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Dual representations are constructed for non-Abelian lattice spin models with UðNÞ and SUðNÞ
symmetry groups, for all N and in any dimension. These models are usually related to the effective models
describing the interaction between Polyakov loops in the strong coupled QCD. The original spin degrees of
freedom are explicitly integrated out and a dual theory appears to be a local theory for the dual integer-
valued variables. The construction is performed for the partition function and for the most general
correlation function. The latter include the two-point function corresponding to quark–anti-quark free
energy and the N-point function related to the free energy of a baryon. We consider both pure gauge models
and models with static fermion determinant for both the staggered and Wilson fermions with an arbitrary
number of flavours. While the Boltzmann weights of such models are complex in the presence of nonzero
chemical potential the dual Boltzmann weights appear to be strictly positive on admissible configurations.
An essential part of this work with respect to previous studies is an extension of the dual representation to
the case of (1) an arbitrary value of the temporal coupling constant in the Wilson action and (2) an arbitrary
number of flavors of static quark determinants. The applications and extensions of the results are discussed
in detail. In particular, we outline a possible approach to Monte-Carlo simulations of the dual theory, to the
large N expansion and to the development of a tensor renormalization group.

DOI: 10.1103/PhysRevD.102.014502

I. INTRODUCTION

Dual representations of lattice gauge theories (LGTs)
and classical spin models are a useful nonperturbative tool
that allows us to study many aspects of lattice quantum
field theories. In the early days of LGT the dual trans-
formations proved very efficient in the studies of the
confinement and related problems, especially in the
Abelian gauge theories [1,2]. Also, dual representations
appear to be very efficient for numerical simulations both at
zero [3] and at finite temperatures for Uð1Þ LGT [4]. The
following years have seen many attempts to extend the
duality transformations to non-Abelian models using differ-
ent approaches and strategies. In the pure gauge case the
dual representation can be constructed starting from the
plaquette formulation [5,6]. Dual variables are introduced
as variables conjugate to local Bianchi identities [7,8]. The
dual model appears to be nonlocal due to the presence of

connectors in the Bianchi identities for gauge models. An
analogue of the plaquette formulation for the principal
chiral model is so-called link representation [9,10]. In this
case one can construct a local dual theory for all UðNÞ and
SUðNÞ principal chiral models [11]. Another approach is
based on (1) the character expansion of the Boltzmann
weight and (2) the integration over link variables using the
Clebsch-Gordan expansion [12,13]. The resulting theory is
the local dual theory written in terms of invariant 6j
symbols. Several attempts to simulate this dual version
have been undertaken (see Ref. [14] and references
therein). In the opposite case, the strong coupling limit,
the SUðNÞ LGT can be mapped onto monomer-dimer and
closed baryon loop model [15].
During the last decade the dual representations have been

applied to solving, fully or partially, the sign problem
appearing in the lattice QCD in the presence of nonzero
chemical potential and/or nontrivial topological term, like the
θ-term. While it is still too early to say unambiguously if this
approach can solve the sign problem in QCD, some advances
in simpler models are encouraging. For example, the dual
form of the massless two-dimensionalUð1Þ LGTwith one or
two flavors of staggered fermions is free of the sign problem
[16]. The samewas proven in the strong coupling limit of the
scalar QCD with one, two or three scalar flavors [17].
In general, there are two strategies attempting to con-

struct positive Boltzmann weight for QCD or QCD-like
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theory at finite density. The first one relies on full integra-
tion over original degrees of freedom, i.e., gauge and
fermion fields. The form of the final result strongly depends
on the method of integration [18–22]. We do not discuss
details of this approach here because in this paper we use a
second strategy. It consists, first, in construction of an effec-
tive model for gauge loops winding around the lattice in the
temporal direction, i.e., for Polyakov loops. Only in the
second step, the integration over Polyakov loops is accom-
plished. This strategy was successfully applied for the SUð3Þ
Polyakov loop model in the strong coupling region for both
temporal and spatial couplings of the Wilson action and in
the heavy quark regime [23–25]. Similar results for UðNÞ
models in the same approximations have been presented in
[21]. More discussion on the effective Polyakov loop models
can be found in Refs. [26,27].
In this paper we calculate the dual representations for

two Polyakov loop models. The Boltzmann weight of
the first model is the same as the weight studied in [23].
We extend the results of [23] in several directions. First,
our calculations are done for all values of N and in any
dimension. Second, we consider the full static quark
determinant with an arbitrary number of staggered or
Wilson fermion flavors of different masses and chemical
potentials. Finally, the result is given for the most general
correlation function. These include, as particular cases, the
partition function, two-point function related to the free
energy of quark–antiquark pair and for N-point function
which gives the free energy of a baryon state. The
Boltzmann weight of the second model is defined for all
values of the temporal coupling constant, so that the strong
coupling limit is imposed only with respect to the spatial
coupling. Again, we treat all SUðNÞ models with an
arbitrary number of static quark flavors and compute both
the partition and correlation functions. We shall also
explain how the results obtained can be easily transformed
into results for UðNÞ and ZðNÞ Polyakov loop models.
Boltzmann weights of all dual representations are non-
negative, therefore our formulation could be used for
Monte-Carlo simulations of the models at finite baryon
or other chemical potentials.
This paper is organized as follows. In Sec. II we define

the Polyakov loop models and introduce our notations. In
Sec. III we derive dual representations for spin models in
the strong coupling region of the temporal coupling
constant. In Sec. IV the result is extended to the arbitrary
values of the temporal coupling. The possible applications
and perspectives are discussed in Sec. V. In the Appendix
we explain all definitions and our notations related to the
group representation theory. Also, we evaluate all group
integrals appearing in the main text.

II. POLYAKOV LOOP MODELS

We work on a d-dimensional hypercubic lattice
Λ ¼ Ld with linear extension L and a unit lattice spacing.

x⃗≡ x ¼ ðx1;…; xdÞ, xi ∈ ½0; L − 1� denotes the site of the
lattice, l ¼ ðx⃗; νÞ is the lattice link in the ν-direction and
p ¼ ðx⃗; μ < νÞ is the plaquette in the ðμ; νÞ-plane. eν is a
unit vector in the direction ν. Periodic boundary conditions
are imposed in all directions. Let G ¼ UðNÞ; SUðNÞ;
UðxÞ ∈ G, and dU denotes the (reduced) Haar measure
on G. TrU will denote the fundamental character of G. The
character of the irreducible representation λ will be denoted
by sλðUÞ. The dimension of the representation is sλðIÞ.
In this paper we shall study some spin models on G

with a local interaction in the external field and whose
degrees of freedom are the eigenvalues of a matrix U in
UðNÞ. We will label symmetric Schur functions on these
eigenvalues by sλðUÞ. For SUðNÞ group these eigenvalues
satisfy an additional constraint

Q
n
k¼1 uk ¼ 1. These models

describe an effective interaction between Polyakov loops in
(dþ 1)-dimensional LGT with Nf flavors of static quarks
at finite temperature and nonzero quark chemical potential
μ. The general form of the partition function of the models
is given by

ZΛðβ; m; μ;N;NfÞ

≡ Z ¼
Z Y

x

dUðxÞ
Y
x;ν

BgðβÞ
Y
x

YNf

f¼1

Bqðmf; μfÞ: ð1Þ

On an anisotropic lattice and in the limit of vanishing
spatial gauge coupling βs one can explicitly integrate out all
spatial-like fields in any number of dimensions to get the
following Boltzmann weight describing the Polyakov loop
interaction (see, for instance Ref. [28] and references
therein)

BgðβÞ ¼
X
fλg

DλðβÞsλðUðxÞÞsλðU†ðxþ eνÞÞ: ð2Þ

The coefficients of this weight depend on the temporal
gauge coupling βt ≡ β and can be expressed as

DλðβÞ ¼
�

CλðβÞ
sλðIÞC0ðβÞ

�
Nt

;

CλðβÞ ¼
X∞
k¼−∞

det Iλi−iþjþkðβÞ1≤i;j≤N: ð3Þ

Here CλðβÞ are the coefficients of the character expansion
into irreducible representations of the group G of the weight
expðβReTrUÞ, InðxÞ is the modified Bessel function and Nt
is the lattice size in the temporal direction. In the strong-
coupling region β ≪ 1, the leading contribution comes from
the fundamental character with coefficient DFðβÞ, therefore
the whole Boltzmann weight is approximated as

BgðβÞ ¼ exp ½βeffReTrUðxÞTrU†ðxþ eνÞ�;
βeff ¼ 2DFðβÞ: ð4Þ
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In an approximation where one could neglect the fermion
interaction in spatial directions, the static quark determinant
can be calculated exactly, and the corresponding Boltzmann
weight has the following form (for Nt even)

Bqðmf; μfÞ ¼ Bstðhfþ; hf−Þ
¼ Ast det ½1þ hfþUðxÞ� det ½1þ hf−U†ðxÞ�; ð5Þ

where the determinant is taken over group indices and

hf� ¼ e−ðarc sinhmf∓μfÞNt : ð6Þ

For Wilson fermions the static quark determinant is slightly
different due to additional determinant over the spinor
indices

Bqðmf; μfÞ ¼ Bwðhfþ; hf−Þ
¼ Aw det ½1þ hfþUðxÞ�2 det ½1þ hf−U†ðxÞ�2:

ð7Þ

In this case one has

hf� ¼ ð2κfe�μfÞNt ; κf ¼ 1

2mf þ 2dþ 2 cosh μf
: ð8Þ

The unessential constants

Ast ¼ eNNtarc sinhmf ; Aw ¼ ð2κfÞ2NNt ð9Þ

will be omitted in the following.
When mf ≫ jμfj or κf ≪ e�μf one usually replaces

these exact expressions with their approximation

YNf

f¼1

Bqðmf; μfÞ ≈ Bðhþ; h−Þ

¼ exp ½hþTrUðxÞ þ h−TrU†ðxÞ�; ð10Þ

where h� ¼ s
P

f h
f
�, s ¼ 1 for the staggered and s ¼ 2

for the Wilson fermions. The Boltzmann weight of all these
models is complex if μf ≠ 0 or, in general, if hfþ ≠ hf−.

In what follows we assume hf� in (6), (8), and (10) are
arbitrary complex-valued variables. If hf� are positive, the
obtained dual weight is positive, too.

III. DUAL OF SPIN MODELS I

In this section we consider the partition function (1) with
the weight BgðβÞ given by (4). The static fermion con-
tribution Bqðmf; μfÞ will be taken either in its approximate
form (10) or in exact forms (5), (7). The former case has
been analyzed in [23] for SUð3Þ by making use of an exact
parametrization of the SUð3Þ characters and measure.
Consider the following Taylor expansion of the

Boltzmann weight BgðβÞ

exp ½βeffReTrUðxÞTrU†ðxþ eνÞ� ¼
X∞
r¼−∞

X∞
s¼0

�
βeff
2

�jrjþ2s 1

ðsþ jrjÞ!s!
× ðTrUðxÞTrU†ðxþ eνÞÞsþ1

2
jrjþ1

2
rðTrU†ðxÞTrUðxþ eνÞÞsþ1

2
jrj−1

2
r: ð11Þ

For the fermion weight (10) we use the similar expansion

exp ½hþTrUðxÞ þ h−TrU†ðxÞ� ¼
X∞
k¼−∞

X∞
m¼0

1

ðmþ jkjÞ!m!
ðhþTrUðxÞÞmþ1

2
jkjþ1

2
kðh−TrU†ðxÞÞmþ1

2
jkj−1

2
k: ð12Þ

To deal with exact static determinants (5) and (7) we use an
expansion of the determinant in the Schur functions
[Eq. (A21) in the Appendix], which is valid, in such
generality, both for the staggered and for the Wilson
fermions. Notations and some explanations regarding this
formula are given in the Appendix. We shall calculate the
dual expression for the most general correlation function

ΓðηðxÞ; η̃ðxÞÞ ¼ ZðηðxÞ; η̃ðxÞÞ
Z

≡
�Y

x

ðTrUðxÞÞηðxÞðTrU†ðxÞÞη̃ðxÞ
�
: ð13Þ

The partition function equals ZðηðxÞ; η̃ðxÞÞ for ηðxÞ ¼
η̃ðxÞ ¼ 0.
In what follows we analyze separately two cases:

(1) heavy quark approximation (12) and (2) exact static
determinant (A21). All formulas below will be given for
SUðNÞ models. In the end, we shall explain how one can
easily obtain the corresponding dual representations for
UðNÞ and ZðNÞ models using SUðNÞ results.

A. Heavy quarks

The original partition function in the presence of sources
ηðxÞ, η̃ðxÞ is given by
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ZðηðxÞ; η̃ðxÞÞ ¼
Z Y

x

dUðxÞ
Y
x

ðTrUðxÞÞηðxÞðTrU†ðxÞÞη̃ðxÞ

×
Y
x;ν

exp ½βeffReTrUðxÞTrU†ðxþ eνÞ�
Y
x

exp ½hþTrUðxÞ þ h−TrU†ðxÞ�: ð14Þ

Using (11) and (12) it can be written after some rearrangement as

ZðηðxÞ; η̃ðxÞÞ ¼
Y
l

� X∞
rðlÞ¼−∞

X∞
sðlÞ¼0

�
βeff
2

�jrðlÞjþ2sðlÞ 1

ðsðlÞ þ jrðlÞjÞ!sðlÞ!
�

×
Y
x

X∞
kðxÞ¼−∞

X∞
mðxÞ¼0

ðhþh−ÞmðxÞþ1
2
jkðxÞj

ðmðxÞ þ jkðxÞjÞ!mðxÞ!
�
hþ
h−

�1
2
kðxÞY

x

QNðnðxÞ; pðxÞÞ: ð15Þ

Here QNðn; pÞ is a group integral defined and calculated in the Appendix, Eqs. (A1), (A27)

QNðn; pÞ ¼
X∞
q¼−∞

δn−p;qNQ̄N;qðjÞ; Q̄N;qðjÞ ¼
X
λ⊢j

dðλÞdðλþ jqjNÞ; ð16Þ

where j ¼ minðn; pÞ, dðλÞ is the dimension of the representation λ of the symmetric group Sn and the notation λþ jqjN is
defined in the Appendix after Eq. (A22). The integers nðxÞ and pðxÞ are given by

nðxÞ ¼ tðxÞ þ 1

2

Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ þ
1

2
kðxÞ þ ηðxÞ; ð17Þ

pðxÞ ¼ tðxÞ − 1

2

Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ −
1

2
kðxÞ þ η̃ðxÞ; ð18Þ

tðxÞ ¼
X2d
i¼1

�
sðliÞ þ

1

2
jrðliÞj

�
þmðxÞ þ 1

2
jkðxÞj; ð19Þ

where li; i ¼ 1;…; 2d are 2d links attached to a site x and sðlÞ ¼ sνðxÞ, rðlÞ ¼ rνðxÞ. The N-ality constraint n − p ¼ qN in
(16) becomes

Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ þ kðxÞ þ ηðxÞ − η̃ðxÞ − qðxÞN ¼ 0: ð20Þ

The flux representation of Ref. [23] can be simply recovered from this result, by performing the inverse change of
variables to the one described in [24]

lx;ν ¼ sðlÞ þ 1

2
ðjrðlÞj þ rðlÞÞ; sx ¼ mðxÞ þ 1

2
ðjkðxÞj þ kðxÞÞ;

l̄x;ν ¼ sðlÞ þ 1

2
ðjrðlÞj − rðlÞÞ; s̄x ¼ mðxÞ þ 1

2
ðjkðxÞj − kðxÞÞ; ð21Þ

where l, l̄ are dimer variables, and s, s̄ are monomer variables. Thus our formulation generalizes this flux representation to
arbitrary SUðNÞ group.

1. Pure gauge theory

Strictly speaking, the conventional duality transformations can be carried out only in the pure gauge theory, i.e., when
hþ ¼ h− ¼ 0 and, hence mðxÞ ¼ kðxÞ ¼ 0. Then, if jðxÞ ¼ minðnðxÞ; pðxÞÞ, the expression (15) takes the form
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ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

X∞
frðlÞg¼−∞

X∞
fsðlÞg¼0

Y
x

δnðxÞ−pðxÞ;qðxÞN

×
Y
l

��
βeff
2

�jrðlÞjþ2sðlÞ 1

ðsðlÞ þ jrðlÞjÞ!sðlÞ!
�Y

x

½Q̄N;qðxÞðjðxÞÞ�; ð22Þ

while the constraint (20) reads

nðxÞ − pðxÞ ¼
Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ þ ηðxÞ − η̃ðxÞ ¼ qðxÞN: ð23Þ

This constraint can be solved in terms of dual variables in
any dimension. It is important to emphasize that only ZðNÞ
invariant correlation functions are nonvanishing due to
above constraint. Indeed, taking into account that on the
periodic lattice

P
x

P
d
ν¼1 ðrνðxÞ − rνðx − eνÞÞ ¼ 0 one can

be assured that

X
x

ðηðxÞ − η̃ðxÞÞ ¼ NS; S − integer: ð24Þ

Equation (24) implies that only invariant, i.e., mesonic and
baryonic correlators of the Polyakov loops are nonvanish-
ing in the absence of the external field (dynamical quarks).
In the following we consider, for the sake of simplicity,

the two-point correlation function, corresponding to the
free energy of the quark–antiquark pair and the N-point
correlation function, corresponding to the N-quark (or
baryon) potential. In the first case the sources are given by

ηðxÞ ¼ ηð0Þ ¼ ηδx;0; η̃ðxÞ ¼ η̃ðRÞ ¼ η̃δx;R ¼ ηδx;R:

ð25Þ

In the second case we introduce sources as

ηðxÞ ¼ ηðxiÞ ¼ ηδx;xi ; i ¼ 1;…; N: ð26Þ

We give below explicit formulas for d ¼ 1, 2, 3 which
follow from Eqs. (22) and (23).

One-dimensional model.—One-dimensional model is espe-
cially simple because we get from (20)

rðlÞ ¼ rþ kðlÞN þ ηðlÞ; ð27Þ

where r ∈ ½0; N − 1� becomes a global variable, kðlÞ ∈
½−∞;∞� and ηðlÞ ¼ η for a set of links between sites x ¼ 0,
x ¼ R and ηðlÞ ¼ 0 for links lying outside of the interval
½0; R�. The delta-function in the 1st line of (22) is now
δkðlÞ−kðl−1Þ;qðxÞ. Making a shift in qðxÞ, the partition function
with sources can be presented as

Zðηð0Þ; η̃ðRÞÞ ¼
XN−1

r¼0

X∞
fkðlÞg¼−∞

X∞
fsðlÞg¼0

Y
x

½Q̄N;kðlÞ−kðl−1ÞðjðxÞÞ�

×
Y
l

��
βeff
2

�jrþkðlÞNþηðlÞjþ2sðlÞ 1

ðsðlÞ þ jrþ kðlÞN þ ηðlÞjÞ!sðlÞ!
�
; ð28Þ

jðxÞ ¼
X2
i¼1

�
sðliÞ þ

1

2
jrþ kðliÞNj

�
� 1

2
ðkðl1Þ − kðl2ÞÞN; ð29Þ

where links l1, l2 have a site x in common. Signs þ and −
correspond to nðxÞ and pðxÞ, correspondingly.

Two-dimensional model.—The solution of the constraint
(20) in the two-dimensional model and in the presence of
sources for the quark-anti-quark potential is given by the
dual variables as (sites are placed in the center of original

plaquettes, links are dual to links and sites become dual
plaquettes)

rðlÞ ¼ rðxÞ − rðxþ eνÞ þ kðlÞN þ ηðlÞ: ð30Þ
Here, ηðlÞ ¼ η if l ∈ SR, where SR is some path connecting
points 0 and R, and ηðlÞ ¼ 0, otherwise. The partition
function on the dual lattice takes the form
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Zðηð0Þ; η̃ðRÞÞ ¼
XN−1

frðxÞg¼0

X∞
fkðlÞg¼−∞

X∞
fsðlÞg¼0

Y
p

½Q̄N;kðpÞðjðpÞÞ�

×
Y
l

� ðβeff
2
ÞjrðxÞ−rðxþeνÞþkðlÞNþηðlÞjþ2sðlÞ

ðsðlÞ þ jrðxÞ − rðxþ eνÞ þ kðlÞN þ ηðlÞjÞ!sðlÞ!
�
; ð31Þ

where we have introduced notations

kðpÞ ¼ kðl1Þ þ kðl2Þ − kðl3Þ − kðl4Þ; ð32Þ

jðpÞ ¼
X4
i¼1

�
sðliÞ þ

1

2
jΔrðxiÞ þ kðliÞNj

�
� 1

2
kðpÞ: ð33Þ

Four links li form a dual plaquette p with vertices xi,
ΔrðxiÞ ¼ rðxiÞ − rðxi þ eνÞ and signs “�” correspond to
duals of nðxÞ and pðxÞ defined in Eqs. (17), (18).
The solution of the constraint (20) in the presence of the

baryon sources (26) can be constructed as follows. Let us
take an arbitrary point x0 and connect all N points xi with
x0 by some path Si consisting of dual links. Introduce dual
variables as in (30), where ηðlÞ ¼ η if l ∈ Si and ηðlÞ ¼ 0,
otherwise. The N-ality constraint (20) becomes

kðpÞ þ ηδp;p0
¼ qðpÞ; ð34Þ

where the plaquette p0 is dual to the site x0 and kðpÞ is the
same as in (32). Strictly speaking, the solution of the form
(30) is only valid in two dimensions if N ≤ 4. Then one can
take all paths Si consisting of nonintersecting links and
solution (30) holds. Though it is not a problem to extend the
solution (30) to arbitrary N we restrict ourselves here to the
case N ≤ 4. We thus conclude that the partition function in
the presence of such baryon sources is of the form (31),
where one has to substitute kðpÞ → kðpÞ þ ηδp;p0

.

Three-dimensional model.—In the physically most relevant
three dimensional case one obtains the solution of (20) in
the following form

rðlÞ ¼ rðl1Þ þ rðl2Þ − rðl3Þ − rðl4Þ þ kðpÞN þ ηðpÞ
≡ rðpÞ þ kðpÞN þ ηðpÞ: ð35Þ

Here, four links li form a plaquette p dual to the original
link l. ηðpÞ ¼ η if l ∈ SR, where SR is some path consisting
of dual plaquettes and connecting points 0 and R, and
ηðpÞ ¼ 0, otherwise. The partition function on the dual
lattice reads

Zðηð0Þ; η̃ðRÞÞ

¼
XN−1

frðlÞg¼0

X∞
fkðpÞg¼−∞

X∞
fsðpÞg¼0

Y
c

½Q̄N;kðcÞðjðcÞÞ�

×
Y
p

� ðβeff
2
ÞjrðpÞþkðpÞNþηðpÞjþ2sðpÞ

ðsðpÞ þ jrðpÞ þ kðpÞN þ ηðpÞjÞ!sðpÞ!
�
: ð36Þ

Q
c is a product over all cubes of the dual lattice and the

notations are used

kðcÞ ¼ kðp1Þ þ kðp2Þ þ kðp3Þ − kðp4Þ − kðp5Þ − kðp6Þ;
ð37Þ

jðcÞ ¼
X6
i¼1

�
sðpiÞ þ

1

2
jrðpiÞ þ kðpiÞNj

�
� 1

2
kðcÞ: ð38Þ

Six plaquettes pi form a dual cube c and signs � corres-
pond to duals of nðxÞ and pðxÞ defined in Eqs. (17), (18).
Extension of this result to the N-point correlation

function is done precisely like in two-dimensional theory.
In particular, ifN ≤ 6 the solution of (20) can be taken as in
(35). Then, defining paths Si; i ¼ 1;…; N that connect
points xi with some reference point x0 (on the dual lattice
path Si is formed out of plaquettes and connects cubes ci
and c0 which are dual to the corresponding sites) and
introducing sources ηðpÞ ¼ η on plaquettes belonging to Si
one finds that the N-point correlation function is described
by Eq. (36) where one has to take the corresponding sources
ηðpÞ and make the substitution kðcÞ→kðcÞþηδc;c0 .
We can conclude that all three-dimensional SUðNÞ spin

models are dual to the gauge models whose partition
function is given by Eq. (36) with ηð0Þ ¼ η̃ðRÞ ¼ 0.

2. Full theory

Here we proceed with the full theory given by Eq. (15).
Using N-ality constraint (20) one can sum up over kðxÞ.
With the help of notation

rðxÞ ¼
Xd
ν¼1

ðrνðx − eνÞ − rνðxÞÞ; ð39Þ

we obtain after some manipulations the following
expression
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ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg;frðlÞg¼−∞

X∞
fmðxÞg;fsðlÞg¼0

Y
x

½eμðqðxÞNþη̃ðxÞ−ηðxÞÞQ̄N;qðxÞðjðxÞÞ�

×
Y
l

ðβeff
2
ÞjrðlÞjþ2sðlÞ

ðsðlÞ þ jrðlÞjÞ!sðlÞ!
Y
x

h2mðxÞþjrðxÞþqðxÞNþη̃ðxÞ−ηðxÞj

ðmðxÞ þ jrðxÞ þ qðxÞN þ η̃ðxÞ − ηðxÞjÞ!mðxÞ! : ð40Þ

We used here the property
P

x rðxÞ ¼ 0 and introduced parametrization

h� ¼ he�μ: ð41Þ
The expression (40) is our final dual representation for SUðNÞ Polyakov loop models valid for all N and in any dimension.
The function Q̄N;qðxÞðjðxÞÞ is defined in Eq. (16) with jðxÞ ¼ minðjþðxÞ; j−ðxÞÞ and j�ðxÞ is given by

j�ðxÞ ¼ tðxÞ þ 1

2
ðηðxÞ þ η̃ðxÞ � qðxÞNÞ;

tðxÞ ¼
X2d
i¼1

�
sðliÞ þ

1

2
jrðliÞj

�
þmðxÞ þ 1

2
jrðxÞ þ qðxÞN þ η̃ðxÞ − ηðxÞj: ð42Þ

Some comments are in order:
(i) As follows from Eq. (40) and exact expression for

the function QN;qðjÞ given in (16), the dual Boltz-
mann weight is non-negative if hþ; h− > 0 or if
hþ; h− < 0. Hence, in this region the dual formu-
lation can be used for the numerical simulations of
the model with nonvanishing chemical potentials.

(ii) Most thermodynamical functions and local physical
observables, like the energy density, the baryon
density, the quark condensate, etc. can be easily
translated into the dual form by taking the corre-
sponding derivatives with respect to βeff , h

f
� or μf.

This amounts to a local shift in a corresponding
summation variable and can be presented as an
expectation value calculated over the dual partition
function.

(iii) The long-distance observables, like two- and N-
point correlation functions can also be written as
expectation values in the dual form. This follows
directly from (40).

3. UðNÞ and ZðNÞ models

Here we explain briefly how the general result for SUðNÞ
models can be used to compute the corresponding dual
representations for UðNÞ and ZðNÞ models. The latter is
equivalent to vector Potts models and can be obtained from
SUðNÞmodels by replacingUðxÞmatrices with their center
elements. For simplicity we restrict ourselves here to the
partition functions, i.e., ηðxÞ ¼ η̃ðxÞ ¼ 0.

UðNÞmodel.—As explained in the Appendix, the only term
contributing to UðNÞ group integrals is the term with
qðxÞ ¼ 0. Therefore, from Eq. (40) one gets for the
partition function

Z ¼
X∞

fqðxÞg;frðlÞg¼−∞

X∞
fmðxÞg;fsðlÞg¼0

Y
x

½Q̄NðjðxÞÞ�

×
Y
l

ðβeff
2
ÞjrðlÞjþ2sðlÞ

ðsðlÞ þ jrðlÞjÞ!sðlÞ!
Y
x

h2mðxÞþjrðxÞj

ðmðxÞ þ jrðxÞjÞ!mðxÞ! ;

ð43Þ

jðxÞ ¼
X2d
i¼1

�
sðliÞ þ

1

2
jrðliÞj

�
þmðxÞ þ 1

2
jrðxÞj: ð44Þ

ZðNÞ model.—Even simpler is the result for ZðNÞ model.
In this case Q̄N;qðxÞðjðxÞÞ ¼ 1. Taking into account that

X∞
s¼0

ðx
2
Þrþ2s

ðsþ rÞ!s! ¼ IrðβÞ; ð45Þ

where IrðxÞ is the modified Bessel function, the partition
function appears to be

Z ¼
X∞

fqðxÞg;frðlÞg¼−∞

eμN
P

x
qðxÞY

l

IrðlÞðβeffÞ
Y
x

IrðxÞþqðxÞNðhÞ:

ð46Þ

Let us add some more comments here:
(i) Clearly, all comments given in the end of Sec. III A 2

remain valid for UðNÞ and ZðNÞ models.
(ii) It follows from (43) that the partition function and

invariant observables do not depend on the chemical
potential for UðNÞ models with one fermion flavor.
In case of two flavors, the Boltzmann weight
depends only on the difference of chemical poten-
tials μ1 − μ2.
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(iii) In the pure gauge case the corresponding repre-
sentations for UðNÞ and ZðNÞ models can be
straightforwardly obtained from Eqs. (28), (31),
and (36).

(iv) The dual form of the XY model can be calculated
either taking N ¼ 1 in UðNÞ case or as a limit
N → ∞ in ZðNÞ case. E.g., in the pure gauge three-
dimensional case one recovers the following dual
gaugelike form of the XY model

ZXYðβÞ ¼
X∞

frðlÞg¼−∞

Y
l

IrðpÞðβÞ;

rðpÞ ¼ rðl1Þ þ rðl2Þ − rðl3Þ − rðl4Þ: ð47Þ

B. Exact static determinant

In this subsection, we compute the dual representation
for the theory with the exact static determinant with an

arbitrary number of flavors of the staggered, Eq. (5), or the
Wilson, Eq, (7), fermions. As in the previous subsection,
we shall calculate the dual expression for the most general
correlation function defined in (13). The original partition
function in the presence of sources ηðxÞ, η̃ðxÞ is given by

ZðηðxÞ; η̃ðxÞÞ

¼
Z Y

x

dUðxÞ
Y
x

ðTrUðxÞÞηðxÞðTrU†ðxÞÞη̃ðxÞ

×
Y
x;ν

exp ½βeffReTrUðxÞTrU†ðxþ eνÞ�
Y
x

YNf

f¼1

Bqðmf;μfÞ:

ð48Þ

The gauge part of the Boltzmann weight BgðβÞ is treated as
in the previous subsection using the expansion (11).
Substituting this expansion into (48) one gets after some
rearrangement

ZðηðxÞ; η̃ðxÞÞ ¼
Y
l

� X∞
rðlÞ¼−∞

X∞
sðlÞ¼0

�
βeff
2

�jrðlÞjþ2sðlÞ 1

ðsðlÞ þ jrðlÞjÞ!sðlÞ!
�

×
Y
x

RN;Nf
ðnðxÞ; pðxÞ;mf; μfÞ: ð49Þ

Here, the function RN;Nf
ðr; s;mf; μfÞ is a group integral defined in Eq. (A3) of the Appendix. The integers nðxÞ and pðxÞ

are given by

nðxÞ ¼
X2d
i¼1

�
sðliÞ þ

1

2
jrðliÞj

�
þ 1

2

Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ þ ηðxÞ; ð50Þ

pðxÞ ¼
X2d
i¼1

�
sðliÞ þ

1

2
jrðliÞj

�
−
1

2

Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ þ η̃ðxÞ; ð51Þ

where li; i ¼ 1;…; 2d are 2d links attached to a site x.
To deal simultaneously with staggered and Wilson fermions we use the representation (A21) for the Nf-flavor static

determinant proven in the Appendix. With this representation and making use Eq. (A20) the group integral can be calculated
exactly. This is done in the Appendix, formulas (A33)–(A36). Presenting the N-ality constraint as

gðxÞ − fðxÞ ¼ qðxÞN; gðxÞ ¼ nðxÞ þ jαðxÞj; fðxÞ ¼ pðxÞ þ jβðxÞj; ð52Þ

we write down the final result (A36) in the explicit form

RN;Nf
ðnðxÞ; pðxÞ;mf; μfÞ ¼

X∞
qðxÞ¼−∞

XcNNf

jαðxÞj¼0

XcNNf

jβðxÞj¼0

δgðxÞ−fðxÞ;qðxÞN

× R̄N;Nf
ðqðxÞ; jαðxÞj; jβðxÞj;H�Þ; R̄N;Nf

ðqðxÞ; jαðxÞj; jβðxÞj;H�Þ
¼

X
α⊢jαðxÞj

X
β⊢jβðxÞj

X
σ⊢pðxÞþjβðxÞj

dðσ þ qN=αÞdðσ=βÞsα0 ðHþÞsβ0 ðH−Þ; ð53Þ

where s ¼ 1 for the staggered and s ¼ 2 for the Wilson fermions. The explicit form of the N-ality constraint is
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gðxÞ − fðxÞ≡Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ þ ηðxÞ − η̃ðxÞ þ jαðxÞj − jβðxÞj ¼ qðxÞN: ð54Þ

The variables H�, depending on mf, μf, and other notations are defined and described in the Appendix. Combining last
expressions with (49) the final result for the partition function with arbitrary sources gets the form

ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

XcNNf

fjαðxÞjg¼0

XcNNf

fjβðxÞjg¼0

X∞
frðlÞg¼−∞

X∞
fsðlÞg¼0

×
Y
l

ðβeff
2
ÞjrðlÞjþ2sðlÞ

ðsðlÞ þ jrðlÞjÞ!sðlÞ!
Y
x

½δgðxÞ−fðxÞ;qðxÞNR̄N;Nf
ðqðxÞ; jαðxÞj; jβðxÞj;H�Þ�: ð55Þ

We conclude this subsection with few comments:
(i) All factors entering the Boltzmann weight of (55)

are positive. This is true also for the Schur functions
appearing in (53). Hence, this representation is
suitable for the numerical simulations of the theory.

(ii) Both long-distance and local observables can be
written as expectation values over the dual partition
function.

(iii) An explicit form of the group integral for one flavor
of the staggered fermions is presented in Appendix.
Even more detailed formula is given there forN ¼ 3.
This presentation can be directly used for the Monte-
Carlo simulations.

(iv) The dual form of UðNÞ model coincides with
Eq. (55) where one should take the only term with

qðxÞ ¼ 0. The dual form of ZðNÞ model is obtained
from Eq. (55) by replacing all dimensions with
unity and omitting sum over σ in the definition of
R̄N;Nf

, Eq. (53).

IV. DUAL OF SPIN MODELS II

Here we investigate the partition function (1) with the
weight BgðβÞ given by (2). The static fermion contribution
Bqðmf; μfÞ will be taken in its exact forms (5), (7). Like in
the previous section we calculate the dual form both for the
partition function and for the most general correlation
function. In this case such correlations are given by an
expectation value of the product of SUðNÞ characters taken
in arbitrary representations ηðxÞ, η̃ðxÞ. Precisely, one has

ZðηðxÞ; η̃ðxÞÞ ¼
Z Y

x

dUðxÞ
Y
x

½sηðxÞðUðxÞÞsη̃ðxÞðU†ðxÞÞ�

×
Y
x;ν

�X
fλg

DλðβÞsλðUðxÞÞsλðU†ðxþ eνÞÞ
�Y

x

YNf

f¼1

Bqðmf; μfÞ: ð56Þ

The partition function is recovered by taking trivial representations in all lattice sites. Exchanging order of the summations
and integrations and rearranging product over links in the second line of (56) we write down the result in the form

ZðηðxÞ; η̃ðxÞÞ ¼
X
fλðlÞg

Y
x;ν

½DλðlÞðβÞ�
Y
x

Hd
N;Nf

ðgðxÞ; fðxÞ;mf; μfÞ: ð57Þ

The coefficients DλðβÞ are defined in (3) and the function Hd
N;Nf

is a group integral defined in (A4) and calculated in the
Appendix, Eqs. (A37)–(A39), where

gðxÞ ¼ ðλνðxÞ; ηðxÞÞ; fðxÞ ¼ ðλνðx − eνÞ; η̃ðxÞÞ: ð58Þ

In the next subsections we specify this general formula for
several important cases.

A. Pure gauge theory

In the pure gauge theory the group integral Hd
N;Nf

simplifies to Gd
Nðλi; γiÞ given by Eq. (A2). The result of

the integration is given by Eqs. (A28)–(A31). Denoting
rðlÞ≡ rνðxÞ ¼ jλðlÞj, the sum over all representations λ can
be written as

X
λ

� � � ¼
X∞
r¼0

X
λ⊢r

� � � ð59Þ
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and the N-ality constraints (A30) and (A32) in the presence
of sources read

rðxÞ þ jηðxÞj − jη̃ðxÞj ¼ qðxÞN;

rðxÞ ¼
Xd
ν¼1

ðrνðxÞ − rνðx − eνÞÞ: ð60Þ

As before, we analyze each dimension separately. The
result will be given for the partition function and for the
correlation function of the general form. We shall also
explain the particular solution of the N-ality constraints for
the two- and N-point correlation functions. The corre-
sponding sources can be taken like in Eqs. (25) and (26),
respectively.

1. One-dimensional model

One-dimensional model is exactly solvable. Using
orthogonality relation (A28) and expression for the
Littlewood-Richardson coefficients Cη

λ1λ2
(A15) one finds

for the partition function

Z ¼
X
fλg

½DλðβÞ�L ð61Þ

and for the two-point function

Zðηð0Þ; η̃ðRÞÞ ¼
X
fλ1;λ2g

Cη
λ1λ2

Cη̃
λ2λ1

½Dλ1ðβÞ�R½Dλ2ðβÞ�L−R:

ð62Þ

Summations in the last expressions goes over SUðNÞ
representations λ1 ≥ λ2 ≥ � � � ≥ λN−1 ≥ λN ¼ 0.

2. Two-dimensional model

In two- and three-dimensional cases the final result can
be significantly simplified if we multiply the Schur
functions in the integrand in a special way. Namely, in
two dimensions we divide the lattice into a set of even and
odd plaquettes and couple the Schur functions as shown in
the left panel of Fig. 1. In this way the summations over
original representations λðlÞ are factorized inside every
even plaquette. Let λ̄ be a representation conjugate to λ, see
Eqs. (A7), (A8). Extending the integration result (A29) to
the correlation functions and using decomposition (59), we
obtain

ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

X∞
frðlÞg¼0

X
fρ1ðxÞ;ρ2ðxÞg

Y
x

½δrðxÞþjηðxÞj−jη̃ðxÞj;qðxÞN �

×
Y
x

FðηðxÞ; η̃ðxÞÞ
Y
peven

BpðρiðxÞÞ; ð63Þ

where the Boltzmann weight BpðρiðxÞÞ and the function FðηðxÞ; η̃ðxÞÞ are

BpðρiðxÞÞ ¼
X

λ1⊢rðl1Þ
…

X
λ4⊢rðl4Þ

Dλ1ðβÞ…Dλ4ðβÞCρ1ðxÞ
λ1λ4

Cρ1ðxþe1Þ
λ̄1λ2

Cρ2ðxþe1þe2Þ
λ2λ3

Cρ2ðxþe2Þ
λ̄3λ4

;

FðηðxÞ; η̃ðxÞÞ ¼
X
σ

CσþqðxÞN
ρ1ðxÞηðxÞC

σ
ρ2ðxÞη̃ðxÞ: ð64Þ

For the partition function Fð0; 0Þ ¼ δρ1ðxÞ;ρ2ðxÞþqðxÞN and
(63) reduces to

Z ¼
X∞

fqðxÞg¼−∞

X∞
frlg¼0

X
fρðxÞg

Y
x

δrðxÞ;qðxÞN
Y
peven

BpðρðxÞÞ: ð65Þ

The Boltzmann weight BpðρðxÞÞ coincides with (64)
up to replacement ρ1ðxÞ → ρ2ðxÞ þ qðxÞN . The N-ality

constraint in (63), (65) has the same form as in (23).
Therefore, both for quark–anti-quark sources and for baryon
sources, one can use the solution (30). Because the link
variables rðlÞ in (63) take on the non-negative values, the
dual variable kðlÞ on the right-hand side of Eq. (30) is also
non-negative and the difference rðxÞ − rðxþ enÞ should be
defined modulo N. The choice of ηðlÞ for each case also
remains as has been described after Eq. (30).

FIG. 1. The order of coupling of the link representations in the
integrand of one-site group integrals. Left: in two-dimensional
theory representations are coupled inside every even plaquette of
the lattice. Right: in three-dimensional theory representations are
coupled inside every even cube of the lattice.
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3. Three-dimensional model

In three dimensions we divide the lattice in a set of even
and odd cubes and couple the Schur functions as shown
in the right panel of Fig. 1. In this way the summations
over original representations λðlÞ are factorized inside
every even cube. Moreover, we first couple representations

lying in the horizontal plane, then the resulting represen-
tations are coupled with representation sitting on the
vertical links. The final step is to couple the representations
obtained with representations ηðxÞ, η̃ðxÞ from correlation
functions. This procedure yields for the correlations of the
general form

ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

X∞
frðlÞg¼0

X
fρ1ðxÞ;ρ2ðxÞg

Y
x

½δrðxÞþjηðxÞj−jη̃ðxÞj;qðxÞN � ð66Þ

×
Y
x

FðηðxÞ; η̃ðxÞÞ
Y
ceven

BcðρiðxÞÞ; ð67Þ

where the Boltzmann weight BcðρiðxÞÞ is

BcðρiðxÞÞ ¼
X

λ1⊢rðl1Þ
Dλ1ðβÞ…

X
λ12⊢rðl12Þ

Dλ12ðβÞ
X
σ1

…
X
σ8

× Cσ1
λ1λ4

Cσ2
λ2 λ̄1

Cσ3
λ̄3 λ̄2

Cσ4
λ3 λ̄4

Cσ5
λ̄5 λ̄8

Cσ6
λ5 λ̄6

Cσ7
λ6λ7

Cσ8
λ8 λ̄7

Cρ1ðxÞ
σ1λ9

Cρ2ðxþe3Þ
σ5λ9

× Cρ1ðxþe1Þ
σ2λ10

Cρ2ðxþe1þe3Þ
σ6λ10

Cρ1ðxþe1þe2Þ
σ3λ11

Cρ2ðxþe1þe2þe3Þ
σ7λ11

Cρ1ðxþe2Þ
σ4λ12

Cρ2ðxþe2þe3Þ
σ8λ12

: ð68Þ

The function FðηðxÞ; η̃ðxÞÞ is of the form (64). The
specification of this result for two- and N-point correlation
functions is essentially the same as in the two-dimensional
case. The solution of N-ality constraint is taken as in (35)
with restrictions described after (65). The resulting dual
model is a three-dimensional model possessing local ZðNÞ
invariance in analogy with (36).

B. Strong coupling limit

In the strong coupling limit, β ¼ 0, the gauge part is
absent and only static fermion contribution appears in the
partition and correlation functions. Essentially the model is
nothing but the one-dimensional lattice QCD. The partition
function is given by the integral (A37)

Z ¼
X∞
q¼−∞

X
σ

sσðHþÞsNqσðH−Þ: ð69Þ

The result of the integration for the correlation function can
be easily extracted from (A38)

Zðη; η̃Þ ¼
X∞
q¼−∞

X
α;β;σ

CσþqN
ηα Cσ

η̃βsα0 ðHþÞsβ0 ðH−Þ: ð70Þ

These two formulas give an exact solution for one-dimen-
sional QCD with arbitrary number of flavors of different
masses and chemical potentials, both for the staggered and
for the Wilson fermions. The detailed investigation of these
solutions will be presented elsewhere.

C. Full theory: One-dimension

One-dimensional model corresponds to two-dimensional
QCD. It is important to emphasize that our approach takes
into account the full Wilson action in this case and the only
though essential approximation is that we neglect the
fermion propagation in one spatial direction. The corre-
sponding one-site integral is given by Eq. (A38).
Substituting this into (57) one gets for the correlation
function

ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

XcNNf

fjαðxÞjg¼0

XcNNf

fjβðxÞjg¼0

X∞
frðlÞg¼0

X
fρ1ðxÞ;ρ2ðxÞg

×
Y
x

½δrðxÞþjαðxÞjþjηðxÞj−jβðxÞj−jη̃ðxÞj;qðxÞNFðηðxÞ; η̃ðxÞÞ�
Y
l

BlðρiðxÞÞ: ð71Þ

The Boltzmann weight and the function FðηðxÞ; η̃ðxÞÞ are found to be
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BlðρiðxÞÞ ¼
X
λ⊢rðlÞ

X
α⊢jαðxÞj

X
β⊢jβðxþ1Þj;

DλðβÞCρ1ðxÞ
λα Cρ2ðxþ1Þ

λβ sα0 ðHþÞsβ0 ðH−Þ; ð72Þ

FðηðxÞ; η̃ðxÞÞ ¼
X
σ

CσþqðxÞN
ρ1ðxÞηðxÞC

σ
ρ2ðxÞη̃ðxÞ: ð73Þ

The partition function is easily recovered putting ηðxÞ ¼ η̃ðxÞ ¼ 0.

D. Full theory: Two-dimensions

To get a dual form for two-dimensional theory we use the result of the integration presented in Eqs. (A38), (A39) and
follow the strategy used in the pure gauge theory. Namely, we first multiply characters from the gauge Boltzmann weight
according to Fig. 1, resulting representations are coupled with representations from the fermion weight and, finally with
representations ηðxÞ, η̃ðxÞ from the correlation function. After some algebraic manipulations we present the expression for
the correlation function in the following form

ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

XcNNf

fjαðxÞjg¼0

XcNNf

fjβðxÞjg¼0

X∞
frðlÞg¼0

X
fρ1ðxÞ;ρ2ðxÞg

×
Y
x

½δrðxÞþjαðxÞjþjηðxÞj−jβðxÞj−jη̃ðxÞj;qðxÞNFðηðxÞ; η̃ðxÞÞ�
Y
peven

BpðρiðxÞÞ: ð74Þ

The function FðηðxÞ; η̃ðxÞÞ is the same as in Eq. (73). The Boltzmann weight reads

BpðρiðxÞÞ ¼
X

λ1⊢rðl1Þ
Dλ1ðβÞ…

X
λ4⊢rðl4Þ

Dλ4ðβÞ
X
σ1

…
X
σ4

Cσ1
λ1λ4

Cσ2
λ̄1λ2

Cσ3
λ2λ3

Cσ4
λ̄3λ4

X
α1⊢jαðxÞj

sα0
1
ðHþÞ

X
α2⊢jαðxþe1Þj

sα0
2
ðHþÞ

×
X

β1⊢jβðxþe2Þj
sβ0

1
ðH−Þ

X
β2⊢jβðxþe1þe2Þj

sβ0
2
ðH−ÞCρ1ðxÞ

σ1α1 C
ρ1ðxþe1Þ
σ2α2 Cρ2ðxþe1þe2Þ

σ3β1
Cρ2ðxþe2Þ
σ4β2

: ð75Þ

E. Full theory: Three-dimensions

In three-dimensional theory we use the same strategy as above. The original link representations are coupled as shown in
Fig. 1. With the help of Eqs. (A38), (A39) and using the same notations we obtain after long algebra the following
representation for the correlation function

ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

XcNNf

fjαðxÞjg¼0

XcNNf

fjβðxÞjg¼0

X∞
frðlÞg¼0

X
fρ1ðxÞ;ρ2ðxÞg

×
Y
x

½δrðxÞþjαðxÞjþjηðxÞj−jβðxÞj−jη̃ðxÞj;qðxÞNFðηðxÞ; η̃ðxÞÞ�
Y
ceven

BcðρiðxÞÞ: ð76Þ

The function FðηðxÞ; η̃ðxÞÞ is the same as in Eq. (73). The Boltzmann weight reads

BcðρiðxÞÞ ¼
X

λ1⊢rðl1Þ
Dλ1ðβÞ…

X
λ12⊢rðl12Þ

Dλ12ðβÞ
X
σ1;γ1

…
X
σ8;γ8

Cσ1
λ1λ4

Cσ2
λ2 λ̄1

Cσ3
λ̄3 λ̄2

Cσ4
λ3 λ̄4

Cσ5
λ̄5 λ̄8

Cσ6
λ5 λ̄6

Cσ7
λ6λ7

Cσ8
λ8 λ̄7

× Cγ1
σ1λ9

Cγ5
σ5λ9

Cγ2
σ2λ10

Cγ6
σ6λ10

Cγ3
σ3λ11

Cγ7
σ7λ11

Cγ4
σ4λ12

Cγ8
σ8λ12

×
Y4
i¼1

� X
αi⊢jαðxiÞj

sα0iðHþÞCρ1ðxiÞ
γiαi

�Y8
i¼5

� X
βi⊢jβðxiÞj

sβ0iðH−ÞCρ2ðxiÞ
γiβi

�
: ð77Þ

Notation for sites of a cube are: x1 ¼ x, x2 ¼ xþ e1, x3 ¼ xþ e1 þ e2, x4 ¼ xþ e2, x5 ¼ xþ e3, x6 ¼ xþ e1 þ e3,
x7 ¼ xþ e1 þ e2 þ e3, x8 ¼ xþ e2 þ e3.
As an important example, let us write down an explicit formula for the partition function with one flavor of the staggered

fermions. In this case one has α ¼ 1k, β ¼ 1m, 0 ≤ k,m ≤ N and sα0 ðHþÞ ¼ hkþ, sβ0 ðH−Þ ¼ hm− , therefore the Eq. (76) takes
the form for ηðxÞ ¼ η̃ðxÞ ¼ 0
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ZðηðxÞ; η̃ðxÞÞ ¼
X∞

fqðxÞg¼−∞

X∞
frðlÞg¼0

X
fρðxÞg

XN
fkðxÞ;mðxÞg¼0

Y
x

hkðxÞþ hmðxÞ
−

×
Y
x

½δrðxÞþkðxÞ−mðxÞ;qðxÞN �
Y
ceven

BcðρðxÞÞ; ð78Þ

In this case the Boltzmann weight (77) becomes

BcðρiðxÞÞ ¼
X

λ1⊢rðl1Þ
Dλ1ðβÞ…

X
λ12⊢rðl12Þ

Dλ12ðβÞ
X
σ1;γ1

…
X
σ8;γ8

Cσ1
λ1λ4

Cσ2
λ2 λ̄1

Cσ3
λ̄3 λ̄2

Cσ4
λ3 λ̄4

Cσ5
λ̄5 λ̄8

Cσ6
λ5 λ̄6

Cσ7
λ6λ7

Cσ8
λ8 λ̄7

× Cγ1
σ1λ9

Cγ5
σ5λ9

Cγ2
σ2λ10

Cγ6
σ6λ10

Cγ3
σ3λ11

Cγ7
σ7λ11

Cγ4
σ4λ12

Cγ8
σ8λ12

Y4
i¼1

CρðxiÞþqðxiÞN
γi1

kðxiÞ

Y8
i¼5

CρðxiÞ
γi1

mðxiÞ : ð79Þ

Let us add some remarks on resulting dual formulations:
(i) All factors entering the dual Boltzmann weights

obtained in this section are positive including the
Schur functions. Hence, this representation is suit-
able for the Monte-Carlo simulations at nonvanish-
ing chemical potentials, at least in principle. Possible
approaches to such simulations are discussed in the
end of this section.

(ii) One technical remark concerns the function
FðηðxÞ; η̃ðxÞÞ which appears in the presence of
external sources for the correlation function. From
its explicit expression, Eqs. (64) and (73), it follows
that the product over lattice sites can be rearranged
in a way that allows to include all Littlewood-
Richardson coefficients from FðηðxÞ; η̃ðxÞÞ into
the Boltzmann weights. In this way the variables
ρiðxÞ become internal summation variables in each
even plaquette (cube). Instead, variables σðxÞ can be
made dynamical variables of the dual theory.

(iii) We have not presented explicit expressions for the
thermodynamical quantities. They can be easily
obtained by taking the corresponding derivatives
with respect to β, hf� or μf. As in the region of the
strong temporal coupling, this simply amounts to a
local shift in a corresponding summation variable
and can be presented as an expectation value
calculated over the dual partition function.

(iv) An explicit form of the group integral Hd
N;Nf

for one
flavor of the staggered fermions is presented in
Appendix.

(v) The dual forms of UðNÞ and ZðNÞ models can be
obtained following the lines described in the pre-
vious section. It follows from the N-ality constraint
in Eq. (78) that the partition function and invariant
observables do not depend on the chemical potential
for UðNÞmodels with one fermion flavor. In SUðNÞ
and ZðNÞ models the dependence appears in the
form eNqμ, as is expected on the general grounds.

Finally, we would like to discuss shortly some approaches
to Monte-Carlo simulations of the dual formulations and

related problems. Since the Boltzmann weights for the dual
model obtained in this paper are nonnegative, they can be
used for direct Monte-Carlo simulations. Dual weights based
on the expansion of the group integrals into the Littlewood-
Richardson coefficients might look quite complicated at first
sight. Let us remark, however, that if a positive dual weight
at finite density exists, for the full theory it will certainly be
much more complicated. Therefore, it is desirable to have a
working algorithm for this complicated but still simplified
dual theory. Here we give our thoughts on the way Monte-
Carlo simulations can be performed. We will address
explicitly the case of the partition functions (71), (74),
(76) but the approaches described can also be applied to
other cases.
The partition function as it is written includes summation

over many sets of variables. While a direct Monte-Carlo
simulation is possible, the convergence of the averages in
this case can be slow. This can be overcome by dividing the
variables into two groups—dynamical variables which are
sampled in the Monte-Carlo simulation, and the variables
over which the summation is done explicitly. For N ¼ 3
such summation can be done by using the explicit values
for the Littlewood-Richardson coefficients [29,30]. If we
take this approach, we can, for example, leave only jαðxÞj,
jβðxÞj, and ρðxÞ variables as dynamical.
Another problem is that, while each configuration has

non-negative weight, many configurations formally allowed
in the summation will have zero weight due to Littlewood-
Richardson coefficients inside them becoming zero. Note
that the N-ality condition explicitly written in the partition
functions is a necessary but not sufficient condition for the
corresponding Littlewood-Richardson coefficients to be
nonzero. This problem reduces the acceptance and con-
vergence rate for any simple Metropolis-like update scheme
and, on the more fundamental level, raises the question of
ergodicity of the update process—one has to be sure that the
whole acceptable configuration space can be probed.
For fixed small N values the full set of conditions for the

Littlewood-Richardson coefficient to be nonzero can be
written in the form of inequalities and one can either try to
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explicitly resolve them or, at least, to build the update
process respecting these inequalities. Another approach is
to use the worm update algorithm [31], developed just for
resolving such problems. In our case the worm has to
propagate on an auxiliary lattice, that has the Littlewood-
Richardson coefficients of the partition function as vertices,
which are connected by a link if they share a common
partition. Like for the Metropolis-like update, an explicit
summation over part of partition variables can be done to
reduce the phase space of the system—here it would
amount to dividing the auxiliary lattice into blocks that
are connected only by the links corresponding to the
dynamical variables and treating each block as a site of
a new lattice while preserving the probabilities of the worm
leaving the block through a given link.
If one wants to calculate the correlation functions, the set

of acceptable configurations for the partition functions with
sources and the one without sources will become different,
requiring either rewriting the correlation function in terms
of the valid configurations for the partition function without
sources or, if one uses the worm update, sampling the
correlation functions using the worm algorithm in a way
similar to the one described in [32].

V. DISCUSSION

In this paper we have presented calculations of the dual
representations for several Polyakov loop models. All these
models have been derived in the strong coupling limit for the
spatial coupling of the Wilson action. Contribution of the
fermions is taken into account via the static determinant for
an arbitrary number of the staggered andWilson fermions of
different masses and chemical potentials. Our results are
valid in any spatial dimension and for all relevant groups,
i.e., for SUðNÞ,UðNÞ and ZðNÞ. The main motivation is the
construction of a positive Boltzmann weight in the presence
of the baryon chemical potential suitable for numerical
simulations. Some versions of representations from Sec. III
have been derived before [23]. These formulations have
been used for numerical computations of various local
observables in [24,25]. We have already applied our for-
mulation (31) for studying two- and three-point correlation
functions in two dimensional SUð3Þ spin models [33]. In
[34] we have used the representation (55) to simulate the
three-dimensional model with one flavor of the staggered
fermions. In addition to local observableswe have computed
many two-point correlation functions in the presence of
baryon chemical potential.
Let us briefly discuss other applications of the dual

formulations.
(1) One-dimensional model (71) with one flavor of the

staggered fermions can be studied by the transfer-
matrix method. Such study reveals the existence of
an oscillating (or the so-called liquid) phase in some
regions of the ðhþ; h−Þ-plane [35]. This means the
correlation function of the Polyakov loops while

decaying exponentially is modulated by a periodic
function. In other words, the mass spectrum of
the theory becomes complex. The transfer matrix
approach reveals the similar behavior in one-
dimensional ZðNÞ spin model in the external com-
plex field [36,37]. Monte-Carlo simulations of the
same three-dimensional model also show the pres-
ence of such phase [37]. Detecting the liquid phase
with the existing simulation methods at nonzero
baryon chemical potential seems an extremely diffi-
cult problem. The formulations given in Sec. III
might help to clarify if the oscillating phase exists in
the three-dimensional SUð3Þ LGT, at least in the
region of validity of the Polyakov loop models
used here.

(2) It turned out that the dual formulations of Sec. III are
well suited for the studies of the models in the large
N limit. We have accomplished such studies and
arrived at quite unexpected results: the large N ’t
Hooft limits of UðNÞ and SUðNÞ models are differ-
ent in the presence of the chemical potentials. These
results will be published elsewhere.

(3) The partition function in Eq. (57) can be written at
zero sources as

Z ¼ Tr
Y
x

Tλðl1Þ���λðl2dÞðβ; hfþ; hf−Þ; ð80Þ

where 2d links l1;…; l2d are attached to a site x and
the tensor T reads

Tλðl1Þ���λðl2dÞðβ; hfþ; hf−Þ

¼
Y2d
ν¼1

½DλðlÞðβÞ�12Hd
N;Nf

ðgðxÞ; fðxÞ;mf; μfÞ: ð81Þ

The rank of the tensor is 2dN. The trace can be done
by properly contracting the indices labeling group
representations. Such a formulation enables one to
use the tensor renormalization group methods to
study the theory at finite density and is certainly
worth a separate investigation.

(4) It would be interesting to investigate analytically
solutions (69) and (70) of one-dimensional QCD for
small values of N ¼ 1, 2, 3 and in the large N;Nf
limits. This can be presumably done even in the
simultaneous presence of baryon, isospin and
strange chemical potentials.

Finishing this paper we would like to address the
question of how one could systematically improve the
dual formulations of Sec. IV? In the Abelian case the dual
construction can be extended to the full Wilson action. The
underlying reason for this is that the exact and positive dual
Boltzmann weight is known for all ZðNÞ and Uð1Þ pure
gauge LGT. Adding fermions in the form of the static
determinant with any number of flavors does not destroy
this property. Details of this formulation will be reported
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elsewhere. Much more difficult is the case of non-Abelian
models and the inclusion of the corrections to static
determinant. In these cases one expects that the effective
Polyakov loop model becomes nonlocal. For example, one
such model describing nonlocal interaction between
Polyakov loops has been derived in [38] (and Refs. therein)
via the relative weight method

S ¼
X
x;y

ReTrUðxÞKðx − yÞTrU†ðyÞ þ
X
x

lnBqðm; μÞ:

ð82Þ

The action of the model involves only fundamental
characters, therefore the dual representations for this and
similar models can be calculated by using the integration
methods of Sec. III. Clearly, if the kernel Kðx − yÞ is
positive for all distances considered the dual weight will be
also positive but highly nonlocal. In general, the full
effective action will contain all irreducible representations.
More general effective action can be written in the form

eS ¼
Y
x;y

�X
λ;γ

Kλ;γðx − y; β; mf; μfÞsλðUðxÞÞsγðU†ðyÞÞ
�
:

ð83Þ

Even in this case the dual theory could be calculated with
the help of integration methods of Sec. IV. The real
challenge is to determine coefficients Kλ;γ . One strategy
is to expand the Wilson action at large spatial coupling and
expand the fermion determinant around static contribution
in powers of a lattice anisotropy. This will be the subject of
future investigations.
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APPENDIX: ELEMENTS OF REPRESENTATION
THEORY AND GROUP INTEGRATION

Here we evaluate the group integrals encountered in the
course of calculations of the dual representations. These are
integrals of the following types:

QNðr; sÞ ¼
Z
G
dUðTrUÞrðTrU†Þs; ðA1Þ

Gd
Nðλi; γiÞ ¼

Z
G
dU

Yd
i¼1

sλiðUÞsγiðU†Þ; ðA2Þ

RN;Nf
ðr; s;mf;μfÞ ¼

Z
G
dUðTrUÞrðTrU†Þs

YNf

f¼1

Bqðmf;μfÞ;

ðA3Þ

Hd
N;Nf

ðλi; γi;mf; μfÞ

¼
Z
G
dU

Yd
i¼1

sλiðUÞsγiðU†Þ
YNf

f¼1

Bqðmf; μfÞ: ðA4Þ

The first two types appear in the pure gauge theory while
the next two are encountered in the theory with the
fermions. The fermion weights Bqðmf; μfÞ are given by
Eqs. (5) and (7). These integrals can be calculated by the
method of the Weingarten functions and/or by expanding
the product of the Schur functions in the integrand into
series over the Littlewood-Richardson coefficients.
The integral (A1) was already well-known for the case of

the UðNÞ group and for r < N it equals r!. For the SUðNÞ
group it was calculated for the first time in [39]. To the best
of our knowledge, the integrals (A2), (A3), and (A4) are
calculated for the SUðNÞ lattice theories for the first time.

1. Definitions, notations and expansion formulas

First, we introduce some notations and definitions. Let
λ ¼ ðλ1; λ2;…; λNÞ be a partition λ⊢r, λ1 ≥ λ2 ≥ � � � ≥
λN ≥ 0 and

PlðλÞ
i¼1 λi ≡ jλj ¼ r, where lðλÞ is the length

of the partition λ. As a shorthand we will sometimes use a
notation λ ¼ ab to denote a partition consisting of b parts
equal to a (i.e., λi ¼ a, 1 ≤ i ≤ b), and use λþ μ to signify
elementwise addition of two partitions and λμ to signify a
union of parts of two partitions. χλðσÞ denotes a character
of σ ∈ Sr in representation λ. dðλÞ ¼ χλð1Þ is the dimension
of the representation λ. The Schur function sλðUÞ ¼
sλðu1;…; uNÞ is a character of the unitary group G and
ui—the eigenvalues of the matrix U ∈ G. sλðIÞ is the
dimension of the irreducible representation λ of G. One has

dðλÞ ¼ r!

Q
1≤i<j≤lðλÞðλi − λj þ j − iÞQlðλÞ

i¼1ðλi þ lðλÞ − iÞ!
; ðA5Þ

sλðIÞ ¼
Q

1≤i<j≤Nðλi − λj þ j − iÞQ
N
i¼1ðN − iÞ! : ðA6Þ

The representation dual to λwill be denoted by λ0. The dual
representation is defined by exchanging raws and columns
in the corresponding Young diagram, i.e., λ0i ¼

P
j 1λj≥i.

One has the following identity between the Schur function
and its conjugate for UðNÞ group

sλðUÞ≡ sλ1;…;λN ðUÞ ¼ s�̄
λ
ðUÞ;

λ̄ ¼ ð−λN;−λN−1;…;−λ1Þ: ðA7Þ
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The similar identity for SUðNÞ group reads

sλðUÞ≡ sλ1;…;λN−1
ðUÞ ¼ s�̄

λ
ðUÞ; λ̄ ¼ ðλ1; λ1 − λN−1;…; λ1 − λ2Þ: ðA8Þ

Given the complete symmetric functions hk and the elementary symmetric functions ek in m variables u1;…; um

hk ¼
X

1≤n1≤���≤nk≤m
un1 � � � unk ; ek ¼

X
1≤n1<���<nk≤m

un1 � � � unk; ðA9Þ

the Schur functions can be computed with the help of identities

sλðUÞ ¼ sðλ1;…;λmÞðu1;…; umÞ ¼ det ðhλi−iþjÞ1≤i;j≤m;
sλðUÞ ¼ sðλ1;…;λmÞðu1;…; umÞ ¼ det ðeλ0i−iþjÞ1≤i;j≤m; ðA10Þ

where λ0 is a partition dual to λ and the following rule is understood

sðλ1;…;λnÞðu1;…; un−1; 0Þ ¼
�
0; if λn ≠ 0;

sðλ1;…;λn−1Þðu1;…; un−1Þ; if λn ¼ 0:
ðA11Þ

Two other useful expressions for the Schur function read

sλðUÞ ¼ det ðuλjþn−j
i Þ1≤i;j≤N

det ðun−ji Þ1≤i;j≤N
¼

X
τ1;…;τs;

P
iτi¼s

χλðτÞ
Ys
j¼1

1

τj!jτj
½TrðUÞj�τj ðA12Þ

with τ being a permutation such that the number of cycles
of length j in τ is τj.
The Weingarten function is used to evaluate the

polynomial integrals over unitary groups. In the case of
G ¼ SUðNÞ this function is defined as

WgN;qðσÞ ¼ 1

r!ðrþ NqÞ!
X
λ⊢r

dðλÞdðλþ qNÞ
sλð1NÞ

χλðσÞ;

ðA13Þ

where λþ qN ¼ ðλ1 þ q;…; λN þ qÞ and the sum in (A13)
is taken over all λ such that lðλÞ ≤ N. For UðNÞ group one
has to put q ¼ 0.
The Littlewood-Richardson coefficients Cν

λγ can be
defined as coefficients appearing in the expansion of the
product of two Schur functions

sλðUÞsγðUÞ ¼
X
ν

Cν
λγsνðUÞ;

sλðUÞs�γðUÞ ¼
X
ν

Cν
λγ̄sνðUÞ ¼

X
ν

Cν
λ̄γ
s�νðUÞ: ðA14Þ

From the orthogonality of the Schur functions one gets

Cν
λγ ¼

Z
G
dUsλðUÞsγðUÞs�νðUÞ: ðA15Þ

Cν
λγ are positive integers for unitary groups UðNÞ and

SUðNÞ satisfying certain conditions. One such important
condition on Cν

λγ to be nonzero arises from the integration
over Uð1Þ subgroup if G ¼ UðNÞ, while in SUðNÞ case it
follows from the summation over ZðNÞ subgroup. Let
U ¼ Z be a center element of G. Then

sλðZÞ ¼ zrdðλÞ; r ¼ jλj: ðA16Þ
As follows from (A15) the necessary condition forCν

λγ to be
nonvanishing is

jλj þ jγj − jνj ¼
�
0; UðNÞ;
Nq; SUðNÞ: ðA17Þ

We refer to these conditions as to Uð1Þ and N-ality con-
straints, respectively. More information on the Littlewood-
Richardson coefficients as well as their closed forms for
N ¼ 2, 3, 4 can be found in [30].
Finally, we need the following formulas to treat the

models with static fermion determinant. The first ones are
the Cauchy identity and its dual

YN
k¼1

YL
i¼1

ð1 − xiykÞ−1 ¼
X
λ

sλðYÞsλðXÞ; ðA18Þ

YN
k¼1

YL
i¼1

ð1þ xiykÞ ¼
X
λ

sλðYÞsλ0 ðXÞ; ðA19Þ
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where X ¼ ðx1;…; xLÞ, Y ¼ ðy1;…; yNÞ. The summation
over λ runs over all partitions of the product NL such that
lðλÞ ≤ N and lðλ0Þ ≤ L. The second one is an expansion of
powers of the fundamental character into series over the
Schur functions

ðTrUÞr ¼ ðu1 þ u2 þ � � � þ uNÞr ¼
X
λ⊢r

dðλÞsλðUÞ: ðA20Þ

With the help of Eq. (A19) the fermion contribution given
in (5) and in (7) for the staggered and the Wilson fermions,
respectively, is presented in the form

YNf

f¼1

Bqðmf; μfÞ ¼
X
α;β

sαðUÞsβðU†Þsα0 ðHþÞsβ0 ðH−Þ:

ðA21Þ

For the staggered fermions one has H� ¼ ðh1�;…; h
Nf

� Þ.
The summation over α and β is taken over all partitions
such that lðλÞ ≤ N, lðβÞ ≤ N and lðλ0Þ ≤ Nf, lðβ0Þ ≤ Nf.

For the Wilson fermions one has H� ¼ ðh1�;…; h
Nf

� ;

h1�;…; h
Nf

� Þ. The summation over α and β is taken over
all partitions such that lðλÞ ≤ N, lðβÞ ≤ N and lðλ0Þ ≤ 2Nf,

lðβ0Þ ≤ 2Nf. Constants h
f
� are defined in (6) and (8) for the

staggered and the Wilson fermions, correspondingly.

2. Group integrals

The Schur functions realize representations of UðNÞ
group. Therefore, all integrals (A1)–(A4) are evaluated
over the UðNÞ Haar measure. If G ¼ SUðNÞ one should
introduce an additional constraint into the measure

detU ¼
YN
i¼1

ui ¼ 1: ðA22Þ

This constraint can be implemented into the group integrals
by multiplying the integrand with the delta-functionP∞

q¼−∞ ðdetUÞq. Taking into account that

�YN
i¼1

ui

�q

¼ sq;…;qðUÞ ðA23Þ

one can easily prove with the help of (A12) that

ðdetUÞqsλðUÞ ¼ sλþqN ðUÞ; q > 0: ðA24Þ

If q < 0 one should replace the eigenvalues ui by u�i . Here
and further we use the short-hand notation λþ qN ¼
ðλ1 þ q;…; λN þ qÞ. The SUðNÞ constraint is enforced
in the formulas below by summation over q. Furthermore,
we shall present results only for the SUðNÞ group. The
UðNÞ case is easily recovered by omitting all sums over q

and taking q ¼ 0 in all formulas below. More relevant
information on the group integration and similar integrals
can be found in Refs. [39–41].

a. QNðr;sÞ
To evaluate QNðr; sÞ given by Eq. (A1) we expand the

traces in the integrand as sums over diagonal elements

ðTrUÞr ¼
XN
i1¼1

� � �
XN
ir¼1

Yr
k¼1

Uikik : ðA25Þ

For the integral (A1) this leads to

QNðr; sÞ ¼
XN

i1i2���ir¼1

XN
j1j2���js¼1

Z
G
dU

Yr
k¼1

Uikik

Ys
m¼1

U�
jmjm

:

ðA26Þ

The last integral can be calculated with the help of the
Weingarten function. The details of the derivation can
be found in [21,39]. Performing summation over group
indices one gets

QNðr; sÞ ¼
X∞
q¼−∞

δr−s;qN
X

λ⊢minðr;sÞ
dðλÞdðλþ jqjNÞ: ðA27Þ

Another way to compute (A1) is to use the expansion
(A20). Then, the result (A27) follows from the orthogon-
ality of the Schur functions.

b. Gd
Nðλi;γiÞ

Integral in (A2) is trivial in one-dimensional case, d ¼ 1,
due to orthogonality of the Schur functions

G1
Nðλ; γÞ ¼

X∞
q¼−∞

δλ;γþqN : ðA28Þ

For d ¼ 2, 3 these integrals can be computed with the
help of Eqs. (A14)–(A15). Depending on the order of
the multiplication of the Schur functions in the integrand
the final result can be presented in several different but
equivalent forms. For example, for d ¼ 2 one has

G2
Nðλ1; λ2; γ1; γ2Þ ¼

X
q

X
ν

CνþqN

λ1λ2
Cν
γ1γ2

¼
X
q

X
ν

CνþqN

λ1 γ̄1
Cν
γ2 λ̄2

¼
X
q

X
ν

CνþqN

λ1 γ̄2
Cν
γ1 λ̄2

; ðA29Þ

where representations λ̄ are defined in Eqs. (A7), (A8). The
N-ality constraint becomes
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jλ1j þ jλ2j − jγ1j − jγ2j ¼ Nq: ðA30Þ

Three-dimensional case is treated similarly. One finds,
e.g.,

G3
Nðλ1; λ2; λ3; γ1; γ2; γ3Þ ¼

X
ν;σ

Cν
λ1λ2

Cσ
γ1γ2G

2
Nðν; λ3; σ; γ3Þ

¼
X
q

X
ν;σ;α

Cν
λ1λ2

Cσ
γ1γ2C

αþqN

νλ3
Cα
σγ3 :

ðA31Þ

The N-ality constraint reads

jλ1j þ jλ2j þ jλ3j − jγ1j − jγ2j − jγ3j ¼ Nq: ðA32Þ

c. RN;Nf
ðr;s;mf ;μf Þ

Using Eq. (A20) for the expansion of the power of traces
and Eq. (A21) for the fermion contribution the integral (A3)
is written as

RN;Nf
ðr; s;mf; μfÞ ¼

X
λ⊢r

X
ν⊢s

X
α;β

dðλÞdðνÞsα0 ðHþÞsβ0 ðH−Þ

×
Z
G
dUsλðUÞsνðU†ÞsαðUÞsβðU†Þ:

ðA33Þ

Integration yields

RN;Nf
ðr; s;mf; μfÞ ¼

X∞
q¼−∞

X
λ⊢r

X
ν⊢s

X
α;β;σ

CσþqN

λα Cσ
νβdðλÞdðνÞ

× sα0 ðHþÞsβ0 ðH−Þ: ðA34Þ

The last expression can be simplified with help of the
formula

X
μ⊢r

Cν
λμdðμÞ ¼ dðν=λÞ; ðA35Þ

where dðν=λÞ is the dimension of a skew representation
defined by a corresponding skew Young diagram (see,
for example, chapter I of [42]). Then, the result of the
integration is

RN;Nf
ðr; s;mf; μfÞ ¼

X∞
q¼−∞

X
α;β;σ

δrþjαj;sþjβjþqNdðσ þ qN=αÞ

× dðσ=βÞsα0 ðHþÞsβ0 ðH−Þ: ðA36Þ

d. Hd
N;Nf

ðλi;γi;mf ;μf Þ
The case d ¼ 0 is of special interest as it corresponds to

the exactly solvable model of one-dimensional QCD. The
result of integration can be read off from Eq. (A34) by
putting r ¼ s ¼ 0

H0
N;Nf

ð0; 0;mf; μfÞ ¼
X∞
q¼−∞

X
α;β

δα;βþqN sα0 ðHþÞsβ0 ðH−Þ

¼
X∞
q¼−∞

X
σ

sσðHþÞsNqσðH−Þ: ðA37Þ

The summation over σ runs over all partitions such that
σ1 ≤ N and lðσÞ ≤ Nf for the staggered, lðσÞ ≤ 2Nf for the
Wilson fermions. The other cases d ≥ 1 can be straight-
forwardly obtained by combining the expansion (A14) with
the representation (A21). We find for d ¼ 1

H1
N;Nf

ðλ; γ;mf; μfÞ ¼
X∞
q¼−∞

X
α;β;σ

CσþqN

λα Cσ
γβsα0 ðHþÞsβ0 ðH−Þ:

ðA38Þ

The higher values of d are calculated recursively as

Hd
N;Nf

ðλ1;…; λd; γ1;…; γd;mf; μfÞ
¼

X
σ;ν

Cσ
λ1λ2

Cν
γ1γ2H

d−1
N;Nf

ðσ; λ3;…; λd; ν; γ3;…; γd;mf; μfÞ:

ðA39Þ

3. One flavor of staggered fermions

For fixed values of Nf many formulas given above can
be specified and simplified by using explicit values for the
Schur functions which, in turn, can be calculated from
Eq. (A10). As the simplest but important example, let us
consider the integral RN;Nf

ðr; s;mf; μfÞ with one flavor of
the staggered fermions. Taking into account that in this
case α ¼ 1k, β ¼ 1l, 0 ≤ k; l ≤ N and sα0 ðHþÞ ¼ hkþ,
sβ0 ðH−Þ ¼ hl−, one gets from (A36) the following simple
answer

RN;1ðr; s;m; μÞ ¼
X∞
q¼−∞

XN
k;l¼0

X
σ⊢sþl

δrþk;sþlþqNdðσ þ qN=1kÞ

× dðσ=1lÞhkþhl−: ðA40Þ

Using the similar approach (A38) becomes

H1
N;1ðλ; γ;m; μÞ ¼

X∞
q¼−∞

XN
k;l¼0

X
σ⊢jγjþl

CσþqN

λ1k
Cσ
γ1l
hkþhl−:

ðA41Þ
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Here the Littlewood-Richardson coefficients can be calculated using the following formula

Cσ
γ1l

¼
�
1; jσj ¼ jγj þ l; γi ≤ σi ≤ γi þ 1;

0; otherwise:
ðA42Þ

Finally, we specify the result (A40) for the physically relevant case, namely N ¼ 3. For SUð3Þ the following identities
hold

dðσ=10Þ ¼ dðσ=1Þ ¼ dðσÞ; dðσ=13Þ ¼ dðσ − 13Þ ðA43Þ

that allow us to obtain

R3;1ðr; s;m; μÞ ¼ Q3ðrþ 1; sÞðhþ þ h2− þ hþh3− þ h3þh2−Þ
þQ3ðr; sÞð1þ h3þ þ h3− þ h3þh3−Þ þQ3ðr; sþ 1Þðh− þ h2þ þ h3þh− þ h2þh3−Þ
þQ3ðrþ 1; sþ 1Þðhþh− þ h2þh2−Þ þQ3ðrþ 2; sÞhþh2− þQ3ðr; sþ 2Þh2þh−; ðA44Þ

where the function Q3ðr; sÞ is given in Eq. (A27).
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