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We show that standard identities and theorems for lattice models with Uð1Þ symmetry get reexpressed
discretely in the tensorial formulation of these models. We also explain the geometrical analogy between
the continuous lattice equations of motion and the discrete selection rules of the tensors. We further
construct a gauge-invariant transfer matrix in arbitrary dimensions, show the equivalence with its gauge-
fixed version in a maximal temporal gauge, and explain how a discrete Gauss’s law is always enforced.
Moreover, we propose a noise-robust way to implement Gauss’s law in arbitrary dimensions, and we
reformulate Noether’s theorem for global, local, continuous, or discrete Abelian symmetries: for each given
symmetry, there is one corresponding tensor redundancy. We discuss semiclassical approximations for
classical solutions with periodic boundary conditions in two solvable cases, and we show the
correspondence of their weak coupling limit with the tensor formulation after Poisson summation.
Finally, we briefly discuss connections with other approaches and implications for quantum computing.
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I. INTRODUCTION

Tensor field theory (TFT) is a recently developed
approach of models studied in the context of lattice gauge
theory [1–26]. The basic idea is to rewrite the partition
function of lattice models as a product of tensors where all
the indices are contracted. Many lattice models have
compact fields. This feature appears naturally when we
integrate over compact unitary groups attached to links in
gauge models or over the Nambu-Goldstone modes of
OðNÞ symmetric scalar models in nonlinear sigma models.
Functions over compact groups can be expanded in terms
of discrete sums of characters for Abelian groups [27] or
more generally of group representations [28]. This property
was exploited to calculate strong coupling expansions [29]
and introduce dual variables [30–32] for the type of lattice
models mentioned above.
These group theoretical methods were used in a sys-

tematic way to build the tensors [7,8] of the spin and gauge
models reviewed in [31], and to rewrite partition functions
and averages of observables in a way that is suitable for
exact coarse-graining or sampling of tensor configurations
similar to the worm algorithm [33–35]. It is also important

to realize that TFT remains useful and accurate in regimes
that are completely beyond the range of validity of the
strong coupling expansion even when phase transitions
are present [36]. In addition, the discreteness of TFT
formulations also makes them a natural starting point for
building approximate forms of known lattice models
suitable for quantum computations or quantum simulation
experiments [37,38].
Symmetry considerations have played a crucial role in

uncovering the subconstituents of matter and their inter-
actions. A key result is Noether’s theorem which associates
a conserved charge to a global continuous symmetry. Is
there a way to reexpress Noether’s theorem in a completely
discrete TFT formulation? In the following we will show
that the answer is affirmative in the case of a continuous
and compact Uð1Þ symmetry. We will also discuss the
effect of approximations and various types of noise, which
are unavoidable in practical TFT implementations, on these
symmetry properties.
In the conventional formulation of field theory, a global

Uð1Þ symmetry results in a conserved Noether current at
the classical level. The use of the continuous symmetry and
the classical equations of motion, which result from local
continuous variations of the action, are crucial steps of
the derivation. At the quantum level, the invariance under a
local continuous shift of the field variables generates
Schwinger-Dyson equations which are quantum versions
of the equations of motion. For local Uð1Þ symmetries,
Ward-Takahashi identities, or more complicated identities
if gauge fixing is involved, can be found in quantum field
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theory textbooks such as Ref. [39]. These remarkable
theorems and identities rely on the fact that the field variables
are continuous.
In this article we show that the basic features of

continuous Abelian symmetries in the conventional for-
mulation of field theory have discrete counterparts in TFT.
The article is organized as follows. In Sec. II, we review the
tensorial formulation of models with continuous Abelian
symmetries in arbitrary Euclidean space-time dimensionD.
We start with the compact Abelian Higgs models (CAHM)
and then consider the pure gauge limit and the O(2) spin
model limit. In Sec. III, we establish a precise correspon-
dence between the classical equations of motion of the
lattice action with the selection rules. They have identical
grading and geometrical interpretation in terms of inside/
outside features. In Ref. [40], it was noted that these
selection rules, a discrete divergenceless condition, could
be interpreted as a discrete version of Noether’s theorem
and would also extend to discrete symmetries. The selec-
tion rules for the CAHM are a discrete version of
Maxwell’s equations with charges and currents. In particu-
lar, Gauss’s law, which has complicated aspects in the
conventional Hamiltonian formulation, appears in a trans-
parent way in TFT. The questions of gauge invariance and
gauge fixing are discussed in Sec. IV. We show that local
selection rule redundancies observed in Ref. [40] can be
reinterpreted in terms of a gauge fixing that removes the
integration over the fields leading to the redundant selection
rules. In Sec. V, we show that the mechanism can be
extended to global symmetries and discrete symmetries.
Noether’s theorem for Abelian symmetries can be reex-
pressed in the tensor reformulation context as follows: for
each symmetry, there is a corresponding tensor redundancy.
This applies with a remarkable generality to local, global,
continuous or discrete Abelian symmetries.
The transfer matrix of the CAHM is constructed in

arbitrary dimensions in Sec. VI. It is made out of electric
and magnetic “layers” and is automatically gauge invariant.
It defines a Hilbert space over which Gauss’s law is
implemented when we apply the transfer matrix on an
arbitrary state. We use “Gauss’s law” in a context depen-
dent manner. In the CAHM context, there are charges and
currents and Gauss’s law means that the quantum numbers
associated with the matter fields are completely fixed by the
quantum numbers associated with the gauge fields. This is
because there are infinitely many possible Fourier modes
for bosonic fields in contrast to fermions that only allow
a finite number of possibilities as, for instance, for the
Schwinger model [41–46].
However, when we take the pure gauge limit by

decoupling the matter fields, we obtain a restriction on
the gauge quantum number which is a discrete version of
∇ ·E ¼ 0. In the pure gauge limit, we discuss the equiv-
alence with a gauge-fixed version and propose a way to
implement Gauss’s law with unrestricted variables which

can be used in any dimension. In Sec. VII, we take the time-
continuum limit in the same way as in [31] and get a similar
Hamiltonian formulation.
The correspondence between the continuous classical

equations ofmotion and the discrete selection rules allows us
to connect topological solutions that appear with periodic
boundary conditions, and not with open boundary condi-
tions, to tensor assemblies that are allowed or forbidden
under the same periodic or open boundary conditions. In
Sec. VIII, we show that this correspondence can be made
precise using Poisson summation for two models that are
exactly solvable. The practical consequences of the results
for coarse graining, the continuum limit and quantum
computations, are briefly discussed in the conclusions.

II. ABELIAN LATTICE MODELS

In this section we introduce the compact Abelian Higgs
model and situations where it can be reduced to the pure
gauge Uð1Þ model or the O(2) spin model. In its original
form, the Abelian Higgs model has also a noncompact
scalar field which can be decoupled by a strong coupling
limit discussed in [37] and will not be considered in the
following. The main purpose of this section is to introduce
models, notations, and symmetries.
In the following, we use a D-dimensional (hyper) cubic

Euclidean space-time lattice. The space-time sites are
denoted x ¼ ðx1; x2;…xDÞ, with xD ¼ τ, the Euclidean
time direction. Lattice units are implicit and the space-time
sites are labeled with integers. We use the bold notation x
for the D − 1 dimensional labels of spatial sites. The links
between two nearest neighbor lattice sites x and xþ μ̂
are labeled by ðx; μÞ and the plaquettes delimited by four
sites x, xþ μ̂, xþ μ̂þ ν̂ and xþ ν̂ are labeled by ðx; μ; νÞ.
By convention, we start with the lowest index when
introducing a circulation at the boundary of the plaquette.
The total number of sites is denoted V. Periodic boundary
conditions (PBC) or open boundary conditions (OBC) will
be considered.
Our main object is the CAHM partition function

ZCAHM ¼
Y
x

Z
π

−π

dφx

2π

Y
x;μ

Z
π

−π

dAx;μ

2π
e−Sgauge−Smatter ; ð1Þ

with

Sgauge ¼ βpl:
X
x;μ<ν

ð1 − cosðAx;μ þ Axþμ̂;ν − Axþν̂;μ − Ax;νÞÞ;

ð2Þ

and
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Smatter ¼ βl:
X
x;μ

ð1 − cosðφxþμ̂ − φx þ Ax;μÞÞ: ð3Þ

The CAHM is a gauged version of the O(2) model where
the global symmetry under a φ shift becomes local

φ0
x ¼ φx þ αx ð4Þ

and these local changes in Smatter are compensated by the
gauge field changes

A0
x;μ ¼ Ax;μ − ðαxþμ̂ − αxÞ; ð5Þ

which also leave Sgauge invariant.
The matter fields can be decoupled by simply setting

βl: ¼ 0. As they do not appear in the action, their
integration yields a factor 1 and we are left with the pure
gauge (PG) Uð1Þ lattice model with partition function

ZPG ¼
Y
x;μ

Z
π

−π

dAx;μ

2π
e−Sgauge : ð6Þ

The decoupling of the gauge fields is less straight-
forward. Strictly speaking, the O(2) spin model is obtained
by removing the gauge fields introduced to make the global
symmetry a local one and the partition function of the O(2)
model reads

ZOð2Þ ¼
Y
x

Z
π

−π

dφx

2π
e−SOð2Þ ; ð7Þ

with

SOð2Þ ¼ βl:
X
x;μ

ð1 − cosðφxþμ̂ − φxÞÞ: ð8Þ

It is tempting to consider this model as the weak gauge
coupling limit (βpl: → ∞) of the CAHM. However for
compact gauge fields, this limit involves subtleties when
defined in the context of the infinite volume and continuum
limit. In addition, the O(2) model has charge sectors labeled
by integers and it is possible to select a specific charge
sector by tuning the gauge boundary conditions. This is
discussed in Ref. [38] in 1þ 1 dimensions.
Most of the results presented in the rest of the paper also

hold for finite subgroups of Uð1Þ. If we consider the
“clock” restriction to angles φx and Ax;μ taking values 2π

q l
for l ¼ 0; 1;…; q − 1, the values of l are added modulo q
and form the additive group Zq.

III. TENSOR SELECTION RULES AND LATTICE
EQUATIONS OF MOTION

In this section, we reformulate the CAHM in arbitrary
dimensions using the tensor formalism developed in

Refs. [8,37]. We point out and explain the geometrical
analogy between the tensor selection rules and the lattice
equations of motion. We then discuss the pure gauge and
spin limits.

A. General case

The basic ingredients of the tensor reformulation are the
Fourier expansions for the links

eβl: cosðφxþμ̂−φxþAx;μÞ

¼
Xþ∞

nx;μ¼−∞
einx;μðφxþμ̂−φxþAx;μÞInx;μðβl:Þ; ð9Þ

and the plaquettes

eβpl: cosðAx;μþAxþμ̂;ν−Axþν̂;μ−Ax;νÞ

¼
Xþ∞

mx;μ;ν¼−∞
eimx;μ;νðAx;μþAxþμ̂;ν−Axþν̂;μ−Ax;νÞImx;μ;ν

ðβpl:Þ; ð10Þ

where the InðβÞ are the modified Bessel functions of the
first kind. Notice that in both cases, the argument of
the cosine function and the expression multiplying the
Fourier indices are identical and, in particular, their signs
are identical. These signs can be interpreted as forming a
binary grading. This grading depends on the link or
plaquette to which the fields belong.
The classical lattice equations of motions are obtained by

setting the derivatives of the action with respect to the fields
to zero. In general one obtains a sum of sines with relative
signs corresponding to the grading. The tensors to be traced
in the reformulation of the partition function, are obtained
by integrating over the fields. When the Fourier indices
corresponding to a given field are collected they appear
with relative signs that correspond to the same grading and
can be interpreted geometrically. We now discuss the scalar
and gauge derivation/integration separately.
For the scalar fields, we first introduce the notation

dx;μ ≡ φxþμ̂ − φx þ Ax;μ ð11Þ

which approximates the covariant derivative of φ. The
equation of motion reads

∂S=∂φx ¼ βl:
X
μ

½− sinðdx;μÞ þ sinðdx−μ̂;μÞ� ¼ 0: ð12Þ

On the other hand the integration with respect to φx impliesX
μ

½−nx;μ þ nx−μ̂;μ� ¼ 0: ð13Þ

It is clear that the geometrical structure of the two above
equations are identical and that the equations can be
obtained from each other by the substitution
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βl: sinðdx;μÞ ↔ nx;μ: ð14Þ
The geometrical interpretation is simple: in Eq. (13), the
nx;μ come with a minus and correspond to links coming
“out” of x in the positive directions, while the nx−μ̂;μ come
with a plus and correspond to links coming “in” the site x
from the negative direction. Notice that this feature is
completely dictated by the sign convention appearing in the
Fourier expansion Eq. (9). More specifically, fields appear-
ing with a minus (plus) sign inside the cosine belong to an
out (in) link, respectively.
Notice that Eq. (13) is a discrete version of Noether’s

theorem which is a divergenceless condition. This implies
[40] a discrete version of Gauss’s theorem which is
preserved when truncations are applied. In addition, the
equations of motions are satisfied in average, when inserted
in the path integral. This is a consequence of the invariance
under a local shift for each integral which is used in the
derivation of Schwinger-Dyson equations. If such a shift is
applied after expansion in Fourier modes in the functional
integral, then Eq. (13) follows, making the connection
between the two sets of equations clear.
In a similar manner, we can assign in and out features to

the plaquettes attached to a link in a way consistent with the
Fourier expansion Eq. (10). For μ < ν, mx;μ;ν are in and
mx−ν̂;μ;ν out, while for μ > ν, mx;ν;μ are out and mx−ν̂;ν;μ in.
Using the obvious analogy with the continuum, we define
the standard lattice field strength tensor

fx;μ;ν ≡ Ax;μ þ Axþμ̂;ν − Axþν̂;μ − Ax;ν: ð15Þ

As in the continuum they are gauge invariant.
With these notations,

∂S=∂Ax;μ ¼ βpl:
X
ν>μ

½sinðfx;μ;νÞ − sinðfx−ν̂;μ;νÞ�

þ βpl:
X
ν<μ

½− sinðfx;ν;μÞ þ sinðfx−ν̂;ν;μÞ�

þ βl: sinðdx;μÞ ¼ 0: ð16Þ

On the other hand, the integration over Ax;μ yields the
selection ruleX
ν>μ

½mx;μ;ν −mx−ν̂;μ;ν� þ
X
ν<μ

½−mx;ν;μ þmx−ν̂;ν;μ� þ nx;μ ¼ 0:

ð17Þ

We see again geometric similarities between Eq. (16) with
continuous variable and Eq. (17) with integer variables.
They both have the tensor structure of

∂μFμν ¼ Jν: ð18Þ

They can be mapped into each other using Eq. (14) and in
addition the substitution

βpl: sinðfx;μ;νÞ ↔ mx;μ;ν: ð19Þ

Equation (17) means that the link indices nx;μ can be seen
as determined by unrestricted plaquette indices mx;μ;ν. We
write this dependence as nx;μðfmgÞ which is shorthand for
Eq. (17). Note that for nx;μðfmgÞ Eq. (13) holds [40] and as
long as the gauge fields are present, there is no need to
enforce Eq. (13).
Each integration provides a tensor with the selection

rules discussed above. For convenience we factorize all the
I0ðβÞ factors which dominate the small β regime and define
the ratios

tnðβÞ≡ InðβÞ
I0ðβÞ

≃

(
1 − n2

2β þOð1=β2Þ; for β → ∞
βn

2nn! þOðβnþ2Þ; for β → 0
: ð20Þ

Their limiting behavior at weak and strong coupling will be
used often.
The four tensor legs attached to a given plaquette

ðx; μ; νÞ must carry the same index m. For this purpose
we introduce the “B-tensor” as in [8]

Bðx;μ;νÞ
m1m2m3m4

¼
(
tm1

ðβpl:Þ; if all mi are the same

0; otherwise:
ð21Þ

These are assembled (traced) together with “A-tensors”
attached to links with 2ðD − 1Þ legs orthogonal to the link

Aðx;μÞ
m1…m2ðD−1Þ ¼ tnx;μðβl:Þδnx;μ;nx;μðfmgÞ: ð22Þ

Notice that in contrast to Ref. [8], the weight of the
plaquettes is carried by the B-tensor. The partition function
with PBC can now be written as

Z ¼ ðe−βpl: I0ðβpl:ÞÞVDðD−1Þ=2ðe−βl: I0ðβl:ÞÞVD

× Tr
Y
l:

Aðl:Þ
m1;…m2ðD−1Þ

Y
pl:

Bðpl:Þ
m1m2m3m4

; ð23Þ

where the trace means index contraction following the
geometric procedure described above. The tensor assembly
is illustrated in Fig. 1 forD ¼ 2. Illustrations forD ¼ 3will
be provided in Sec. VI.
It is clear that for PBC, we have a discrete translation

invariance and the tensor assembly is the same everywhere.
We can introduce OBC by starting with PBC and setting βl:
and βpl: to zero on the links and plaquettes at the boundary.
Since

Inð0Þ ¼ δn;0; ð24Þ

this forces the indices at the boundary to be zero with an
associated weight 1.
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B. The O(2) model

Part of the results of Sec. III A extend in a straightfor-
ward way to the O(2) model. We just need to set Ax;μ ¼ 0 in
Eqs. (11) to (13). It was pointed out [40] that Eq. (13) is a
discrete version of Noether’s theorem associated with the
global O(2) symmetry. A discrete version of Gauss theorem
holds and guarantees a global neutrality for PBC and OBC.
It is also interesting to keep the gauge fields and take

the βpl: → ∞ limit where the weights of the B tensors are 1.
The relation nx;μðfmgÞ of Eq. (17) remains valid and
guarantees that the discrete divergenceless condition
Eq. (13) is obeyed for arbitrary plaquette configurations
fmg. For D ¼ 2, this corresponds to the dual construction
[32]; however, the gauge procedure described here extends
to any dimension without requiring the use of the dimen-
sion-dependent Levy-Civita tensor.

C. Pure gauge limit

We now consider the pure gauge limit by setting βl: ¼ 0.
Equation (24) imposes the constraint nx;μ ¼ 0 and Eq. (17)
reduces to a discrete version of ∂μFμν ¼ 0. We can make
this statement more precise by introducing suggestive
notations. We define the electric integers

ex;j ≡mx;j;D; ð25Þ

with j ¼ 1;…; D − 1, the integers associated with time
plaquette and which can be interpreted as electric fields.
Equation (17) for μ ¼ D reads

XD−1

j¼1

ðex;j − ex−ĵ;jÞ ¼ 0: ð26Þ

This is a discrete form of Gauss’s law in the pure gauge
limit ∇ ·E ¼ 0.
For D ≥ 3, we can introduce magnetic fields in a

dimension dependent way. For D ¼ 3, we define

bx ≡mx;1;2: ð27Þ

Equation (17) for μ ¼ 1 and 2 are

ex;1 − ex−τ̂;1 ¼ −ðbx − bx−2̂Þ;
ex;2 − ex−τ̂;2 ¼ ðbx − bx−1̂Þ: ð28Þ

These are a discrete version of the D ¼ 3 Euclidean
Maxwell’s equations

∂1B ¼ ∂τE2;

∂2B ¼ −∂τE1; ð29Þ

with B ¼ F12. However, there is no discrete equation
corresponding to the Maxwell equation for the dual field
strength tensor

∂μϵ
μνσFνσ ¼ 0: ð30Þ

Examples of legal configurations violating the discrete
version of Eq. (30), also written _B ¼ −∇ ×E, can be
constructed.
For D ¼ 4, we can introduce

bx;j ≡ ϵjklmx;k;l; ð31Þ

and obtain a discrete version of

∂τE ¼ −∇ ×B; ð32Þ

with the Euclidean magnetic field

Fjk ¼ þϵjklBl: ð33Þ

Note that Eq. (32) implies

∂τð∇ ·EÞ ¼ 0; ð34Þ

even if we do not impose Gauss’s law. Again there is no
discrete version of the homogeneous equations for the
dual field strength _B ¼ −∇ ×E and ∇ ·B ¼ 0. Note that
the sign in Eq. (32) is different in Euclidean and
Minkowskian spaces. It can be traced to the minus sign
in the Minkowskian Klein-Gordon equation.

D. Restrictions to Zq

Some of the results of this section hold in an obvious
way for the Zq restrictions. The infinite sums in the Fourier
expansions are replaced by finite sums with q values.

FIG. 1. A and B tensors assembled in D ¼ 2. Small circles
(blue) are used for the A tensors and large circles (red) for the B
tensors.
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The modified Bessel functions are replaced by their
discrete counterparts:

InðβÞ → IðqÞn ðβÞ≡ ð1=qÞ
Xq−1
l¼0

eβ cosð
2π
q lÞein

2π
q l; ð35Þ

which in the large q limit turns into the usual integral
formula. In the Ising case (q ¼ 2), we have

I0ðβÞ → coshðβÞ; and I1ðβÞ → sinhðβÞ: ð36Þ

The selection rules Eqs. (13) and (17) remain valid modulo
q. The infinitesimal variations of the action can be replaced
with discrete variations by an amount 2π

q , but the sine
functions should be replaced by finite differences of cosine
functions.

IV. LOCAL GAUGE INVARIANCE, SELECTION
RULE REDUNDANCY AND GAUGE FIXING

Section III A makes clear that selection rule Eq. (13) due
to the φ integration is redundant and a consequence of
Eq. (17). This forces a local neutrality. If we insert eiφx in
the partition function Eq. (13) is modified and clashes with
the original form of Eq. (13) which follows from Eq. (17),
forcing the functional integral to be zero.
Similarly, it was shown [40] that in the pure gauge limit

the set of equations (17) with nx;μ ¼ 0 are not independent.
If we pick a site, we can construct a in-out partition for the
legs attached to links coming out of this site, the sum of
“in” indices is the same as the sum of the “out” indices, and
if we assemble them on the boundary of a D-dimensional
cube, as illustrated in Fig. 2 for D ¼ 3, one of the
divergenceless conditions follow from the other 2D − 1
conditions.
To be completely specific, we review the details of this

in-out partition [40]. For a given pair of directions μ and ν,
there are 8 types of legs for the A tensors on links connected
to the site x that we label ½ðx; μÞ;�ν̂�, ½ðx − μ̂; μÞ;�ν̂�,
½ðx; νÞ;�μ̂�, and ½ðx − ν̂; νÞ;�μ̂�. The pair of indices
appearing first refers to the links where the A tensor is
attached and the second index to the direction of the leg
which can be positive or negative. The ½ðx; μÞ; ν̂�with μ < ν
are given an out assignment. There are three operations that
swap in and out: changing ðx; μÞ into ðx − μ̂; μÞ, changing μ̂
into −μ̂, and interchanging μ and ν.
This redundancy can be rephrased in a more enlightening

way in the discrete electric/magnetic language developed
in Sec. III C: if Gauss’s law is satisfied for an A tensor
attached to the ððx; τÞ; DÞ time link which is assembled
with the divergenceless A tensors attached to the 2ðD − 1Þ
spatial links ððx; τ þ 1Þ; jÞ and ððx − ĵ; τ þ 1Þ; jÞ with
j ¼ 1;…; D − 1, then the A tensors attached to the time
link ððx; τ þ 1Þ; DÞ is forced to obey Gauss’s law because
of its connection to the other tensors.

We can now see that gauge fixing is equivalent to
removing these redundant conditions. For the CAHM,
we can go to the unitary gauge where the φ can be
removed everywhere and the redundant Eq. (13) obtained
from the φ integration disappears independently of boun-
dary conditions. For the pure gauge case, we can try to use
the temporal gauge to set Ax;D to zero. For OBC, this can be
accomplished for all time links. From Eq. (24), OBC imply
ex;i ¼ 0 on the two time slices at the boundary (one below
the initial time and one above the final time). In other
words, it corresponds to a transition from the state where
there is no electric field into itself. As Gauss’s law is
satisfied by the trivial configuration at the time slices at
the boundaries it is also satisfied on every time slice. For
PBC, one link remains to be integrated for each closed
time line (Polyakov loop) attached to any given spatial
site. Putting these unintegrated time links at the same
time, we get a time layer where after integrating over the
leftover time links, Gauss’s law is satisfied. Again,
Gauss’s law is then propagated to the entire lattice for
the reason explained above.

V. A REFORMULATION OF NOETHER’S
THEOREM

The discussion of Sec. IV clarifies that redundant selection
rules are in one-to-one correspondence with irrelevant
integrations. In other words, we can skip the integrations
that produce redundant selection rules and replace these
integrated fields by arbitrary values. This is exactly what
gauge fixing does. With our normalization of each integra-
tion over the circle to one, this does not cost extra factors.

FIG. 2. Illustration that one divergenceless condition is redun-
dant for D ¼ 3. Imagine the tensor assembled on the surface of a
cube, remove the A-tensor on the top: the sum of the in indices
equals the sum of the out indices at the missing tensor because it
holds at the 17 other vertices.
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The argument can be extended to global symmetries.
In the case of the O(2) model, it follows from the discussion
of Ref. [40] that in-out assignments for the 2D legs of the
divergenceless tensor attached to sites imply that one of the
divergenceless conditions is a consequence of all the other
ones. This requires the whole tensor network to be isolated.
For PBC, there are no boundaries. For OBC, the boundaries
carry 0 indices which are neutral (neither in or out). It is
clear that the global O(2) symmetry allows us to fix one of
the φ fields to an arbitrary value.
The redundancy argument extends to discrete Zq sub-

groups of Uð1Þ where the divergenceless condition is
expressed modulo q and the infinite set of Bessel functions
are replaced by the q discrete ones.
In view of this discussion, we suggest that Noether’s

theorem can be expressed in the tensor formulation context
as follows: for each symmetry, there is a corresponding
tensor redundancy. This applies to global, local, conti-
nuous, and discrete Abelian symmetries.

VI. TRANSFER MATRIX

In Eq. (23), the partition function is written as the trace
of a product of tensors attached to links and plaquettes.
We can organize this trace by assembling “time layers”
corresponding to “magnetic” time slices and “electric”
slices half-way between the magnetic time slices. This
construction singles out a time direction as for the
Hamiltonian treatment. The case D ¼ 2 is discussed in
Ref. [37] and the pure gauge D ¼ 3 case in Ref. [22]. For
D ¼ 3, this construction can be visualized as a “lasagna.”
We first discuss the general CAHM case and then the
two limits.

A. General case

For the CAHM, the magnetic time slices contain B
tensors on space-space plaquettes and A tensors attached to
their space links. These A tensors have 2ðD − 2Þ legs in
spatial directions and 2 legs in opposite time directions
which we can visualize as the “past” and the “future.” These
legs in the time direction are connected to space-time
plaquettes. This is illustrated in Fig. 3 for D ¼ 3. Seen
“from above,” in other words without the time legs, this
looks like the full D ¼ 2 assembly shown in Fig. 1.

In between the magnetic time slices we have electric
layers with B tensors on space-time plaquettes labeled by
eðx;τÞ;j with a fixed τ, and the A tensors attached to their
time links. These A tensors have 2ðD − 1Þ legs all in spatial
directions. This is illustrated in Fig. 4 forD ¼ 3. Seen from
above, in other words without the time legs of the B tensors,
this looks like the full D ¼ 2 assembly for the O(2) model.
We want to represent these two types of layers as

matrices. It is convenient to think of these two types of
layers as matrices connecting electric states

jfegi ¼⊗x;j jex;ji: ð37Þ
This is a natural choice because the B tensors on the space-
time plaquettes have two legs in the time direction. In this
basis, the electric layer can be expressed as a diagonal
matrix TE with matrix elements

hfe0gjTEjfegi ¼ δfeg;fe0gTEðfegÞ; ð38Þ
where TEðfegÞ can be written with some implicit notations
as a traced product of A tensors on time links with B tensors
on space-time plaquettes

FIG. 3. Magnetic layer of the transfer matrix for D ¼ 3 on a
time slice. Small circles (blue) are used for the A tensors and large
circles (red) for the B tensors.

FIG. 4. Electric layer of the transfer matrix for D ¼ 3 between
two time slices (top), small circles (blue) are used for the A
tensors and large circles (red) for the B tensors, and from above
(bottom).
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TEðfegÞ ¼ Tr
Y
time l:

Aðl:Þ
m1;…m2ðD−1Þ

Y
sp:−time pl:

Bðpl:ÞðeÞ: ð39Þ

Similarly, we can define a magnetic matrix TM with matrix
elements hfegjTMjfe0gi with the indices e and e0 carried
by the time legs of the A tensors.

hfe0gjTMjfegi ¼ Tr
Y
sp: l:

Aðl:Þ
m1;…m2ðD−1Þ ðe; e0Þ

Y
sp:−sp: pl:

Bðpl:Þ:

ð40Þ

All the traces are over the spatial legs of the tensors, while
the time legs are left open and carry the indices e and e0.
Figures 3 and 4 should help visualizing these matrix
elements: the horizontal lines correspond to traced indices
while the vertical indices carry the feg indices.
We can now define the transfer matrix T as

T ≡ ðe−βpl: I0ðβpl:ÞÞðV=NτÞDðD−1Þ=2ðe−βl: I0ðβl:ÞÞðV=NτÞD

× T1=2
E TMT

1=2
E ; ð41Þ

with Nτ the number of sites in the temporal direction. With
this definition, we can reexpress the partition function as

Z ¼ TrTNτ : ð42Þ

B. O(2) limit

For the O(2) model, the transfer matrix can be con-
structed by taking all the O(2) tensors on a time slice and
tracing over the spatial indices. This is discussed in detail in
Ref. [35] in the case D ¼ 2 and the extension to arbitrary
dimension is straightforward. In the CAHM reformulation
the implicit O(2) tensors attached at each site are diver-
genceless. By implicit, we mean that a link index nx;μ
carries a weight tnx;μðβl:Þ as in the O(2) model [see Eq. (22)].
From the perspective of quantum simulations, the gauge

parametrization ensures that the divergenceless condition is
automatically satisfied and insensitive to noise. However
the Hilbert space becomes larger for D ≥ 4 (see below).

C. Pure gauge limit: A robust way to
implement Gauss’s law

The restricted electric Hilbert space of the pure gauge
compact Uð1Þ model in D dimensions is equivalent to the
set of legal tensor configurations of a D − 1 dimensional
O(2) model. The integer quantum numbers of the space-
time plaquettes ex;j are like the link variables nx;j for O(2).
Both sets are divergenceless. For the pure gauge model, the
divergenceless condition is Gauss’s law (without charge
density).
In Sec. VI B we presented the O(2) model as a weak

gauge coupling limit of the compact Abelian Higgs model.

As seen in Eq. (17), integration over the gauge fields
provides an automatic divergenceless condition for the
link quantum numbers. This is a discrete version of
∂μ∂νFμν ¼ ∂μJμ ¼ 0. The argument does not involve the
dimensional-dependent Levy-Civita tensor.
We can ensure that Gauss’s law is automatically satisfied

by introducing a new set of quantum numbers cx;j;k,
associated with the plaquettes of a D − 1 CAHM, and
unrelated to the existing gauge quantum numbers. For an
arbitrary configuration fcx;j;kg, we impose

ex;j ¼
X
k>j

½−cx;j;k þ cx−k̂;j;k�

þ
X
k<j

½cx;k;j − cx−k̂;k;j�; ð43Þ

and Gauss’s law is automatically satisfied. This is a discrete
version of

Ek ¼ ∂jCjk ð44Þ

for an arbitrary antisymmetric tensor Cjk with indices
j, k running from 1 to D − 1. It is possible to introduce
dimension-dependent “magnetic” notations such as G ¼
ϵklCkl for D ¼ 3 and Gj ¼ ϵjklCkl for D ¼ 4.
For a D ¼ 3 pure gauge theory we can visualize the

electric Hilbert space as a D ¼ 2 O(2) model being on a
plane between two time slices, as at the bottom of Fig. 4.
We can further imagine the auxiliary variables located in
the middle of the plaquettes of this “horizontal” plane,
which means in the center of the D ¼ 3 cubes of the
original lattice. This is equivalent to the dual formulation
discussed in Ref. [22].
ForD ¼ 4, this reparametrization is a discrete equivalent

of setting

E ¼ ∇ ×G: ð45Þ

This guarantees Gauss’s law, but ∇ ×E is in general
nonzero so we do not use this trick for conventional
electrostatics because one of the homogeneous Maxwell’s
equations ( _B ¼ −∇ ×E) implies that the magnetic field
changes with time.
Thismethod is very efficient forD ¼ 3, because it reduces

the dimensionality of the Hilbert space. There is one index
per site (cx;1;2) rather than 2 (ex;1 and ex;2). ForD ¼ 4, there
are 3 indices per sites in both cases, because cx;j;k is only
defined up to a gradient. However, the robustness against
noise is an important advantage. At the end of Sec. VII, we
briefly discuss possible optimizations.

VII. HAMILTONIAN LIMIT

For lattice models at Euclidean time, the transition from
the Lagrangian to the Hamiltonian formalism is a standard
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procedure [30,31]. The central idea is to deform the
isotropic formulation by increasing the β variables asso-
ciated with time directions and to decrease those associated
with space directions. In the tensor language, examples
involving the transfer matrix in 1þ 1 dimensions [35,37,38]
and 2þ 1 dimensions [22,47] provide steps that will be
followed below.
The crucial feature of TE is that it only involves time

links and plaquettes having one direction in time. We
introduce separate βτ couplings for TE and use redefinitions
in terms of the time lattice spacing aτ:

βτ pl: ¼
1

aτg2pl:
; and βτ l: ¼

1

aτg2l:
: ð46Þ

Given the weak coupling (large β) behavior of tnðβÞ given
in Eq. (20), at first order in aτ, we get “rotor” energies
ð1=2Þg2pl:m2 for the plaquettes and ð1=2Þg2l:n2 for the links.
On the other hand, TM only involves space links and

space-space plaquettes and we redefine

βs pl: ¼ aτJpl:; and βs l: ¼ aτhl:: ð47Þ

Given the strong coupling (small β) behavior of tnðβÞ from
Eq. (20), at first order in aτ, the contribution to TM involves
a single link or plaquette with quantum number �1, all the
other ones having a quantum number 0 and a weight 1. This
leaves us with only a few options: raise or lower ex;j over a
link ðx; jÞ or raise over two links and lower over the two
other links of a plaquette.
We define the Hamiltonian H as the order aτ correction

to the identity in the transfer matrix:

T ¼ 1 − aτHþOða2τÞ: ð48Þ

After introducing the operators [48] êx;j and Ûx;j such that

êx;jjex;ji ¼ ex;jjex;ji;
Ûx;jjex;ji ¼ jex;j þ 1i;
Û†

x;jjex;ji ¼ jex;j − 1i; ð49Þ

the discussion of the first order behavior of TE and TM
allows us to write

H ¼ 1

2
g2pl:
X
x;j

ðêx;jÞ2

þ 1

2
g2l:
�X

x;j

ðêx;j − êx−ĵ;jÞ
�
2

− hl:
X
x;j

ðÛx;j þ H:c:Þ

− Jpl:
X
x;j<k

ðÛx;jÛxþĵ;kÛ
†
xþk̂;j

Û†
x;k þ H:c:Þ: ð50Þ

We have used

XD−1

j¼1

ðex;j − ex−ĵ;jÞ ¼ nx;D; ð51Þ

to eliminate nx;D. Up to straightforward rescalings of the
couplings, the first three terms are the same as in 1þ 1
dimensions [37,38], while the fourth one requires at least
one more spatial dimension and is as in the pure gauge case
[31]. Closely related derivations appear in Refs. [22,47].
The considerations [40] regarding the modification of the
algebra due to truncation and the relationship with the
quantum link approach [49–51] remain valid.
The fact that we recover the Abelian version of the

standard Kogut-Susskind (KS) form [31] follows from the
usage of the same time continuum limit scaling given by
Eq. (47). However, in the original derivation, the operators
Ûx;μ are written as the exponentials of the spatial
gauge field operators, while we have proceeded in a
gauge-invariant way by completely integrating over
the gauge fields. Our derivation of the final algebraic result
including Gauss’s law shows that it follows exactly from
the gauge-invariant Lagrangian definition.
Notice that Hamiltonians related to the KS Hamiltonian

can appear in different contexts. For instance, Ref. [52]
starts with a quantum many-body state for the matter fields
which is invariant under a global symmetry. After intro-
ducing new degrees of freedom (the gauge fields), they
construct a new state with a local symmetry. By combining
this construction with the formalism of projected entangled-
pair states, they recover a Hamiltonian closely related to the
KSHamiltonian, in a framework that is convenient to explore
low-parameter families of gauge-invariant states. Tensor
network variational ansatzes for gauge-invariant states that
can be connected to truncated KS models were also con-
structed in Ref. [53]. In Refs. [38,54], comparisons were
made of the effects of truncations in the formalism used here
and variational methods were performed and it would
certainly be useful to pursue this effort in new directions
and to include the suggestions of Sec. VI C.
In this context, we would like to comment about the idea

of considering a Hilbert space parametrized with new
quantum numbers as shown in Eq. (43) and where all
the states automatically satisfy Gauss’s law. As the relation
between the ex;j and cx;j;k is linear, we can study the effect
of changing one of the cx;j;k by �1. For instance, Δcx;1;2 ¼
1 generates the following changes:

Δex;1 ¼ −1; Δexþ2̂;1 ¼ 1; Δex;2 ¼ 1;

Δexþ1̂;2 ¼ −1: ð52Þ

This change can be visualized as an electric field circulating
clockwise on a plaquette in the 1–2 plane and it clearly
satisfies Gauss’s law. The changes correspond to the
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U†U†UU term in the Hamiltonian (50). For D ¼ 3, this is
the end of the story and we can efficiently replace the term
with two raising and two lowering operators by a term with
a single raising or lowering operator [22]. The construction
can be repeated for any pair of directions in higher
dimensions, but as discussed in Sec. VI the cx;j;k have
some redundancy. For D ¼ 4, the geometric interpretation
is easy with three spatial dimensions: we can combine 6
plaquettes on a cube in such a way that all the electric
quantum numbers cancel. In other words, the effect of
one of the cx;j;k can also be obtained with five others. For
OBC, we could remove this redundancy by eliminating, for
instance, all the cx;2;3 except for those on a 2–3 plane at the
boundary. For PBC, other sectors should be added in order
to allow electric configurations wrapping around the spatial
directions.

VIII. TOPOLOGICAL SOLUTIONS AND
SEMICLASSICAL APPROXIMATIONS

In Sec. III, we found a direct similarity between the
continuous lattice equations of motion and the discrete
tensor selection rules. In this section we discuss the effect
of periodic boundary conditions on both sets of equations.
We will limit ourselves to the solvable cases: the D ¼ 1
O(2) spin model and the D ¼ 2 pure gauge Uð1Þ model.
For the D ¼ 1 O(2) spin model with PBC and Nτ sites,

the equations of motion (12) with Ax;μ ¼ 0 are equivalent to
the statement that sinðφxþ1̂ − φxÞ takes the same value on
every link. These equations have many solutions and we
will focus our attention on the ones that can be interpreted
as continuous topological solutions in the continuum limit
for PBC. If we impose that φxþ1̂ − φx is a small constant,
we can obtain a solution that meets this requirement. Given
any choice for the constant, we can then “integrate” the
equations: starting with some φ0, we obtain φ1, and so on
until, due to PBC, we get an independent value for φ0

which should be consistent with the initial value modulo an
integer multiple of 2π. This approximately corresponds to a
smooth mapping of the circle into itself provided that the
successive changes can be made arbitrarily small. This can
be accomplished by requiring that for all links

φxþ1̂ − φx ¼
2π

Nτ
l; ð53Þ

for a given integer l. By taking, Nτ large with fixed l we
obtain a solution which can be interpreted as a topological
solution with winding number l. In the limit l ≪ Nτ, these
solutions have classical action

Sl ≃
β

2

�
2π

Nτ
l
�

2

Nτ: ð54Þ

We can calculate the quadratic fluctuations with respect
to this solution. We can first use the global O(2) symmetry

to set φ0 ¼ 0. Other values of φ0 are taken into account by
performing the integration over φ0 which with our norma-
lization of the measure yields a factor 1. By construction,
the linear fluctuations vanish because the first derivatives
are zero and all we need to calculate are the quadratic
fluctuations

Δ ¼
YNτ−1

x¼1

Z
π

−π

dφx

2π
e−S

quad
l ; ð55Þ

with

Squadl ¼ β

2
cos

�
2π

Nτ
l
�
ðφ2

1 þ ðφ2 − φ1Þ2 þ � � � þ φ2
Nτ−1Þ:

ð56Þ

Following the standard quadratic path integral procedure,
we find

Δ ¼ N−1=2
τ

�
2πβ cos

�
2π

Nτ
l
��

−ðNτ−1Þ=2
: ð57Þ

We can now attempt to resum the topological contribu-
tions. This is delicate because we have assumed l ≪ Nτ;
however, if β is large enough, the terms with large l are
exponentially suppressed. In the same spirit, we will ignore
the l dependence of Δ and use the Poisson summation
formula

X∞
l¼−∞

e−
B
2
l2 ¼

ffiffiffiffiffiffi
2π

B

r X∞
n¼−∞

e−
ð2πÞ2
2B n2 ; ð58Þ

with B ¼ βð2πÞ2=Nτ. Putting everything together, we get a
semiclassical approximation of the partition function in the
large β limit

Z ≃ ð2πβÞ−Nτ=2
X∞
n¼−∞

ðe−n2
2βÞNτ : ð59Þ

We now consider the solutions of the discrete Eq. (13).
The solution is that nx;1 should be constant. With PBC, this
implies the exact expression:

Z ¼
X∞
n¼−∞

ðe−βInðβÞÞNτ ; ð60Þ

which can be compared to the semiclassical expression
Eq. (59). Using the large β approximations

e−βI0ðβÞ ≃
1ffiffiffiffiffiffiffiffi
2πβ

p ð1þOð1=βÞÞ; ð61Þ
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and Eq. (20) in the same limit, we see the approximate
correspondence between the two expressions.
A similar construction can be carried for the D ¼ 2 pure

gauge Uð1Þ model with PBC. We consider a rectangular
Ns × Nτ lattice. The equation of motion requires that
sinðfx;1;2Þ is constant. Following the analogy with the
O(2) case, we start with

fx;1;2 ≡ Ax;1 þ Axþ1̂;2 − Axþ2̂;1 − Ax;2 ¼ δ; ð62Þ

with δ a constant to be determined with PBC. As seen in
Sec. IV, we can gauge fix the temporal links with a given
spatial coordinate x1 to the identity with the exception of
one time layer. For definiteness, we take this layer of
nontrivial time links to be between τ ¼ Nτ − 1 and Nτ

which is identified with 0 due to PBC. The space links with
a given spatial coordinate, which can be visualized as a
vertical ladder and can be treated as the indices of a D ¼ 1
O(2) model changing by −δ at each step until we get to the
“last” rung and temporal links are present. The constancy of
the last plaquette requires that

Aðx1þ1;Nτ−1Þ;2 − Aðx1;Nτ−1Þ;2 ¼ Nτδ: ð63Þ

Iterating in the spatial direction, we obtain PBC in the
spatial direction provided that

δ ¼ 2π

NsNτ
l: ð64Þ

The action for this topological solution is

SUð1Þ
l ≃

β

2

�
2π

NsNτ
l
�

2

NsNτ: ð65Þ

Note that we could have obtained another periodic solution
by setting all the time links to 1 and imposing PBC in time
for Ns independent D ¼ 1 O(2) models; however, the
action for these configurations is larger by a factor N2

s.
The quadratic fluctuations can be calculated as in the

O(2) case but with extra complications due to the special
time layer. Keeping track of all the 2π factors and using
Poisson summation for the winding numbers, we obtain the
semiclassical approximation

ZUð1Þ ≃ ð2πβÞ−NsNτ=2
X∞
n¼−∞

ðe−n2
2βÞNsNτ ; ð66Þ

which agrees with the exact expression at leading order.
As a test of the semiclassical picture we can calculate

the topological susceptibility. For this purpose we first
calculate

Zðβ; θÞ ¼
Y
x;μ

Z
π

−π

dAx;μ

2π
e−Sgauge−iθQ; ð67Þ

with the topological charge Q defined as

Q ¼ 1

2π

X
x

sinðAx;1 þ Axþ1̂;2 − Axþ2̂;1 − Ax;2Þ: ð68Þ

The topological susceptibility is defined as

χ ¼ −
d2

dθ2
lnðZÞ

����
θ¼0

: ð69Þ

It can be calculated using the exact resummation [55]

Zðβ; θÞ ¼
X∞
n¼−∞

"
e−βIn

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 −

�
θ

2π

�
2

s !

×

�
β − θ

2π

β þ θ
2π

�
n=2
#
NsNτ

: ð70Þ

If χ is dominated by configurations corresponding to
winding number �1 where jQj ≃ 1 in the continuum limit,
we have the large-β estimate

χ ≃ ð0Þ21þ ð1Þ2 exp
�
−
β

2

ð2πÞ2ð1Þ2
NsNτ

�

þ ð−1Þ2 exp
�
−
β

2

ð2πÞ2
NsNτ

ð−1Þ2
�
: ð71Þ

Figure 5 shows that this estimate is reasonably good when β
is large enough.
As a remark, it is a common misconception to identify

the Fourier mode indices n in Eq. (60) as “topological
sectors.” They should rather be labeled “rotor energy
levels” n2=2. The fact that Poisson summation interchanges

FIG. 5. Logarithm of the topological susceptibility using the
exact formula for Ns ¼ Nτ ¼ 8 expanded up to order 5 (dots) and
the semiclassical approximation Eq. (71) (continuous line).
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these energy levels with the correctly identified topological
sectors was observed in Ref. [56] in a version of the O(2)
model where the fluctuations are limited. Note also that it is
possible to construct models where the approximations
Eqs. (59) and (66) are exact. The questions of topological
configurations and duality are discussed for Abelian gauge
models of this type in various dimensions in Refs. [57,58].

IX. CONCLUSIONS

In summary, we have shown that some standard theo-
rems and identities associated with the Uð1Þ symmetry that
can be derived in the conventional formulation of field
theory have a discrete counterpart in TFT. This includes the
equations of motion, Noether’s theorem, Maxwell’s equa-
tions with charges and currents, Gauss’s law, gauge fixing,
and effects of boundary conditions.
We have constructed gauge-invariant transfer matrices

by reorganizing the partition function obtained integrating
over all the fields without gauge fixing. We also explained
how an equivalent partition function is obtained by gauge
fixing which removes intermediate projections into the
sector of the Hilbert space which satisfies Gauss’s law.
These projections are only useful in the case of a noisy
evolution. We proposed a reparametrization of the sub-
Hilbert space satisfying Gauss’s law in arbitrary dimension
which generalizes dual construction in D ¼ 3 [22].
Practical implementations of TFT require finite trunca-

tions. They provide numerically accurate approximations
at finite volume [26,35,37,38]. The results derived here
depend only on the selection rules which completely
capture the symmetry and not on the numerical values
of the Bessel functions appearing in Fourier expansions.
This confirms the observation that truncations preserve
the symmetries [40]. The class of universality is encoded
in the selection rules of the tensors and it is expected that
in the continuum limit, results should not depend on
microscopic details. Similar expectations are found in the
quantum link approach [49–51]. One advantage of TFT is
that it connects smoothly the Lagrangian and Hamiltonian

approaches in a way that allows testing using standard
importance sampling methods. This allows comparisons
with Hamiltonian based quantum simulations proposals
for Abelian gauge models [59–64].
The discrete nature of TFT formulations makes it a

generic tool to set up quantum computing protocols. It
provides an alternative to field discretization [65–67].
Motivations for quantum computing include doing ab initio
real-time calculations relevant to fragmentation processes
and parton distribution functions [68]. In order to work on
these ambitious and high-impact projects, we need to
move up the steps of a “ladder” of models [31,69] that
has been proven effective to deal with the static properties
of hadrons. The first steps are the spin and gauge Ising
models. Practical implementations are discussed in
Refs. [70–72]. The next steps are their counterparts with
a continuous and compact Abelian Uð1Þ symmetry
[22,51,73,74]. In this context, the Euclidean transfer matrix
could also be used to prepare initial states following the
suggestion of Ref. [75].
Models with Wilson [13,13–15,19,21,23] and staggered

[26] fermions have also been reformulated using TFT. The
Schwinger model is of great interest in this context. This
model and itsZq approximations have been studied directly
with the Hamiltonian formalism [41–46], providing useful
comparisons for future TFT calculations.
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