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Dual representations are constructed for non-Abelian lattice spin models with U(N) and SU(N)
symmetry groups, for all N and in any dimension. These models are usually related to the effective models
describing the interaction between Polyakov loops in the strong coupled QCD. The original spin degrees of
freedom are explicitly integrated out and a dual theory appears to be a local theory for the dual integer-
valued variables. The construction is performed for the partition function and for the most general
correlation function. The latter include the two-point function corresponding to quark—anti-quark free
energy and the N-point function related to the free energy of a baryon. We consider both pure gauge models
and models with static fermion determinant for both the staggered and Wilson fermions with an arbitrary
number of flavours. While the Boltzmann weights of such models are complex in the presence of nonzero
chemical potential the dual Boltzmann weights appear to be strictly positive on admissible configurations.
An essential part of this work with respect to previous studies is an extension of the dual representation to
the case of (1) an arbitrary value of the temporal coupling constant in the Wilson action and (2) an arbitrary
number of flavors of static quark determinants. The applications and extensions of the results are discussed
in detail. In particular, we outline a possible approach to Monte-Carlo simulations of the dual theory, to the

large N expansion and to the development of a tensor renormalization group.

DOI: 10.1103/PhysRevD.102.014502

I. INTRODUCTION

Dual representations of lattice gauge theories (LGTs)
and classical spin models are a useful nonperturbative tool
that allows us to study many aspects of lattice quantum
field theories. In the early days of LGT the dual trans-
formations proved very efficient in the studies of the
confinement and related problems, especially in the
Abelian gauge theories [1,2]. Also, dual representations
appear to be very efficient for numerical simulations both at
zero [3] and at finite temperatures for U(1) LGT [4]. The
following years have seen many attempts to extend the
duality transformations to non-Abelian models using differ-
ent approaches and strategies. In the pure gauge case the
dual representation can be constructed starting from the
plaquette formulation [5,6]. Dual variables are introduced
as variables conjugate to local Bianchi identities [7,8]. The
dual model appears to be nonlocal due to the presence of
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connectors in the Bianchi identities for gauge models. An
analogue of the plaquette formulation for the principal
chiral model is so-called link representation [9,10]. In this
case one can construct a local dual theory for all U(N) and
SU(N) principal chiral models [11]. Another approach is
based on (1) the character expansion of the Boltzmann
weight and (2) the integration over link variables using the
Clebsch-Gordan expansion [12,13]. The resulting theory is
the local dual theory written in terms of invariant 6j
symbols. Several attempts to simulate this dual version
have been undertaken (see Ref. [14] and references
therein). In the opposite case, the strong coupling limit,
the SU(N) LGT can be mapped onto monomer-dimer and
closed baryon loop model [15].

During the last decade the dual representations have been
applied to solving, fully or partially, the sign problem
appearing in the lattice QCD in the presence of nonzero
chemical potential and/or nontrivial topological term, like the
0-term. While it is still too early to say unambiguously if this
approach can solve the sign problem in QCD, some advances
in simpler models are encouraging. For example, the dual
form of the massless two-dimensional U(1) LGT with one or
two flavors of staggered fermions is free of the sign problem
[16]. The same was proven in the strong coupling limit of the
scalar QCD with one, two or three scalar flavors [17].

In general, there are two strategies attempting to con-
struct positive Boltzmann weight for QCD or QCD-like
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theory at finite density. The first one relies on full integra-
tion over original degrees of freedom, i.e., gauge and
fermion fields. The form of the final result strongly depends
on the method of integration [18-22]. We do not discuss
details of this approach here because in this paper we use a
second strategy. It consists, first, in construction of an effec-
tive model for gauge loops winding around the lattice in the
temporal direction, i.e., for Polyakov loops. Only in the
second step, the integration over Polyakov loops is accom-
plished. This strategy was successfully applied for the SU(3)
Polyakov loop model in the strong coupling region for both
temporal and spatial couplings of the Wilson action and in
the heavy quark regime [23-25]. Similar results for U(N)
models in the same approximations have been presented in
[21]. More discussion on the effective Polyakov loop models
can be found in Refs. [26,27].

In this paper we calculate the dual representations for
two Polyakov loop models. The Boltzmann weight of
the first model is the same as the weight studied in [23].
We extend the results of [23] in several directions. First,
our calculations are done for all values of N and in any
dimension. Second, we consider the full static quark
determinant with an arbitrary number of staggered or
Wilson fermion flavors of different masses and chemical
potentials. Finally, the result is given for the most general
correlation function. These include, as particular cases, the
partition function, two-point function related to the free
energy of quark—antiquark pair and for N-point function
which gives the free energy of a baryon state. The
Boltzmann weight of the second model is defined for all
values of the temporal coupling constant, so that the strong
coupling limit is imposed only with respect to the spatial
coupling. Again, we treat all SU(N) models with an
arbitrary number of static quark flavors and compute both
the partition and correlation functions. We shall also
explain how the results obtained can be easily transformed
into results for U(N) and Z(N) Polyakov loop models.
Boltzmann weights of all dual representations are non-
negative, therefore our formulation could be used for
Monte-Carlo simulations of the models at finite baryon
or other chemical potentials.

This paper is organized as follows. In Sec. II we define
the Polyakov loop models and introduce our notations. In
Sec. III we derive dual representations for spin models in
the strong coupling region of the temporal coupling
constant. In Sec. IV the result is extended to the arbitrary
values of the temporal coupling. The possible applications
and perspectives are discussed in Sec. V. In the Appendix
we explain all definitions and our notations related to the
group representation theory. Also, we evaluate all group
integrals appearing in the main text.

II. POLYAKOV LOOP MODELS

We work on a d-dimensional hypercubic lattice
A = L% with linear extension L and a unit lattice spacing.

X=x=(xy,...,x4), x; € [0, L — 1] denotes the site of the
lattice, [ = (X,v) is the lattice link in the v-direction and
p = (X,u <v) is the plaquette in the (u,v)-plane. e, is a
unit vector in the direction v. Periodic boundary conditions
are imposed in all directions. Let G = U(N),SU(N);
U(x) € G, and dU denotes the (reduced) Haar measure
on G. TrU will denote the fundamental character of G. The
character of the irreducible representation 4 will be denoted
by s,(U). The dimension of the representation is s,(7).

In this paper we shall study some spin models on G
with a local interaction in the external field and whose
degrees of freedom are the eigenvalues of a matrix U in
U(N). We will label symmetric Schur functions on these
eigenvalues by s,(U). For SU(N) group these eigenvalues
satisfy an additional constraint [ [{_, u; = 1. These models
describe an effective interaction between Polyakov loops in
(d + 1)-dimensional LGT with N flavors of static quarks
at finite temperature and nonzero quark chemical potential
u. The general form of the partition function of the models
is given by

Zu(B.m i N, N)
Ez:/HdU@)HBg(ﬁ)HHBq(mf,ﬂf). (1)
X P x f=1

On an anisotropic lattice and in the limit of vanishing
spatial gauge coupling f3; one can explicitly integrate out all
spatial-like fields in any number of dimensions to get the
following Boltzmann weight describing the Polyakov loop
interaction (see, for instance Ref. [28] and references
therein)

B,(f) =D _DiB)si(U(x)si(U(x +¢,)).  (2)
{4}

The coefficients of this weight depend on the temporal
gauge coupling 3, = f and can be expressed as

D,(p) = (#2%) Nr,

Ci(p) = Z det ) iy ik (B)i<ijen- (3)

k=—00

Here C,(f) are the coefficients of the character expansion
into irreducible representations of the group G of the weight
exp(pReTrU), I,(x) is the modified Bessel function and N,
is the lattice size in the temporal direction. In the strong-
coupling region f# < 1, the leading contribution comes from
the fundamental character with coefficient D (f3), therefore
the whole Boltzmann weight is approximated as

Bg(ﬂ) = €Xp [ﬂeffReTrU(x)TrUT (X + 6,/)],
Peit = 2D (P). (4)
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In an approximation where one could neglect the fermion
interaction in spatial directions, the static quark determinant
can be calculated exactly, and the corresponding Boltzmann
weight has the following form (for N, even)

By (mys,uy) = By(h'., hL)
= Agdet[1 + 1/ U(x)] det [1 + KLU (x)]. (5)

where the determinant is taken over group indices and
hi _ e—(arc sinhmf:Fﬂf)N,' (6)
For Wilson fermions the static quark determinant is slightly

different due to additional determinant over the spinor
indices

Bq(mfaﬂf) = Bw(h}-&c-’ hJ—c)
= A, det[1 + 1/ U(x)P det [1 + HL U (x)]%.
(7)
In this case one has
B = (2 et )N, Kp = ! . (8)
+ f f 2my + 2d + 2 cosh pug

The unessential constants
|

©  © Irl+2s )
exp [BeiReTrU (x)TrU' (x + ¢,)] = Z( ff)

—o0 =0

Ast eNN arcsmhm,c Aw — (2Kf)2NN’ (9)
will be omitted in the following.

When m; > |us| or ky < e one usually replaces
these exact expressions with their approximation

Ny
11 B,(ms. ) ~ B(h, 1)
f=1

=exp [h, TrU(x) + h_TrU'(x)], (10)

where h, = szf hi, s = 1 for the staggered and s =2
for the Wilson fermions. The Boltzmann weight of all these
models is complex if u; # 0 or, in general, if hfr #hl.
In what follows we assume h’; in (6), (8), and (10) are

arbitrary complex-valued variables. If hi are positive, the
obtained dual weight is positive, too.

III. DUAL OF SPIN MODELS I

In this section we consider the partition function (1) with
the weight B, () given by (4). The static fermion con-
tribution B, (my, us) will be taken either in its approximate
form (10) or in exact forms (5), (7). The former case has
been analyzed in [23] for SU(3) by making use of an exact
parametrization of the SU(3) characters and measure.

Consider the following Taylor expansion of the
Boltzmann weight B (/)

(s 4+ |r|)!s!

(TrU X)TrU (x + e,))s A (TrUT (x)TrU (x + e,) )22, (11)

For the fermion weight (10) we use the similar expansion

exp [, TrU(x) + h_TrU' (x

k=—00 m=0

To deal with exact static determinants (5) and (7) we use an
expansion of the determinant in the Schur functions
[Eq. (A21) in the Appendix], which is valid, in such
generality, both for the staggered and for the Wilson
fermions. Notations and some explanations regarding this
formula are given in the Appendix. We shall calculate the
dual expression for the most general correlation function

Z(n(x).7i(x))
z

<H(TrU(x))'7<X>(TrUT(x))ﬁ<X>>. (13)

X

m3|k|+3k + M-tk =Lk
Z Z m+|k| 'm' (h, TrU(x)) +3lkl+3 (h_TrU*(x)) +Hk|-5k (12)

|
The partition function equals Z(n(x),7(x)) for n(x) =
fi(x) =0.

In what follows we analyze separately two cases:
(1) heavy quark approximation (12) and (2) exact static
determinant (A21). All formulas below will be given for
SU(N) models. In the end, we shall explain how one can
easily obtain the corresponding dual representations for
U(N) and Z(N) models using SU(N) results.

A. Heavy quarks

The original partition function in the presence of sources
n(x), f(x) is given by
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).7i(x)) = /HdU x)H(TrU D (TrU" (x) )1

x H exp [BeseReTrU (x)TrU T (x + ey)]H exp [h, TrU(x) + h_TrU'(x)]. (14)

Using (11) and (12) it can be written after some rearrangement as

Z(n(x). 7 H[ > > ( ff) o )(s(l)+|r1(l)|)!s(l)!}

(/=0 5(1)=0

© © (X)+z|k( x)|

B\ )
x H Z Z _|_ |k X)) tm(x)! (K) IZIQN(H(X),P(X))- (15)

k(x)=—00 m(x)= O

Here Qy(n, p) is a group integral defined and calculated in the Appendix, Egs. (Al), (A27)

QN(’%P) = Z 5n—p,qNQN,q(j)’ QNq J) Zd /1 + |‘]|N)7 (16)

g=—0o0 Aj

where j = min(n, p), d(4) is the dimension of the representation 4 of the symmetric group S, and the notation 1 + |g|" is
defined in the Appendix after Eq. (A22). The integers n(x) and p(x) are given by

d
1) = 10x) + 3D (0) = 1 (x = ) + g kx) + (), (17)
v=1
1¢ 1 3
px) = 1) =3 3" () = 16— €,) = 3 k() + (). (18)
v=1
=3 (s<z~> +1|r<z->|) T m(x) + 2 k) (19)
i=1 l 2 l 2 ,

where [;,i = 1, ..., 2d are 2d links attached to a site x and s(/) = s,(x), r(I) = r,(x). The N-ality constraint n — p = gN in
(16) becomes

d
> y(x =€) + k(x) +n(x) = 7i(x) — g(x)N = 0. (20)

v=1

The flux representation of Ref. [23] can be simply recovered from this result, by performing the inverse change of
variables to the one described in [24]

lxu=S(l)+%(|r(l)|+r(l)), S (X)+ (Ik(x)[ + k(x)),
Lew =S(l)+%(|r(l)l —-r(), 5 Zm(XHE(Ik(X)I — k(x)), (21)

where [, [ are dimer variables, and s, 5 are monomer variables. Thus our formulation generalizes this flux representation to
arbitrary SU(N) group.

1. Pure gauge theory

Strictly speaking, the conventional duality transformations can be carried out only in the pure gauge theory, i.e., when
h, = h_ =0 and, hence m(x) = k(x) = 0. Then, if j(x) = min(n(x), p(x)), the expression (15) takes the form
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{a(x)t==c0 {r(l)}=—00 {s(1)}=0 x
o Peit [r(1)|+2s(1) 1 _ o
HK 2 > (s(1) + |r(z)|);s(l);]H[Qw,qm(J( )l (22)
while the constraint (20) reads
d
n(x) = p(x) = D (n(x) = ry(x = €,)) +n(x) = ii(x) = g()N. (23)

This constraint can be solved in terms of dual variables in
any dimension. It is important to emphasize that only Z(N)
invariant correlation functions are nonvanishing due to
above constraint. Indeed, taking into account that on the
periodic lattice Y. >"7_, (r,(x) = r,(x —e,)) = 0 one can
be assured that

S —integer.  (24)

Equation (24) implies that only invariant, i.e., mesonic and
baryonic correlators of the Polyakov loops are nonvanish-
ing in the absence of the external field (dynamical quarks).

In the following we consider, for the sake of simplicity,
the two-point correlation function, corresponding to the
free energy of the quark—antiquark pair and the N-point
correlation function, corresponding to the N-quark (or
baryon) potential. In the first case the sources are given by

11()() = 77(0) = 775x,0v ﬁ(x) = ﬁ(R) = ﬁéx.R = ’15x.R-

(25)
|

[Se]

In the second case we introduce sources as

n(x) =n(x;) =nbyy, i=1,...,N. (26)

We give below explicit formulas for d = 1, 2, 3 which
follow from Eqs. (22) and (23).

One-dimensional model.—One-dimensional model is espe-
cially simple because we get from (20)

r(l) = r+ k()N +n(1), (27)

where r € [0, N — 1] becomes a global variable, k(/) €
[—o0, 00] and 57(1) = n for a set of links between sites x = 0,
x = R and 7n(l) = 0 for links lying outside of the interval
[0, R]. The delta-function in the lst line of (22) is now
Sk(1)—k(1-1),q(x)- Making a shiftin g(x), the partition function
with sources can be presented as

Z H[QN,k(l)—k(l—l)(j(x))]

r=0 {k(l)}=—o00 {s()}=0 x

" ﬂeff [r+k(l)N+n(1)|+25(1) 1

1 (%) (0) + I+ KON + D)D) @8)

=3 (04 31+ KGINT) 5 (6(0) = K. (29)
i=1 2 2

where links /;, [, have a site x in common. Signs + and —
correspond to n(x) and p(x), correspondingly.

Two-dimensional model.—The solution of the constraint
(20) in the two-dimensional model and in the presence of
sources for the quark-anti-quark potential is given by the
dual variables as (sites are placed in the center of original

plaquettes, links are dual to links and sites become dual
plaquettes)

r(l) =r(x)—r(x+e,) + k()N +n(l). (30)

Here, (1) = nif | € Sk, where Sy is some path connecting
points 0 and R, and 7(l) =0, otherwise. The partition
function on the dual lattice takes the form
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(%)\r(x)—r(x+e,,)+k(1)N+7](l)H—Zs(l)

<11 Ls(z) T~ rx + ) + KON T )i (D) !]’ G
|
where we have introduced notations Z(n(0),7(R))
N—-1 ) 0
K(p) = k(1)) + k(L) — k(ly) —k(I,),  (32) = S > T 10w Gile))]
[HDT=0 {k(p)] =00 {s(p)]=0 ¢

(%)\V(ﬂ +k(p)N-+n(p)|+2s(p) 2
<11 [<s<p> ) T RN s O

=3 <s<z,-> T+ harte) + k(l»N) ). 33)
- 2 p

1

Four links [/; form a dual plaquette p with vertices x;,
Ar(x;) = r(x;) — r(x; +e,) and signs “£” correspond to
duals of n(x) and p(x) defined in Egs. (17), (18).

The solution of the constraint (20) in the presence of the
baryon sources (26) can be constructed as follows. Let us
take an arbitrary point x, and connect all N points x; with
Xo by some path §; consisting of dual links. Introduce dual
variables as in (30), where () = nif [ € S; and 5(l) = 0,
otherwise. The N-ality constraint (20) becomes

k(p) +nb, ,, = a(p). (34)

where the plaquette p, is dual to the site xy and k(p) is the
same as in (32). Strictly speaking, the solution of the form
(30) is only valid in two dimensions if N < 4. Then one can
take all paths S; consisting of nonintersecting links and
solution (30) holds. Though it is not a problem to extend the
solution (30) to arbitrary N we restrict ourselves here to the
case N < 4. We thus conclude that the partition function in
the presence of such baryon sources is of the form (31),
where one has to substitute k(p) = k(p) 416, .

Three-dimensional model.—In the physically most relevant
three dimensional case one obtains the solution of (20) in
the following form

r(l) = r(ly) + r(ly) = r(l3) = r(ly) + k(p)N +n(p)
=r(p) + k(p)N +n(p). (35)

Here, four links /; form a plaquette p dual to the original
link 1. n(p) = nif I € Sg, where Sk is some path consisting
of dual plaquettes and connecting points 0 and R, and
n(p) =0, otherwise. The partition function on the dual
lattice reads

1. is a product over all cubes of the dual lattice and the
notations are used

k(c) = k(p1) + k(p2) + k(p3) — k(ps) — k(ps) — k(pe).
(37)

361 =3 (st + 3 (0 + KpN|) £ 54(0). (38)

i=1

Six plaquettes p; form a dual cube ¢ and signs =+ corres-
pond to duals of n(x) and p(x) defined in Egs. (17), (18).

Extension of this result to the N-point correlation
function is done precisely like in two-dimensional theory.
In particular, if N < 6 the solution of (20) can be taken as in
(35). Then, defining paths S;,i =1,...,N that connect
points x; with some reference point x, (on the dual lattice
path §; is formed out of plaquettes and connects cubes c;
and ¢y which are dual to the corresponding sites) and
introducing sources 7(p) = 5 on plaquettes belonging to ;
one finds that the N-point correlation function is described
by Eq. (36) where one has to take the corresponding sources
n(p) and make the substitution k(c) = k(c) +#6, -

We can conclude that all three-dimensional SU(N) spin
models are dual to the gauge models whose partition
function is given by Eq. (36) with 7(0) = 7(R) = 0.

2. Full theory

Here we proceed with the full theory given by Eq. (15).
Using N-ality constraint (20) one can sum up over k(x).
With the help of notation

d
rx) =) (rn(x=e)-r,(x), (39)
v=1

we obtain after some manipulations the following
expression
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2o i) = >

(ﬂeff)l r(D+2s(D)

H [era@N+(x)=n(x) N.g( ()]
{0} {r(D}==co {m(x)} {s(1)}=0 x

h2m (%) 4| r(x)+q(x) N+7(x)—n(x)|

X -~ . 40
o ramso Ll o+ v amv v =—manmen 0

We used here the property > r(x) = 0 and introduced parametrization
hy = he**. (41)

The expression (40) is our final dual representation for SU(N) Polyakov loop models valid for all N and in any dimension.

The function O N.g(x)

julx) = 1(x) +1

2
1(x) = Z

Some comments are in order:

(i) As follows from Eq. (40) and exact expression for
the function Qy ,(j) given in (16), the dual Boltz-
mann weight is non-negative if A, h_ > 0 or if
h,,h_ < 0. Hence, in this region the dual formu-
lation can be used for the numerical simulations of
the model with nonvanishing chemical potentials.

(i) Most thermodynamical functions and local physical
observables, like the energy density, the baryon
density, the quark condensate, etc. can be easily
translated into the dual form by taking the corre-
sponding derivatives with respect to S, h Or fiy.
This amounts to a local shift in a correspondlng
summation variable and can be presented as an
expectation value calculated over the dual partition
function.

(iii) The long-distance observables, like two- and N-
point correlation functions can also be written as
expectation values in the dual form. This follows
directly from (40).

3. U(N) and Z(N) models

Here we explain briefly how the general result for SU(N)
models can be used to compute the corresponding dual
representations for U(N) and Z(N) models. The latter is
equivalent to vector Potts models and can be obtained from
SU(N) models by replacing U(x) matrices with their center
elements. For simplicity we restrict ourselves here to the
partition functions, i.e., #(x) = 7j(x) = 0.

U(N) model.—As explained in the Appendix, the only term
contributing to U(N) group integrals is the term with
q(x) = 0. Therefore, from Eq. (40) one gets for the
partition function

(j(x)) is defined in Eq. (16) with j(x)

=min(j,(x),j_(x)) and ji(x) is given by
(n(x) +7(x) = g(x)N),

(504 3171 ) +m(3) 4 3173) + aON + 7(3) =0 )

S D)
{g()}{r()}==c0 {m(x)}.{s()}=0 x
ﬂ_n r(D]+2s(D) J2m(x)+|r(x)]
2
s ramsallowm - renmer

3)
i) =3 (st + 5101 ) )+ 5l (44

Z(N) model.—Even simpler is the result for Z(N) model.
In this case Qy 4 (ji(x)) = 1. Taking into account that

r+2s

0
Z s+r's'

where ,.(x) is the modified Bessel function, the partition
function appears to be

Z= Z eﬂNZ HI (Betr) HI x)+q(x

{g()}{r(D}=-

= 1,(p). (45)

(46)

Let us add some more comments here:

(i) Clearly, all comments given in the end of Sec. III A 2
remain valid for U(N) and Z(N) models.

(i1) It follows from (43) that the partition function and
invariant observables do not depend on the chemical
potential for U(N) models with one fermion flavor.
In case of two flavors, the Boltzmann weight
depends only on the difference of chemical poten-

tials H1 — Ho.
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(iii) In the pure gauge case the corresponding repre-
sentations for U(N) and Z(N) models can be
straightforwardly obtained from Egs. (28), (31),
and (36).

(iv) The dual form of the XY model can be calculated
either taking N =1 in U(N) case or as a limit
N — oo in Z(N) case. E.g., in the pure gauge three-
dimensional case one recovers the following dual
gaugelike form of the XY model

Zxy /7) Z le(p)(ﬁ)
(N=co [

r(p) = ( 1) + (k) —r(l3) —r(ly).  (47)

B. Exact static determinant

In this subsection, we compute the dual representation
for the theory with the exact static determinant with an
|

Z(n(x), 7

=11 >

(I)==—c0

X HRN~N/ n(x s
X

205

arbitrary number of flavors of the staggered, Eq. (5), or the
Wilson, Eq, (7), fermions. As in the previous subsection,
we shall calculate the dual expression for the most general
correlation function defined in (13). The original partition
function in the presence of sources 7(x), 77(x) is given by

Z(n(x),71(x))
:/HdU(x

xHexp[ﬂeffReTrU( )TrU (x +e,) Hﬂ (mypy).

(48)

)] [(Tru o)y (Tru (x) )it

The gauge part of the Boltzmann weight B, (/) is treated as
in the previous subsection using the expansion (11).
Substituting this expansion into (48) one gets after some
rearrangement

it | MO0 1
) (s(D) +[r(DD!s(D)!

p(x)smy, pr).

(49)

Here, the function Ry v, (r,s;mg, py) is a group integral defined in Eq. (A3) of the Appendix. The integers n(x) and p(x)

are given by

n(x) = Z( (1) +

i=1

2d
P =3 (su»

i=1

1) -

where [;,i = 1, ...,2d are 2d links attached to a site x.

d
GOR

V=

1) + 5

d
> —e,)) +7(x),

v=1

l\)I'—‘

y(x=e)) +n(x), (50)

(51)

To deal simultaneously with staggered and Wilson fermions we use the representation (A21) for the N -flavor static
determinant proven in the Appendix. With this representation and making use Eq. (A20) the group integral can be calculated
exactly. This is done in the Appendix, formulas (A33)—(A36). Presenting the N-ality constraint as

g(x)
we write down the final result (A36) in the explicit form

0 ¢NNy

Ry, (n(x). p(x)smp.up) = >

c¢NNy

q(x)==00 |a(x)|=0 |(x)|=0

X RN,Nf(‘1<x>v a(x)

=2 2 >

a-la(x)| pEIA(x)] ob-p(x)+

=n(x)+lax),  f(x)=p)+|B)]. (52)
()= (x).q(x)N
P H); Ry, (q(x), la(x)], [B(x)];
d(c +q"/a)d(c/B)sy(H)sy(H_), (53)

Al

where s = 1 for the staggered and s = 2 for the Wilson fermions. The explicit form of the N-ality constraint is
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= (n(x) = nlx=e)) +n(x) = i(x) + |a(x)| = [p(x)] = g(x)N. (54)

v=1

The variables H ., depending on m, us, and other notations are defined and described in the Appendix. Combining last
expressions with (49) the final result for the partition function with arbitrary sources gets the form

{a(x)}==c0 {|a(x)[}=0 {|p(x)[}=0 {r(1)}==co {s()}=0
ﬁeff)lr(l)HZS( )

x H )1 L1050 gon R v, (@ (0). a) . [B(x)]: Ho)l- (55)
l tox
We conclude this subsection with few comments: q(x) = 0. The dual form of Z(N) model is obtained
(1) All factors entering the Boltzmann weight of (55) from Eq. (55) by replacing all dimensions with
are positive. This is true also for the Schur functions unity and omitting sum over o in the definition of
appearing in (53). Hence, this representation is RN‘Nf, Eq. (53).
suitable for the numerical simulations of the theory.
(i) Both long-distance and local observables can be IV. DUAL OF SPIN MODELS II
written as expectation values over the dual partition
function. Here we investigate the partition function (1) with the

(iii) An explicit form of the group integral for one flavor ~ weight B/(f) given by (2). The static fermion contribution
of the staggered fermions is presented in Appendix. B, (m . us) will be taken in its exact forms (5), (7). Like in
Even more detailed formula is given there for N = 3. the previous section we calculate the dual form both for the
This presentation can be directly used for the Monte-  partition function and for the most general correlation
Carlo simulations. function. In this case such correlations are given by an

(iv) The dual form of U(N) model coincides with  expectation value of the product of SU(N) characters taken
Eq. (55) where one should take the only term with  in arbitrary representations #(x), #(x). Precisely, one has

|

Z(n(x), 7(x)) :/HdU(x)H[Sn(x)(U(x))sﬁ(x)(U+(x>)]

XH[ZDA B)s;(U(x))s,(UT(x +e,)) ]HHB My, piy). (56)

{4}

The partition function is recovered by taking trivial representations in all lattice sites. Exchanging order of the summations
and integrations and rearranging product over links in the second line of (56) we write down the result in the form

Z(n Z [P HHNN, FOx)smy, py). (57)

(O} xw

The coefficients D, (f3) are defined in (3) and the function H¢, N, is a group integral defined in (A4) and calculated in the
Appendix, Eqs. (A37)-(A39), where

9(x) = (A(x).n(x),  f(x) = (A(x—e,). 0(x)). (58)

[
In the next subsections we specify this general formula for ~ the integration is given by Egs. (A28)-(A31). Denoting
several important cases. r(l) = r,(x) = |A(1)|, the sum over all representations A can
be written as

A. Pure gauge theory

In the pure gauge theory the group integral Hf'(/,zvf Z — ZZ (59)
simplifies to G4 (4;,7;) given by Eq. (A2). The result of 2 r=0 2Fr
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and the N-ality constraints (A30) and (A32) in the presence
of sources read

r(x) + [n(x)| = [7(x)| = q(x)N;

Z r(x—e,)).

v=1

(60)

As before, we analyze each dimension separately. The
result will be given for the partition function and for the
correlation function of the general form. We shall also
explain the particular solution of the N-ality constraints for
the two- and N-point correlation functions. The corre-
sponding sources can be taken like in Egs. (25) and (26),
respectively.

1. One-dimensional model

One-dimensional model is exactly solvable. Using
orthogonality relation (A28) and expression for the
Littlewood-Richardson coefficients CZI 2, (A15) one finds
for the partition function

z="7 [D,(p)* (61)
{4}
and for the two-point function
Z(n(0),#(R)) = Y €} ,,C1, D4 (AR D, (AR,
{4 Aa}
(62)
|

{g(x)} =00 {r(D)}=0 {r:(

X+egr \X+ej+eg

A A
1u ul™? | A -

Ay
\4 A L

X X+€ X

FIG. 1. The order of coupling of the link representations in the
integrand of one-site group integrals. Left: in two-dimensional
theory representations are coupled inside every even plaquette of
the lattice. Right: in three-dimensional theory representations are
coupled inside every even cube of the lattice.

Summations in the last expressions goes over SU(N)
representations Ay > 4, > --- > Ay_; > Ay = 0.

2. Two-dimensional model

In two- and three-dimensional cases the final result can
be significantly simplified if we multiply the Schur
functions in the integrand in a special way. Namely, in
two dimensions we divide the lattice into a set of even and
odd plaquettes and couple the Schur functions as shown in
the left panel of Fig. 1. In this way the summations over
original representations A(l) are factorized inside every
even plaquette. Let 1 be a representation conjugate to A, see
Egs. (A7), (A8). Extending the integration result (A29) to
the correlation functions and using decomposition (59), we
obtain

LT+l aen]

x).pa(x)} X

< [[FO(x). i) [ By (pi(x)) (63)
X pEVCﬂ
where the Boltzmann weight B ,(p;(x)) and the function F(r(x),7(x)) are
By(pi(x) = Y o D Dy (B)Dy (BICT e o,
Mbr(ly)  Aqbr(ly)
Fln(x). a(x ZCW ()" (64)

For the partition function F(0,0) =4,
(63) reduces to

(x)pa(x)+q(n)¥ and

0 (o]

> 2.2 o

{a(x)}==co {r}=0{p(x)} *

7 =

ov [ [Bo(p(x). (65)

Peven

The Boltzmann weight B,(p(x)) coincides with (64)
up to replacement p;(x) — p,(x) + g(x)¥. The N-ality

[

constraint in (63), (65) has the same form as in (23).
Therefore, both for quark—anti-quark sources and for baryon
sources, one can use the solution (30). Because the link
variables r(/) in (63) take on the non-negative values, the
dual variable k(/) on the right-hand side of Eq. (30) is also
non-negative and the difference r(x) — r(x + e,) should be
defined modulo N. The choice of #(/) for each case also
remains as has been described after Eq. (30).
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3. Three-dimensional model

In three dimensions we divide the lattice in a set of even
and odd cubes and couple the Schur functions as shown
in the right panel of Fig. 1. In this way the summations
over original representations A(/) are factorized inside
every even cube. Moreover, we first couple representations

where the Boltzmann weight B.(p;(x)) is

ZDM

Mbr(ly)

> Dy, (B)

/112F’(112)

lying in the horizontal plane, then the resulting represen-
tations are coupled with representation sitting on the
vertical links. The final step is to couple the representations
obtained with representations 7(x), #7(x) from correlation
functions. This procedure yields for the correlations of the
general form

% C% Cﬂz C%. C%. C%. C%. C”7 Cffs Cﬂl( )C/’z(x+€3)

j"14 ﬂz

62410 66410 03411

The function F(n(x),7(x)) is of the form (64). The
specification of this result for two- and N-point correlation
functions is essentially the same as in the two-dimensional
case. The solution of N-ality constraint is taken as in (35)
with restrictions described after (65). The resulting dual
model is a three-dimensional model possessing local Z(N)
invariance in analogy with (36).

B. Strong coupling limit

In the strong coupling limit, f = 0, the gauge part is
absent and only static fermion contribution appears in the
partition and correlation functions. Essentially the model is
nothing but the one-dimensional lattice QCD. The partition
function is given by the integral (A37)

2= 3 3 s (Ho s

q=— o

). (69)

The result of the integration for the correlation function can
be easily extracted from (A38)

¢NNy ¢NNy

o]

{a(x)}==00 {la(x)[}=0 {|(x)[}=0 {r(1)}=0 {p: (x)

<] Tlo

The Boltzmann weight and the function F((x),

x)+ () [+[n(x)[=|p(x)

i

014502-

Tads = 2ads " Asks " Asks
C/’l(X+€1)sz(x+€1+€3)CP1(X+€1+€2)C/72(X+€1+€2+€%>Cﬂ1(X+92) Pz(x+€z+€3)

> B mwnwiamn] (66)
HBC( i(x)), (67)
] og
A6hy ~ Agdq ~O1hg 059
o711 o412 ogl1n (68)
[
Z Zc“*q Cys(Hy)sy(H-).  (70)

q=— a.f.c

These two formulas give an exact solution for one-dimen-
sional QCD with arbitrary number of flavors of different
masses and chemical potentials, both for the staggered and
for the Wilson fermions. The detailed investigation of these
solutions will be presented elsewhere.

C. Full theory: One-dimension

One-dimensional model corresponds to two-dimensional
QCD. It is important to emphasize that our approach takes
into account the full Wilson action in this case and the only
though essential approximation is that we neglect the
fermion propagation in one spatial direction. The corre-
sponding one-site integral is given by Eq. (A38).
Substituting this into (57) one gets for the correlation
function

[Se]

>

p2(x)}
i g F ). )] [Bi(pi(x)).

i

(71)

(x)) are found to be

11



O. BORISENKO, V. CHELNOKOV, and S. VOLOSHYN PHYS. REV. D 102, 014502 (2020)

Bipix) =33 N DA s (H sy (H), (72)

Ar(l) a-la(x)| pE|A(x+1)],
~ _ +q(x) o
Fn(x).7i(x) = Y€ o i (73)

The partition function is easily recovered putting 7(x) = 7j(x) = 0.

D. Full theory: Two-dimensions

To get a dual form for two-dimensional theory we use the result of the integration presented in Egs. (A38), (A39) and
follow the strategy used in the pure gauge theory. Namely, we first multiply characters from the gauge Boltzmann weight
according to Fig. 1, resulting representations are coupled with representations from the fermion weight and, finally with
representations 7(x), 77(x) from the correlation function. After some algebraic manipulations we present the expression for
the correlation function in the following form

00 c¢NNy ¢NNy 00

(g0 T==co {la(x)[}=0 {[FIN1=0 {r{D} =0 {p1 (¥) pa(x)}
XH a1 i L F ), 1) T [ B (i (x))- (74)

Deven

The function F(n(x),7(x)) is the same as in Eq. (73). The Boltzmann weight reads

Z D;,(p Z D;,(p Z ZCML: FR 3213C%14 Z So (H) Z Say(H)

Mbr(ly) Aqbr(ly) ala(x)] wF|alx+e;)|
X Z Sy (H_) Z sp, ( )Cﬁigxl) Cg;gjrel)Cﬁz(lf+el+ez)cﬁi();+ez) (75)
Prit|p(x+ter)| PoblB(xtei+er)|

E. Full theory: Three-dimensions

In three-dimensional theory we use the same strategy as above. The original link representations are coupled as shown in
Fig. 1. With the help of Eqs. (A38), (A39) and using the same notations we obtain after long algebra the following
representation for the correlation function

c¢NNy c¢NNy

TONCEED D D S S S

{a(x)}==co {|a(x)[}=0 {|A(x)[}=0 {r(1)}=0 {p (x).p2(x)}
XH () ) ) =150 i Laon F (1) )] [ Be (i (). (76)

Ceven

The function F(5(x),7(x)) is the same as in Eq. (73). The Boltzmann weight reads

(pi(¥)) Z D;,(p Z Dilz(ﬁ)zmzcilhczjﬂl CﬂjzzCA;/14C/1;18C/156/16Cig/17c,1:z7
Mbr(ly) Aabr(liz) o1Y1 0878
X Ci;ll A9 C?S/lg CZZM]OCUM]O C"Mll C"ﬂll Cl’dlz Cz;zilz
8
XH[ > st e | T 3 suecs?|. )
i=1 taj-la(x;)] i=5 LpiH|B(x)]

Notation for sites of a cube are: x; = x, X, =x+ e, X3 =x+e€| + ey, X4y =x+ €y, X5 =x+ €3, Xg =x+ €] + €3,
X7=X+e +e+e3 xg=x+e +e;3.

As an important example, let us write down an explicit formula for the partition function with one flavor of the staggered
fermions. In this case one has a = 1%, = 1",0 < k,m < Nand s, (H, ) = h%, sy (H_) = h™, therefore the Eq. (76) takes
the form for 5(x) = 7(x) =0
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> oy

{g(x)}=~0c0 {r(1)}=0
X H[5r(x)+k(x)-

Z(n(x),7(x))

In this case the Boltzmann weight (77) becomes

B.(pi(x) = > Dy(B)-.. Y Dy, (B .

Mbr(ly) Ankr(lyp) G1.71

X C?’] CYS C?’z C}’s CJ’3

0149 0549~ 0ad10  Oshig 0311

CJ’7

o711

Let us add some remarks on resulting dual formulations:
(1) All factors entering the dual Boltzmann weights
obtained in this section are positive including the
Schur functions. Hence, this representation is suit-
able for the Monte-Carlo simulations at nonvanish-
ing chemical potentials, at least in principle. Possible
approaches to such simulations are discussed in the
end of this section.
One technical remark concerns the function
F(n(x),7(x)) which appears in the presence of
external sources for the correlation function. From
its explicit expression, Eqs. (64) and (73), it follows
that the product over lattice sites can be rearranged
in a way that allows to include all Littlewood-
Richardson coefficients from F(n(x),7(x)) into
the Boltzmann weights. In this way the variables
pi(x) become internal summation variables in each
even plaquette (cube). Instead, variables ¢(x) can be
made dynamical variables of the dual theory.
We have not presented explicit expressions for the
thermodynamical quantities. They can be easily
obtained by taking the corresponding derivatives
with respect to 3, hi or yy. As in the region of the
strong temporal coupling, this simply amounts to a
local shift in a corresponding summation variable
and can be presented as an expectation value
calculated over the dual partition function.
An explicit form of the group integral H ﬁ,, N, for one
flavor of the staggered fermions is presented in
Appendix.
The dual forms of U(N) and Z(N) models can be
obtained following the lines described in the pre-
vious section. It follows from the N-ality constraint
in Eq. (78) that the partition function and invariant
observables do not depend on the chemical potential
for U(N) models with one fermion flavor. In SU(N')
and Z(N) models the dependence appears in the
form eV as is expected on the general grounds.
Finally, we would like to discuss shortly some approaches
to Monte-Carlo simulations of the dual formulations and

(i)

(iii)

(iv)

)

m(x),q(x)N] HBL (p(x)) ’

|
(P00} th(mx)}=0 ¥
(78)

Ceven

O 0 03 04 05 O6 o7 o3
o Z C/h n C/Iz/_ll C,'13712 C/13,'14 CZSZS C/ISZG Cﬁs/b C/ISL
038,78

4
CJ’4 Vs

0412 0812

=

(79)

J/ilk()(l-) 7l_1m(xi) .

8
Cp(xi)""q(xi)N H Cp(xi)
=5

related problems. Since the Boltzmann weights for the dual
model obtained in this paper are nonnegative, they can be
used for direct Monte-Carlo simulations. Dual weights based
on the expansion of the group integrals into the Littlewood-
Richardson coefficients might look quite complicated at first
sight. Let us remark, however, that if a positive dual weight
at finite density exists, for the full theory it will certainly be
much more complicated. Therefore, it is desirable to have a
working algorithm for this complicated but still simplified
dual theory. Here we give our thoughts on the way Monte-
Carlo simulations can be performed. We will address
explicitly the case of the partition functions (71), (74),
(76) but the approaches described can also be applied to
other cases.

The partition function as it is written includes summation
over many sets of variables. While a direct Monte-Carlo
simulation is possible, the convergence of the averages in
this case can be slow. This can be overcome by dividing the
variables into two groups—dynamical variables which are
sampled in the Monte-Carlo simulation, and the variables
over which the summation is done explicitly. For N =3
such summation can be done by using the explicit values
for the Littlewood-Richardson coefficients [29,30]. If we
take this approach, we can, for example, leave only |a(x)|,
|A(x)|, and p(x) variables as dynamical.

Another problem is that, while each configuration has
non-negative weight, many configurations formally allowed
in the summation will have zero weight due to Littlewood-
Richardson coefficients inside them becoming zero. Note
that the N-ality condition explicitly written in the partition
functions is a necessary but not sufficient condition for the
corresponding Littlewood-Richardson coefficients to be
nonzero. This problem reduces the acceptance and con-
vergence rate for any simple Metropolis-like update scheme
and, on the more fundamental level, raises the question of
ergodicity of the update process—one has to be sure that the
whole acceptable configuration space can be probed.

For fixed small N values the full set of conditions for the
Littlewood-Richardson coefficient to be nonzero can be
written in the form of inequalities and one can either try to
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explicitly resolve them or, at least, to build the update
process respecting these inequalities. Another approach is
to use the worm update algorithm [31], developed just for
resolving such problems. In our case the worm has to
propagate on an auxiliary lattice, that has the Littlewood-
Richardson coefficients of the partition function as vertices,
which are connected by a link if they share a common
partition. Like for the Metropolis-like update, an explicit
summation over part of partition variables can be done to
reduce the phase space of the system—here it would
amount to dividing the auxiliary lattice into blocks that
are connected only by the links corresponding to the
dynamical variables and treating each block as a site of
a new lattice while preserving the probabilities of the worm
leaving the block through a given link.

If one wants to calculate the correlation functions, the set
of acceptable configurations for the partition functions with
sources and the one without sources will become different,
requiring either rewriting the correlation function in terms
of the valid configurations for the partition function without
sources or, if one uses the worm update, sampling the
correlation functions using the worm algorithm in a way
similar to the one described in [32].

V. DISCUSSION

In this paper we have presented calculations of the dual
representations for several Polyakov loop models. All these
models have been derived in the strong coupling limit for the
spatial coupling of the Wilson action. Contribution of the
fermions is taken into account via the static determinant for
an arbitrary number of the staggered and Wilson fermions of
different masses and chemical potentials. Our results are
valid in any spatial dimension and for all relevant groups,
i.e., for SU(N), U(N) and Z(N). The main motivation is the
construction of a positive Boltzmann weight in the presence
of the baryon chemical potential suitable for numerical
simulations. Some versions of representations from Sec. I1I
have been derived before [23]. These formulations have
been used for numerical computations of various local
observables in [24,25]. We have already applied our for-
mulation (31) for studying two- and three-point correlation
functions in two dimensional SU(3) spin models [33]. In
[34] we have used the representation (55) to simulate the
three-dimensional model with one flavor of the staggered
fermions. In addition to local observables we have computed
many two-point correlation functions in the presence of
baryon chemical potential.

Let us briefly discuss other applications of the dual
formulations.

(1) One-dimensional model (71) with one flavor of the
staggered fermions can be studied by the transfer-
matrix method. Such study reveals the existence of
an oscillating (or the so-called liquid) phase in some
regions of the (h,h_)-plane [35]. This means the
correlation function of the Polyakov loops while

decaying exponentially is modulated by a periodic
function. In other words, the mass spectrum of
the theory becomes complex. The transfer matrix
approach reveals the similar behavior in one-
dimensional Z(N) spin model in the external com-
plex field [36,37]. Monte-Carlo simulations of the
same three-dimensional model also show the pres-
ence of such phase [37]. Detecting the liquid phase
with the existing simulation methods at nonzero
baryon chemical potential seems an extremely diffi-
cult problem. The formulations given in Sec. III
might help to clarify if the oscillating phase exists in
the three-dimensional SU(3) LGT, at least in the
region of validity of the Polyakov loop models
used here.

(2) It turned out that the dual formulations of Sec. III are
well suited for the studies of the models in the large
N limit. We have accomplished such studies and
arrived at quite unexpected results: the large N ’t
Hooft limits of U(N) and SU(N) models are differ-
ent in the presence of the chemical potentials. These
results will be published elsewhere.

(3) The partition function in Eq. (57) can be written at
Zero sources as

Z= TrHTﬁ i)

where 2d links [, ...,
the tensor T reads

To )21,y (Bs s L)

V(B hD), (80)

1,, are attached to a site x and

= [1 2w B)1ES w, (9(x). f()smyp o). (81)

The rank of the tensor is 2dN. The trace can be done
by properly contracting the indices labeling group
representations. Such a formulation enables one to
use the tensor renormalization group methods to
study the theory at finite density and is certainly
worth a separate investigation.

(4) It would be interesting to investigate analytically
solutions (69) and (70) of one-dimensional QCD for
small values of N =1, 2, 3 and in the large N, N ¥
limits. This can be presumably done even in the
simultaneous presence of baryon, isospin and
strange chemical potentials.

Finishing this paper we would like to address the
question of how one could systematically improve the
dual formulations of Sec. IV? In the Abelian case the dual
construction can be extended to the full Wilson action. The
underlying reason for this is that the exact and positive dual
Boltzmann weight is known for all Z(N) and U(1) pure
gauge LGT. Adding fermions in the form of the static
determinant with any number of flavors does not destroy
this property. Details of this formulation will be reported
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elsewhere. Much more difficult is the case of non-Abelian
models and the inclusion of the corrections to static
determinant. In these cases one expects that the effective
Polyakov loop model becomes nonlocal. For example, one
such model describing nonlocal interaction between
Polyakov loops has been derived in [38] (and Refs. therein)
via the relative weight method

S = ReTrU(x)K(x — y)TrU' (y)
x.y

)+ ZlnB m,p).
(82)

The action of the model involves only fundamental
characters, therefore the dual representations for this and
similar models can be calculated by using the integration
methods of Sec. III. Clearly, if the kernel K(x —y) is
positive for all distances considered the dual weight will be
also positive but highly nonlocal. In general, the full
effective action will contain all irreducible representations.
More general effective action can be written in the form

e = T1| Syl =338y (U5, (U700 .

Ay
(83)

Even in this case the dual theory could be calculated with
the help of integration methods of Sec. IV. The real
challenge is to determine coefficients K, ,. One strategy
is to expand the Wilson action at large spatial coupling and
expand the fermion determinant around static contribution
in powers of a lattice anisotropy. This will be the subject of
future investigations.
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APPENDIX: ELEMENTS OF REPRESENTATION
THEORY AND GROUP INTEGRATION

Here we evaluate the group integrals encountered in the
course of calculations of the dual representations. These are
integrals of the following types:

Oy(r,s) = /G dU(TrU)Y (TrU' Y, (A1)

G4 (A i) —/dUHs,l

(A2)

Ny
RN’Nf(r,s;mf,,uf):/GdU(TrU)r(TrU+)“'HBq(mf,,uf),
=1
(A3)
HY y (Zisyismy.puy)
Ny
/ au HSA 5,(U) ] By(mpns). (A4)
f=

The first two types appear in the pure gauge theory while
the next two are encountered in the theory with the
fermions. The fermion weights B, (m,uy) are given by
Egs. (5) and (7). These integrals can be calculated by the
method of the Weingarten functions and/or by expanding
the product of the Schur functions in the integrand into
series over the Littlewood-Richardson coefficients.

The integral (A1) was already well-known for the case of
the U(N) group and for r < N it equals r!. For the SU(N)
group it was calculated for the first time in [39]. To the best
of our knowledge, the integrals (A2), (A3), and (A4) are
calculated for the SU(N) lattice theories for the first time.

1. Definitions, notations and expansion formulas

First, we introduce some notations and definitions. Let
A= (41,42, ...,dy) be a partition Ar, Ay >4y >+ >
Ay >0 and ') 2, =14 = r, where I(4) is the length
of the partition A. As a shorthand we will sometimes use a
notation 1 = a” to denote a partition consisting of b parts
equal to a (i.e., 4; = a, 1 <i < b), and use 1 + p to signify
elementwise addition of two partitions and Ay to signify a
union of parts of two partitions. y, (o) denotes a character
of 6 € S, inrepresentation A. d(1) = y,(1) is the dimension
of the representation A. The Schur function s,;(U) =
s;(uy,...,uy) is a character of the unitary group G and
u;—the eigenvalues of the matrix U € G. s5,(I) is the
dimension of the irreducible representation A of G. One has

H1<z<]<l ( /1' +j_ )
d(4) = (AS)
T (s + 12) = i)t
5,(1) = ng<j£];f(féj\;iji;j — i) (A6)

The representation dual to A will be denoted by A’. The dual
representation is defined by exchanging raws and columns
in the corresponding Young diagram, ie., 4; = >_;1; 5;.
One has the following identity between the Schur function
and its conjugate for U(N) group

(A7)
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The similar identity for SU(N) group reads

SA(U)ESAI ..... /IN_I(U):SE(U)’ /_1:(/11’/11 — AN—1s - A —/12)- (AS)
Given the complete symmetric functions /4, and the elementary symmetric functions e; in m variables uq, ..., u,,
hk = Z Up, - Uy, €k = Z Up, Up,, (A9)
1<n <--<n<m 1<n<---<ng<m
the Schur functions can be computed with the help of identities
Sz(U) = S /1,,,)( 1» ”m) = det(h/l, :+j)1<, j<m’
Sﬂ(U) =S0...., /1”,)( [seorlly) = det (e z+/)1<,j<m (AIO)
where A’ is a partition dual to A and the following rule is understood
( 0) { 0, if 4, #0, (A1)
s Uy ooy Uy_1,0) = .
(o Aa)VEL : Sty y) U1 s ttyy), if 2, = 0.
Two other useful expressions for the Schur function read
Aj+n—j
det . $
si(U) _ ( )l<l,]SN — z H j (A12)

det (u; j)lgi.jsN

with 7 being a permutation such that the number of cycles
of length j in 7 is ;.

The Weingarten function is used to evaluate the
polynomial integrals over unitary groups. In the case of

G = SU(N) this function is defined as

1 d(A)d(A+ q")
WV (o) = ,
g() r!(r—f—Nq)!; sy )
(A13)
where A + ¢V = (1, + ¢, ..., Ay + ¢) and the sum in (A13)

is taken over all A such that /(1) < N. For U(N) group one
has to put ¢ = 0.

The Littlewood-Richardson coefficients C7, can be
defined as coefficients appearing in the expansion of the
product of two Schur functions

U) = Z%SU(U
5;(U)s; (U chy U)=> ¢ si(U

From the orthogonality of the Schur functions one gets

(A14)

= L dUs,(U)s,(U)s;(U). (A15)

Tlyeees T:E iT;j=s j= it

[
¢, are positive integers for unitary groups U(N) and
SU(N) satisfying certain conditions. One such important
condition on ¢, to be nonzero arises from the integration
over U(1) subgroup if G = U(N), while in SU(N) case it
follows from the summation over Z(N) subgroup. Let
U = Z be a center element of G. Then

s(Z) = 2'd(2),

As follows from (A15) the necessary condition for C‘jy to be

r=14. (A16)

nonvanishing is

0, U(N),

Ng. SU(N). (A17)

a+1r1- 1 = {
We refer to these conditions as to U(1) and N-ality con-
straints, respectively. More information on the Littlewood-
Richardson coefficients as well as their closed forms for
N =2, 3, 4 can be found in [30].
Finally, we need the following formulas to treat the
models with static fermion determinant. The first ones are
the Cauchy identity and its dual

N L
TTTT 0 =xv)- Zsl J(X),  (A18)
k=1 i=1
N L
HH +x,-yk ZS}L S/I’ (A19)

k=1 i=1
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where X = (xy,...,xz), Y = (¥, ..., yn). The summation
over 4 runs over all partitions of the product NL such that
I(4) < N and [()) < L. The second one is an expansion of
powers of the fundamental character into series over the
Schur functions

(TrU)"

=(u+u+--- (A20)

+uy) = d(A)s;(U)

Ar

With the help of Eq. (A19) the fermion contribution given
in (5) and in (7) for the staggered and the Wilson fermions,
respectively, is presented in the form

Ny
HBq(mf"ﬂf ZS U)sp(U)s (H 1 )sp (H-).
f=1 ap
(A21)
For the staggered fermions one has H, = (hli hif).

The summation over a and f is taken over all partitions
such that /(1) <N, I(f) <N and (V') < Ng, I(f') < Ny

For the Wilson fermions one has H, = (hl,... hif ,

hi,... hN’ ). The summation over a and S is taken over
all partitions such that /(1) < N, [(f) < N and I(2') < 2Ny,

I(f') < 2N . Constants hﬁ; are defined in (6) and (8) for the
staggered and the Wilson fermions, correspondingly.

2. Group integrals

The Schur functions realize representations of U(N)
group. Therefore, all integrals (A1)-(A4) are evaluated
over the U(N) Haar measure. If G = SU(N) one should
introduce an additional constraint into the measure

N
detU =Ju; = 1.
i=1

This constraint can be implemented into the group integrals
by multiplying the integrand with the delta-function
>0 (detU)?. Taking into account that

(A22)

N q
(ITw) =500t (A23)
i=1
one can easily prove with the help of (A12) that
(detU)4s,(U) = 5, (U), g>0. (A24)

If g < 0 one should replace the eigenvalues u; by u;. Here
and further we use the short-hand notation 1+ ¢ =
(A1 +¢q,....,Ax +¢q). The SU(N) constraint is enforced
in the formulas below by summation over ¢g. Furthermore,
we shall present results only for the SU(N) group. The
U(N) case is easily recovered by omitting all sums over ¢

and taking ¢ = 0 in all formulas below. More relevant
information on the group integration and similar integrals
can be found in Refs. [39—41].

a. Oy (rs)
To evaluate Qy(r, s) given by Eq. (A1) we expand the
traces in the integrand as sums over diagonal elements

r

N
Z Uii,.-

i=1k=1

(A25)

N
(TrU) =) -
=1

For the integral (Al) this leads to

/ dUH Ulklk ]m]m
m=

iyip 1,71]1}2 Js=1 =

On(r,s) =
(A26)

The last integral can be calculated with the help of the
Weingarten function. The details of the derivation can
be found in [21,39]. Performing summation over group
indices one gets

ZérsqN Z d

g=—00 AF min(r,s)

d(d+1q).  (A27)

Another way to compute (Al) is to use the expansion
(A20). Then, the result (A27) follows from the orthogon-
ality of the Schur functions.

b. GdN (A‘t ﬂYi)
Integral in (A2) is trivial in one-dimensional case, d = 1,
due to orthogonality of the Schur functions

Z %, r+q"

g=—o0

Gl (A7) (A28)

For d =2, 3 these integrals can be computed with the
help of Egs. (A14)-(A15). Depending on the order of
the multiplication of the Schur functions in the integrand
the final result can be presented in several different but
equivalent forms. For example, for d = 2 one has

_ E E vt
- C/l 1A C}'IVZ

u+q v
ZZ i Coi

GIZV(/II s 22’ 715 72)

=y >
Vel yzﬁz
g v

(A29)

where representations A are defined in Egs. (A7), (A8). The
N-ality constraint becomes
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|41l + 142 = 71| = |r2| = Ng. (A30)

Three-dimensional case is treated similarly. One finds,
e.g.,

): ZCI/{MQ 7172GN(U /1%(7 73)

E E v o a+q a
- Cﬁ 142 }’172 z//lg CU}’?

q vo.a

G13v(/11,/12’/13,}’1’}’2’73

(A31)
The N-ality constraint reads

A1+ 42| + 143] = r1] = r2| = 73] = Ng. (A32)

c. RN,Nf (r.s;mgpy)
Using Eq. (A20) for the expansion of the power of traces
and Eq. (A21) for the fermion contribution the integral (A3)
is written as

=22 > d)

Ar o vks af
><AdUsj(U)s,,(UT)sa(U)sﬂ(Uf).
(A33)

Ry, (r,simp,pp) = dv)sy(H,)sy(H_)

Integration yields

> YT Y )

g=—c0 Jr uvks apfo
X s (H )5 (H_).

Ry, (r.simp pp) =

(A34)

The last expression can be simplified with help of the
formula

> e d(

ukr

d(v)2). (A35)

where d(v/A) is the dimension of a skew representation
defined by a corresponding skew Young diagram (see,
for example, chapter I of [42]). Then, the result of the
integration is

)= D Sriiasripegndlo + 4" /a)

g=— a.f.c

x d(o/B)sa(H. )5y (H_).

Ry, (rossmp py

(A36)

d. H;jv,N, (}'i#i;mf’ﬂf>
The case d = 0 is of special interest as it corresponds to
the exactly solvable model of one-dimensional QCD. The
result of integration can be read off from Eq. (A34) by
putting r =5 =0

S S b (L sy (HL)

HY y (0.0:mp pg) =

g==00 af

The summation over ¢ runs over all partitions such that
o1 < Nand [(6) < N for the staggered, /(o) < 2N, for the
Wilson fermions. The other cases d > 1 can be straight-
forwardly obtained by combining the expansion (A14) with
the representation (A21). We find for d = 1

Z Z C;;q Clps

q=— a.p.c

H}V,Nf(/177;mfa/4f (Hy)sp(H-).

(A38)

The higher values of d are calculated recursively as

H?\’Nf(/ll’ "’7/1d’y1’ de’mfv/’lf)

726722 }’1}’2H%1%’( ,)«3,...,)%1,1/,}’3,...,]/d;mf,,uf).

(A39)

3. One flavor of staggered fermions

For fixed values of N many formulas given above can
be specified and simplified by using explicit values for the
Schur functions which, in turn, can be calculated from
Eq. (A10). As the simplest but important example, let us
consider the integral Ry y /_(r, symy, /,tf) with one flavor of
the staggered fermions. Taking into account that in this
case a=1% =1, 0<k, <N and sy(H,)=h,
sp(H_) = h', one gets from (A36) the following simple
answer

00 N
) = Z Z Z St s+irqnd(o + g~ /1%)

g=—00 k,[=0 ots+1

Ry (r, s;m,p

x d(c/1")hE hL. (A40)
Using the similar approach (A38) becomes
o0 N
My = 30 5 3 i ot
g=—0 k,1=0 ot-|y|+1
(A41)
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Here the Littlewood-Richardson coefficients can be calculated using the following formula

-
Cﬂ, =

_{1, lol =lrl+Lyi<oi<yi+1,
0, otherwise.

(A42)

Finally, we specify the result (A40) for the physically relevant case, namely N = 3. For SU(3) the following identities

hold

d(c/1°) = d(c/1) = d(o).

that allow us to obtain

d(c/13) = d(c - 13) (A43)

Ry (r,sim,p) = Q3(r + 1,5)(hy + hZ + h h? + hih2)
+ Qs3(r.s) (1 + hd 4+ h2 + hihd) + O5(r,s + 1) (ho + k3 + h3h_ + h3h3)

+ Os3(r+ 1.s+ 1)(hih 4+ Wi h2) + Qs(r + 2, 8)h h2 + Qs(r.s + 2)h% h_,

where the function Q;(r,s) is given in Eq. (A27).

(A44)
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