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We present the first chiral-continuum–finite-volume extrapolation of the hyperon octet axial couplings (gΣΣ
and gΞΞ) from Nf ¼ 2þ 1þ 1 lattice QCD. These couplings are important parameters in the low-energy
effective field theory description of the octet baryons and are fundamental to the nonleptonic decays of
hyperons and to hyperon-hyperon and hyperon-nucleon scattering with applications to neutron stars. We
use clover lattice fermion action for the valence quarks with sea quarks coming from configurations of
Nf ¼ 2þ 1þ 1 highly improved staggered quarks generated byMILC Collaboration. Our work includes the
first calculation of gΣΣ and gΞΞ directly at the physical pionmass on the lattice, and a full account of systematic
uncertainty, including excited-state contamination, finite-volume effects, and continuum extrapolation, all
addressed for the first time.We find the ratio of the continuum-limit hyperon coupling constants with respect to
the nucleon axial charges to be gΣΣ=gA ¼ 0.351ð6Þð2Þ and gΞΞ=gA ¼ −0.213ð5Þð1Þ, where the first error
includes the statistical and extrapolation systematic uncertainties, and the second error corresponds to
systematics associatedwith varying lattice parameters. The SU(3) symmetry breaking derived from these axial
charges is 9%, which is about a factor of 2 smaller than earlier lattice estimates.
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I. INTRODUCTION

The octet-baryon axial couplings (gΣΣ, gΞΞ, and gA) are
important quantities for studying hadron structure in QCD.
Specifically, the hyperon couplings are important in the
effective field theory of octet baryons [1], because they
enter the expansions of all quantities in chiral perturbation
theory. In addition, the coupling constants appear in the
calculations of hyperon nonleptonic decays [2] and of
hyperon-hyperon and hyperon-nucleon scattering matrix
elements [3]. They are also useful for calculating equations
of state and other properties of nuclear matter in neutron
stars [4,5]. Studying these couplings allows us to explore
the extent of the symmetry breaking of SU(3) flavor. SU(3)
symmetry has been widely studied [1,6] in the hyperon
hadronic matrix elements, and this symmetry is used in
many applications where strange-quark data are limited.
For example, the global analysis of the polarized parton
distribution function (PDF) has commonly used this
assumption for extracting individual quark flavor PDFs

[7]; knowing to what extent this symmetry holds will help
us quantify the systematic uncertainty introduced by the
use of this assumption in the polarized PDF [7]. However,
experimentally it is much harder to determine the hyperon
couplings than those in the nucleon case, since the hyper-
ons weak decay in nature quickly. Lattice-QCD (LQCD)
calculations can provide more stringent direct and reliable
calculations of these couplings.
Lattice QCD is an ideal theoretical tool to study the

parton structure of hadrons, starting from quark and gluon
degrees of freedom (d.o.f). Progress has long been limited
by computational resources, but recent advances in both
algorithms and a worldwide investment in pursuing exas-
cale computing has led to exciting progress in LQCD
calculations. Take the nucleon tensor charge for example.
Experimentally, one gets the tensor charges by taking the
zeroth moment of the transversity distribution; however, the
transversity distribution is poorly known and such a
determination is not very accurate. On the lattice side,
there are a number of calculations of gT [8–16]; some of
them are done with more than one ensemble at physical
pion mass with high-statistics calculations (about 100k
measurements) and some with multiple lattice spacings and
volumes to control lattice artifacts. Such programs would
have been impossible 5 years ago. As a result, the lattice-
QCD tensor-charge calculation has the most precise deter-
mination of this quantity, which can then be used to
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constrain the transversity distribution and make predictions
for upcoming experiments [17]. The hyperon couplings are
also not precisely known from experiments, and we hope a
better determination of these couplings will lead to
advancements in multiple subfields.
In this work, we use the following definitions for the

axial couplings:

gA ¼ ZAhNjAμjNilat;
gΣΣ ¼ ZAhΣjAμjΣilat=2;
gΞΞ ¼ ZAhΞjAμjΞilat; ð1Þ

where ZA is the renormalization constant for the axial
current. The factor of 2 in gΣΣ comes from a Clebsch-
Gordan coefficient so that gΣΣ ¼ F in the SU(3) limit. The
octet axial structure can be obtained through

hBjAμðqÞjBi ¼ uBðp0Þ
�
γμγ5GAðq2Þ þ γ5qμ

GPðq2Þ
2MB

�
uBðpÞ;

ð2Þ

where B is an octet baryon (N, Σ, Ξ), uB is the Dirac spinor,
GA is the axial form factor, GP is the induced pseudoscalar
form factor, and q ¼ p0 − p is the transfer momentum. In
the q2 ¼ 0 limit, we obtain the octet coupling constants that
come from GAðq2 ¼ 0Þ.
There have beenmany lattice-QCDcalculations of nucleon

axial charges in the past few decades (see Ref. [18] for a
detailed review) but only a few calculations of the hyperon
couplings. The first such calculation was performed in 2007
with a single lattice spacing and lightest pion mass near
350 MeV [19] using 2þ 1-flavor lattices; they got gΣΣ ¼
0.450ð21Þstatð27Þsys and gΞΞ ¼ −0.277ð15Þstatð19Þsys. A fol-
low-up study by a Japanese group used Nf ¼ 2 lattices [20],
producing results consistent with the heavier pion masses of
Ref. [19]. ETMC [21] used Nf ¼ 2þ 1þ 1 lattices with
lowest pion mass 213 MeV and two lattice spacings, 0.082
and 0.065 fm; they obtained gΣΣ ¼ 0.381ð11Þ and gΞΞ ¼
−0.248ð9Þ (statistical errors only) after extrapolating to the
physical pionmass. In this work, we not only present the first
calculation of these quantities at physical pion mass, but also
study the finite-volume effects and lattice discretization
systematics, and report the first continuum-limit results for
the hyperon axial couplings.

II. LATTICE-QCD CALCULATION SETUP

In this work, we use clover lattice fermion action for the
valence quarks on top of 2þ 1þ 1 flavors1 of hypercubic

(HYP)-smeared [22] highly improved staggered quarks
(HISQ) [23,24] in configurations generated by MILC
Collaboration. The quark masses for the clover fermions
have been tuned to reproduce the lightest sea staggered
pseudoscalar meson masses for the light and strange
quarks, and the clover parameters are set to the tree-level
tadpole-improved values; a similar setup was used by
PNDME Collaboration in many studies of nucleon struc-
ture [8]. We use three lattice spacings a, 0.06, 0.09, and
0.12 fm and pion masses Mπ ranging from near physical
pion mass (135 MeV) to around 310 MeV. We also perform
a volume-dependence study at a ≈ 0.12 fm and Mπ ≈
220 MeV where MπL ranges from 3.3 to 5.5. A summary
of the ensemble parameters used in our calculations can be
found in Table I.
Any mixed-action approach results in a nonunitary

lattice-QCD formulation with the possibility of exceptional
configurations. Signatures of such configurations, which
manifest at sufficiently small quark mass, include correlation
functions with anomalously large values that bias the
ensemble average and failure of the clover Dirac matrix
solver to converge due to poor condition number. The two
signatures have been observed at a ≈ 0.15 and 0.12 fm at
Mπ ≈ 135 MeV, and these ensembles are excluded from
use in mixed-action calculations. The other ensembles are
carefully checked for the relevant signatures, and exceptional
configurations are absent for the Mπ ∈ f220; 310g MeV
MILC ensembles [24] at 0.12 fm and finer lattice spacings,
as well as for 0.09 and 0.06 fm near the physical pion mass.
There are no issues that we have observed for any observable
on the ensembles used in this calculation.
Another complication associated with mixed action may

occur in the continuum extrapolation, and a mixed-action
partially quenched formulation would be needed to remove
such artifacts. For the nucleon axial charges [25,26], the
partially quenched terms appear with terms proportional to
the difference between the squares of the valence and sea
pion masses, ðMval

π Þ2 − ðMsea
π Þ2. Since we tuned the valence

pion mass to be the same as the sea one when setting the
parameters for the valence fermion actions, the remaining
partially quenched effect comes at Oða2Þ. We will use our
data to estimate the systematics by varying continuum

TABLE I. Ensemble information and parameters used in this
calculation.

Ensemble ID L3
s × Lt Mval

π Ls tsep=a Nconf Nmeas

a12m310 243 × 64 4.5 f8; 9; 10; 11; 12g 1013 4052
a12m220S 243 × 64 3.3 f8; 10; 12g 1000 6000
a12m220 323 × 64 4.4 f8; 10; 12g 958 3832
a12m220L 403 × 64 5.5 f10g 1010 4040
a09m310 323 × 64 4.5 f10; 12; 14g 775 3100
a09m220 483 × 64 4.8 f10; 12; 14g 890 3560
a09m130 643 × 64 3.9 f10; 12g 1058 4232
a06m310 483 × 64 4.5 f13; 16; 20g 480 1920

1The notation “2þ 1þ 1” indicates that the QCD vacuum
contains dynamical quark degrees of freedom with degenerate up
and down quarks plus strange and charm quarks at their physical
masses.
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extrapolation by replacing Mval
π by Msea

π and also include
Oða2Þ to estimate the size of such contribution.
Unfortunately, there is no similar mixed-action chiral form
derived for hyperon axial couplings; we assume the effects
would be similar to nucleon case, arising from terms
proportional to ðMval

K Þ2 − ðMsea
K Þ2; we plan to use similar

strategies in the nucleon case to estimate such systematics.
Despite these caveats, mixed-action calculations of

nucleon properties have shown consistent results with
unitary-action calculations with similar lattice parameters
(lattice spacing, pion mass, etc.). In the case of the nucleon
axial charge, for example, the mixed-action results by
PNDME [8,10,11] are consistent with those from clover-
on-clover calculations [27,28] at similar pion masses. The
most recent review of nucleon charges across all lattice
calculations shows consistent determinations between
mixed action and unitary fermion actions [29]. This
suggests there is unlikely to be any significant mixed-
action artifacts (outside statistical errors) in the chiral/
continuum extrapolation of the hyperon couplings.
We choose the following baryonic interpolating operator

with the quantum numbers of a spin-1=2 baryon:

χNðxÞ ¼ ϵabc½qa⊤1 ðxÞCγ5qb2ðxÞ�qc1ðxÞ; ð3Þ

where C is the charge-conjugation matrix iγ4γ2, fa; b; cg
are color indices, ϵ is the antisymmetric tensor, and q1 and
q2 are one of the three quarks fu; d; sg. For example, in the
case of the proton=Σ=Ξ, we have q1 ¼ u=u=s and
q2 ¼ d=s=d.
To extract the octet axial couplings, we simultaneously

fit the octet two-point (C2pt) and three-point (C3pt) corre-
lators, including the first excited state, to the form

C2ptðtÞ ¼ jA0j2e−M0t þ jA1j2e−M1t; ð4Þ

C3pt
Γ ðt; tsepÞ ¼ jA0j2h0jOΓj0ie−M0tsep

þ jA1j2h1jOΓj1ie−M1tsep

þA1A�
0h1jOΓj0ie−M1ðtsep−tÞe−M0t

þA0A�
1h0jOΓj1ie−M0ðtsep−tÞe−M1t; ð5Þ

where A0 and A1 are overlap amplitudes for the ground and
excited states, tsep is the source-sink separation, andM0 and
M1 are the masses for ground and excited states of the
corresponding octet baryons. For q2 ¼ 0, the third and
fourth terms are related, so Eq. (5) can be combined into
a three-term fit. Note that the unwanted matrix element
h1jOΓj1i has the same time dependence as the wanted
ground-state matrix element h0jOΓj0i, so this excited-state
contamination can only be reliably extracted when there are
multiple tsep in the data. We fit the matrix elements from all
ensembles up to h1jOΓj1i with the exception of the
a12m220L ensemble for which only one source-sink

separation was taken; only two-term fits (up to h1jOΓj0i)
can be used to extract the bare matrix elements. The χ2=d:o:f
of these fits range from 0.4 to 1.2. Figure 1 shows the ratio
plots C3pt=C2ptðtsepÞ of a few selected octet couplings and
the extracted ground-state matrix elements.
We can validate our omission of the excited-excited term

from the a12m220L ensemble fits by considering the
results of using the same fits on ensembles for which
additional separations are available. We have three source-
sink separations for a12m220S and a12m220 ensembles, in
which we found our extracted ground-state nucleon gA
obtained from using only tsep ¼ 10 are consistent with
those using all three tsep. Thus, there is no sign of excited-
state contamination from the inextricable h1jOΓj1i term at
the chosen source-sink separation. Another check comes
from an independent study by PNDME Collaboration [8]
using the same quark smearing parameters and multiple
source-sink separations (including the ones used in this
work). Figure 8 in Ref. [8] shows a consistent extraction
between ground-state nucleon axial charge from two-state
analysis of the three-point data only at tsep ¼ 0.96 fm
without h1jOΓj1i compared to a simultaneous fit to all

FIG. 1. Example ratio plots of C3pt=C2ptðtsepÞ for gΞΞ (top,
a09m130 ensemble) and gΣΣ (middle and bottom, a09m220 and
a12m310, respectively). The extracted ground-state hyperon
matrix elements from two-state fit using all the tsep are marked
by the black line and gray band.
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tsep∈f0.96;1.08;1.20;1.44;1.56g fm including h1jOΓj1i.
The latter analysis with more input data merely results
in a more precise extraction of the nucleon axial charge.

III. NUCLEON ISOVECTOR AXIAL CHARGES
ON HISQ LATTICES

Ournucleonaxial coupling results are consistentwith those
obtained by PNDME Collaboration [8]. In Table II, we
compare the nucleon axial couplings obtained from our
calculation with PNDME Collaboration [8] and CalLat
[30], who also used MILC HISQ ensembles. We used two
definitions to determine the renormalized nucleon axial
couplings, a similar procedure as used by PNDME
Collaboration [10]. We calculated both grenA ¼ ZAgbareA and
grenA ¼ ZA=ZVgbareA =gbareV , where ZA and ZV are renormaliza-
tion constants taken from Ref. [10] and gV is the vector
charge. The difference between these two determinations is
folded into the final error shown in Table II. Note that
PNDME Collaboration used the all-mode averaging tech-
nique to achieve greater precision using Oð10–100kÞ

measurements, which is important in pursuing precision
determination of the nucleon charges; as a result, PNDME
has a more precise nucleon axial coupling determination than
we do. However, no calculation of the hyperon couplings or
SU(3) symmetry on these lattices has been done before.Using
the same continuum-limit extrapolation as Ref. [17], we
obtained nucleon axial charge coupling gA ¼ 1.22ð6Þ. Since
our focus of this work in on hyperons, we refer interested
readers to Ref. [8] (and references therein) for more detailed
discussion of the nucleon axial charge.

IV. RESULTS AND DISCUSSION

In this work, we choose to use ratios of hyperon to
nucleon axial couplings for continuum extrapolation. Such
a ratio choice has the following advantages: As discussed in
the PNDME works [8,10,11], there is a sizable uncertainty
introduced by the nonperturbative renormalization of the
axial-current operator in RI/MOM scheme. Table IX of
Ref. [11] shows renormalization constants obtained in MS
scheme with two different choices of parameters in the RI-
sMOM scheme. Within each method, the errors for ZA are
subpercent; however, when comparing the spread among
different choices, we find the renormalization factors carry
about 5% systematic. This is responsible for the larger
errors quoted in PNDME’s final nucleon axial charge over
that from CalLat [30], who used chiral fermions to avoid
the axial-current renormalization procedure. In addition to
avoiding the additional uncertainty due to nonperturbative
renormalization described above, the signal-to-noise of the
ratios is significantly improved due to the correlations in
the data, since they are taken using the same QCD
configurations. Furthermore, we expect some lattice arti-
facts to be canceled or reduced in the ratio combinations.
Figures 2 and 3 summarize all our data as functions of M2

π ,
lattice spacing a, and the dimensionless volume-dependent
parameterMπL. As shown in Fig. 2, we found the results at
310-MeV pion mass show some lattice-spacing depend-
ence but are consistent within the statistical error. The ratio
of the a09m220 ensemble is consistent with those obtained
from a12m220, which has similar MπL, as well as

TABLE II. Our renormalized isovector nucleon axial charge gA
obtained from the 2þ 1þ 1-flavor HISQ ensembles, compared
with other calculations done on the same ensembles with clover
valence fermions by PNDME [8] and with domain-wall fermions
by the CalLat Collaboration [30]. Our results are consistent
within 1σ with both collaborations who use much larger statistics,
their goal being to make a precision calculation to compare with
the subpercent experimental measurements of the nucleon axial
charge.

This work PNDME18 [8] CalLat18 [30]

a12m310 1.239(36) 1.251(19) 1.214(13)
a12m220S 1.273(79) 1.224(44) 1.272(28)
a12m220 1.242(45) 1.234(25) 1.259(15)
a12m220L 1.279(40) 1.262(17) 1.252(21)
a09m310 1.240(47) 1.235(15) 1.236(11)
a09m220 1.249(50) 1.260(19) 1.253(09)
a09m130 1.235(62) 1.249(21) N=A
a06m310 1.192(53) 1.205(24) N=A

FIG. 2. Ratios of the Σ axial coupling to the nucleon axial coupling as functions of M2
π , lattice spacing a, and volume dependence in

dimensionlessMπL. In each plot, the blue line and band show the fit using 12 simultaneous mass–lattice-spacing–volume extrapolations
combining using AIC versus M2

π (left), a (right), MπL (right), with the data projected in the other variables to a ¼ 0, MπL → ∞ (left),
Mπ ¼ 135 MeV, MπL → ∞ (middle), and Mπ ¼ 135 MeV, a ¼ 0 (right).

ADITYA SAVANUR and HUEY-WEN LIN PHYS. REV. D 102, 014501 (2020)

014501-4



a12m220S, which has smaller volume; this indicates small
lattice-spacing dependence. There is, however, 2.5σ tension
with the larger-volume data from a12m220L. Given the
lack of a consistent trend among the ensembles, the low
value of a09m220 is likely caused by statistical fluctuation.
As for the volume dependence, we do not see significant
lattice-spacing nor volume dependence in these ratios. In
the Ξ case, we see very little dependence on pion mass,
lattice spacing or volume, as shown in Fig. 3.
To extrapolate to the physical limit, we use the following

general form:

gΣΣ;ΞΞ
gA

ðMπ; a; LÞ ¼ c0 þ cMfMðM2
πÞ þ cafaðaÞ

þ cVfVðMπLÞ; ð6Þ
which accounts for the lattice spacing a, pion massMπ , and
volume dependenceMπL. For each hyperon coupling ratio,
gΣΣ=gA and gΞΞ=gA, we vary the pion mass, volume, and
lattice-spacing dependence among fM2

π;M4
πg, f0; e−MπLg

and f0; a; a2g, respectively. This yields 12 possible
extrapolation forms, each of which has χ2=d:o:f < 1.
Rather than choosing a single fit to best represent the

extrapolation from our data, we can use the Akaike infor-
mation criterion (AIC) to combine the results of all these fits
according to howwell they fit the data. This method assigns a
weight to each fit depending on the sum of the squared fit
residuals χ2, and its number of degrees of freedom k; these are
combined into the AIC: AIC ¼ 2kþ χ2. Each fit is weighted
according to

Pi ¼ exp½−ðAICi −minAICÞ=2�; ð7Þ
where i indexes over all fits being considered. The weights
are normalized by the sum over the weights of all fits
considered: wi ¼ Pi=ð

P
j PjÞ. The blue line and band in

Figs. 2 and 3 show the mean and uncertainty of the AIC-
weighted extrapolation. Note that in each panel, we have set
the other two parameters to their physical values (e.g., in the
leftmost plot, the line and bands are obtained by settinga ¼ 0
and L → ∞); thus, the line and band are not necessarily
expected to pass through the data points, which are at nonzero

a and finite L. When they do, it shows there is little
dependence on the other two parameters. The fitted coef-
ficients also show ca and cV are all consistent with zero
within 1 standard deviation. This suggests these ratios have
insignificant partial-quenching effects, which are propor-
tional to Oða2Þ, and there are no detectable finite-volume
systematics for the box sizes used. The extrapolated AIC-
weighted values of the ratios are gΣΣ=gA ¼ 0.351ð6Þ and
gΞΞ=gA ¼ −0.213ð5Þ, where the systematics from extrapo-
lation have been folded into the statistical uncertainty by the
AIC weighting.
We then estimate the contribution of other possible

sources of systematic uncertainty: varying the fit ranges
of the axial coupling extraction (by increasing and decreas-
ing the two-point fit range by one time step), varying Mval

π

with Msea
π (e.g., for a12m310, Msea

π ¼ 305.3ð4Þ MeV and
Msea

π ¼ 310.2 MeV), and using different determination of
the lattice spacing (using lattice spacing from the physical
pion mass ensemble, 0.0871 fm, for all a09 ensembles,
instead of 0.0888 fm for a09m310 and 0.0872 fm for
a09m220). This methodological systematic uncertainty is
then estimated by taking the difference between the total
error from the statistical-only result (difference in quad-
rature); this gives gΣΣ=gA ¼ 0.351ð6Þð2Þ and gΞΞ=gA ¼
−0.213ð5Þð1Þ, where the first error includes the statistical
and extrapolation uncertainties, and the second error
corresponds to systematics associated with varying the
lattice parameters. Our results are consistent with the first
hyperon axial coupling calculation [19]. In lattice calcu-
lations of hyperon axial coupling to date [19–21], only
linear extrapolation in M2

π has been used; lattice spacing a
and volume dependence have never been included in the
extrapolation. This is also the first work to directly calculate
the hyperon charges at the physical pion mass. Compared
with these calculations, we achieve significant improve-
ment in statistical uncertainty and control of systematics.
Assuming SU(3) symmetry where gΣΣ ¼ F and gΞΞ ¼

F −D, we obtain low-energy chiral parameters D=gA ¼
0.560ð9Þð2Þ and F=gA ¼ 0.348ð7Þð1Þ, which are not
consistent with the determination D but agree with F from
semileptonic decay data [2] and PDF values of experimental

FIG. 3. Ratios of the Ξ axial coupling to the nucleon axial coupling as functions of M2
π , lattice spacing a, and volume dependence in

dimensionlessMπL. In each plot, the blue line and band show the fit using 12 simultaneous mass–lattice-spacing–volume extrapolations
combining using AIC versus M2

π (left), a (right), MπL (right), with the data projected in the other variables to a ¼ 0, MπL → ∞ (left),
Mπ ¼ 135 MeV, MπL → ∞ (middle), and Mπ ¼ 135 MeV, a ¼ 0 (right).
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averaged gA from the Particle Data Guide [31]. In addition,
using low-energy constants, we can determine a8 ¼
3F −D, which gives the proton spin structure ofΔuþ Δd−
2Δs; our a8=gA ¼ 0.481ð15Þ value is consistent with
the one commonly used in polarized global fits as a
constraint [7].
We also investigate the extent of SU(3) symmetry

breaking by considering the quantity

δSUð3Þ ¼ gA − 2gΣΣ þ gΞΞ: ð8Þ

Figure 4 shows δSUð3Þ=gA for all the ensembles used in this
work as a function of the dimensionless quantity x ¼
ðM2

K −M2
πÞ=ð4π2f2πÞ measured independently on each

ensemble. We also shown the same quantities calculated
by previous works [19,21], taking the nucleon axial
coupling from Table 1 in Ref. [19] and averaged values
of 1.15 shown in the work Ref. [21], respectively. We see
that these older calculations, mostly with a single lattice
spacing, are consistent with the heavier pion masses in our
work. Using only the heavier pion masses calculated in the
previous studies [19–21], one would draw a conclusion that
δSUð3Þ increases proportional to x2. Such a trend perhaps

apparent when we look at the heaviest two pion masses in
our work. However, the support for such a claim disappears
for pion masses between 220 MeV and the physical
pion mass. Working directly at the physical pion mass is
important to constraining the chiral extrapolation of this
symmetry breaking.
Using the gΣΣ=gA and gΞΞ=gA found earlier, we obtain

δSUð3Þ=gA ¼ þ0.085ð12Þ. Thus, we estimate a total SU(3)
symmetry breaking size of about 9%, which is smaller than
the estimate from Ref. [19].

V. SUMMARY AND OUTLOOK

In this work, we have calculated the axial coupling of the
Σ and Ξ octet baryons using Nf ¼ 2þ 1þ 1 lattice QCD.
For the first time, not only have these quantities been studied
directly at the physical pion mass but alsowith careful study
of the sources of systematic uncertainty, including the
lattice-spacing and the finite-volume effects. We calculated
multiple source-sink separations for the three-point corre-
lators and used a two-state strategy to fit all separation data
simultaneously to remove excited-state contamination. We
constructed the ratios of gΣΣ=gA and gΞΞ=gA and found these
ratios have smaller dependence on theM2

π , lattice spacing a,
and volume. We then extrapolated the ratios to the physical
limit using 12 different fitting forms and combined
them using the AIC to obtain gΣΣ=gA ¼ 0.351ð6Þð2Þ and
gΞΞ=gA ¼ −0.213ð5Þð1Þ. We also examined the SU(3)
symmetry breaking using these couplings and found around
9% effect in this updated study, which is about a factor of 2
smaller than the previous lattice study without using
physical pion mass.

ACKNOWLEDGMENTS

We thank the MILC Collaboration for sharing the lattices
used to perform this study; the LQCD calculations were
performed using the Chroma software suite [32]. This work
is supported by Michigan State University through com-
putational resources provided by the Institute for Cyber-
Enabled Research. H. L. is supported by the U.S. National
Science Foundation under Grant No. PHY 1653405
“CAREER: Constraining Parton Distribution Functions
for New-Physics Searches.”

[1] M. J. Savage and J. Walden, Phys. Rev. D 55, 5376 (1997).
[2] N. Cabibbo, E. C. Swallow, and R. Winston, Annu. Rev.

Nucl. Part. Sci. 53, 39 (2003).
[3] S. R. Beane, P. F. Bedaque, A. Parreno, and M. J. Savage,

Nucl. Phys. A747, 55 (2005).

[4] J. M. Lattimer and M. Prakash, Phys. Rep. 442, 109 (2007).
[5] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich,

Phys. Rev. C 85, 065802 (2012); 90, 019904(E) (2014).
[6] J. Dai, R. F. Dashen, E. E. Jenkins, and A. V. Manohar,

Phys. Rev. D 53, 273 (1996).

FIG. 4. The ratios of SU(3) symmetry breaking δSUð3Þ to the
nucleon axial charge gA as a function of x ¼ ðM2

K −M2
πÞ=

ð4π2f2πÞ. There is a noticeable increase with x at heavier quark
mass, but it is mild when only looking at the lightest two pion
masses. We compare our results with the work done by “Lin/
Orginos’07” [19] and ETMC’16 [21].

ADITYA SAVANUR and HUEY-WEN LIN PHYS. REV. D 102, 014501 (2020)

014501-6

https://doi.org/10.1103/PhysRevD.55.5376
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://doi.org/10.1016/j.nuclphysa.2004.09.081
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1103/PhysRevC.85.065802
https://doi.org/10.1103/PhysRevC.90.019904
https://doi.org/10.1103/PhysRevD.53.273


[7] H.-W. Lin et al., Prog. Part. Nucl. Phys. 100, 107 (2018).
[8] R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano, and

T. Bhattacharya, Phys. Rev. D 98, 034503 (2018).
[9] H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B.

Yang, J.-H. Zhang, and Y. Zhao, Phys. Rev. Lett. 121,
242003 (2018).

[10] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H.-W.
Lin, and B. Yoon, Phys. Rev. D 94, 054508 (2016).

[11] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, A.
Joseph, H.-W. Lin, and B. Yoon (PNDME Collaboration),
Phys. Rev. D 92, 094511 (2015).

[12] J. R. Green, J.W. Negele, A. V. Pochinsky, S. N. Syritsyn, M.
Engelhardt, and S. Krieg, Phys. Rev. D 86, 114509 (2012).

[13] Y. Aoki, T. Blum, H.-W. Lin, S. Ohta, S. Sasaki, R. Tweedie,
J. Zanotti, and T. Yamazaki, Phys. Rev. D 82, 014501
(2010).

[14] A. Abdel-Rehim et al., Phys. Rev. D 92, 114513 (2015); 93,
039904(E) (2016).

[15] G. S. Bali, S. Collins, B. Glssle, M. Gckeler, J. Najjar, R. H.
Rdl, A. Schfer, R. W. Schiel, W. Sldner, and A. Sternbeck,
Phys. Rev. D 91, 054501 (2015).

[16] T. Yamazaki, Y. Aoki, T. Blum, H.W. Lin, M. F. Lin, S. Ohta,
S. Sasaki, R. J. Tweedie, and J.M. Zanotti (RBCþ UKQCD
Collaboration), Phys. Rev. Lett. 100, 171602 (2008).

[17] H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato, and H.
Shows, Phys. Rev. Lett. 120, 152502 (2018).

[18] S. Aoki et al. (Flavour Lattice Averaging Group), arXiv:
1902.08191.

[19] H.-W. Lin and K. Orginos, Phys. Rev. D 79, 034507 (2009).
[20] G. Erkol, M. Oka, and T. T. Takahashi, Phys. Lett. B 686, 36

(2010).
[21] C. Alexandrou, K. Hadjiyiannakou, and C. Kallidonis,

Phys. Rev. D 94, 034502 (2016).
[22] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504

(2001).
[23] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. P.

Lepage, J. Shigemitsu, H. Trottier, and K. Wong (HPQCD
and UKQCD Collaborations), Phys. Rev. D 75, 054502
(2007).

[24] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 87,
054505 (2013).

[25] J.-W. Chen, D. O’Connell, and A. Walker-Loud, J. High
Energy Phys. 04 (2009) 090.

[26] F.-J. Jiang, arXiv:hep-lat/0703012.
[27] B. Yoon et al., Phys. Rev. D 93, 114506 (2016).
[28] C. Egerer, D. Richards, and F. Winter, Phys. Rev. D 99,

034506 (2019).
[29] J. Green, in 36th International Symposium on Lattice Field

Theory (Lattice 2018) East Lansing, MI, United States
(Proceedings of Science, 2018).

[30] C. C. Chang et al., Nature (London) 558, 91 (2018).
[31] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[32] R. G. Edwards and B. Joo (SciDAC, LHPC, and UKQCD

Collaborations), Nucl. Phys. B, Proc. Suppl. 140, 832
(2005).

LATTICE-QCD DETERMINATION OF THE HYPERON AXIAL … PHYS. REV. D 102, 014501 (2020)

014501-7

https://doi.org/10.1016/j.ppnp.2018.01.007
https://doi.org/10.1103/PhysRevD.98.034503
https://doi.org/10.1103/PhysRevLett.121.242003
https://doi.org/10.1103/PhysRevLett.121.242003
https://doi.org/10.1103/PhysRevD.94.054508
https://doi.org/10.1103/PhysRevD.92.094511
https://doi.org/10.1103/PhysRevD.86.114509
https://doi.org/10.1103/PhysRevD.82.014501
https://doi.org/10.1103/PhysRevD.82.014501
https://doi.org/10.1103/PhysRevD.92.114513
https://doi.org/10.1103/PhysRevD.93.039904
https://doi.org/10.1103/PhysRevD.93.039904
https://doi.org/10.1103/PhysRevD.91.054501
https://doi.org/10.1103/PhysRevLett.100.171602
https://doi.org/10.1103/PhysRevLett.120.152502
https://arXiv.org/abs/1902.08191
https://arXiv.org/abs/1902.08191
https://doi.org/10.1103/PhysRevD.79.034507
https://doi.org/10.1016/j.physletb.2010.02.016
https://doi.org/10.1016/j.physletb.2010.02.016
https://doi.org/10.1103/PhysRevD.94.034502
https://doi.org/10.1103/PhysRevD.64.034504
https://doi.org/10.1103/PhysRevD.64.034504
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1088/1126-6708/2009/04/090
https://doi.org/10.1088/1126-6708/2009/04/090
https://arXiv.org/abs/hep-lat/0703012
https://doi.org/10.1103/PhysRevD.93.114506
https://doi.org/10.1103/PhysRevD.99.034506
https://doi.org/10.1103/PhysRevD.99.034506
https://doi.org/10.1038/s41586-018-0161-8
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254

