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We study the effective string description of spacelike Polyakov loop correlators at finite temperature with
the goal of describing the behavior of the spacelike string tension in the vicinity of the deconfinement
transition. To this end we construct the partition function of the Nambu-Goto effective string theory in
presence of a compact transverse direction of length L equal to the inverse temperature. We then show that,
under particular conditions, our result can be interpreted as the partition function of the TT̄ deformation of
the 2d quantum field theory describing a compactified bosonic field and that this mapping allows a deeper
insight on the behavior of the spacelike observables of the theory. In particular we show, by imposing that
the spectrum of the model obeys the inviscid Burgers equation, that the TT̄ deformations follow well-
defined trajectories in the parameter space ðσ; LÞ of the model, where σ is the string tension, which are

characterized by a constant value of the dimensionless compactification radius ρ ¼ L
ffiffiffiffiffiffiffiffiffiffi
σ=2π

p
. We discuss

the potential usefulness of these results for studying the spacelike string tension of the underlying lattice
gauge theory and its behavior across the deconfinement transition.
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I. INTRODUCTION

An interesting open issue in lattice gauge theory is to
understand and model the behavior of the so-called “space-
like string tension” [1–16] across the deconfinement
transition. The spacelike string tension is extracted from
the correlator of spacelike Polyakov loops, i.e., Polyakov
loops which lay in a spacelike plane, orthogonal to the
compact time direction, whose size coincides with the
inverse finite temperature of the theory. Due to their
spacelike nature these Polyakov loops do not play the role
of the order parameter of deconfinement and the spacelike
[13–16] string tension extracted from them is different
from the actual string tension of the model, which is
instead extracted from timelike Polyakov loop correlators.
At low temperature the two string tensions coincide but as

the temperature increases they behave differently [1–5].
The ordinary string tension decreases as the deconfinement
temperature is approached and vanishes at the deconfine-
ment point, while the spacelike one remains constant and
then increases in the deconfined phase [1–3]. The physical
reason for this behavior is that the correlator of two
spacelike Polyakov loops describes quarks moving in a
finite temperature environment. It can be shown that what
we called spacelike string tension is related to the screening
masses in hot QCD [6–12], and thus it does not vanish in
the deconfined phase.
Despite the fact that it can be measured very precisely

with Montecarlo simulations, a satisfactory modelization of
the behavior of the spacelike string tension is still lacking.
To partially fill this gap we construct in this paper the
effective string description of the correlator of two space-
like Polyakov loops assuming a Nambu-Goto form for the
effective string action. This essentially amounts to extend
the known effective string results to the case in which one
of the transverse degree of freedom of the model—
representing the Euclidean time direction—is compact. It
turns out that the natural setting to understand the behavior
of this partition function, and thus model the spacelike
string behavior is in terms of a TT̄ perturbation of the free
theory of a compact boson. This mapping imposes a well-
defined relation between the string tension σ and the finite
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temperature 1=L of the model thus allowing to take the
continuum limit in a physically meaningful way.
TT̄ perturbations of 2d quantum field theories (QFT)

[17–36] attracted a lot of interest in the past few years
mainly due to the fact that they are at the crossroad of
several different research lines. They are related to the
effective string models of the Nambu-Goto type [27–30]
and, as such, can be used to describe the infrared properties
of extended objects such asWilson loops or Polyakov loops
correlators in the confining regime of lattice gauge theories
(LGTs) [37–39]. They are a remarkable example of an
irrelevant perturbation of a 2d QFTwhich is integrable and
whose spectrum can be easily obtained as the solution of an
integrable differential equation, the inviscid Burgers equa-
tion [17–19,23–25]. They have a deep connection with
gravitylike theories [24,26,28,29] and can be understood, in
the framework of the AdS=CFT correspondence, as a
perturbation which changes the boundary conditions of
the bulk fields on AdS3 (for a recent review see [36]). In
this paper we shall concentrate in particular on the first of
these lines, looking at our effective string partition function
as the TT̄ perturbation of the 2d CFT of a compactified
free boson.
Let us recall a few important features of this relation. The

simplest possible effective string model, compatible with
the Lorentz invariance of the underlying d dimensional
LGT is the Nambu-Goto model which assumes the string
action SNG to be proportional to the area spanned by the
string world sheet and is parametrized by the string tension
σ. It can be shown that the Nambu Goto action in the
physical gauge is equivalent to the TT̄ perturbation of the
2d conformal field theory (CFT) of d − 2 free bosons,
the transverse degrees of freedom of a string propagating in
a d-dimensional target space [27]. If we denote by Scl the
“classical” contribution to the action, proportional to the
area of the minimal string surface, and by S0 the action of
the d − 2 free bosons representing its transverse fluctua-
tions, one has

SNG ¼ Scl þ S0 − t
Z

d2ξTT̄; ð1:1Þ

where, with this choice of sign, the perturbing parameter t
is related to the string tension by σ ¼ 1=ð2tÞ (see Sec. III
for more details).
A lot of information on the spectrum of TT̄ perturbed

models can be obtained thanks to the fact that the evolution
of the energy levels as a function of t obeys an inviscid
Burgers equation. Also many properties of the partition
functions of such models are under control [20,28,29,32].
In particular, when the perturbation parameter t is positive
within the sign convention employed in Eq. (1.1) it can be
shown that the perturbed partition function is unique and
that it satisfies a differential equation originating from the
Burgers equation for the energy levels [20]; this allows us

to determine many of its properties, both at the perturbative
and at the nonperturbative level in t. In this respect, the
effective string theory approach, which allows us to
construct in an explicit way the partition function of the
perturbed model for any value of the perturbing parameter,
represents a perfect laboratory to test the above approaches
and, indeed, another aim of our paper is also to extend the
range of explicitly known partition functions to the TT̄
perturbation of the CFT of a compactified boson. This CFT
is particularly interesting because it is doubly perturbed. It
admits a marginal perturbation, parametrized by the com-
pactification radius ρ which moves the theory along the
critical line in the c ¼ 1 plane [40], where c is the central
charge of the CFT. This corresponds to moving the theory
along the critical low temperature phase of the XY model,
which is the most important statistical mechanics realiza-
tion of the compactified boson universality class. There is
however also the irrelevant TT̄ perturbation. We shall see
that the model shows a range of interesting different
behaviors due to the interplay between the two perturbing
parameters ρ and t.
A final remark on the choice of the boundary conditions.

For the LGT applications, the most natural choice of
boundary conditions corresponds to a cylindrical world
sheet with Dirichlet boundary conditions along the
Euclidean time direction—or along a compact spacelike
directions in our case—which can be immediately mapped
into the correlator of two Polyakov loops and hence to the
interquark potential. From the CFT point of view instead
the most natural choice is the torus geometry which allows
us to use modular transformations to study the nature and
the location of singular points in the perturbing parameter
and to relate among them these singular behaviors. We shall
discuss both cases in the following, constructing both the
torus and the cylinder partition functions.
This paper is organized as follows. In Sec. II we shall

explicitly construct, both for the torus and the cylinder
geometry, the Nambu-Goto effective string model describ-
ing the confining regime of a d dimensional lattice gauge
theory in which one of the d − 2 transverse directions is
compactified. At the end of the section we shall discuss the
LGT interpretation of our result. In Sec. III we discuss the
interpretation of our effective string theory results as the TT̄
perturbation of a compactified boson and obtain the relation
imposed by integrability between the string tension σ and
the finite temperature 1=L of the model. Finally, Sec. IV
will be devoted to a discussion of potential applications of
our results and to some concluding remarks.

II. PARTITION FUNCTIONS OF THE
NAMBU-GOTO EFFECTIVE STRING MODEL

In this section we review some aspects of the effective
string description of the confining regime of gauge theories,
focusing on two observables, the correlator of Polyakov
loops and the interface. The first-order approach to the
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Nambu-Goto (NG) string allows us to explicitly obtain the
exact form of the corresponding partition functions [37,38].
We work here in a compactified setup, not yet considered in
the previous literature.

A. The effective string setup

The starting point of the effective string description of
the interquark potential is to model the latter in terms of a
string partition function. One can, for instance, evaluate
the interquark potential by using the expectation value
hP†ðRÞPð0Þi of a pair of Polyakov loops separated by a
distance R in the spatial direction x1. Each Polyalov loop is
the line traced in the direction x0 by an external static quark.
The line is closed because this direction is compact:
x0 ∼ x0 þ L0. If this direction is interpreted as the
Euclidean time direction, L0 represents the inverse temper-
ature of the system and we are dealing with timelike
Polyakov loops. As we anticipated in the Introduction, we
will later take the point of view in which the 0th direction is
to be considered a spatial one. In the confining phase, the
chromomagnetic flux sourced by the external quarks is
squeezed into a one-dimensional string stretched between
the two quarks. This open string describes, in its evolution
along the temperature direction x0, a surface M with the
topology of a cylinder. In Fig. 1, on the left, we outlined in
gray the surface M with the minimal area, calling it M0.
We denote by

A ¼ L0R; u ¼ L0=R; ð2:1Þ

the area of M0 and the ratio of its sides.
The surface M can be described parametrically as

xμ ¼ Xμðξ0; ξ1Þ; μ ¼ 0; 1;…d − 1; ð2:2Þ

where the adimensional parameters ξα with α ¼ 0, 1,
usually referred to as world sheet coordinates, live on a
reference cylindrical surface Σ. The functions Xμðξ0; ξ1Þ
represent in this language the embedding in the physical
space of the world sheet. The effective string theory
approach aims at taking into account the contributions of
all possible surfaces M by path-integrating over these
maps with the prescribed “cylinder” boundary conditions,

namely fixed (Dirichlet) along the spacelike directions and
periodic along the temperature direction,

hP†ðRÞPð0Þi ¼
Z
cyl

½DX�e−Seff ½X� ≡ ẐcylðL0; RÞ: ð2:3Þ

An effective string model is characterized by the choice of
the string action Seff ½X�.
Let us note that the cylinder M can also be seen, in a

dual way, as the world sheet swept out by a closed string
emitted by a Polyakov loop (to be represented by a
boundary state in the closed string Hilbert space) and
reabsorbed by the other. In this setup, it is natural to
parameterize the cylinder M0 by its area A and the ratio
v ¼ 1=u ¼ R=L0. We will use this interpretation later.
Another observable which can be described by an

effective string is the interface free energy FintðL0; L1Þ
of suitably chosen dual models [38]. This situation is
depicted on the right in Fig. 1. Besides the direction x0
(which in this context is usually interpreted as a spatial
coordinate), at least one of the other directions, x1 in our
case, is compact with length L1. In this case the surfaceM
has the topology of a torus, and we will have

FintðL0; L1Þ ¼
Z
torus

½DX�e−Seff ½X� ≡ ẐtorusðL0; L1Þ; ð2:4Þ

where the maps Xμðξ0; ξ1Þ from a reference torus Σ to
space-time describe parametrically M. The quantities,

A ¼ L0L1; u ¼ L0=L1; ð2:5Þ

represent respectively the imaginary parts of the Kähler
modulus (the area) and of the complex structure modulus
for the minumal surface M0.
Compact transverse directions— In the following we

shall consider the situation in which one of the transverse
directions is compact, with size L, generalizing the results
of [37,38]. This generalization is interesting in its appli-
cation to the description of lattice gauge theories, for the
reasons described in the Introduction and discussed more in
detail in Sec. II F. It is interesting also within the reinter-
pretation of the NG string as a TT̄ deformation, to be
discussed in Sec. III, in particular because of the interplay

FIG. 1. Effective string description of the correlator of two Polyalov loops (left) and of an interface (right). See the text for a detailed
explanation.
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between the marginal deformation parametrized by the
transverse compactification radius and the relevant TT̄
deformation. Specifically, we will consider the direction x2
to be compact. Note that, even if it is not presented here,
the generalization to more than one compact transverse
directions is straightforward.

B. The Nambu-Goto model

The action for the effective string model must be
consistent with the Lorentz invariance of the underlying
gauge theory. The simplest choice is the Nambu-Goto
model, for which the string action Seff—which we will call
SNG—is proportional to the area of M,

SNG ¼ σ

Z
Σ
d2ξ

ffiffiffiffiffiffiffiffiffi
det g

p
; where gαβ ¼

∂Xμ

∂ξα
∂Xμ

∂ξβ ð2:6Þ

is the induced metric on the reference world sheet
surface Σ. Moreover, σ is the string tension, which has
dimension ðlengthÞ−2.
The actual effective string model which describes a

gauge theory in its confining regime differs from the NG
one. However, as shown in [41,42] (and in [43] for the
boundary corrections) deviations from the NG expression
are strongly constrained by Lorentz invariance; they are
expected to start at order 1=R6 in a large distance expansion
where R represents the smallest relevant length in the
geometry under consideration—for instance, the Polyakov
loop separation when we are in a low-temperature regime in
which the length L0 of the loops themselves is much bigger
that R; for a review see for instance [44]. In this respect the
Nambu–Goto action can be considered as a sort of “mean
field” approximation of the actual confining string and
indeed, as expected for a mean field approximation, it gives
the same answer for the confining potential of any gauge
theory. Determining the higher order terms in the confining
string action of a given gauge theory is a most interesting
and important open issue. One may hope to find some
indications on the nature and size of the higher order
corrections by studying the discrepancies between lattice
simulations of gauge theories and Nambu-Goto predic-
tions. Actually, the gauge fixed Nambu-Goto action fits
remarkably well the lattice data for different gauge theories,
which means that deviations are rather small. In the last few
years, thanks to the improvement in the precision of lattice
simulations, a few signatures of these higher order correc-
tions have been detected in the 3d gauge Ising model [45]
and in the 3d SUðNÞ gauge theories [46,47]. The results of
these papers indicate that these corrections are enhanced in
the high temperature regime, i.e., when the size L0 of the
lattice in the direction of the Polyakov loops is slightly
above the deconfinement temperature, still in the confining
regime but as short as possible and represents the smallest
scale in the game.

Let us go back to the Nambu-Goto action (2.6). Its
reparametrization and Weyl invariances require a gauge
choice.
The physical gauge— A standard choice is the so called

“physical gauge,” in which

x0 ¼ X0 ¼ L0ξ
0; x1 ¼ X1 ¼ Rξ1: ð2:7Þ

Here we are referring to the cylinder setup, but the
analogous choice can be taken also in the interface setup.
In this gauge, the surface M is described by expressing
the d − 2 transverse coordinates Xi with i ¼ 2;…d − 1 as
functions of the coordinates x0, x1, i.e., by giving the height
profile of the surface over the minimal surface M0 which
takes over the role of the reference world sheet Σ. In the
physical gauge the determinant of the induced metric
reduces to

A−2 det g ¼ 1þ
�∂X⃗
∂x0
�2

þ
�∂X⃗
∂x1
�2

þ
�∂X⃗
∂x0
�2�∂X⃗

∂x1
�2

−
�∂X⃗
∂x0 ·

∂X⃗
∂x1
�2

; ð2:8Þ

where we used the notation X⃗ ¼ fXig. Inserting this into
Eq. (2.6) we get

SNG ¼ Scl þ S0½X⃗� þ S1½X⃗� þ…; ð2:9Þ

where Scl ¼ σL0R is the usual “classical” area term, while
S0½X⃗� is simply the action of the two–dimensional con-
formal field theory of (d − 2) free bosons living on M0,

S0½X⃗� ¼
σ

2

Z
M0

dx0dx1
∂X⃗
∂xα ·

∂X⃗
∂xα : ð2:10Þ

The remaining terms in the expansion on the rhs of
Eq. (2.9) represent a perturbation of this free bosonic
theory. In particular at the next to leading order we have

S1½X� ¼ σ

Z
M0

dx0dx1
�
1

8

�∂X⃗
∂xα ·

∂X⃗
∂xα
�2

−
1

2

�∂X⃗
∂xα ·

∂X⃗
∂xβ
��∂X⃗

∂xα ·
∂X⃗
∂xβ
��

: ð2:11Þ

Actually, as it is well known [48], the full NG action can be
seen as a TT̄ deformation of the free bosonic theory. In this
perspective, Eq. (2.11) encodes just the first order in this
perturbation; however, it already fixes the relation between
the parameter, usually called t, of the TT̄ perturbation and
the string tension σ. This will be discussed in Sec. III.
If we rescale the fields by setting X⃗ ¼ ϕ⃗=

ffiffiffi
σ

p
, the

Nambu-Goto action takes the form,
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SNG ¼ σA ·
Z
Σ
d2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

σA

�∂ϕ⃗
∂ξα ·

∂ϕ⃗
∂ξα
�s
: ð2:12Þ

This expression makes it explicit that the above expansion
is actually an expansion in powers of 1=ðσAÞ ¼ 1=ðσL0RÞ.
In particular, a part from the classical area term Scl, the free
Gaussian action is recovered in the σL0R → ∞ limit. This
is exactly the long string limit in the lattice gauge theory
context in which, as it is well known, the effective string
contribution reduces to the so-called “Luscher term”
[49,50] that corresponds to the leading term of the partition
function of (d − 2) noninteracting bosons.

C. First-order formulation

A remarkable feature of the Nambu-Goto model is that
the functional integral on the transverse degrees of freedom
X⃗ðξ0; ξ1Þ can be performed explicitly using the Polyakov
trick for any choice of the boundary conditions; see [37–39]
for the application to the present context (see also [41] for a
derivation of the NG partition function using a different
approach). One starts from a first-order reformulation of the
NG model, in which the action is

S ¼ σ

2

Z
Σ
d2ξ

ffiffiffiffiffiffiffiffiffiffi
det h

p
hαβ∂αXμ∂βXμ; ð2:13Þ

with μ ¼ 0;…d − 1. If one integrates out the independent
world sheet metric h, its equation of motion (e.o.m).
identifies it with the induced metric g of Eq. (2.6), and
one retrieves the NG model. For each fixed topology of the
world sheet, however, one can use the reparametrization
and Weyl invariance of Eq. (2.13) to bring hαβ to a

reference form eϕĥαβ. The scale factor eϕ decouples at
the classical level; at the quantum level, due to an anomaly,
this is true only in the critical dimension d ¼ 26. However,
the effect of the anomaly is known to become irrelevant at
large physical distances, for instance, for R large in the
cylinder case [51]. In principle its effect should be captured
by adding to the NG action suitable higher order terms in a
large distance expansion. Such kind of corrections of the
same type of those that, as we remarked in Sec. II B, are
expected to differentiate the effective string models for
specific gauge theories from the NG model. For this reason
our results, based on the first-order Polyakov reformulation
of the NG model should be only considered as a large
distance effective description of the actual confining string.
If Σ is a cylinder or a torus, we can choose the so-called

conformal gauge, fixing ĥαβ ¼ δαβ and realizing Σ as a
rectangle with one or two couples of opposite sides
identified. The action of the model reduces then to the
free action describing the CFT of d bosons plus the action
Sgh for the ghost-antighost system that arise from the
Jacobian of the gauge-fixing procedure,

S ¼ σ

2

Z
Σ
d2ξ∂αXμ∂αβXμ þ Sgh: ð2:14Þ

In both the cylinder case and the torus case there is a
residual Teichmüller parameter which we cannot change by
means of conformal rescalings and which has to be
integrated over. This integration is the remnant of the
path-integral over the independent world sheet metric h.
We will now consider separately in detail these

two cases.

D. The interface case (torus geometry)

Let us now start from the case in which the world sheet
Σ is a torus, as appropriate for the one-loop partition
function of closed strings. The closed string world sheet is
periodic; in our conventions, ðξ0; ξ1Þ ∼ ðξ0; ξ1 þ πÞ. The
complex structure of the world sheet, τ ¼ τ1 þ iτ2
with τ2 ≥ 0 defines a second identification: ðξ0; ξ1Þ∼
ðξ0 þ πτ1; ξ1 þ πτ2Þ. It represents a Teichmüller parameter
and has to be integrated over. In fact, the string partition
function has the form,

Ztorus ¼
Z
F

d2τ
4τ2

ZðdÞðτ; τ̄ÞZghðτ; τ̄Þ

¼
Z
F

d2τ
4τ22

ZðdÞðτ; τ̄Þτ2Zghðτ; τ̄Þ; ð2:15Þ

whereF is the fundamental region of the Teichmüller space
with respect to the action of the modular group PSLð2;ZÞ
that maps τ to τ0, with

τ0 ¼ aτ þ b
cτ þ d

; a; b; c; d ∈ Z; ad − bc ¼ 1: ð2:16Þ

The parameter τ0 describes an equivalent torus. The integral
in Eq. (2.15) is limited to the fundamental cell F to avoid
redundancy, but this is consistent only if the integrand is
modular invariant. In the second step in Eq. (2.15) we
have singled out the measure d2τ=τ22 which, according to
Eq. (2.16), is modular invariant by itself.
Moreover, ZðdÞðτ; τ̄Þ is the CFT partition function

of d bosonic fields Xμ, and Zghðτ; τ̄Þ that of the ghost
system, both computed on a fixed world sheet of complex
structure τ.
Let us describe the CFT partition functions appearing

in (2.15), taking into account that in our setup three of the
target space coordinates are compact,

xa ∼ xa þ La; a ¼ 0; 1; 2; ð2:17Þ

while the remaining d − 3 ones we take for simplicity to be
noncompact (but it is straightforward to compactify some
of them).
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Compact boson— The partition function for a boson
field X with compactification length L can be easily derived
in an operatorial formalism, in which the coordinate ξ0 on Σ
plays the rôle of (Euclidean) world sheet time. Since the
world sheet coordinate ξ1 is periodic, the free field
Xðξ0; ξ1Þ can have non-trivial winding w ∈ Z defined by

Xðξ0; ξ1 þ πÞ ¼ Xðξ0; ξ1Þ þ wL: ð2:18Þ

In the wth winding sector, its expansion comprises left-
moving and right-moving oscillators plus zero modes,

Xðξ0; ξ1Þ ¼ x̂þ p̂
πσ

ξ0 þ wL
π

ξ1

þ iffiffiffiffiffiffiffiffi
4πσ

p
X
k≠0

�
αk
k
e−2ikξ þ ᾱik

k
e−2ikξ̄

�
; ð2:19Þ

where we introduced ξ ¼ ξ0 þ iξ1 and ξ̄ ¼ ξ0 − iξ1. Since
the target space is compact, the spectrum of the momentum
operator p̂ is quantized: p ¼ 2πn=L, with n ∈ Z.
The partition function is given by

Zðτ; τ̄;LÞ ¼ TrðqL0− 1
24q̄L̄0− 1

24Þ; ð2:20Þ

where q ¼ expð2πiτÞ while the 0th Virasoro operators L0

and L̄0 are the zero modes of the holomorphic (left-
moving) and antiholomorphic stress-energy tensor. One has

L0 ¼
1

8πσ

�
2πn
L

þ wσL

�
2

þ
X∞
k¼1

Nk;

L̄0 ¼
1

8πσ

�
2πn
L

− wσL

�
2

þ
X∞
k¼1

N̄k; ð2:21Þ

where Nk and N̄k are the number operators for the kth
left-moving and right-moving oscillator systems. These
Virasoro operators are simply related to the Hamiltonian
and the angular momentum by H ¼ L0 þ L̄0 − 1=12 and
J ¼ L0 − L̄0. The evaluation of the trace is straight–
forward, and the result is

Zðτ; τ̄;LÞ ¼ 1

ηðqÞ
1

ηðq̄ÞΓðτ; τ̄;LÞ: ð2:22Þ

The factor 1=ηðqÞηðq̄Þ, with the Dedekind eta-function
being defined in Eq. (B1), arises from the trace over the
Fock spaces of the oscillator nonzero modes. The other
factor comes from the sum over the zero-mode quantum
numbers and reads

Γðτ; τ̄;LÞ ¼
X
n;w∈Z

q
1

8πσð2πnL þwσLÞ2 q̄ 1
8πσð2πnL −wσLÞ2

¼
ffiffiffiffiffiffiffiffiffi
σ

2πτ2

r
L
X

m;w∈Z
e−

σL2
2τ2

jm−τwj2 ; ð2:23Þ

where in the second step we used the Poisson resummation
formula (B8). The sum over m, w represents the sum over
classical solutions of the field X which, beside Eq. (2.18),
also have a nontrivial wrapping along the compact propa-
gation direction,

Xðξ0 þ 2πτ2; ξ1 þ 2πτ1Þ ¼ Xðξ0; ξ1Þ þmL: ð2:24Þ

The partition function Zðτ; τ̄;LÞ is invariant under the
modular transformations (2.16). This is evident using
the second expression of Γðτ; τ̄;LÞ in Eq. (2.23), taking
into account that

ffiffiffiffi
τ2

p
ηðqÞηðq̄Þ is modular invariant; see

Eq. (B7), and so is the sum over m and w, in which the
effect of the modular transformation (2.16) is to replace
m, w with

m0 ¼ dmþ bw; w0 ¼ awþ cm: ð2:25Þ

Zðτ; τ̄;LÞ also displays the so-called T-duality, namely it
is invariant under

L →
2π

σL
; ð2:26Þ

as it is clear from the structure of the sum in the first
expression of Γ in Eq. (2.23).
Noncompact boson— In this case the field X has no

winding, so we have to set w ¼ 0 in the expansion (2.19)
and in the expression of the Virasoro operators, Eq. (2.21).
Moreover the momentum eigenvalue p is not quantized
and, in computing the partition function trace, the sum over
n is replaced by a Gaussian integration over p. The final
result, proportional to the regularized volume V of the
target space for X, is

Zn:c:ðτ; τ̄Þ ¼
1

ηðqÞ
1

ηðq̄Þ
ffiffiffiffiffiffiffiffiffi
σ

2πτ2

r
V ð2:27Þ

and is modular invariant.
The ghost partition function— As is well known, the

partition function for the ghost system exactly cancels the
nonzero mode contributions of two bosonic fields,

Zghðτ; τ̄Þ ¼ η2ðqÞη2ðq̄Þ: ð2:28Þ

The combination τ2Zghðτ; τ̄Þ is therefore modular invariant.
The string partition function— Let us go back to

Eq. (2.15). Taking into account Eqs. (2.17) and (2.22),
we have
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ZðdÞðτ; τ̄Þ ¼ Zðτ; τ̄;L0ÞZðτ; τ̄;L1ÞZðτ; τ̄;LÞ½Zn:c:ðτ; τ̄Þ�d−3;
ð2:29Þ

where we denoted the compactification radius in the
direction x2 by L. Using this expression and Eq. (2.28)
we have the explicit integral expression of the full string
partition function Ztorus of Eq. (2.15), and we see that the
integrand is indeed modular invariant. However, to recover
in our first-order formulation the quantity Ẑtorus that gives
the effective string description of the interface free energy,
see Eq. (2.4) and Fig. 1; we have to extract the contributions

of the embeddings in which the world sheet Σ covers once
the torus target space of sides L0, L1.
To do so, one can consider the contribution of the zero-

modes in the directions 0 and 1 and group the terms
corresponding to the possible values of ma and wa, with
a ¼ 0, 1, into orbits of the modular group. Following [52],
we restrict to specific representatives in each orbits, while
correspondingly enlarging the τ integration region. At this
point, we extract the contributions mentioned above by
taking m0 ¼ 1, w0 ¼ 0, w1 ¼ 1 and summing over m1 or,
equivalently, undoing the Poisson resummation, over n1. The
details are given in Appendix B. With this choice, we obtain

Ẑtorus ¼
Vd−3L0

4

�
σ

2π

�d−2
2

Z
∞

0

dτ2
ðτ2Þ1þd−2

2

e−
σL2

0
2τ2

Z
1=2

−1=2
dτ1

�
1

ηðqÞηðq̄Þ
�

d−2

×
X

n0;n2;w2∈Z
q

1
8πσ½ð2πn1L1

þσL1Þ2þð2πn2L þw2σLÞ2�q̄ 1
8πσ½ð2πn1L1

−σL1Þ2þð2πn2L −w2σLÞ2�; ð2:30Þ

with Vd−3 being the volume of the noncompact target space directions. Expanding in series the Dedekind eta functions
according to Eq. (B2) we obtain

Ẑtorus ¼
Vd−3L0

4

�
σ

2π

�d−2
2 X∞

k;k0¼0

ckck0
X

n1;n2;w2∈Z

Z
1=2

−1=2
dτ1e2πiτ1ðk−k

0þn1þn2w2Þ

×
Z

∞

0

dτ2

τ
1þd−2

2

2

× e
−τ2

�
σL2

1
2
þσL2w2

2
2

þ2π2n2
1

σL2
1

þ2π2n2
2

σL2
þ2πðkþk0−d−2

12
Þ
�
− 1
τ2

σL2
0

2
: ð2:31Þ

The integration over τ1 produces the Kronecker delta function δk−k0þn1þn2m2
, while the integration over τ2 can be carried out

by means of the formula in Eq. (B9). The final result is

Ẑtorus ¼
Vd−3L0

2

�
σ

2π

�d−2
2
X∞
k;k0¼0

ckck0
X

n1;n2;w2∈Z
δk−k0þn1þn2w2

�
E
u

�d−2
2

Kd−2
2
ðσAEÞ; ð2:32Þ

with

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πu

σA

�
kþ k0 −

d − 2

12

�
þ 4π2u2n21

ðσAÞ2 þ 4π2un22
σ2AL2

þ uL2w2
2

A

s
: ð2:33Þ

Considering the L0 → ∞ limit of Eq. (2.32), we extract
from the asymptotic behavior of the Bessel function the
energy spectrum. Writing expð−σAEÞ ¼ expð−L0EÞ, and
remembering that u=A ¼ 1=L2

1 is independent ofL0, we find

E ¼ σL1E; ð2:34Þ

which represents themass of a closed string statewith left- and
right-moving occupation numbers k and k0 and quantum
numbers n1, n2, w2 subject to the level-matching condi-
tion k − k0 þ n1 þ n2w2 ¼ 0.
As a consistency check, let us consider the limit L → ∞

in which all transverse directions are noncompact.

Following the derivation in Appendix B one sees that
in this limit only the trivial winding w2 ¼ 0 contributes,
so that the δ function reduces to imposing n0 ¼ k0 − k.
Moreover, the KK sum over the discrete momentum n2 is
replaced by a Gaussian integral, whose result modifies the
final integration over the Teichmüller modulus τ. In this
way, one recovers the result of [38],

Ẑtorus ¼
Vd−2L0

2

�
σ

2π

�d−1
2 X∞

k;k0¼0

ckck0
�
E
u

�d−1
2

Kd−1
2
ðσAEÞ;

ð2:35Þ
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where Vd−2 denotes the transverse volume and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πu

σA

�
kþ k0 −

d − 2

12

�
þ 4π2u2ðk − k0Þ2

ðσAÞ2

s
:

ð2:36Þ

As mentioned above, the partition function (2.32) enjoys
the T-duality symmetry,

L →
2π

σL
: ð2:37Þ

It would be interesting to explore in lattice simulations1 the
consequences of this duality. For instance it implies the
existence of a “minimal” compactification radius given by
the self–dual point,

Lc ¼
ffiffiffiffiffiffi
2π

σ

r
: ð2:38Þ

E. Polyalov loop setup

Again, to compute the string partition function we use
the first order setup. The world sheet Σ is a cylinder and
corresponds to the one-loop partition function of open
strings. In our conventions, the range of the spacelike world
sheet coordinate is ξ1 ∈ ½0; π�. The length of the cylinder Σ
is a real Teichmüller parameter, which we call t. We have to
integrate over this Teichmüller parameter, and the string
partition function is

Zcyl ¼
Z

∞

0

dt
2t

ZðdÞðtÞZghðtÞ; ð2:39Þ

where ZðdÞðtÞ is the CFT cylinder partition function of d
bosonic fields Xμ and ZghðtÞ that of the ghost system, both
computed on a fixed cylinder of parameter t.
Open string channel— As depicted in Fig. 1, the open

string is attached to the two Polyakov loops, which span
the direction x0. This means that the embedding field
X0ðξ0; ξ1Þ has free (Neumann-Neumann) boundary con-
ditions at both end points, while X1ðξ0; ξ1Þ has fixed
(Dirichlet-Dirichlet) boundary conditions, with one end
point fixed in 0 and the other one in R. The field X2ðξ0; ξ1Þ
has DD boundary conditions, but can wind w2 times around
the compact coordinate x2. The fields Xiðξ0; ξ1Þ, for

i ¼ 3;…; d are DD, with both end points in 0. Their mode
expansion is therefore the following:

X0ðξ0;ξ1Þ ¼ x̂0þ p̂0

σπ
ξ0þ iffiffiffiffiffiffiffiffi

4πσ
p

X
k≠0

α0k
k
e−ikξ

0

coskξ1;

X1ðξ0;ξ1Þ ¼R
π
ξ1−

1ffiffiffiffiffiffiffiffi
4πσ

p
X
k≠0

α1k
k
e−ikξ

0

coskξ1;

X2ðξ0;ξ1Þ ¼w2L
π

ξ1−
1ffiffiffiffiffiffiffiffi
4πσ

p
X
k≠0

α2k
k
e−ikξ

0

coskξ1;

Xiðξ0;ξ1Þ ¼−
1ffiffiffiffiffiffiffiffi
4πσ

p
X
k≠0

αik
k
e−ikξ

0

coskξ1; i¼ 3;…;d− 1:

ð2:40Þ

Note that the fields with DD boundary conditions (b.c.’s)
do not possess zero modes. Since the target space direction
x0 is compact with length L0, the spectrum of the
momentum operator p̂0 is discrete: p0 ¼ 2πn0=L0, with
n0 ∈ Z. The cylinder CFT partition function for these fields
is given by

ZðdÞðtÞ ¼ TrðqL0− d
24Þ; ð2:41Þ

where we q ¼ expð−2πtÞ and the Virasoro zero-mode
operator reads

L0 ¼
2π

σ

n20
L2
0

þ σR2

2π
þ σL2w2

2

2π
þ NðdÞ: ð2:42Þ

Here Nd is the total number operator for all the nonzero
mode oscillators of the d bosonic fields. The trace in
Eq. (2.41) receives contributions from the nonzero mode
oscillators and from the zero-mode sector and is found to be
given by

ZðdÞðtÞ ¼
�

1

ηðqÞ
�

d X
n0;w2∈Z

e
−2πt
�

2πn2
0

σL2
0

þσðR2þw2
2
L2Þ

2π

�

¼
�

1

ηðqÞ
�

d
ffiffiffiffiffiffiffi
σ

4πt

r
L0

X
m0;w2∈Z

e−
σL2

0
4t m

2
0
−tσðR2þw2

2
L2Þ;

ð2:43Þ

where in the second step we performed a Poisson resum-
mation; see Eq. (B8). As in the closed string case, the ghost
partition function cancels exactly the non-zero-mode con-
tributions of two bosonic fields: ZghðtÞ ¼ η2ðqÞ.
To recover in our first-order string partition function

(2.39) the quantity Ẑcyl that, according to Eq. (2.3),
describes the Polyakov loop correlator, we have to select
m0 ¼ 1, so that the target space cylinder M is covered
exactly once. Altogether we get

1Notice that the LGT realization of the torus topology is
rather nontrivial and is possible only using duality. For instance
the simplest possible realization is in the 3d gauge Ising
model and is given by the free energy of interfaces in the dual
Ising spin model [53]. More complex realizations require for
instance the study of the so called ’t Hooft loops in non-Abelian
LGTs [54].
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Ẑcyl ¼
ffiffiffiffiffiffi
σ

4π

r
L0

Z
∞

0

dt

2t
3
2

�
1

ηðqÞ
�

d−2X
w2∈Z

e−
σL2

0
4t −tσðR2þw2

2
L2Þ

¼
ffiffiffiffiffiffi
σ

4π

r
L0

X∞
k¼0

ck
X
w2∈Z

Z
∞

0

dt

2t
3
2

e−
σL2

0
4t −t½σðR2þw2

2
L2þ2πðk−d−2

24
Þ�:

ð2:44Þ

where in the second line we expanded in series ηðqÞ
according to Eq. (B2).
We can perform the integral over t using Eq. (B10),

obtaining the simple expression,

Ẑcyl ¼
X∞
k¼0

ck
X
w2∈Z

e−L0Eop : ð2:45Þ

where

Eop ¼ σR̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2π

σR̃2

�
k −

d − 2

24

�s
; ð2:46Þ

and

R̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ w2

2L
2

q
: ð2:47Þ

This corresponds to the result of [37] in which the
Polyakov loops distance R is replaced by R̃, accounting for
the effects of the further compactification in the transverse
direction x2.
Closed string channel— On the other hand, the cylin-

drical world sheet Σ can also be viewed, interchanging the
role of the world sheet (w.s). coordinates ξ0 and ξ1, as the
tree level propagation of a closed string between two
boundary states representing the Polyakov loops. This
interpretation is made explicit rewriting the first line of
Eq. (2.44) in terms of the variable s ¼ 1=t. Taking into
account that under this transformation we have

ηðe−2π=sÞ ¼ ffiffiffi
s

p
ηðe−2πsÞ; ð2:48Þ

see Eq. (B7), and expanding now in series ηðe−2πsÞ we get

Zcyl ¼
ffiffiffiffiffiffi
σ

4π

r
L0

X∞
k¼0

ck

×
X
w2∈Z

Z
∞

0

ds
2s

s
3−d
2 e

−s
�

σL2
0

4
þ2πðk−d−2

24
Þ
�
−σ
sðR2þw2

2
L2Þ

:

ð2:49Þ

Performing the integral over s with the help of Eq. (B9)
one gets

Ẑcyl ¼
ffiffiffiffiffiffi
σ

4π

r
L0

X∞
k¼0

ck
X
w2∈Z

�
Ecl

2ṽ

�d−3
2

Kd−3
2
ðσÃEclÞ; ð2:50Þ

where

Ã ¼ L0R̃; ṽ ¼ R̃=L0; ð2:51Þ

with R̃ given by Eq. (2.47), and

Ecl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8π

σL2
0

�
k −

d − 2

24

�s
: ð2:52Þ

In the L → ∞ limit, due to the exponential asymptotic
behavior of the modified Bessel functions, the sum over w2

is dominated by the term w2 ¼ 0 and all the higher values
of w2 are exponentially depressed. We recover again the
result of [37],

Ẑcyl ¼
ffiffiffiffiffiffi
σ

4π

r
L0

X∞
k¼0

ck

�
Ecl

2u

�d−3
2

Kd−3
2
ðσAEclÞ; ð2:53Þ

with E still given by Eq. (2.52) and u ¼ R=L0.
As we mentioned, in the cylinder setup the closed string

propagates between two boundary states that represent the
Polyakov loops in the closed string Hilbert space. In the
stringy language the Polyakov loops are D0-branes; see
the remark after Eq. (2.40). Namely, they are (0þ 1)–
dimensional objects, extended in the direction x0, on which
open strings can end. In presence of D0-branes, the T-
duality L → 2π=ðLσÞ does not map the theory to itself;
rather it maps it to a theory in which the D0-branes become
D1-branes, i.e., two-dimensional objects extended also in
the direction x2. When we lower L below Lc, we can
reexpress the cylinder partition function in terms of the
theory with D1-branes and with the dual compactification
length 2π=ðLσÞ, or we can remain within the D0–brane
description. The length scale Lc looses the meaning of a
minimum compactification length. This fact has deep
consequences in the LGT framework since it allows us
to decrease “ad libitum” the compactification radius thus
allowing to study in great detail, as we shall see in the next
section, the properties of the chromoelectric flux tube.

F. Relation to the spacelike string tension in LGT

In the lattice gauge theory context, the results discussed
in the previous section have a natural application in the
study of the so-called “spacelike” string tension [1–16]. In
this framework the compact transverse direction is identi-
fied with the inverse temperature of the theory. In this
setting the Polyakov loops whose correlator we are study-
ing lay in a spacelike plane of the lattice and do not
represent the order parameter of deconfinement.
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As we mentioned in the Introduction the string tension
extracted from such correlators is different from the actual
string tension of the model (which is instead extracted from
timelike Polyakov loop correlators) and is denoted as
“spacelike” string tension to avoid confusion. At low
temperature, i.e., for large values of L in our setting, the
two string tensions coincide but as the temperature increases
they behave in a different way [1–5]. The ordinary string
tension decreases as the deconfinement temperature is
approached and vanishes at the deconfinement point, while
the spacelike one remains constant and instead of vanishing
it increases in the deconfined phase [1–3]. The physical
reason for this behavior is that the correlator of two
spacelike Polyakov loops describes quarks moving in a
finite temperature environment, and it can be shown that
what we call “spacelike string tension” is actually related to
the screening masses in hot QCD [6–12], and thus it does
not vanish in the deconfined phase. The precise temperature
Tc at which this change of behavior of the spacelike string
tension occurs is not known. It is near the deconfinement
point, but there is no physical reason to expect that it should
coincide with it. Moreover it is not clear from the simu-
lations if this change of behavior indicates an actual critical
point or simply a crossover.
The effective string theory description discussed above

can be used to shed light on these issues. To this end
however it is mandatory to take in a meaningful way the
continuum limit, i.e., to relate σ and the finite temperature
1=L to well-defined physical observables in the continuum
limit. In the present setting this is much less obvious than
for the ordinary string tension. In the standard case, for
timelike Polyakov loop correlators, it is easy to identify the
deconfinement phase transition because the Polyakov loop
is itself an order parameter. This allows us to set the scale of
the model, typically by measuring Tc in units of the zero
temperature string tension σ, and from this to set the
temperature of the model by simply measuring it2 in units
of Tc. In our case the situation is the other way around, we
have no insight on the location of the (putative) phase
transition, and there is in principle no obvious way to relate
the inverse temperature L with the spacelike string tension
σ and thus give a physical scale in the continuum to
measure and relate temperatures and masses. We shall see
in the next section that describing the model in terms of a

TT̄ perturbation allows us to make relevant progress in
this direction.

III. TT̄ PERTURBATION OF A
COMPACTIFIED BOSON

In this section we reconsider the previous computation
from a different perspective. As we mentioned in the
Introduction—and as we will recall very briefly below—
the NG string in a d-dimensional target space represents the
TT̄ perturbation of the theory of d − 2 free bosons. The
spectrum of a TT̄–deformed theory can be obtained from
the unperturbed spectrum through a differential equation
of the Burger’s type. Also the explicit expression of the
partition function satisfies differential constraints and could
in principle be determined, but this is in practice not so
trivial. In particular, the TT̄ deformed partition function of
compactified bosons was not yet written down. But this is
exactly what we obtained, using the NG formulation, in the
previous section. In fact we will show that the NG theory
with one compact transverse direction can be described as
the TT̄ deformation of the free bosonic theory, with one
field being compact. Remarkably, we shall also show that
the TT̄ deformation induces well defined trajectories in the
parameter space of the model and can be performed only
imposing a constant value of a suitable dimensionless
combination of the compactification radius and the string
tension of the model.

A. The NG theory as a TT̄ perturbation

We noticed in Sec. II B that the next to leading terms in
the derivative expansion of the NG action in the physical
gauge, Eq. (2.9), can be understood as a perturbation of the
free bosonic action. It can be shown [27] that this is actually
an integrable perturbation and that it coincides with the TT̄
perturbation of the free action S0½X�. In fact, the Nambu-
Goto action can be rewritten as

SNG ¼ Scl þ S0½X� −
1

2σ

Z
d2ξTT̄: ð3:1Þ

The perturbing operator which appears in the above
equation is the energy momentum tensor of the deformed
theory, and thus its explicit form must be evaluated order by
order in the 1=σ expansion.
The normalization of the TT̄ term above, by comparison

with Eq. (1.1), relates the TT̄ perturbation parameter t to the
string tension σ as follows:

t ¼ 1

2σ
: ð3:2Þ

This normalization can be determined [27] considering
the first order term in the expansion, namely the one in
Eq. (2.11). In this case the energy-momentum tensor of the
free-field theory (2.10) is simply given by

2All these steps are usually performed using numerical
estimates of Tc and σ extracted from Monte Carlo simulations,
but it is interesting to notice that the same analysis can be
performed within the framework of the effective string descrip-
tion, without resorting to any Monte Carlo simulation and
nevertheless with an impressive agreement with the numerical
results, by using the Olesen relation [55]. This relation essentially
amounts to identify the finite temperature deconfinement tran-
sition of the LGT with the Hagedorn transition of the effective

string model [56], which relates Tc and σ as Tc ¼
ffiffiffiffiffiffiffiffiffiffiffi
3σ

ðd−2Þπ
q

.
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Tαβ ¼ ∂αX · ∂βX −
1

2
δαβð∂γX · ∂γXÞ: ð3:3Þ

It is easy to see that, up to the next to leading term, Eq. (2.9)
can be rewritten as

SNG ¼ Scl þ S0½X� −
σ

4

Z
d2ξTαβTαβ þ…: ð3:4Þ

If we now rewrite the perturbing term using chiral
components,3

T ¼ −σðT11 − iT12Þ; T̄ ¼ −σðT11 þ iT12Þ; ð3:5Þ

we end up with the normalization appearing in Eq. (3.1).
The above analysis can be extended to all order in

the perturbing parameter [18,19] and induces a set of
constraints on the spectrum of the theory and in
particular on the dependence of the energy levels on
the perturbing parameter t. Let us assume that the theory
is defined on a two-dimensional manifold with a
compact spacelike direction of size L1. The spatial
momentum PðL1Þ of any state is quantized in unities
of 2π=L1 and is preserved along the perturbation. The
energy EðL1; tÞ of the state depends in general both on
L1 and on the perturbing parameter t. Remarkably
enough the constraints alluded to above can be sum-
marized in the requirement that the energy levels
satisfy the following inhomogeneous Burgers equation
[18,19]:

∂E
∂t ¼ 1

2

∂ðE2 − P2Þ
∂L1

: ð3:6Þ

The CFT of a free noncompact boson— It is useful for
the following analysis to look at the solution of this
equation in the case of a 2d free bosonic theory (see
[18,19,23] for a detailed derivation). A quantum state of the
unperturbed theory is characterized by the left- and right-
moving oscillation numbers k and k0; its unperturbed
energy and momentum are given by

Eð0; L1Þ ¼
2π

L1

�
kþ k0 −

1

12

�
≡ 2π

L1

ε;

PðL1Þ ¼
2π

L1

ðk − k0Þ≡ 2π

L1

p: ð3:7Þ

The subscript (0) means “unperturbed value,” and we
introduced ε ¼ kþ k0 − 1=12 and p ¼ k − k0 to avoid
typographical clutter in the following formulas. The general
solution to (3.6) with these initial conditions is

Eðt; L1Þ ¼
L1

2t

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πt

L2
1

εþ 16π2t2

L4
1

p2

s !
: ð3:8Þ

In our case however there is an additional subtlety. Since
we are interested in particular in mapping the perturbed
spectrum onto the Nambu Goto one we must also keep into
account the possible presence of an additional “classical”
energy term—the term denoted as Scl in Eq. (3.1). One has
to start in this case with the unperturbed spectrum,

Eð0; L1Þ ¼
2π

L1

εþ F0L1; ð3:9Þ

and solving the Burgers equation following [18,23]
one finds

Eðt; L1Þ ¼ F̃L1 þ
L1

2t̃

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πt̃

L2
1

εþ 16π2t̃2

L4
1

p2

s !
;

ð3:10Þ

where

t̃ ¼ tð1 − tF0Þ; F̃ ¼ F0

1 − tF0

: ð3:11Þ

If we assume4 t̃ ¼ 1=ð2σÞ and F̃ ¼ σ, the resulting energy
spectrum the Nambu-Goto string model, namely,

Eðt; L1Þ ¼ σL1Eðt; L1Þ ¼ σL1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4π

σL1

εþ 4π2

ðσL1Þ2
p2

s
:

ð3:12Þ

coincides with the one obtained for the Nambu-Goto string
model in d ¼ 3 with a single transverse direction taken to
be noncompact; see Eqs. (2.34) and (2.36).
These results, and the constraints imposed by the

Burgers equation will play a major role in the following
analysis, in which we consider the presence of a compac-
tified transverse dimension in the model. We will first
discuss the CFT of a free compactified boson which

3Notice that this is not the standard normalization of the energy
momentum tensors which would instead require an additional
factor π: T ¼ −πσðT11 − iT12Þ, T̄ ¼ −πσðT11 þ iT12Þ so as to
obey the standard Operator Product Expansion (OPE) relation
TðzÞTðwÞ ¼ d−2

2
1

ðz−wÞ4 þ � � � with z ¼ ξ0 þ iξ1. We chose the
normalization of Eq. (3.5) to conform with the standard notations
of the TT̄ literature.

4Notice that as a consequence of these assumptions the string
tension of the unperturbed model does not coincide any more
with the Nambu-Goto one [57]; in fact, one has F0 ¼ σ=2 and
t ¼ 1=σ. This fact has no direct relevance for the present analysis,
but it might be important when using these TT̄ deformed models
to describe the confining regime of lattice gauge theories [57].
We plan to address this issue in a future work.
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represents the unperturbed CFT in such a setting. We shall
then obtain its TT̄ deformation in Sec. III C from the NG
partition function derived earlier.

B. The CFT of a free compactified boson

Let us consider the free bosonic theory with the action in
Eq. (2.10), defined on the two-dimensional manifold M0

which represents, in the effective string perpective, the
minimal surface swept out in target space by the string. Let
us now assume that a bosonic field X, which in the setup
of Sec. II we took to be X2, obeys the compactification
condition,

X ∼ X þ L: ð3:13Þ

This changes drastically the behavior of the 2d theory of the
field X. In particular, a marginal operator appears in the
spectrum and, as a consequence, a whole line of critical
points. The action is given by Eq. (2.10), restricted to the
single field X. The coupling constant5 σ allows us to tune
the model along the critical line and to introduce the
dimensionless compactification radius,

ρ ¼
ffiffiffiffiffiffi
σ

2π

r
L: ð3:14Þ

The CFT of a compactified boson is characterized by a rich
spectrum of primary operators On;w whose scaling dimen-
sions are labeled by two indices n and w (which in the XY
model label the “spin” and “vortex” sectors respectively)
and depend on ρ as follows6:

hn;wðρÞ ¼
1

2

�
n2

ρ2
þ w2ρ2

�
: ð3:15Þ

These weights exhibit a ρ → 1=ρ “duality” symmetry
which exchanges spin and vortex sectors. In the string
theory language, this is known as T-duality; see Eq. (2.26).
This CFT is well defined for any value of ρ but for some

choices of ρ additional symmetries emerge which make
the theory particularly interesting. In particular for ρ ¼ 1—
i.e., at the self–dual point—one has the level 1 SU(2)
WZWmodel. For ρ ¼ ffiffiffi

2
p

one finds the CFTof a free Dirac
fermion, and finally for ρ ¼ 2 one has the famous
Kosterliz-Thouless critical point. There are several lattice
realization of this CFT. The most important ones are the
XY model, which is defined for ρ > 2 (or equivalently
ρ < 1=2) and the SOS model, which can be shown to be
equivalent to the well-known six vertex model and which is
defined for all values of ρ.

The toroidal partition function corresponds to the
euclidean path integral of this model, with the action
(2.10), when the base manifold M0 is a torus; this is
the situation considered in the effective string description
of the interface free energy; see Sec. II D. Let us denote
by τ0 the complex structure modulus of M0; in the case
considered in Sec. II A; see Eq. (2.1), we simply have

τ0 ¼ iu ¼ iL0=L1; ð3:16Þ

as we consider a straight torus, but the following formulas
hold also when the modulus τ0 has a real part as well. We
reviewed the computation of the partition function for
the compact boson [40] in Sec. II D, with the result given
Eq. (2.22), which we rewrite here in terms of the adimen-
sional compactification parameter ρ and of the modulus τ0
through the quantity,

q0 ¼ expð2πiτ0Þ ¼ expð−2πuÞ: ð3:17Þ

Thus we have7

Zð0ÞðρÞ ¼
1

ηðq0Þ
1

ηðq̄0Þ
X
n;w∈Z

q
1
4
ðnρþwρÞ2
0 q̄0

1
4
ðnρ−wρÞ2

¼
X
n;w∈Z

X∞
k;k0¼0

pkpk0e
−2πuð1

2
ðn2
ρ2
þw2ρ2Þþkþk0− 1

12
Þ
; ð3:18Þ

where in the second step we have used Eq. (B2). Writing
for each term in the sum the exponent as −L0Eð0; L1Þ this
corresponds to the energy spectrum,

Eð0; L1Þ ¼
2π

L1

�
hn;wðρÞ þ kþ k0 −

1

12

�
≡ 2π

L1

ε̃; ð3:19Þ

where, in each sector labeled by n and w we have, on top of
the contribution of Eq. (3.15), that of right-moving and left-
moving oscillation modes. We use the notation Eð0; L1Þ to
stress that this spectrum is at zero TT̄ perturbation. Let us
note that these states also have momentum,

PðL1Þ ¼
2π

L1

ðk − k0 þ nwÞ≡ 2π

L1

p̃: ð3:20Þ

With respect to the non-compact free boson spectrum
of Eq. (3.7) we simply replace ε and p with ε̃ and p̃
which depend also on the additional quantnotableum
numbers n, w.

C. The partition function of the TT̄ perturbed theory

It is natural to expect the relation between TT̄ perturbed
models and the Nambu-Goto effective action to hold also in

5Often in the literature the coupling constant is defined as
g ¼ 2πσ.

6See for instance [40] for further details, but note that the
compactification radius r of [40] is equivalent to our ρ=

ffiffiffi
2

p
.

7We denote this partition function as Zð0Þ to remark that it
corresponds to the free case in absence of TT̄ deformation.
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presence of a transverse compactified dimension. The
Nambu-Goto model interface partition function computed
in Sec. II, with d ¼ 3 and with the single transverse
direction being compact, should therefore represent the
partition function of the TT̄ deformation of a free compact
boson. Let us consider the result of Eq. (2.32) for d ¼ 3.
Using Eq. (B11) and renaming for simplicity n and w the
integers n2 and w2 appearing in Eq. (2.32) we get8

Ẑtorus ¼
1

4

X
n1;n;w∈Z

X∞
k;k0¼0

pkpk0δn1þk−k0þnwe−σL0L1E ; ð3:21Þ

where

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4π

σL2
1

�
kþ k0 −

1

12

�
þ 4π2n21

σ2L4
1

þ 4π2n2

σ2L2
1L

2
þw2L2

L2
1

s
:

ð3:22Þ

To see that this expression corresponds to energy levels
E ¼ σL1E which satisfy the Burgers’ equation we have to
rewrite it in terms of the dimensionless compactification
parameter ρ introduced in Eq. (3.14), setting

L ¼
ffiffiffiffiffiffi
2π

σ

r
ρ: ð3:23Þ

Moreover, the Kronecker delta in Eq. (3.21) identifies
(minus) the integer n1 with the momentum p̃ appearing in
Eq. (3.20),

−n1 ¼ k − k0 þ nw ¼ p̃: ð3:24Þ

In this way we obtain

σL1E ¼ σL1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4π

σL2
1

�
1

2

�
n2

ρ2
þ w2ρ2

�
þ kþ k0 −

1

12

�
þ 4π2n21

σ2L4
1

s
¼ σL1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4π

σL2
1

ε̃þ 4π2

σ2L4
1

p̃2

s
; ð3:25Þ

where ε̃ was defined in Eq. (3.19) and p̃ in Eq. (3.20). We
see that this expression takes the form of Eq. (3.12), namely
that of the energy levels Eðt; L1Þ of the TT̄ perturbation of a
theory that at t ¼ 0 has the energy levels and momenta
characterized by the energy ε̃ and the momentum p̃. This
unperturbed theory is exactly the free compactified boson.
In other words, the Nambu-Goto model with one

compact transverse dimension can indeed be interpreted
as the TT̄ deformation of the free compactified boson, and
the torus NG partition function (3.21) provides the partition
function for this deformed theory. Let us remark however
that it is crucial to use Eq. (3.23) before mapping the string
tension σ to the perturbing parameter t. In the 2d space of
couplings ðσ; LÞ the TT̄ perturbation defines trajectories at
fixed ρ and thus sets a well-defined relation—modulated by
the marginal parameter ρ—between the compactification
scale L2 and the perturbation parameter σ. This is exactly
the relation that we were looking for and that will allow us
in the next section to take a sensible continuum limit of our
lattice observables.

IV. IMPLICATIONS FOR LGTS

Let us now come back to the result of Sec. II E on
the expectation value the Polyakov loops correlator in
presence of a compactified transverse dimension. Within

the Nambu-Goto effective string description this expect-
ation value is represented by the cylinder partition function,

hP†ðRÞPð0Þi≡ Ẑcyl; ð4:1Þ

and we have obtained exact expressions of Ẑcyl both in the
open string channel, Eq. (2.45), and in the closed string
channel, Eq. (2.50). These exact results could be compared
with numerical simulations of this observable in lattice
gauge theories to investigate the extent of validity of the
effective Nambu-Goto description. In the following, we
will focus on the d ¼ 3 case for simplicity.
In particular, if we consider the closed string channel

expression and assume a large distance R between the two
Polyakov loops, the exact result simplifies and takes a form
which displays clearly the effects of the compactification.
For large R the amplitude is dominated by the exchange of
the lowest-lying closed string state, the so-called tachyon.
To be more explicit let us introduce, extending what we did
for the transverse compactification scale in Eq. (3.14), the
dimensionless quantities,

r ¼
ffiffiffiffiffiffi
σ

2π

r
R; ρ ¼

ffiffiffiffiffiffi
σ

2π

r
L; l0 ¼

ffiffiffiffiffiffi
σ

2π

r
L0: ð4:2Þ

In terms of these quantities we can single out different
interesting regimes. For instance, choosing

r ∼ l0 ≫ ρ; ð4:3Þ
8The coefficients ck appearing in Eq. (2.32) reduce, for d ¼ 3,

to the numbers pk of partitions of the integer k appearing in
Eq. (3.18).
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the effect of the compactification radius is emphasized.
Testing in this regime our predictions against the ρ
dependence of lattice results one could investigate the
possible presence of a critical value ρc (see below).
Another interesting limit is the one in which

r ≫ ρ ≫ l0: ð4:4Þ

In this limit, the smallest length scale is the length of the
Polyakov loops and, as we mentioned in Sec. II B, this is
the situation in which one expects to find the largest
deviations of lattice data with respect to the NG predictions.
Thus, starting from a precise prediction of our first-order
NG model for this compactified situation, we may hope to
use the comparison with the corresponding lattice results to
gain further insight into the higher order corrections to the
confining string action. To this end it is mandatory to
isolate precisely the corrections due to the compactification
radius ρ from the remaining terms. We shall show below
that this is indeed possible and thus that this particular
geometry is perfectly suited to identify subtle correction
terms in the confining string action.
In the r ≫ ρ ≫ l0 limit, the arguments of the Bessel

functions appearing in Eq. (2.50) are large. Thus the Bessel
functions themselves have a decaying exponential behav-
ior, see Eq. (B12), and the terms with k > 0 are exponen-
tially suppressed with respect to the term with k ¼ 0. Note
that also increasing w yields contributions which are
suppressed, but less steeply than increasing k. We will
thus consider the lowest values of jwj to account for the
effect of a large but finite compactificaton parameter ρ.
We remain with

hP†ðRÞPð0Þi ¼ l0ffiffiffi
2

p
X
w∈Z

K0ðσÃE0Þ

∼
l0ffiffiffi
2

p
X
w∈Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2σÃE0

r
e−σÃE0 : ð4:5Þ

Here E0 corresponds to the expression in Eq. (2.52) with
d ¼ 3 and k ¼ 0, namely to

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

6l20

s
: ð4:6Þ

Note that we have to assume l0 > 1=
ffiffiffi
6

p
, that is L0 >ffiffiffiffiffiffiffiffiffiffi

π=3σ
p

to avoid the tachyon singularity in which E0

vanishes. Moreover from Eqs. (2.51), (2.47) and (4.2)
we have

σÃ¼2πl0r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þρ2

r2
w2

r
∼2πl0r

�
1þw2

2

ρ2

r2
þ…

�
; ð4:7Þ

where in the second step we took into account Eq. (4.3).

Let us keep in Eq. (4.5) the contributions of the lowest
winding numbers, w ¼ 0 and w ¼ �1. With a straightfor-
ward expansion in the small ratio ρ=r we get

hP†ðRÞPð0Þi∼
ffiffiffiffiffiffiffiffiffiffi
l0

8rE0

s
e−2πl0rE0

�
1þ2

�
1−

1

4

ρ2

r2

�
e−πl0E0

ρ2

r

�
:

ð4:8Þ

We see that the correction associated to the transverse
dimension has a very peculiar 1=R dependence which
should make it accessible to numerical simulations. It
should be possible, either using the exact expressions or
the approximation we just described, to compare efficiently
numerical simulations of the Polyakov correlator in lattice
gauge theories with a compact transverse direction with the
Nambu-Goto prediction; we plan to do so in a future work.
Let us go back to the regime introduced in Eq. (4.3). One

expects, decreasing the size ρ of the compact direction to
reach a critical value ρc where the NG predictions cease to
describe correctly the data. A reliable identification of ρc

would represent an important piece of evidence with
respect to some existing conjectures about the behavior
of this observable in lattice gauge theories. Let us discuss a
couple of specific issues.
It was proposed a few years ago by Meyer [16] that, at

the critical value of the compact direction, the theory
undergoes a dimensional reduction which could be
described as a Kosterlitz-Thouless (KT) phase transition.
The idea behind this conjecture is to consider the topo-
logically nontrivial windings of the flux tube around the
compactified transverse dimension as vortices in the world
sheet of the effective string which condense in the vacuum
at the point at which dimensional reduction occurs. In the
normalizations that we introduced in Sec. III B for the
c ¼ 1 CFT of a compact boson, see Eq. (3.15) and
footnote 6, the KT point corresponds to ρ ¼ 2. If the ρc

value at which our NG result for the Polyakov loop
correlators ceases to agree with the lattice data turns out
to be close to 2, it would support this conjecture. As a side
remark let us notice that our analysis suggests that, if the
conjecture holds, we should better expect the dimensional
reduction point to be represented by the TT̄ deformation of
a KT point. Such a critical point would represent the first
physical realization of a TT̄ deformed Kosterlitz-Thouless
transition.
Another important aspect that could be better understood

following a precise determination of ρc is related to the
effects of the intrinsic width9 of the flux tube. One expects
that the effective string picture holds only for values of the
transverse dimension larger than this scale. This is indeed

9For an introduction to the intrinsic width of the flux tube in
the confining regime of lattice gauge theories see for instance [58]
and the references therein.
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the main difference between the real flux tube of a
confining gauge theory and the Nambu-Goto string which
instead has a (classically) vanishing thickness10

The correlator of spacelike Polyakov loops is a perfect
tool to identify and measure this intrinsic width. In fact
by increasing enough the temperature, i.e., decreasing the
transverse size L, at some point it will reach the intrinsic
width of the flux tube. This point can be easily recognized
because, once this threshold is reached, if one keep
increasing the temperature, i.e., if one starts to “squeeze”
the flux tube below its intrinsic width, the spacelike string
tension starts to increase [1–3]. This phenomenon is
understood in the effective string framework as due to
the increase in the flux density within the flux tube due to
its squeezing [1–5]. With our analysis we may associate a
value ρc to this threshold and perform a well-defined
continuum limit for this quantity. It would be very
interesting to see if this value is universal or if it depends
on the particular gauge theory under study and if it is
related to the KT transition mentioned above or to some
other special point along the ρ line.
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APPENDIX A: DETAILS ON THE DERIVATION
OF THE PARTITION FUNCTIONS

Let us consider the zero-mode factor in the directions 0
and 1, and let us write it as

Γðτ; τ̄;L0ÞΓðτ; τ̄;L1Þ ¼
σL0L1

2πτ2
Γð2Þðτ; τ̄;L0; L1Þ: ðA1Þ

Starting from the last expression in Eq. (2.23) and using the
manipulations introduced in [52] we can write

Γð2Þðτ; τ̄;L0; L1Þ

¼
X
A

eσL0L1 detA exp

�
−
σL2

0

2τ2

				ð1; iL1=L0ÞA
�
τ

1

�				2
�
;

ðA2Þ

where A is the two-by-two integer matrix,

A ¼
�
w0 m0

w1 m1

�
: ðA3Þ

A modular transformation τ → τ0 as in Eq. (2.16) is easily
seen to be equivalent to

A → A0 ¼ A

�
a b

c d

�
; ðA4Þ

this amounts to the transformation (2.25) on both m0, w0

and m1, w1. The space of the matrices A is partitioned into
orbits of this action, under which

detA ¼ w0m1 − w1m0 ðA5Þ

is invariant. Given the meaning of the m’s and w’s as
wrapping numbers, detA is the number of times the string
wraps the target space torus in the direction 0 and 1. In
Eq. (2.15) Γð2Þ, multiplied by other modular invariant
factors, is integrated over the fundamental cell F .
Equivalently, as argued in [52], we can integrate τ over
the entire upper half plane but limit the sum over the
matrices A to one representative for each orbit. To repro-
duce the interface free energy we have to pick up the orbit
with detA ¼ 1, a representative of which is simply A ¼ 1.
We can also restrict the integration over τ to the funda-
mental cell with respect to the subgroup of PSLð2;ZÞ given
by the translations τ → τ þ b only, namely the periodic
strip −1=2 ≥ τ1 ≥ 1=2, and sum in Γð2Þ over all matrices of
the form,

A ¼
�
1 m0

0 1

�
: ðA6Þ

APPENDIX B: USEFUL FORMULAS

We list here miscellaneous definitions, properties and
formulas that we use in the main text.
Dedekind’s η-function is defined as

ηðqÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ: ðB1Þ

It can be expanded in powers of q as follows:

½ηðqÞ�−1 ¼
X∞
k¼0

pkqk−
1
24; ðB2Þ

where pk is the number of partitions of the integer k. We
will use the following generalization of this expansion:

½ηðqÞ�−ðd−2Þ ¼
X∞
k¼0

ckqk−
d−2
24 : ðB3Þ

10The quantity which is usually called in the LGT context
“width of the Nambu-Goto string”, which diverges logarithmi-
cally with the interquark distance, is only due to quantum
fluctuation [59] and should not be confused with the intrinsic
width that we discuss here. The actual width of the flux tube is the
sum of the two.
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Under a modular transformation τ → τ0 with

τ0 ¼ aτ þ b
cτ þ d

; a; b; c; d ∈ Z; ad − bc ¼ 1; ðB4Þ

one has

τ2 →
τ2

jcτ þ bj2 ; ðB5Þ

while the following quantities are invariant:

d2τ
τ22

;
ffiffiffiffi
τ2

p
ηðqÞηðq̄Þ; ðB6Þ

where q ¼ expð2πiτÞ. Under the S modular transformation
τ → −1=τ, in particular, we have

ηðe−2πi=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ηðe2πiτÞ: ðB7Þ

The Poisson resummation formula states thatX
n;w∈Z

exp ð−πan2 þ 2πibnÞ ¼ a−
1
2

X
m∈Z

exp

�
−
πðm − bÞ2

a

�
:

ðB8Þ

In the main text we make use of the following integral:

Z
∞

0

dt
t1þγ e

−α2t−β2

t ¼ 2

�jαj
jβj
�

γ

Kγð2jαjjβjÞ: ðB9Þ

In the case γ ¼ 1=2 this reduces simply to

Z
∞

0

dt

t3=2
e−α

2t−β2

t ¼
ffiffiffi
π

p
jβj e

−2jαjjβj; ðB10Þ

in accord with the relation,

K1=2ðxÞ ¼
1

2

ffiffiffiffiffiffi
2π

x

r
e−x: ðB11Þ

The asymptotic expansion of the functions KαðzÞ is of
the form,

KαðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z
�
1þ 4α2 − 1

8z
þ…

�
: ðB12Þ
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