1) (1, 0, 0) 0.1606(44)
(2, 0, 0) (3, 1, 0) (1, 1, 0) 0.2683(74)
(1, 0, 0) (2, 1, 0) (1, 1, 0) 0.2953(81)
(0, 0, 0) (1, 1, 0) (1, 1, 0) 0.3169(86)
ð0;−1; 0Þ (1, 0, 0) (1, 1, 0) 0.3251(89)
(1, 0, 0) (3, 0, 0) (2, 0, 0) 0.5404(150)
(0, 0, 0) (2, 0, 0) (2, 0, 0) 0.6190(169)
ð−1; 0; 0Þ (1, 0, 0) (2, 0, 0) 0.6502(177)
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squared charge radii for the proton excitation ranging from
0.340(29) to 0.470ð54Þ fm2, increasing with decreasing
pion mass. For the neutron excitation, the squared charge
radii are close to or slightly below zero, for example
−0.033ð24Þ fm2 at mπ ¼ 296 MeV.
As illustrated in Fig. 4, the pion-mass dependence is

fairly smooth and has a clear trend to larger radii at lower
pion masses. There is no hint of significant nonanalytic
behavior in the quark-mass dependence, due to finite-
volume suppression [53,54].

For each pion mass considered, the extracted squared
charge radii for this first negative-parity excitation are
consistent with the radii of the ground-state proton and
neutron at the same mass, as obtained in Ref. [9].
As discussed in the context of the quark-sector contri-

butions, meson-nucleon components in the wave function
enable all quarks to reside in relative s waves within the
hadrons, forming an S-wave meson-nucleon molecule. In
this way, the negative-parity states can have a size similar to
the ground-state nucleon.

B. GM for first negative-parity excitation

1. Quark-flavor contributions

We now proceed to the magnetic form factor. In Fig. 5,
we plot the plateaus at mπ ¼ 411 MeV with the lowest-
momentum kinematics. Here we present results in terms of
nuclear magnetons, μN ≡ eℏ

2mphysp, defined in terms of the
physical proton mass, mphysp. While the conventional and
PEVA plateaus for the doubly represented quark flavor are
consistent, both in fit region and value, the conventional
plateau for the singly represented quark flavor starts later
and has a significantly more negative value than the PEVA
plateau. We see a similar effect at all five pion masses and a
variety of kinematics.
Having fit the form factor plateaus, we can investigate

the Q2 dependence of GMðQ2Þ. In Fig. 6, we plot the
contributions to GMðQ2Þ from both the singly represented
quark flavor and the doubly represented quark flavor at

FIG. 3. GEðQ2Þ for the first negative-parity excitations of the
proton and neutron at mπ ¼ 411 MeV. The curves correspond to
linear combinations of the dipole fits to the individual quark
sectors from Fig. 2. These combinations provide a squared charge
radius of 0.421ð29Þ fm2 for the proton and 0.014ð18Þ fm2 for the
neutron.

FIG. 4. Quark-mass dependence of squared charge radii for the
first negative-parity excitation of the proton and neutron. Results
are obtained from dipole fits to the electric form factors of the
individual quark sectors. For comparison, the radii for the ground
states are plotted with open points. We see a clear trend to larger
charge radii as the pion mass approaches the physical pion,
represented by the dashed vertical line.

FIG. 5. Quark-flavor contributions to GMðQ2Þ for the first
negative-parity excitation at mπ ¼ 411 MeV for the lowest-
momentum kinematics, providing Q2 ¼ 0.1604ð44Þ GeV2. As
in Fig. 1, we plot the conventional analysis with open markers
and dashed fit lines and the new PEVA approach with filled
markers and solid fit lines. For the doubly represented quark
flavor, the plateaus for both analyses are from 23 to 25 and take
consistent values. For the singly represented quark flavor, the
PEVA fit is from 22 to 24, while the conventional fit is from 23 to
25, and has a significantly more negative value.
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mπ ¼ 411 MeV. Both quark flavors are consistent with a
dipole fit. TheQ2 dependence is similar to that forGEðQ2Þ,
and the same is true for the other pion masses considered.

2. Baryon magnetic form factors

As described in Sec. IVA, we can take linear combina-
tions of the individual quark-flavor contributions to com-
pute the magnetic form factors of the excited proton and
neutron. We plot these combinations formπ ¼ 411 MeV in
Fig. 7. The squared magnetic radii given by

hr2iM
μ

¼ −6
GMð0Þ

dGMðQ2Þ
dQ2

����
Q2¼0

ð15Þ

are obtained via dipole fits to the quark-sector contribu-
tions, which allow the value and slope of GMðQ2Þ to be

extrapolated to Q2 ¼ 0. In obtaining hadronic magnetic
radii, the quark sectors combine with additional weightings
given by GMð0Þ, that is,

hr2ip�
1

M

μp
�
1

≡ 1

þ 4
3
G

up�
1

M ð0Þ − 1
3
G

dp�
1

M ð0Þ

×

�
þ 4

3
G

up�
1

M ð0Þ hr
2iup�1M

μ
up�

1

−
1

3
G

dp�
1

M ð0Þ hr
2idp�1M

μ
dp�

1

�
;

ð16aÞ

hr2in�1M
μn

�
1

≡ 1

− 2
3
G

up�
1

M ð0Þ þ 2
3
G

dp�
1

M ð0Þ

×

�
−
2

3
G

up�
1

M ð0Þ hr
2iup�1M

μ
up�

1

þ 2

3
G

dp�
1

M ð0Þ hr
2idp�1M

μ
dp�

1

�
:

ð16bÞ

For all five masses, we find that these squared magnetic
radii mostly agree with the charge radii from GEðQ2Þ.
In Fig. 8, we plot the pion-mass dependence of the

squared magnetic radius obtained from quark-sector dipole
fits to GMðQ2Þ for the excited proton and neutron.

3. Baryon magnetic moments

Returning to the individual quark-sector results, we note
that GMðQ2Þ and GEðQ2Þ have a similar Q2 dependence
over the range considered. In light of this, we hypothesize
that GMðQ2Þ and GEðQ2Þ have the same Q2 scaling in this
region. If this hypothesis is valid, then the ratio of GMðQ2Þ
to GEðQ2Þ should be independent of Q2. Since we are
working with an improved conserved vector current, and

FIG. 6. Quark-flavor contributions to GMðQ2Þ for the first
negative-parity excitation at mπ ¼ 411 MeV. The curves are
dipole fits to the individual quark sectors.

FIG. 7. GMðQ2Þ for the first negative-parity excitations of the
proton and neutron at mπ ¼ 411 MeV. The curves correspond to
linear combinations of the quark-sector dipole fits from Fig. 6.

FIG. 8. Quark-mass dependence of squared magnetic radii for
the first negative-parity excitation of the proton.

STOKES, KAMLEH, and LEINWEBER PHYS. REV. D 102, 014507 (2020)

014507-10



single quarks of unit charge,GEð0Þ ¼ 1 exactly, andGMð0Þ
is the contribution of the quark flavor to the magnetic
moment (up to scaling by the physical charge). Hence, the
ratio

μeffðQ2Þ≡GMðQ2Þ
GEðQ2Þ ð17Þ

is expected to provide a measure of the contribution to the
magnetic moment from the given quark flavor.
In Fig. 9, we plot this ratio at mπ ¼ 411 MeV as a

function of Q2. We see that as expected, the ratio is
approximately constant across the Q2 range accessible
by our kinematics. This holds true for all five pion masses
considered in this work. This supports the underlying
hypothesis that the Q2 scaling of the contributions to
GEðQ2Þ and GMðQ2Þ from each quark sector is the same
and, hence, suggests that μeff is a good estimate for the
magnetic moment of this state.
We take constant fits to μeff at each quark mass and plot

their pion-mass dependence in Fig. 10. By taking linear
combinations of these fits as described for GEðQ2Þ and
GMðQ2Þ above, we obtain magnetic moment estimates for
the excited proton and neutron, as plotted in Fig. 11. For the
heaviest three pion masses, the effective magnetic moments
show little pion-mass dependence and have tight error bars.
The lightest two pion masses have much larger errors,
and we observe a discontinuity in GMðQ2Þ at the second
lightest mass, appearing as a significantly smaller magnetic
moment for both states. This suggests that there could be a
change in the structure of this state at that mass. However,
there is no corresponding change inGEðQ2Þ. At the lightest

mass, the magnetic moments appear to return to consis-
tency with the values from the heavier masses. Hence, it is
unclear whether the behavior at the second lightest mass
indicates a change in the nature of the state, the presence of
significant scattering-state contamination, or is a result of
increasing gauge noise at lighter pion masses. Further
research will be required to determine which of these
possibilities is realized.
In this section focusing on the first negative-parity

excitation of the nucleon, we have demonstrated the
importance of the PEVA technique in correctly extracting
both the electric and magnetic form factors. From these,
we derived charge radii, magnetic moments and mag-
netic radii.
While we regard the results for the three heaviest quark

masses to be robust, we take some caution with the lightest

FIG. 9. μeff for individual quarks of unit charge in the first
negative-parity nucleon excitation at mπ ¼ 411 MeV. The
shaded bands are constant fits to the effective magnetic moment,
corresponding to magnetic moment contributions of 1.163ð60ÞμN
for the doubly represented quark and −0.333ð43ÞμN for the
singly represented quark.

FIG. 10. Quark-mass dependence of contributions from indi-
vidual unit-charge quarks to the magnetic moment of the first
negative-parity nucleon excitation. The vertical dashed line
corresponds to the physical pion mass.

FIG. 11. Quark-mass dependence of the magnetic moment of
the first negative-parity excitations of the proton and neutron.
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quark-mass results as they may be influenced by important
unaccounted scattering-state contributions.
In Table IV, we present the charge radii, magnetic radii,

and magnetic moments of the ground-state proton and
neutron. These measurements are obtained from the electric
and magnetic form factors as described above. We provide
these results here for easy comparison with the excited-state
results presented in this paper.
In Table V, we present the same results for the first

negative-parity excitation. We see that this state has radii
similar to the ground state but notably different magnetic
moments. We find that at the heavier quark masses these
magnetic moments agree well with constituent-quark-
model predictions, as discussed below in Sec. IV E.

C. GE for the second negative-parity excitation

1. Quark-flavor contributions

We now proceed to examine the next negative-parity
excitation observed in this study, N�

2. In Fig. 12, we plot
GEðQ2Þ as a function of sink time for both quark flavors at
mπ ¼ 702 MeV with the lowest-momentum kinematics.
We see that the conventional extraction sits even further
below the PEVA extraction than the first negative-parity
excitation. While the PEVA fits start at time slice 24, the
conventional fits are forced all the way out to time slice 28
and sit at only just above half of the values of the PEVA fits.
Moving on to the lighter pion masses, the discrepancy

between the extracted form factors continues at mπ ¼ 570
and 411 MeV, with the conventional analysis giving con-
sistently lower values than PEVA For example, Fig. 13
shows the plateaus at mπ ¼ 570 MeV.
At the lightest two pion masses, the signal gets sig-

nificantly noisier, and the difference between the two
techniques gets harder to distinguish. Increased statistics
are required in order to clearly identify the effects of
opposite-parity contaminations of this state at these masses.
However, in principle, the enhancement of relativistic
components of the baryon spinors at light quark masses
is expected to increase parity mixing in the conventional
analysis.
In addition, in the tail of the two-point correlation

function at the lightest mass, contributions from low-lying

FIG. 12. Quark-flavor contributions to the electric form factor
for the second negative-parity nucleon excitation at mπ ¼
702 MeV for the lowest-momentum kinematics, providing
Q2 ¼ 0.1425ð41Þ GeV2. We plot the conventional analysis with
open markers and dashed fit lines and the new PEVA approach
with filled markers and solid fit lines. Results for both the singly
represented quark flavor (dp�

2
) and the doubly represented quark

flavor (up�
2
) are shown for single quarks of unit charge. Both

PEVA fits are from time slice 24, whereas the conventional fits
both start at time slice 28. The values for both conventional fits
are significantly lower than the corresponding PEVA fits.

TABLE V. Radii and magnetic moments of the first negative-
parity excitation of the proton and neutron. Radii are obtained
from combinations of quark-sector dipole fits and magnetic
moments are obtained from quark-sector ratios of GMðQ2Þ to
GEðQ2Þ.
m2

π=GeV2 hr2ip�
1

E =fm2 hr2ip�
1

M =μp
�
1=fm2 μp

�
1=μN

0.3884(113) 0.340(29) 0.21(3) 1.53(7)
0.2654(81) 0.403(24) 0.35(6) 1.53(14)
0.1525(43) 0.421(29) 0.30(5) 1.66(8)
0.0784(25) 0.462(50) 0.21(21) 1.04(20)
0.0285(12) 0.470(54) 0.63(24) 2.07(28)

m2
π=GeV2 hr2in�1E =fm2 hr2in�1M=μn

�
1=fm2 μn

�
1=μN

0.3884(113) 0.007(15) 0.20(3) −0.93ð4Þ
0.2654(81) −0.016ð12Þ 0.34(5) −0.92ð8Þ
0.1525(43) 0.014(18) 0.32(8) −1.00ð5Þ
0.0784(25) −0.033ð24Þ 0.18(18) −0.61ð12Þ
0.0285(12) −0.021ð36Þ 0.62(25) −1.35ð43Þ

TABLE IV. Radii and magnetic moments of the ground-state
proton and neutron. Radii are obtained from combinations of
quark-sector dipole fits and magnetic moments are obtained from
quark-sector ratios of GMðQ2Þ to GEðQ2Þ.
m2

π=GeV2 hr2ipE=fm2 hr2ipM=μp=fm2 μp=μN

0.3884(113) 0.351(13) 0.301(13) 1.89(3)
0.2654(81) 0.417(17) 0.341(15) 2.10(4)
0.1525(43) 0.451(18) 0.340(13) 2.24(4)
0.0784(25) 0.472(17) 0.360(16) 2.30(4)
0.0285(12) 0.479(27) 0.324(36) 2.52(8)

m2
π=GeV2 hr2inE=fm2 hr2inM=μn=fm2 μn=μN

0.3884(113) −0.009ð3Þ 0.303(13) −1.20ð2Þ
0.2654(81) −0.019ð5Þ 0.337(15) −1.33ð3Þ
0.1525(43) −0.025ð6Þ 0.350(14) −1.38ð3Þ
0.0784(25) −0.023ð5Þ 0.376(20) −1.40ð3Þ
0.0285(12) −0.022ð9Þ 0.437(84) −1.57ð5Þ
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states are evident from a χ2 analysis of a single-state ansatz.
This effect was also seen in Ref. [52], where it was found
that so long as a single-state ansatz is satisfied in the fit
region this contamination does not have a significant effect
on the extracted mass. However, as shown in Ref. [9],
contaminants that do not significantly perturb the extracted
mass can still have a significant effect on the extracted
form factors. As such, we must be cautious when interpret-
ing results from this state at this mass. To gain a deeper
insight into this state at this mass, multiparticle scattering
operators will be necessary to properly isolate the low-lying
scattering state.
Returning to the other ensembles, we find that the trends

from the lowest-momentum kinematics continue for all
other kinematics: for all masses for which the noise is
sufficiently low, the conventional fits sit significantly lower
than the PEVA fits.
Once again, these results clearly indicate that PEVA is

critical to the correct extraction of the electric form factors
of this nucleon excitation. The opposite-parity contami-
nations admitted by the conventional analysis lead to
significant underestimation of the value of the electric
form factor. Hence, we now focus our attention only on the
PEVA results.
Plotting the acceptable plateaus as a function of Q2

reveals that the contributions from the two quark flavors are
once again very similar and agree well with a dipole ansatz.
For example, Fig. 14 shows dipole fits to the two quark
flavors at mπ ¼ 411 MeV, with a rms charge radius of
0.679(38) fm for the doubly represented quark flavor and
0.715(31) fm for the singly represented quark flavor.
The charge radius of the doubly represented quark flavor

of 0.679(38) fm is similar to that seen in the ground state,

0.662(12) fm [9], again suggesting a role for meson-baryon
contributions escaping the centripetal barrier encountered in
a three-quark composition. This time the rms charge radius
of the singly represented quark flavor of 0.715(31) fm is
larger that observed in the ground state, 0.633(12) fm.
However, it does overlap with that of the first negative-
parity excitation at the one-sigma level.

2. Baryon electric form factors

We once again take the linear combinations discussed
in Sec. IVA to form the excited proton and neutron.

FIG. 14. Quark-flavor contributions to GEðQ2Þ for the second
negative-parity excitation at mπ ¼ 411 MeV. The curves are
dipole fits to the form factor, with the y intercept fixed to unity.
They correspond to rms charge radii of 0.679(38) fm for the
doubly represented quark (up) and 0.715(31) fm for the singly
represented quark (dp).

FIG. 13. Quark-flavor contributions to GEðQ2Þ for the second
negative-parity excitation at mπ ¼ 570 MeV for the lowest-
momentum kinematics, providing Q2 ¼ 0.1458ð44Þ GeV2. The
conventions used in this plot are the same as in Fig. 12. The
conventional fits have significantly lower values than the PEVA
fits, and the plateau for the doubly represented quark flavor starts
one time slice later than the corresponding PEVA plateau.

FIG. 15. GEðQ2Þ for the second negative-parity excitation of
the proton and neutron atmπ ¼ 411 MeV. The curves correspond
to combinations of the quark-sector dipole fits from Fig. 14,
giving squared charge radii of 0.445ð62Þ fm2 for the excited
proton and 0.033ð30Þ fm2 for the excited neutron.
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For example, in Fig. 15, we plot the electric form factors
obtained from the quark-sector combinations at mπ ¼
411 MeV. At all five masses, the electric form factor for
the second negative-parity excitation of the neutron is
approximately zero.
The pion-mass dependence of the charge radii is illus-

trated in Fig. 16. At the heaviest three pion masses, the linear
combinations of the quark-sector dipole fits once again
provide charge radii consistent with the ground-state nucleon
at the same quark mass [9], pointing to a role for meson-
baryon S-wave Fock-space components, escaping the cen-
tripetal barrier encountered in a three-quark composition.We
see that the pion-mass dependence of the proton radius is
fairly smooth at these heaviest masses and has a clear trend
to increasing charge radius at lower pion masses.

D. GM for the second negative-parity excitation

1. Quark-flavor contributions

We now advance to the magnetic form factor of this state.
In Fig. 17, we plot the heaviest pion mass of mπ ¼
702 MeV and the lowest-momentum kinematics. While
the plateau time regions for the PEVA and conventional
analysis are consistent, the values of those plateaus are very
different and, in fact, change ordering between the two
extractions. We see a similar effect at mπ ¼ 296, 411, and
570 MeV, with similar inversions of the magnetic form
factors between the two analyses. We see similar patterns
for the other kinematics, with significantly different plateau
values between the two analyses when the statistical noise
is low enough to distinguish them.
Once again the PEVA technique is crucial to extracting

the correct form factors. Hence, we focus only on the PEVA
results. Inspecting theQ2 dependence of these form factors,

we find that the contributions from both quark flavors agree
well with a dipole ansatz. For example, Fig. 18 shows the
form factors at mπ ¼ 411 MeV. Here we have held the y
scale fixed to match previous plots, for ease of comparison.
The most notable feature of these results is their small
magnitude compared to both the ground state and the
excitation considered in Sec. IV B.

2. Baryon magnetic form factors

By taking linear combinations based on the multiplicity
and charge of each quark flavor, as described in Sec. IVA,

FIG. 16. Quark-mass dependence of charge radii from combi-
nations of quark-sector dipole fits to GEðQ2Þ for the second
negative-parity excitation of the proton and neutron. The vertical
dashed line corresponds to the physical pion mass, and the
ground state is plotted with open points for comparison.

FIG. 17. Quark-flavor contributions to GMðQ2Þ for the second
negative-parity excitation of the nucleon atmπ ¼ 702 MeV for the
lowest-momentumkinematics, providingQ2 ¼ 0.1425ð41Þ GeV2.
The conventions used in this plot are the same as in Fig. 12. The
plateaus for the PEVA technique both start at time slice 23. The
plateaus for theconventionalanalysis start at timeslice23forup�

2
and

timeslice 24 fordp�
2
. Thedifference in theplateauvaluesbetween the

two analyses is enough to change the ordering of the two quark
flavors.

FIG. 18. Quark-flavor contributions to GMðQ2Þ for the second
negative-parity excitation at mπ ¼ 411 MeV. The curves are
dipole fits to the individual quark sectors.
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we can obtain the magnetic form factors for the excited
proton and neutron. Figure 19 shows these combinations
for mπ ¼ 411 MeV. The magnetic charge radii obtained
by combining the quark-sector dipoles are consistent with
the proton charge radii from GEðQ2Þ, although they often
have very large errors due to the very small values of the
magnetic form factors amplifying the effects of statistical
fluctuations.

3. Baryon magnetic moments

Returning to the individual quark-sector results with
unit charge, and noting that theQ2 dependence for GEðQ2Þ
and GMðQ2Þ is similar, we once again take the ratio

μeffðQ2Þ≡GMðQ2Þ=GEðQ2Þ. We find that this ratio is
approximately flat for all five pion masses. For example,
Fig. 20 shows the Q2 dependence of the ratio at mπ ¼
411 MeV. We can extract the contributions to the magnetic
moment from both quark flavors from constant fits to
this ratio.
Figure 21 shows the pion-mass dependence of these

extracted magnetic moment contributions. It is remarkable
that both quark flavors contribute with the same sign.
By taking the linear combinations discussed above, we

can combine these individual quark-flavor results to get the
predicted magnetic moments for the second negative-parity
excitations of the proton and neutron. In Fig. 22 we plot the

FIG. 19. GMðQ2Þ for the excited proton and neutron at
mπ ¼ 411 MeV. The curves correspond to combinations of
the quark-sector dipole fits from Fig. 18.

FIG. 20. μeff for individual quarks of unit charge in the second
negative-parity excitation at mπ ¼ 411 MeV. The shaded bands
are constant fits to the effective magnetic moment, corresponding
to magnetic moment contributions of 0.260ð55ÞμN for the doubly
represented quark and 0.810ð67ÞμN for the singly represented
quark.

FIG. 21. Quark-mass dependence of contributions from indi-
vidual unit-charge quarks to the magnetic moment of the second
negative-parity excitation of the nucleon. The vertical dashed line
corresponds to the physical pion mass.

FIG. 22. Quark-mass dependence of the magnetic moment of
the second negative-parity excitations of the proton and neutron.
The dashed line corresponds to the physical pion mass. There is a
clear change at the lightest two pion masses, which signals a
significant shift in the structure of the states.
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dependence of these combinations on the squared pion
mass. For the heaviest three pion masses, the effective
magnetic moments show little pion-mass dependence and
have tight error bars. The magnetic moment of the proton
excitation sits very close to zero, and the magnetic moment
of the neutron excitation has a small but nonzero positive
value. For the lightest two masses, the ordering of the two
states flips, with the proton excitation taking on a more
significant magnetic moment and the neutron excitation
dropping to be consistent with or below zero.
In summary, the PEVA technique is crucial for extracting

both the electric and magnetic form factors of the second
negative-parity excitations of the proton and neutron. In
Table VI, we present the charge radii, magnetic radii, and
magnetic moments of the second negative-parity excitation
of the proton and neutron. We see that this state has similar
radii to the ground state but notably different magnetic
moments. We find that at the heavier quark masses these
magnetic moments agree well with constituent-quark-
model predictions, as discussed below.

E. Model comparison

In Sec. I, we introduced the two low-lying negative-
parity excitations of the proton and neutron observed on the
lattice by the CSSM and the HSC Collaborations. We wish
to examine the extent to which these states, formed in
relativistic quantum field theory, have properties that are
captured in simple quark models. As these states have good
overlap with local three-quark operators, we anticipate
these states may resemble the quark-model states postu-
lated to describe these resonances [1,6,7].
Already we have seen some deviations from quark-

model expectations for electric charge radii. There, larger

radii for the N� states were anticipated due to centripetal
repulsion in the radial Schrödinger equation for three-quark
states with orbital angular momentum l ¼ 1. However,
similar charge radii point to five-quark meson-baryon
components in the N� structure where the antiquark
provides negative parity and all quarks can sit in relative
s waves.
Here, we focus on the magnetic moments of these two

negative-parity states, as calculated in Secs. IV B and IV D.
It will be interesting to learn if there is a nontrivial role for
meson-baryon Fock-space components here as well.
Our focus on the three heavier quark masses considered

is beneficial in comparing with quark models as it is this
regime where constituent quark phenomenology is expec-
ted to be manifest [44,55].
We consider two constituent-quark-model (QM) predic-

tions of the magnetic moments from Refs. [1,6] and two
chiral constituent-quark-model (χQM) calculations which
take the quark-model calculations and include effects from
the pion cloud [6,7], thus incorporating meson-baryon
Fock-space components.
In Fig. 23, we compare our magnetic moments extracted

at mπ ¼ 702 MeV with these quark-model predictions,
which are calculated at the physical point. We can see
that, qualitatively, the results for the first negative-parity
lattice excitation match up with the quark model N�ð1535Þ,
and the second negative-parity lattice excitation with the
quark model N�ð1650Þ. In fact, despite being at signifi-
cantly different pion masses, the results are quantitatively
very similar, with the lattice results sitting within the
scatter of the model predictions for all states save the
second negative-parity nucleon excitation, which sits
slightly below all of the model predictions.
For comparison, we also plot lattice results produced

using the conventional variational analysis. For these
results, μeffðQ2Þ varies significantly for different kinemat-
ics, so rather than taking a constant fit across kinematics,
we present only the result from the lowest-momentum
[p ¼ ð0; 0; 0Þ, p0 ¼ ð1; 0; 0Þ] kinematics, which we expect
to have the smallest opposite-parity contaminations. We see
that the conventional results are significantly different to
the PEVA results. In particular, the conventional extraction
of the second negative-parity excitation is completely
different to both the PEVA result and the quark-model
results. This once again demonstrates how critical the
PEVA technique is to obtaining correct results.
This trend continues for mπ ¼ 570 MeV, and mπ ¼

411 MeV, the latter shown in Fig. 24. Since the pion-mass
dependence of the magnetic moments between these
three masses is quite small, the quantitative agreement
remains good.
For completeness, we also present a comparison for

the second lightest mass. Figure 25 shows that the lattice
results depart from the model predictions at mπ ¼
296 MeV. Again, an analysis of possible scattering-state

TABLE VI. Radii and magnetic moments of the second
negative-parity excitation of the proton and neutron. Radii are
obtained from combinations of quark-sector dipole fits and
magnetic moments are obtained from quark-sector ratios of
GMðQ2Þ to GEðQ2Þ. At the lightest two pion masses, the form
factor data were insufficient to properly constrain a dipole fit so
we do not report magnetic radii at these masses.

m2
π=GeV2 hr2ip�

2

E =fm2 hr2ip�
2

M =μp
�
2=fm2 μp

�
2=μN

0.3884(113) 0.363(35) 0.56(213) 0.05(8)
0.2654(81) 0.399(29) 0.55(70) 0.23(11)
0.1525(43) 0.445(62) 1.09(70) 0.08(7)
0.0784(25) 0.599(77) � � � 0.57(21)
0.0285(12) 0.428(86) � � � 1.41(62)

m2
π=GeV2 hr2in�2E =fm2 hr2in�2M=μn

�
2=fm2 μn

�
2=μN

0.3884(113) 0.014(17) 0.30(18) 0.41(5)
0.2654(81) 0.003(14) 0.65(30) 0.41(7)
0.1525(43) 0.033(30) 0.41(34) 0.37(5)
0.0784(25) −0.076ð47Þ � � � 0.14(14)
0.0285(12) 0.036(68) � � � −0.26ð35Þ
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contributions to the correlation functions is required to
disentangle interesting meson-cloud effects from scatter-
ing-state contaminations as discussed in Sec. III D.
Figure 25 also shows that there is still a significant
disagreement between the conventional and PEVA results
at mπ ¼ 296 MeV. It remains clear that the PEVA

technique is playing an important role in addressing
opposite-parity contaminations.
The results presented in this section provide new

insight into the structure of the negative-parity nucleon
excitations observed in lattice quantum field theory. At the
heavier quark masses considered, the two negative-parity

FIG. 23. Comparison between lattice calculations of the magnetic moments of two negative-parity nucleon excitations at mπ ¼
702 MeV and quark-model predictions for the N�ð1535Þ and N�ð1650Þ resonances. The shaded bands on the left-hand side of the plot
indicate the magnetic moments calculated via the PEVA technique, and symbols denote the quark-model predictions. Lattice
calculations of the magnetic moments using a conventional variational analysis are plotted to the right of the vertical dashed line.

FIG. 24. Comparison between magnetic moments from lattice calculations at mπ ¼ 411 MeV and quark-model predictions for the
N�ð1535Þ and N�ð1650Þ. The shaded bands indicate the PEVA calculations on the left and the conventional analysis on the right.
The markers show the quark-model predictions.
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excitations agree well with quark-model descriptions for
the N�ð1535Þ and N�ð1650Þ. Coupled with the charge radii
from Sec. IVA, which indicate the importance of meson-
nucleon components in the wave function, and the observed
single-particle dispersion relations seen in Ref. [41], the
results indicate that these states are similar in structure to
the ground-state nucleon which can also be modeled as a
three-quark state dressed by a meson cloud.

V. POSITIVE-PARITY EXCITATION

We now move to the positive-parity sector, studying the
first localized positive-parity excitation of the nucleon
observed on the lattice. This state sits at an effective mass
of approximately 2 GeV for all five pion masses, well
above 1.43(2) GeV, the mass of the Roper resonance
observed in nature [56]. This has long been a puzzle for
the particle physics community, but recent HEFT results
indicate that the Roper resonance is dynamically generated
from meson-baryon scattering states [18], and hence the
lattice spectrum in this energy region has poor overlap with
local three-quark operators. This means that the lattice state
studied here is likely associated with the N�ð1710Þ,
N�ð1880Þ, and/or N�ð2100Þ resonances.

A. Electric form factor

1. Quark-flavor contributions

We plot the dependence ofGEðQ2Þ on the Euclidean sink
time at mπ ¼ 702 MeV in Figs. 26 and 27. The form factor
values extracted from the PEVA and conventional analyses

for each sink time look very similar, and this is reflected in
the fits. The conventional and PEVA extractions both have
clear plateaus over the same range of sink times, and these
plateaus have consistent values.
This trend continues for lighter pion masses: the PEVA

and conventional analyses have the same fit ranges and
consistent fit values. This is also true for all kinematics for
which we are able to find acceptable plateaus. This suggests

FIG. 25. Comparison between magnetic moments from lattice calculations at mπ ¼ 296 MeV and quark-model predictions for the
N�ð1535Þ and N�ð1650Þ. The shaded bands indicate the PEVA calculations on the left and the conventional analysis on the right.
The markers show the quark-model predictions.

FIG. 26. Contributions to GEðQ2Þ from the doubly represented
quark flavor for the first positive-parity nucleon excitation at
mπ ¼ 702 MeV with the lowest-momentum kinematics, provid-
ing Q2 ¼ 0.1425ð41Þ GeV2. We plot the conventional analysis
with open markers and dashed fit lines and the PEVA technique
with filled markers and solid fit lines. Both fits are from time
slices 24–28.
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there are no significant effects from opposite-parity con-
taminations on GEðQ2Þ for this state, at least at this level of
statistics.
Focusing on the PEVA results, in Fig. 28, we plot theQ2

dependence of the electric form factor for the two valence
quark flavors atmπ ¼ 411 MeV. We see that the two quark
flavors make very similar contributions to the electric form
factor and agree well with a dipole fit corresponding to
charge radii of 0.88(4) fm for the doubly represented quark
flavor and 0.89(5) fm for the singly represented quark
flavor. This is significantly larger than the ground-state
nucleon. Similar behavior is seen for the other four masses.

2. Baryon electric form factors

As above, we take linear combinations of the individual
quark-flavor contributions, including the charges of the
quark flavors and their multiplicity, to get the electric form
factors for the first positive-parity excitations of the proton
and neutron. In Fig. 29, we plot these combinations at
mπ ¼ 411 MeV. At this and the other four masses, we find
that the electric form factor for the neutron excitation is
approximately zero.
In Fig. 30, we plot the pion-mass dependence of charge

radii extracted from combinations of the quark-sector
dipole fits to the electric form factor. For the heaviest three
masses, squared charge radii for the proton range from
0.67(7) to 0.75ð7Þ fm2, increasing with decreasing pion

FIG. 27. Contributions to GEðQ2Þ from the singly represented
quark flavor for the first positive-parity nucleon excitation. The
pion mass, kinematics and plotting convention are the same as in
Fig. 26 above. Both fits are from time slices 24–28.

FIG. 28. Quark-flavor contributions to GEðQ2Þ for the first
positive-parity excitation at mπ ¼ 411 MeV. The curves are
dipole fits to the form factor, with lines indicating the central
values. The fits correspond to rms charge radii of 0.871(36) fm
for the doubly represented quark flavor (up0 ) and 0.885(44) fm for
the singly represented quark flavor (dp0 ).

FIG. 30. Quark-mass dependence of charge radii from combi-
nations of quark-sector dipole fits toGEðQ2Þ for the first positive-
parity excitation of the proton.

FIG. 29. GEðQ2Þ for the first positive-parity excitations of the
proton and neutron at mπ ¼ 411 MeV. The curves correspond to
combinations of the quark-sector dipole fits from Fig. 28, giving a
squared charge radius of 0.75ð7Þ fm2 for the proton and
0.016ð39Þ fm2 for the neutron.
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mass. These radii are all significantly larger than the charge
radius of the ground-state proton at the corresponding
mass. Thus the second positive-parity excitation is signifi-
cantly larger than the ground-state proton at these pion
masses, in line with earlier observations that this positive-
parity excitation has a wave function consistent with a
three-quark radial excitation with one node [33,34]. At the
lightest two masses, the statistical errors become large.
However the trend for this positive-parity excitation to be
larger than the ground state is manifest.

B. Magnetic form factor

1. Quark-flavor contributions

Having investigated the electric form factor for this state,
we now consider the magnetic form factor. In Fig. 31 we
plot the Euclidean sink-time dependence of the extracted
form factors atmπ ¼ 702 MeV,with the lowest-momentum
kinematics. We see that the form factors and plateaus for
both analyses are very similar, and there is no evidence for
opposite-parity contamination of this state. We see similar
results for the other masses and kinematics, with no clear
differences between the conventional and PEVA plateaus.
For example, Fig. 32 shows this behavior atmπ ¼ 411 MeV
with the same lowest-momentum kinematics. This suggests
that, like GEðQ2Þ, GMðQ2Þ for the first positive-parity
excitation is not affected by opposite-parity excitations,
at least at this level of statistics.
Focusing on the PEVA results, we plot the Q2 depend-

ence of the plateau fits for the two valence quark flavors at
mπ ¼ 411 MeV in Fig. 33. We see that both quark flavors
agree well with a dipole ansatz. This is also true for the two

heavier pion masses, and the two lighter masses are also
consistent, though they are too noisy to significantly
constrain the fit.

2. Baryon magnetic form factors

Combinations of the quark-flavor contributions are taken
to form the proton and neutron excitations. In Fig. 34, we
plot these combinations at mπ ¼ 411 MeV. By combining
the dipole fits to the quark-sector results in the same way,
we obtain magnetic radii that are consistent with the
corresponding excited proton charge radius. This can be
seen in Fig. 35, in which we plot the pion-mass dependence
of the squared magnetic radii obtained from the linear
combinations of the dipole fits to the form factors. These
plots show fairly consistent results for the heavier three

FIG. 31. Quark-flavor contributions to the magnetic form factor
for the first positive-parity excitation of the nucleon at mπ ¼
702 MeV for the lowest-momentum kinematics, providing
Q2 ¼ 0.1425ð41Þ GeV2. Results are for single quarks of unit
charge. All four fits start from time slice 23 and have consistent
values.

FIG. 32. Quark-flavor contributions to GMðQ2Þ for the first
positive-parity excitation of the nucleon at mπ ¼ 411 MeV for
the lowest-momentum kinematics, providing Q2 ¼ 0.146 GeV2.

FIG. 33. Quark-flavor contributions to GMðQ2Þ for the first
positive-parity excitation at mπ ¼ 411 MeV. The curves are
dipole fits to the form factor, corresponding to squared magnetic
radii of 0.67ð14Þ fm2 for up0 and 0.97ð59Þ fm2 for dp0.
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masses, with some pion-mass dependence. We omit results
for the lightest two masses because the form factor data are
insufficient to constrain dipole fits at these masses.

3. Baryon magnetic moments

Returning to the individual quark-sector results and
noting that once again the electric and magnetic form
factors have a similar Q2 dependence, we take the ratio
μeffðQ2Þ≡GMðQ2Þ=GEðQ2Þ. In Fig. 36, we plot this ratio
as a function of Q2 for mπ ¼ 411 MeV. We find that the
ratio is once again very flat in Q2, supporting our
hypothesis that the form factors have the same Q2 scaling

in this region and the validity of μeff as an estimate of the
magnetic moment.
In Fig. 37, we plot the pion-mass dependence of μeff for

individual quarks of unit charge. We can once again take
combinations of the individual quark-flavor contributions
to get the excited proton and neutron magnetic moments. In
Fig. 38, we plot the pion-mass dependence of these
combinations.
We see that the excited-state magnetic moments agree

well with the ground-state magnetic moments, particularly
at the heaviest quark masses, where the agreement is
impressive. These results are in accord with a simple 2S
constituent-quark-model state.

FIG. 34. GMðQ2Þ for the first positive-parity excitations of the
proton and neutron at mπ ¼ 411 MeV. The curves correspond to
combinations of the quark-sector dipole fits from Fig. 33, giving a
squared magnetic radius of 0.70ð13Þ fm2 for the proton excitation
and 0.77ð21Þ fm2 for the neutron excitation.

FIG. 35. Quark-mass dependence of squared magnetic radii of
the first positive-parity excitation of the proton and neutron from
quark-sector dipole fits to GMðQ2Þ. At the lightest two pion
masses, the form factor data were insufficient to properly
constrain a dipole fit so we do not report magnetic radii at these
masses.

FIG. 37. Quark-mass dependence of contributions from indi-
vidual unit-charge quarks to the magnetic moment of the first
positive-parity excitation of the nucleon. The vertical dashed line
corresponds to the physical pion mass.

FIG. 36. μeff for individual quarks of unit charge in the first
positive-parity excitation at mπ ¼ 411 MeV. The shaded bands
are constant fits to the effective magnetic moments which provide
magnetic moment contributions of 1.43(13)μN for the doubly
represented quark and −0.55ð14ÞμN for the singly represented
quark.
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In summary, we have shown that the first positive-parity
excitation of the nucleon has no obvious opposite-parity
contaminations. However, variational analysis techniques
in general have provided good access to this state at several
pion masses. This has allowed us to ascertain for the first
time that these states have a larger radius than the ground-
state nucleon but have very similar magnetic moments.
This is consistent with these states being dominated by a
radial 2S excitation of the ground-state nucleon as seen in
Refs. [33,34]. Table VII collects our charge radii, magnetic
radii, and magnetic moments for this positive-parity exci-
tation of the proton and neutron.

VI. CONCLUSION

In this paper we presented the first calculations of the
elastic form factors of lattice nucleon excitations from the
first principles of QCD. We have considered a variety of
momentum frames to access a range of Q2 values, with
some approaching zero. We have presented the first
implementation of the PEVA technique for matrix ele-
ments, which is vital to isolating exited baryons with
nonzero momentum.
Substantial differences between the form factors calcu-

lated in a conventional variational analysis and those
calculated with the PEVA approach show the PEVA
technique to be critical to understanding the structure of
these excited states.
We find the size of the two lowest-lying negative parity

excitations to be similar to the ground-state nucleons. This
is a remarkable result in the context of a simple constituent
quark model, where the repulsive centripetal term of the
radial Schrödinger equation proportional to lðlþ 1Þ is
expected to force the quarks to larger radii for l ¼ 1 states.
The lattice-QCD results point to a role for meson-nucleon
Fock-space components in the N� states. As the antiquark
in the meson provides the negative parity, all quarks can
reside in relative swaves. In this way the centripetal barrier
is avoided and the negative-parity states can have a size
similar to the ground-state nucleon.
The positive-parity excitation observed in this study is

very high in energy, approaching 2 GeV, and exhibits
challenging statistical fluctuations. The extractions of the
form factors herein are attained through the cancellation of
statistical fluctuations enabled by the combination of an
OðaÞ-improved conserved vector current and an appropri-
ately selected correlator ratio preserving the lattice Ward
identity. This state has a charge radius approximately 30%
larger than the ground state and magnetic moments which
match the ground state. Both of these observations are in
accord with earlier observations that this positive-parity
excitation has a wave function consistent with a three-quark
2S radial excitation [33,34].
At the heaviest three pion masses considered, the

first observed negative-parity excitations have magnetic
moments consistent with quark-model descriptions for the
N�ð1535Þ. Similarly, the second negative-parity excitations
have magnetic moments in accord with quark-model
descriptions of the N�ð1650Þ. At these quark masses, the
results indicate these states are similar in structure to the
ground-state nucleon which can also be modeled as a three-
quark state dressed by a meson cloud.
At the lightest two pion masses, we observe a rearrange-

ment in the structure of the second negative-parity excita-
tion. This is evident in both a significant shift in the
magnetic moments of the excited proton and neutron and
significant curvature in the pion-mass dependence of the
electric form factor. A description of this state as a
molecular bound state of KΣ dressed by KΛ, ηN and

FIG. 38. Quark-mass dependence of the magnetic moments of
the first positive-parity excitations of the proton and neutron. The
vertical dashed line corresponds to the physical pion mass, and
the ground-state magnetic moments have been plotted with open
markers.

TABLE VII. Radii and magnetic moments of the positive-parity
excitation of the proton and neutron. Radii are obtained from
combinations of quark-sector dipole fits and magnetic moments
are obtained from quark-sector ratios of GMðQ2Þ to GEðQ2Þ. At
the lightest two pion masses, the form factor data were insuffi-
cient to properly constrain a dipole fit so we do not report
magnetic radii at these masses.

m2
π=GeV2 hr2ip0

E =fm
2 hr2ip0

M=μ
p0
=fm2 μp

0
=μN

0.3884(113) 0.673(73) 0.56(14) 1.95(17)
0.2654(81) 0.689(56) 0.83(16) 1.98(17)
0.1525(43) 0.751(69) 0.70(13) 2.09(18)
0.0784(25) 0.576(128) � � � 1.52(44)
0.0285(12) 0.626(97) � � � 2.06(68)

m2
π=GeV2 hr2in0E =fm2 hr2in0M=μn0=fm2 μn

0
=μN

0.3884(113) −0.032ð27Þ 0.50(12) −1.27ð11Þ
0.2654(81) −0.049ð21Þ 0.83(21) −1.28ð10Þ
0.1525(43) 0.016(39) 0.77(21) −1.32ð12Þ
0.0784(25) −0.039ð60Þ � � � −1.00ð29Þ
0.0285(12) −0.022ð81Þ � � � −1.47ð62Þ
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πN is an intriguing possibility, analogous to the description
of the odd-parity Λð1405Þ excitation as a molecular bound
state of K̄N dressed by πΣ [8,57]. The proximity of the
noninteracting KΣ to the effective energy of the observed
lattice state is suggestive.
While the current analysis is able to raise such a possi-

bility, it is not able to affirm it. As a first step, nonlocal
momentum-projected two-particle interpolating fields
must be introduced to provide access to the KΣ, KΛ,
ηN and πN scattering states. To date, only the energy of the
S-wave πN scattering state has been investigated [10,58].
This will be a challenging endeavor, owing to the computa-
tional cost of estimating the loop propagators that are
necessary to compute nonlocal momentum-projected
meson-baryon contracted interpolating fields. Moreover,
very high statistics will be required to precisely evaluate the
correlation functions for quark masses near the physical
regime.
However, such studies will allow for the lattice deter-

mination of the form factors of the multiparticle-dominated
scattering states at light quark masses and will provide the
input required to make a robust connection between these
states and the infinite-volume resonances of nature [31,32].
Looking forward, it is interesting to note that HEFT

calculations describe the negative-parity energy spectrum

with reference to one bare basis state [10]. This inves-
tigation indicates the presence of two quark-model-like
states raising the possibility of introducing a second bare
basis state into the formalism. It will be interesting to
explore such an extension of HEFT as the two quark-
model-like basis states mix through couplings to inter-
mediate meson-baryon basis states. Such dynamics may be
relevant to a detailed quantitative understanding of the
negative-parity nucleon spectrum.
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