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In this work we compute the axion mass and, from this (exploiting a well-known relation), we also derive
an expression for the QCD topological susceptibility in the finite-temperature case, both below and above
the chiral phase transition at Tc, making use of a chiral effective Lagrangian model which includes the
axion, the scalar and pseudoscalar mesons and implements the Uð1Þ axial anomaly of the fundamental
theory. We also provide a numerical estimate of the topological susceptibility at T ¼ 0 (in the physical case
of three light quark flavors) and discuss the question of the temperature and quark-mass dependence of the
topological susceptibility in the high-temperature regime.
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I. INTRODUCTION

Among the possible solutions of the so-called “strong-
CP problem” (that is, the experimental absence of CP
violations in the strong-interaction sector), the most
appealing is surely the one proposed by Peccei and
Quinn (PQ) in 1977 [1] and developed by Weinberg and
Wilczek in 1978 [2,3]. The key idea (see also Ref. [4] for
a recent review) is to extend the Standard Model by
adding a new pseudoscalar particle, called “axion,” in
such a way that there is a new Uð1Þ global symmetry,
referred to as Uð1ÞPQ, which is both spontaneously
broken at a scale fa and anomalous (i.e., broken by
quantum effects), with the related current JμPQ satisfying
the relation

∂μJ
μ
PQ ¼ aPQQ; ð1:1Þ

where Q ¼ g2

64π2
εμνρσFa

μνFa
ρσ is the topological charge

density and aPQ is the so-called color anomaly para-
meter. The most general Lagrangian describing the QCD
degrees of freedom Ψ and the axion field Sa has the
following form:

L ¼ LQCD þ 1

2
∂μSa∂μSa þ Lint½∂μSa;Ψ� −

aPQ
fa

SaQ;

ð1:2Þ

where the term Lint½∂μSa;Ψ� describes the interactions
between the axion and the quark fields and it is strongly
model dependent. Under Uð1ÞPQ the axion field Sa
transforms nonlinearly as

Uð1ÞPQ∶ Sa → S0a ¼ Sa þ γfa; ð1:3Þ

so that the first three terms in (1.2) are left invariant,
while the last one reproduces the correct anomaly of
(1.1). By virtue of this extra Uð1ÞPQ symmetry, CP
comes out to be dynamically conserved in this model.
Moreover, it is well known that the Uð1Þ axial symmetry

of QCD with nl light quark flavors (taken to be massless in
the ideal chiral limit; the physically relevant cases being
nl ¼ 2, with the quarks up and down, and nl ¼ 3, including
also the strange quark),

Uð1ÞA∶ qi → q0i ¼ eiβγ5qi; i ¼ 1;…; nl; ð1:4Þ

is also anomalous, with the related Uð1Þ axial current Jμ5 ¼
q̄γμγ5q satisfying the relation ∂μJ

μ
5 ¼ 2nlQ. Therefore, we

find that the Uð1ÞA ⊗ Uð1ÞPQ transformations with the
parameters β and γ satisfying the constraint 2nlβ þ aPQγ ¼
0 form aUð1Þ subgroup which is spontaneously broken but
anomaly-free (in the chiral limit): as a consequence, a new
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(pseudo-)Nambu-Goldstone boson appears in the spectrum,
the axion.
Indeed, the Lagrangian (1.2) is already sufficient to

derive an important relation (first introduced in Refs. [5–8])
between the axion mass and the topological susceptibility
of QCD, defined as χQCD ¼ −i

R
d4xhTfQðxÞQð0ÞgiQCD,

namely,

m2
axion ≃

a2PQ
f2a

χQCD; ð1:5Þ

which is valid at the leading order in 1=fa, assuming that fa
is much larger than the QCD scale (fa ≫ ΛQCD). Indeed,
this assumption is phenomenologically well established,
since at present (see, for example, Refs. [9,10]) astrophysi-
cal and cosmological considerations imply the following
bounds on the Uð1ÞPQ breaking scale fa [or, better, on
fa=aPQ, but aPQ ∼Oð1Þ for the more realistic axion
models [11] ]: 109 GeV≲ fa ≲ 1017 GeV.
In this paper we shall consider the relation (1.5) in the

theory at a finite temperature T. (See also Ref. [12] for a
recent investigation of the effects of a hot and magnetized
medium on the axion mass and the QCD topological
susceptibility, making use of the Nambu-Jona-Lasinio effec-
tive model.) It is well known (mainly by lattice simulations
[13]) that, at temperatures above a certain (pseudo)critical
temperature Tc ≈ 150 MeV, thermal fluctuations break up
the chiral condensate hq̄qi, causing the complete restoration
of the SUðnlÞL ⊗ SUðnlÞR chiral symmetry of QCD with nl
light quarks (nl ¼ 2 and nl ¼ 3 being the physically relevant
cases): this leads to a phase transition called “chiral
transition.” For what concerns, instead, the Uð1Þ axial
symmetry, the nonzero contribution to the anomaly provided
by the instanton gas at high temperatures [14] should imply
that it is always broken, also for T > Tc. (However, the real
magnitude of its breaking and its possible effective restora-
tion at some temperature above Tc are still important debated
questions in hadronic physics.)
In this work we shall compute the axion mass and

therefore, exploiting the relation (1.5), we shall also derive
an expression for the QCD topological susceptibility in the
finite-temperature case, both below and above the chiral
phase transition at Tc, making use of a chiral effective
Lagrangian model, the so-called “interpolating model,”
which includes the axion, the scalar and pseudoscalar
mesons and implements the Uð1Þ axial anomaly of the
fundamental theory. The inclusion of the axion in a low-
energy effective Lagrangian model of QCD is, of course,
fully justified, since, being fa ≫ ΛQCD, the axion is an
extremely light degree of freedom (its mass being smaller
than about 0.01 eV). The choice of the interpolating model,
described in detail in the next section, is due to its
“regularity” around the chiral phase transition (i.e., it is
well defined also above Tc) and to the fact that the other
known effective Lagrangian models (and the corresponding
results for the axion mass and the QCD topological

susceptibility, both below and above Tc) can be obtained
by taking proper formal limits of the interpolating model
(and its results), as already noticed in Ref. [15] (for the
chiral effective Lagrangian models without the axion). The
advantages of this approach of computing χQCD, as we shall
see, is that, being the axion a pseudoscalar particle and CP
now an exact symmetry, there can be no mixing with the
scalar degrees of freedom of the effective model (which
must be included if we want to perform our analysis also at
temperatures around and above the chiral phase transition),
so that the problem reduces to finding the lightest particle
(with a mass vanishing as 1=fa when fa → ∞) among the
pseudoscalar degrees of freedom.
The plan of the paper is the following. In Sec. II we shall

present the (linearized) interpolating model with the inclu-
sion of the axion and we shall discuss its relation with other
known effective models. In Sec. III we shall compute the
axion mass and thus the topological susceptibility at finite
temperature, both below and above the chiral transition,
using the interpolating model: from this, using the corre-
spondence relations found in Sec. II, we shall also derive
the expression of the topological susceptibility for other
known effective Lagrangian models. In the Appendix, we
shall also give a numerical evaluation of the expressions for
the topological susceptibility at zero temperature in the
physical case nl ¼ 3. Finally, in Sec. IV we shall briefly
summarize the results obtained in this paper, giving some
prospects and conclusions.

II. THE INTERPOLATING MODEL
WITH THE AXION

The effective Lagrangian model that we shall consider
(originally proposed in Ref. [16] and elaborated on in
Refs. [17–19]) is a generalization of the model proposed (in
the context of the large-Nc expansion) by Witten, Di
Vecchia, Veneziano, et al. [20–25] (that, following the
notation introduced in Refs. [15,26], will be denoted for
brevity as the “WDV model”). Following Refs. [15,26], we
shall call it the “interpolating model” (IM), because (in a
sense which will be recalled below) it approximately
“interpolates” between the WDV model at T ¼ 0 and
the so-called “extended linear sigma (ELσ) model” for
T > Tc. The ELσ model was originally proposed in
Refs. [27–29] to study the chiral dynamics at T ¼ 0 and
later used as an effective model to study the chiral-
symmetry restoration at nonzero temperature [30–35]:
according to ’t Hooft (see Refs. [36,37], and references
therein), it reproduces, in terms of an effective theory, the
Uð1Þ axial breaking caused by instantons in the funda-
mental theory.1

1We recall here, however, the criticism by Christos [38] (see
also Refs. [20,21]), according to which the determinantal inter-
action term in this effective model does not correctly reproduce
the Uð1Þ axial anomaly of the fundamental theory.

SALVATORE BOTTARO and ENRICO MEGGIOLARO PHYS. REV. D 102, 014048 (2020)

014048-2



In the interpolating model the Uð1Þ axial anomaly is
implemented, as in the WDV model, by properly intro-
ducing the topological charge density Q as an auxiliary
field, so that it satisfies the correct transformation property
under the chiral group (and is consistent with the large-Nc
expansion).2 Moreover, it also assumes that there is another
Uð1Þ-axial-breaking condensate (in addition to the usual
quark-antiquark chiral condensate hq̄qi), having the
form CUð1Þ ¼ hOUð1Þi, where, for a theory with nl light
quark flavors, OUð1Þ is a 2nl-quark local operator that has
the chiral transformation properties of [39–41] OUð1Þ ∼
detstðq̄sRqtLÞ þ detstðq̄sLqtRÞ, where s; t ¼ 1;…; nl are
flavor indices.3 The effective Lagrangian of the interpolat-
ing model is written in terms of the topological charge
density Q, the mesonic field Uij ∼ q̄jRqiL (up to a multi-
plicative constant), and the new field variable X ∼
det ðq̄sRqtLÞ (up to a multiplicative constant), associated
with the Uð1Þ axial condensate:

LIMðU;U†; X; X†; QÞ

¼ 1

2
Tr½∂μU∂μU†� þ 1

2
∂μX∂μX† − V0ðU;U†; X; X†Þ

þ i
2
Q½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ� þ 1

2A
Q2; ð2:1Þ

where

V0ðU;U†;X;X†Þ

¼ λ2π
4
Tr½ðUU† − ρπIÞ2� þ

λ02π
4
½TrðUU†Þ�2 þ λ2X

4
½XX† − ρX�2

−
Bm

2
ffiffiffi
2

p Tr½MðUþU†Þ�− κ1
2

ffiffiffi
2

p ½X† detUþX detU†�;

ð2:2Þ

M ¼ diagðm1;…; mnlÞ being the physical (real and diago-
nal) quark-mass matrix.
As in the case of theWDVmodel, the auxiliary fieldQ in

(2.1) can be integrated out using its equation of motion,
obtaining

LIMðU;U†; X; X†Þ ¼ 1

2
Tr½∂μU∂μU†� þ 1

2
∂μX∂μX†

− VðU;U†; X; X†Þ; ð2:3Þ

where

VðU;U†;X;X†Þ
¼ V0ðU;U†;X;X†Þ

−
A
8
½ω1TrðlogU − logU†Þ þ ð1−ω1ÞðlogX − logX†Þ�2:

ð2:4Þ

We remind the reader that the only anomalous term in the
Lagrangian (2.1) and (2.2) of the interpolating model is the
term proportional to the topological charge density Q,
depending on TrðlogUÞ and logX, i.e., after integrating out
the auxiliary field Q, the last term (proportional to A) in
Eq. (2.4): this term has exactly the same structure of the
anomalous term in the WDV model and guarantees that the
Lagrangian correctly transforms under Uð1Þ axial trans-
formations. On the contrary, the last interaction term in
Eq. (2.2), proportional to X† detU þ X detU†, while being
very similar to the interaction term of the ELσ model, is not
anomalous, but (since X transforms exactly as detU under
a chiral group transformation) it is invariant under the entire
chiral group UðnlÞ ⊗ UðnlÞ.
All the parameters which appear in Eqs. (2.2) and (2.4)

have to be considered as temperature dependent. In
particular, we recall that the parameter ρπ is responsible
for the fate of the SUðnlÞL ⊗ SUðnlÞR chiral symmetry,
which, as is well known, depends on the temperature T: ρπ
will be positive, and, correspondingly, the “vacuum expect-
ation value” (VEV), i.e., the thermal average, of U will be
different from zero in the chiral limit M ¼ 0, until the
temperature reaches the chiral phase-transition temperature
Tc [ρπðT < TcÞ > 0], above which it will be negative
[ρπðT > TcÞ < 0], and, correspondingly, the VEV of U
will vanish in the chiral limit M ¼ 0.4 Similarly, the
parameter ρX plays for the Uð1Þ axial symmetry the same
role the parameter ρπ plays for the SUðnlÞL ⊗ SUðnlÞR
chiral symmetry: ρX determines the VEV of the field X,
which is an order parameter of the Uð1Þ axial symmetry. In
order to reproduce the scenario we are interested in, that is,
the scenario in which the Uð1Þ axial symmetry is not
restored for T > Tc, while the SUðnlÞ ⊗ SUðnlÞ chiral
symmetry is restored as soon as the temperature reaches Tc,
we must assume that, differently from ρπ , the parameter ρX
remains positive across Tc, i.e., ρπðT < TcÞ > 0, ρXðT <
TcÞ > 0 and ρπðT > TcÞ < 0, ρXðT > TcÞ > 0.
For what concerns the parameter ω1ðTÞ, in order to avoid

a singular behavior of the anomalous term in the potential
(2.4) above the chiral-transition temperature Tc, where the2However, we must recall here that also the particular way of

implementing the Uð1Þ axial anomaly in the WDV model, by
means of a logarithmic interaction term [as in Eqs. (2.1) and (2.4)
below], was criticized by ’t Hooft in Ref. [36].

3The explicit form of the condensate (including the color
indices) for the cases nl ¼ 2 and nl ¼ 3 is discussed in detail in
Appendix A of Ref. [18].

4We notice here that we have identified the temperature Tρπ at
which the parameter ρπ is equal to zero with the chiral phase-
transition temperature Tc: this is always correct except in the case
nl ¼ 2, where we have Tρπ < Tc (see Refs. [15,19] for a more
detailed discussion).
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VEV of the mesonic field U vanishes (in the chiral limit
M ¼ 0), we must assume that [16,19] ω1ðT ≥ TcÞ ¼ 0.
[This way, indeed, the term including logU in the potential
vanishes, eliminating the problem of the divergence, at least
as far as the VEVof the field X is different from zero or, in
other words, as far as the Uð1Þ axial symmetry remains
broken also above Tc.]
At this point we can introduce the axion in our effective

Lagrangian model. If we write

N ¼ ei
Sa
fa ; ð2:5Þ

it is sufficient to add to the Lagrangian (2.3) a few terms:

LIMþaxion ¼ LIM þ f2a
2
∂μN∂μN†

þ i
2
aPQðlogN − logN†ÞQ: ð2:6Þ

This is precisely how the axion is introduced in the WDV
model [42], since the anomaly is implemented in the same
way, and in fact it is easy to verify that the modified
Lagrangian has all the required properties described in the
previous section. Finally, we can eliminate Q through its
equation of motion to get the final Lagrangian that we shall
use throughout this paper:

LIMþaxion ¼
1

2
Tr½∂μU∂μU†� þ 1

2
∂μX∂μX† þ f2a

2
∂μN∂μN†

− VðU;U†; X; X†; N; N†Þ; ð2:7Þ

where

VðU;U†; X; X†; N; N†Þ ¼ V0ðU;U†; X; X†Þ

−
A
8
½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ
þ aPQðlogN − logN†Þ�2: ð2:8Þ

Now we will clarify in which sense this model interpolates
between the WDVand the ELσ models with the inclusion of
the axion, extending what was already noticed in Ref. [15]
for the models without the axion. As it had been already
observed in Refs. [18,26], the Lagrangian of the WDV
model is obtained from that of the interpolating model
by first fixing ω1 ¼ 1 and then taking the formal limits
λX → þ∞ and also ρX → 0 (so that X → 0). The same
statement also applies to the models with the inclusion of
the axion, the presence of this being irrelevant for these
limits, i.e.,

LIMþaxionjω1¼1λX→þ∞;ρX→0
�������!LWDVþaxion; ð2:9Þ

where (see Ref. [42])

LWDVþaxion ¼
1

2
Tr½∂μU∂μU†� þ f2a

2
∂μN∂μN† − V0ðU;U†Þ

þ A
8
½TrðlogU − logU†Þ

þ aPQðlogN − logN†Þ�2; ð2:10Þ

with

V0ðU;U†Þ ¼ −
Bm

2
ffiffiffi
2

p Tr½MðU þU†Þ�

þ λ2π
4
Tr½ðUU† − ρπIÞ2�

þ λ02π
4
½TrðUU†Þ�2: ð2:11Þ

On the other side, as we have seen above, the parameter
ω1 must be necessarily taken to be equal to zero above
the critical temperature Tc, where the WDV is no more
valid (because of the singular behavior of the anomalous
term in the potential), and vice versa, as it was already
observed in Ref. [19], the interaction term κ1

2
ffiffi
2

p ½X† detU þ
X detU†� of the interpolating model becomes very similar
to the “instantonic” interaction term κI½detU þ detU†� of
the ELσ model. More precisely, it was observed in
Ref. [15] that, by first fixing ω1 ¼ 0 and then taking
the formal limits λX → þ∞ and A → ∞ (so that, writing
X ¼ αeiβ, one has α →

ffiffiffiffiffi
ρX

p
and β → 0, i.e., X →

ffiffiffiffiffi
ρX

p
),

the Lagrangian of the interpolating model (without the
axion) reduces to the Lagrangian of the ELσ model with

κI ¼ κ1
ffiffiffiffi
ρX

p
2
ffiffi
2

p [i.e., with κI proportional to the Uð1Þ axial

condensate].
The same statement also applies to the models with the

inclusion of the axion, apart from a rescaling in the Peccei-
Quinn scale, i.e.,

LIMþaxionjω1¼0

λX→þ∞;A→þ∞��������!LELσþaxionjκI¼κ1
ffiffiffiffi
ρX

p
2
ffiffi
2

p ;fa→f̃a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2aþa2PQρX

p ;

ð2:12Þ

where

LELσþaxion ¼
1

2
Tr½∂μU∂μU†� þ f2a

2
∂μN∂μN† − V0ðU;U†Þ

þ κI½NaPQ detU þ ðN†ÞaPQ detU†�: ð2:13Þ

In fact, taking the formal limits λX → þ∞ and A → ∞ in
the interpolating model with the axion, one now gets

X ¼ αeiβ →
ffiffiffiffiffi
ρX

p
e−iaPQ

Sa
fa . As a first consequence, this leads

to an additional term coming from the kinetic term of the
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field X, which renormalizes the preexisting axion kinetic
term to give

1

2
∂μX∂μX† þ 1

2
∂μSa∂μSa →

1

2

�
1þ a2PQ

ρX
f2a

�
∂μSa∂μSa;

ð2:14Þ

so that we have to rescale the axion field in order for it to be
canonically normalized:

Sa → S̃a ¼
�
1þ a2PQ

ρX
f2a

�
1=2

Sa ¼
f̃a
fa

Sa;

f̃a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2a þ ρXa2PQ

q
; ð2:15Þ

which is equivalent to rescale the Peccei-Quinn scale:

1

2
∂μS̃a∂μS̃a ¼

f̃a
2

2
∂μN∂μN†; N ¼ ei

Sa
fa ¼ ei

S̃a
f̃a : ð2:16Þ

Moreover, the interaction term between U and X in the
interpolating model becomes exactly the instantonic
interaction term of the ELσ model with the addition of
the axion, i.e.,

κ1
2

ffiffiffi
2

p ½X† detU þ X detU†�

→ κI½NaPQ detU þ ðN†ÞaPQ detU†�; ð2:17Þ

with the identification κI ≡ κ1
ffiffiffiffi
ρX

p
2
ffiffi
2

p .

By virtue of the correspondence relations (2.9) and
(2.12), it is sufficient to make all the calculations within
the interpolating model since the results for the WDV and
ELσ models are easily obtained by making the above-
mentioned proper limits. In the next section we shall take
advantage of this last consideration by computing the axion
mass for the interpolating model in the large-fa limit in
order to extract the QCD topological susceptibility at finite
temperature, both above and below the chiral transition,
and then deduce the corresponding results for the WDVand
ELσ effective models.

III. AXION MASS AND TOPOLOGICAL
SUSCEPTIBILITY AT FINITE TEMPERATURE

In this section we shall compute the axion mass at the
leading order in 1=fa, exploiting the fact that the deter-
minant of the full squared-mass matrix of the model
necessarily vanishes in the limit fa → ∞, since in this
limit the axion becomes massless. This means that the
axion squared mass (and thus the QCD topological sus-
ceptibility) can be obtained, at the leading order in 1=fa,
from the ratio of the determinant of the full squared-mass
matrix and the determinant of the squared-mass matrix

without the axion (which coincides with the minor with
nonzero entries resulting from taking fa → ∞).

A. Below the chiral transition (T < Tc)

Using the following parametrization for the VEVs of the
fields U, X, and N (being the quark-mass matrix M
diagonal, we can take hUi to be diagonal too):

hUiji ¼ ρieiϕiδij; hXi ¼ αeiβ; hNi ¼ eiϕ; ð3:1Þ

and (following the notation of Refs. [15,19]) writing the
parameter ρX as follows:

ρX ≡ F2
X

2
> 0; ð3:2Þ

the potential (2.8) (evaluated on the VEVs of the fields)
turns out to be

V ¼ −
Bmffiffiffi
2

p
X
i

miρi cosϕi þ
λ2π
4

X
i

ðρ2i − ρπÞ2

þ λ02π
4

�X
i

ρ2i

�
2

þ λ2X
4

�
α2 −

F2
X

2

�
2

−
κ1αffiffiffi
2

p cos

�
β −

X
i

ϕi

�Y
i

ρi

þ A
2

�
ω1

X
i

ϕi þ ð1 − ω1Þβ þ aPQϕ

�
2

; ð3:3Þ

from which the stationary-point equations read

∂V
∂ρi ¼ −

Bmffiffiffi
2

p mi cosϕi þ ρi

�
λ02π

X
j

ρ2j þ λ2πρ
2
i − λ2πρπ

�

−
κ1αffiffiffi
2

p cos

�
β −

X
j

ϕj

�Y
j≠i

ρj ¼ 0;

∂V
∂ϕi

¼ Bmffiffiffi
2

p miρi sinϕi −
κ1αffiffiffi
2

p sin

�
β −

X
j

ϕj

�Y
j

ρj

þ ω1

�
ω1

X
j

ϕj þ ð1 − ω1Þβ þ aPQϕ

�
¼ 0;

∂V
∂α ¼ λ2X

�
α2 −

F2
X

2

�
α −

κ1ffiffiffi
2

p cos

�
β −

X
j

ϕj

�Y
j

ρj ¼ 0;

∂V
∂β ¼ κ1αffiffiffi

2
p sin

�
β −

X
j

ϕj

�Y
j

ρj

þ ð1 − ω1ÞA
�
ω1

X
j

ϕj þ ð1 − ω1Þβ þ aPQϕ

�
¼ 0;

∂V
∂ϕ ¼ aPQA

�
ω1

X
j

ϕj þ ð1 − ω1Þβ þ aPQϕ

�
¼ 0: ð3:4Þ
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Since now CP is an exact symmetry, the VEVs of the pseudoscalar fields (ϕi, β, ϕ) must vanish. In addition, there can be no
mixing between scalar and pseudoscalar degrees of freedom, so that we can look at the squared-mass matrix for the
(canonically normalized) pseudoscalar fields π11 ¼ ρ1ϕ1; π22 ¼ ρ2ϕ2;…; SX ¼ αβ; Sa ¼ faϕ alone, which turns out to be

M2 ¼ FHF; ð3:5Þ

where F ¼ diagðρ−11 ;…; ρ−1nl ; α
−1; f−1a Þ and

H ¼

0
BBBBBBBB@

S1 þ Rþ ω2
1A Rþ ω2

1A � � � −Rþ ω1ð1 − ω1ÞA ω1aPQA

Rþ ω2
1A S2 þ Rþ ω2

1A � � � −Rþ ω1ð1 − ω1ÞA ω1aPQA

..

. ..
. . .

. ..
. ..

.

−Rþ ω1ð1 − ω1ÞA −Rþ ω1ð1 − ω1ÞA � � � Rþ ð1 − ω1Þ2A ð1 − ω1ÞaPQA
ω1aPQA ω1aPQA � � � ð1 − ω1ÞaPQA a2PQA

1
CCCCCCCCA
;

having defined

R≡ κ1αffiffiffi
2

p
Y
i

ρi; Si ≡ Bmffiffiffi
2

p miρi: ð3:6Þ

We find that

detM2 ¼ ðdetFÞ2a2PQAR
Y
i

Si ¼
κ1a2PQAffiffiffi
2

p
αf2a

�
Bmffiffiffi
2

p
�

nlY
i

mi;

ð3:7Þ

while the determinant of the minor obtained by removing
the last row and the last column is

detM2
< ¼ κ1Affiffiffi

2
p

α

�
Bmffiffiffi
2

p
�

nl
�
1

A
þ ð1 − ω1Þ2

R
þ
X
j

1

Sj

�Y
i

mi;

ð3:8Þ

so that, at the leading order in 1=fa,

m2
axion ≃

detM2

detM2
<
¼ a2PQ

f2a

1

1
A þ ð1−ω1Þ2

R þP
j
1
Sj

: ð3:9Þ

By virtue of Eq. (1.5), this yields the following expression
for the topological susceptibility:

χQCD ¼ 1

1
A þ ð1−ω1Þ2

R þP
j
1
Sj

; ð3:10Þ

where ρi and α, contained in R and Si, solve the following
stationary-point equations:

∂V
∂ρi ¼ −

Bmffiffiffi
2

p mi þ ρi

�
λ02π

Xnl
j¼1

ρ2j þ λ2πρ
2
i − λ2πρπ

�

−
κ1αffiffiffi
2

p
Y
j≠i

ρj ¼ 0;

∂V
∂α ¼ λ2X

�
α2 −

F2
X

2

�
α −

κ1ffiffiffi
2

p
Ynl
j¼1

ρj ¼ 0: ð3:11Þ

Finally, making use of the relations (2.9) and (2.12) found
at the end of Sec. II, we can immediately write down the
expressions which one obtains for the topological suscep-
tibility using the WDV and the ELσ effective models for
T < Tc.

(i) WDV model:

χðWDVÞ
QCD ¼ 1

1
A þ

P
j
1
Sj

¼ A

1þ A
P

j

ffiffi
2

p
Bmmjρj

; ð3:12Þ

where the parameters ρi solve the equations

−
Bmffiffiffi
2

p mi þ ρi

�
λ02π

Xnl
j¼1

ρ2j þ λ2πρ
2
i − λ2πρπ

�
¼ 0:

ð3:13Þ

(ii) ELσ model:

χðELσÞ
QCD ¼ 1

1
R þ

P
j
1
Sj

¼ 2κI
Q

iρi

1þ 2κI
Q

iρi
P

j

ffiffi
2

p
Bmmjρj

;

ð3:14Þ

where κI ≡ κ1α
2
ffiffi
2

p ¼ κ1FX
4

and the parameters ρi solve

the equations
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−
Bmffiffiffi
2

p mi þ ρi

�
λ02π

Xnl
j¼1

ρ2j þ λ2πρ
2
i − λ2πρπ

�

− 2κI
Y
j≠i

ρj ¼ 0: ð3:15Þ

The results (3.10), (3.12), and (3.14) generalize the
corresponding results found in Ref. [26], studying the θ
dependence of the vacuum energy density (free energy)
and using the nonlinear versions of the various effec-
tive models, in which the scalar degrees of freedom had
been simply integrated out, by taking the limit λ2π → ∞
(decoupling limit): in this limit the solutions of the sta-
tionary-point equations simply reduce to ρi ¼ ffiffiffiffiffi

ρπ
p ≡ Fπffiffi

2
p ,

i.e., hUi ¼ Fπffiffi
2

p I, where Fπ is the so-called pion decay

constant.

In the Appendix, we shall give a numerical evaluation of
the expressions (3.12) and (3.14) for the topological
susceptibility at zero temperature, using the WDV and
ELσ models in the physical case nl ¼ 3: the results will be
compared with the corresponding results found in Ref. [26]
(using the nonlinear effective models) and with other
estimates present in the literature.

B. Above the chiral transition (T > Tc)

As already recalled in the previous section, in order to
avoid a singular behavior of the anomalous term in the
potential (2.4) above the chiral-transition temperature Tc,
where the VEV of the mesonic field U vanishes (in the
chiral limit M ¼ 0), we must assume that [16,19]
ω1ðT ≥ TcÞ ¼ 0. In this regime of temperatures, therefore,
the potential is given by

VðU;U†; X; X†; N; N†Þ ¼ −
Bm

2
ffiffiffi
2

p Tr½MðU þU†Þ� þ λ2π
4
Tr½ðU†U − ρπIÞ2�

þ λ02π
4
ðTr½U†U�Þ2 þ λ2X

4
½XX† − ρX�2 −

κ1
2

ffiffiffi
2

p ðX detU† þ X† detUÞ

þ A
2

�
i
2
½logX − logX†� þ iaPQ

2
½logN − logN†�

�
2

: ð3:16Þ

Using, now, the following parametrization for the VEVs of the fields U, X, and N:

hUiji ¼ ðρi þ iηiÞδij; hXi ¼ αeiβ; hNi ¼ eiϕ; ð3:17Þ

and (following, as usual, the notation of Refs. [15,19]) writing the parameters ρπ and ρX for T > Tc as follows:

ρπ ≡ −
B2
π

2
< 0; ρX ≡ F2

X

2
> 0; ð3:18Þ

the potential (evaluated on the VEVs of the fields) turns out to be

V ¼ −
Bmffiffiffi
2

p
Xnl
i¼1

miρi þ
λ2π
4

Xnl
i¼1

ðρ2i þ η2i Þ2 þ
λ2πB2

π

4

Xnl
i¼1

ðρ2i þ η2i Þ þ
λ02π
4

�Xnl
i¼1

ðρ2i þ η2i Þ
�2

þ λ2X
4

�
α2 −

F2
X

2

�
2

−
κ1α

2
ffiffiffi
2

p
�
eiβ

Ynl
i¼1

ðρi − iηiÞ þ e−iβ
Ynl
i¼1

ðρi þ iηiÞ
�

þ A
2
ðβ þ aPQϕÞ2: ð3:19Þ

Once more, the inclusion of the axion implies CP conservation and, as a consequence, the vanishing of all the VEVs of the
pseudoscalar degrees of freedom (ηi, β, ϕ) and of their mixings with the scalar degrees of freedom, whose VEVs can be
obtained from the corresponding stationary-point equations:

∂V
∂ρi ¼ −

Bmffiffiffi
2

p mi þ ρi

�
λ02π

Xnl
j¼1

ρ2j þ λ2πρ
2
i þ

λ2πB2
π

2

�
−
κ1αffiffiffi
2

p
Y
j≠i

ρj ¼ 0;

∂V
∂α ¼ λ2X

�
α2 −

F2
X

2

�
α −

κ1ffiffiffi
2

p
Ynl
j¼1

ρj ¼ 0: ð3:20Þ
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The computation of the second derivatives of the potential at the minimum of V leads to the following squared-mass matrix
for the pseudoscalar field η1; η2;…; SX ¼ αβ; Sa ¼ faϕ:

M2 ¼

0
BBBBBBBBBB@

K þ λ2πρ
2
1

κ1αffiffi
2

p
Q

k≠1;2 ρk � � � − κ1ffiffi
2

p
Q

k≠1 ρk 0

κ1αffiffi
2

p
Q

k≠1;2 ρk K þ λ2πρ
2
2 � � � − κ1ffiffi

2
p

Q
k≠2 ρk 0

..

. ..
. . .

. ..
. ..

.

− κ1ffiffi
2

p
Q

k≠1 ρk − κ1ffiffi
2

p
Q

k≠2 ρk � � � κ1ffiffi
2

p
α

Q
i ρi þ A

α2
aPQA
αfa

0 0 � � � aPQA
αfa

a2PQA

f2a

1
CCCCCCCCCCA
; ð3:21Þ

where K ≡ λ2πB2
π

2
þ λ02π

P
j ρ

2
j . Its determinant is given by

detM2 ¼ Aκ1ffiffiffi
2

p
α

a2PQ
f2a

Y
i

�
ρiðK þ λ2πρ

2
i Þ −

κ1αffiffiffi
2

p
Y
j≠i

ρj

�
¼ κ1a2PQAffiffiffi

2
p

αf2a

�
Bmffiffiffi
2

p
�

nlY
i

mi; ð3:22Þ

where Eq. (3.20) has been used. Instead, the determinant of
the minor obtained by removing the last row and the last
column (which survives the fa → ∞ limit) is found to be
[making again use of Eq. (3.20)]

detM2
< ¼ κ1Affiffiffi

2
p

α

�
Bmffiffiffi
2

p
�

nl
�
1

A
þ 1

R
þ
X
j

1

Sj

�Y
i

mi; ð3:23Þ

where R and Si are defined as in the previous subsection;
see Eq. (3.6). Therefore, the axion mass is given by (at the
leading order in 1=fa)

m2
axion ≃

detM2

detM2
<
¼ a2PQ

f2a

1
1
A þ 1

R þ
P

j
1
Sj

: ð3:24Þ

From this, by virtue of Eq. (1.5), we derive the following
expression for the QCD topological susceptibility above the
chiral transition:

χQCD ¼ 1
1
A þ 1

R þ
P

j
1
Sj

; ð3:25Þ

which is formally identical to the expression (3.10) with
ω1 ¼ 0, but with the difference that now ρi and α must
solve the stationary-point equations (3.20).
Finally, making use of the relation (2.12) found at the

end of Sec. II, we can immediately write down the
expression which one obtains for the topological suscep-
tibility using the ELσ effective model for T > Tc:

χðELσÞ
QCD ¼ 1

1
R þ

P
j
1
Sj

¼ 2κI
Q

iρi

1þ 2κI
Q

iρi
P

j

ffiffi
2

p
Bmmjρj

; ð3:26Þ

where κI ≡ κ1α
2
ffiffi
2

p ¼ κ1FX
4

and the parameters ρi solve the

equations

−
Bmffiffiffi
2

p mi þ ρi

�
λ02π

Xnl
j¼1

ρ2j þ λ2πρ
2
i þ

λ2πB2
π

2

�
− 2κI

Y
j≠i

ρj ¼ 0:

ð3:27Þ

The results (3.25) and (3.26) generalize the corresponding
results which were derived in Ref. [15], studying the θ
dependence of the vacuum energy density (free energy) at
the first nontrivial order in an expansion in the quark
masses. Solving the stationary-point equations (3.20) and
(3.27) at the leading order in the quark masses, one finds

that, in the case nl ¼ 3, ρi ≃
ffiffi
2

p
Bm

λ2πB2
π
mi and α ≃ FXffiffi

2
p , so that,

substituting in Eqs. (3.25) and (3.26), one finds the same
approximate expression already derived in Ref. [15] for the
topological susceptibility:

χ ≃
κ1FX

2

� ffiffiffi
2

p
Bm

λ2πB2
π

�nl
detM ¼ 2κI

� ffiffiffi
2

p
Bm

λ2πB2
π

�nl
detM:

ð3:28Þ

A similar result occurs also in the special case nl ¼ 2. In
this case, solving the stationary-point equations (3.20) and
(3.27) at the leading order in the quark masses, one finds

that ρ1 ≃
ffiffiffi
2

p
Bm

λ2πB2
πm1þκ1FXm2

λ4πB4
π−κ21F

2
X

, ρ2 ≃
ffiffiffi
2

p
Bm

λ2πB2
πm2þκ1FXm1

λ4πB4
π−κ21F

2
X

,

and α ≃ FXffiffi
2

p , so that, substituting in Eqs. (3.25) and

(3.26), one finds also in this case the same approximate
expression already derived in Ref. [15] for the topological
susceptibility:
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χ ≃
κ1FXB2

m

λ4πB4
π − κ21F

2
X
mumd ¼

4κIB2
m

λ4πB4
π − 16κ2I

mumd: ð3:29Þ

Further comments on the “exact” expressions (3.25)
and (3.26), derived in this paper for the topological
susceptibility for T > Tc, will be made in the next
section.

IV. SUMMARY OF THE RESULTS
AND CONCLUSIONS

In this paper we have computed the axion mass and, from
this [exploiting the well-known formula (1.5), valid in the
limit of very large fa, i.e., fa ≫ ΛQCD], we have derived an
expression for the QCD topological susceptibility in the
finite-temperature case, both below and above the chiral
phase transition at Tc, making use of a chiral effective
Lagrangian model, the so-called interpolating model,
which includes the axion, the scalar and pseudoscalar
mesons and implements the Uð1Þ axial anomaly of the
fundamental theory. The choice of this model (described in
detail in Sec. II) is due to its “regularity” around the chiral
phase transition (i.e., it is well defined also above Tc) and to
the fact that the other known chiral effective Lagrangian
models, namely the WDV and ELσ models (and the
corresponding results for the axion mass and the QCD
topological susceptibility, both below and above Tc), can
be obtained (as is shown at the end of Sec. II) by taking
proper formal limits of the interpolating model (and its
results).
As we can see by giving a closer look at the results

obtained for the topological susceptibility in the previous
section, the expressions (3.10) (for T < Tc) and (3.25)
(for T > Tc) are formally the same since they are both
given by

χQCD ¼ 1

1
A þ ð1−ω1Þ2

R þP
j
1
Sj

;

R≡ κ1αffiffiffi
2

p
Y
i

ρi; Si ≡ Bmffiffiffi
2

p miρi; ð4:1Þ

where the VEVs ρi and α are obtained by solving the
following stationary-point equations:

−
Bmffiffiffi
2

p mi þ ρi

�
λ02π

Xnl
j¼1

ρ2j þ λ2πρ
2
i − λ2πρπ

�
−
κ1αffiffiffi
2

p
Y
j≠i

ρj ¼ 0;

λ2X

�
α2 −

F2
X

2

�
α −

κ1ffiffiffi
2

p
Ynl
i¼1

ρi ¼ 0;

ð4:2Þ

with the following temperature dependence of the para-
meters ρπ and ω1:

ρπðT < TcÞ > 0; ρπðT > TcÞ≡ −
B2
π

2
< 0;

ω1ðT > TcÞ ¼ 0: ð4:3Þ

From this result, making use of the relations (2.9) and
(2.12) found at the end of Sec. II, we immediately derive
the expressions for the topological susceptibility using the
WDV and the ELσ effective models for T < Tc, as well as
the expression for the topological susceptibility using the
ELσ effective model for T > Tc.
Concerning the results for T < Tc, the expressions

(3.10), (3.12), and (3.14) generalize the corresponding
results found in Ref. [26], studying the θ dependence of
the vacuum energy density (free energy) and using the
nonlinear versions of the various effective models, in
which the scalar degrees of freedom had been simply
integrated out, by taking the decoupling limit λ2π → ∞.
In the Appendix [Eqs. (A9) and (A10)], we have given

a numerical evaluation of the expressions (3.12) and
(3.14) for the topological susceptibility at T ¼ 0, using
the WDVand ELσ models in the physical case nl ¼ 3. The
results,

χðWDVÞ
QCD ¼ ð75.7� 0.2 MeVÞ4;
χðELσÞ
QCD ¼ ð75.8� 0.2 MeVÞ4; ð4:4Þ

have been compared with the corresponding results
found in Ref. [26] using the nonlinear effective
models: the inclusion of the scalar degrees of freedom
leads to a non-negligible difference between the above-
reported results and those obtained in Ref. [26] in the
decoupling limit (i.e., simply integrating out the scalar
degrees of freedom). Moreover, the two above-reported
results are perfectly consistent with each other and in
agreement with the available most accurate lattice
determination of χQCD and also with the results obtained
using the chiral perturbation theory with nl ¼ 2 light
flavors up to the next-to-next-to-leading order (see the
Appendix).
Concerning the results for T > Tc, the expressions (3.25)

and (3.26) generalize the corresponding results which were
derived in Ref. [15], studying the θ dependence of the
vacuum energy density (free energy) at the first nontrivial
order in an expansion in the quark masses. Even if, of
course, in this case we cannot make any more quantitative
statements (like we have done, instead, in the case at
T ¼ 0), nevertheless, we want to make some remarks
concerning the question of the temperature and quark-mass
dependence.
If we assume (as it appears reasonable on the basis of our

knowledge on the role of instantons at finite temperature)
that the Uð1Þ axial condensate vanishes at high temper-
atures with a certain power law in T, i.e., α (or, better, κ1α)
∼T−k (for some positive coefficient k), we would be

QCD AXION AND TOPOLOGICAL SUSCEPTIBILITY IN … PHYS. REV. D 102, 014048 (2020)

014048-9



tempted to conclude from Eq. (3.25) that also χQCD
vanishes at high temperatures in the same way, i.e.,5

χQCD ≃? R ∼ T−k; ð4:5Þ

being (at the leading order in the quark masses ρi ≃
ffiffi
2

p
Bm

λ2πB2
π
mi

and α ≃ FXffiffi
2

p ; it is reasonable to assume that this approxi-

mation makes sense for T − Tc ≫ mf, but not for T very
close to Tc, i.e., for T − Tc ≲mf)

6

R≡ κ1αffiffiffi
2

p
Y
i

ρi ≃
κ1FX

2

� ffiffiffi
2

p
Bm

λ2πB2
π

�nlY
i

mi: ð4:6Þ

We observe that, of course, this same result would be
obtained also in the case of the ELσ model, starting from
Eq. (3.26), with the usual identification κI ≡ κ1α

2
ffiffi
2

p ¼ κ1FX
4
. In

this way, both the temperature dependence of χQCD and its
quark-mass dependence (proportional to detM) would turn
out to be in agreement with the results found using the so-
called dilute instanton-gas approximation (DIGA) [14],
with k ¼ 11

3
Nc þ 1

3
nl − 4 ¼ 7þ 1

3
nl. The problem with the

above-reported argumentations is, of course, that the use of
an effective model in terms of mesonic excitations, while
being probably still legitimate immediately above Tc, is
surely no longer valid for very high temperatures (T ≫ Tc),
where the quark and gluon degrees of freedom of the
fundamental theory become more and more relevant. In
other words, it is not obvious at all that the range of validity
(in temperature) of Eq. (3.25) has an overlap with the range
of validity of the DIGA prediction. (For example, in
Ref. [43], investigating the quantum and thermal fluctua-
tions in the ELσ model and their effect on the chiral
anomaly, it was found that mesonic fluctuations cause an
increase, rather than a decrease, of the parameter κI for
temperatures T toward Tc, and the authors conclude that it
remains an important question whether the temperature
dependence of κI that arises from instanton effects can
compete with mesonic fluctuations.)

In this respect, recent lattice investigations have shown
contrasting results. Some first studies [44,45] have found
appreciable deviations from the DIGA prediction for
temperatures T up to about 600 MeV, while later studies
[46–50] have shown a substantial agreement with the
DIGA prediction, in a range of temperatures which in
some cases starts right above Tc, in other cases starts from 2
or 3 times Tc and goes up to a few GeVs. The situation is
thus not yet fully settled and calls for further and more
accurate studies (in this respect, see also Ref. [51]).
Moreover, as far as we know, the question of the quark-
mass dependence of χQCD at high temperatures (above Tc)
has not yet been investigated on the lattice.
Therefore, future works (both analytical and numerical)

will be necessary to shed more light on these questions. We
also recall that, by virtue of the relation (1.5), a more
accurate knowledge of χQCDðTÞ in the high-temperature
regime (at the GeV scale or above) would allow one to
obtain a more precise estimate of the coupling constant fa
(or, better, fa=aPQ), assuming that the axion is the main
component of dark matter (through the so-called “misalign-
ment mechanism” [6–8]): this in turn would allow one to
obtain a more precise estimate of the axion mass today (at
T ¼ 0), a useful (if not necessary) input for all present and
future experimental searches for the axion.

APPENDIX: NUMERICAL RESULTS FOR THE
TOPOLOGICAL SUSCEPTIBILITY AT T = 0

In this Appendix, we shall give a numerical evaluation of
the expressions (3.12) and (3.14) for the topological
susceptibility at zero temperature, using the WDV and
ELσ models in the physical case nl ¼ 3. In order to do this,
we need to know the values of the various parameters which
appear in these expressions: ρi, Bmmi, A, and κI .
We first consider the parameters ρi’s, which appear in the

vacuum expectation value hUi ¼ diagðρ1; ρ2; ρ3Þ. Using
for U the following linear parametrization:

U ¼
ffiffiffi
2

p
ðσa þ iπaÞTa; ðA1Þ

where Ta (a ¼ 0;…; n2l − 1; T0 ¼ 1ffiffiffiffiffi
2nl

p I) are the usual

UðnlÞ ¼ Uð1Þ ⊗ SUðnlÞ generators, with the normaliza-
tion Tr½TaTb� ¼ 1

2
δab, we can write the vacuum expectation

value of U as hUi ¼ ffiffiffi
2

p ðhσ0iT0 þ hσ3iT3 þ hσ8iT8Þ. It
was shown in Ref. [31] that, neglecting for simplicity
small violations of isospin SUð2ÞV (the charged and the
neutral pions being almost degenerate in mass), i.e., taking
hσ3i ≃ 0 (that is, neglecting hσ3i with respect to hσ0i and
hσ8i), the values of the condensates hσ0i and hσ8i are
related, by means of the partially-conserved-axial-vector-
current relations, to the values of the pion and kaon decay
constants Fπ and FK:

5We must also assume that the other quantities Si have a much
milder dependence on T and, moreover, that R ≪ A, which is
equivalent to χQCD ≪ A. (Since also A is expected to vanish at
large temperatures, this means that A ∼ T−kA , with kA ≤ k: in the
opposite case kA > k, we would obtain that χQCD ≃ A ∼ T−kA .)
At least at T ¼ 0, this condition is reasonably satisfied, since
in that case one identifies A with the pure-gauge topological
susceptibility and (see the Appendix) χðT ¼ 0Þ ≃ ð75 MeVÞ4,
AðT ¼ 0Þ ≃ ð180 MeVÞ4. However, at finite temperature, it is not
even clear if, in our phenomenological Lagrangian for the
interpolating model, the parameter AðTÞ can be simply identified
with the pure-gauge topological susceptibility.

6Thanks to the vanishing of the Uð1Þ axial condensate α ≃ FXffiffi
2

p ,
it is easy to see that this result applies for any nl, including the
special case nl ¼ 2.
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hσ0i ¼
Fπ þ 2FKffiffiffi

6
p ;

hσ8i ¼
2ffiffiffi
3

p ðFπ − FKÞ: ðA2Þ

From hUi ¼ diagðρ1; ρ2; ρ3Þ ¼
ffiffiffi
2

p ðhσ0iT0 þ hσ8iT8Þ, we
finally find that

ρ1 ¼ ρ2 ≡ ρ ¼
ffiffiffi
1

3

r
hσ0i þ

ffiffiffi
1

6

r
hσ8i ¼

Fπffiffiffi
2

p ;

ρ3 ¼
ffiffiffi
1

3

r
hσ0i −

ffiffiffi
2

3

r
hσ8i ¼

2FK − Fπffiffiffi
2

p : ðA3Þ

Always in Ref. [31] it was shown that the explicit
symmetry-breaking term H ≡ Bm

2
M ¼ haTa ¼ h0T0 þ

h3T3 þ h8T8, for M ¼ diagðmu;md;msÞ,7 can be deter-
mined in terms of the pion and kaon masses and decay
constants through the following relations [always neg-
lecting small SUð2ÞV isospin violations, i.e., taking
h3 ¼ Bm

2
ðmu −mdÞ ≃ 0, that is, neglecting h3 with respect

to h0 and h8]:

h0 ¼
Bmffiffiffi
6

p ð2m̃þmsÞ ¼
1ffiffiffi
6

p ðm2
πFπ þ 2m2

KFKÞ;

h8 ¼
Bmffiffiffi
3

p ðm̃ −msÞ ¼
2ffiffiffi
3

p ðm2
πFπ −m2

KFKÞ; ðA4Þ

where m̃≡ muþmd
2

. These relations can be inverted to give
Bmm̃ ¼ m2

πFπ and Bmms ¼ 2m2
KFK −m2

πFπ , or, equiva-
lently,

m2
π ¼

Bm

Fπ
m̃; m2

K ¼ Bm

2FK
ðm̃þmsÞ: ðA5Þ

We can obtain more precise relations (to be finally
compared with the experimental values of the pion and
kaon masses) by adding also an electromagnetic contribu-
tion Δm2

e:m: to the squared masses of the charged pions and
kaons and, moreover, taking into account the up-down
mass splitting in the squared masses of the charged and
neutral kaons, i.e.,

m2
π� ¼ Bm

2Fπ
ðmu þmdÞ þ Δm2

e:m:;

m2
π0
¼ Bm

2Fπ
ðmu þmdÞ;

m2
K� ¼ Bm

2FK
ðmu þmsÞ þ Δm2

e:m:;

m2
K0;K̄0 ¼ Bm

2FK
ðmd þmsÞ; ðA6Þ

which can be easily inverted to give Δm2
e:m: ¼ m2

π� −m2
π0

and

Bmmu ¼ Fπm2
π0
− FKðΔm2

K þ Δm2
πÞ;

Bmmd ¼ Fπm2
π0
þ FKðΔm2

K þ Δm2
πÞ;

Bmms ¼ 2FKm2
K0;K̄0 − Fπm2

π0
− FKðΔm2

K þ Δm2
πÞ; ðA7Þ

where Δm2
π ≡m2

π� −m2
π0ð¼ Δm2

e:m:Þ and Δm2
K ≡m2

K0;K̄0−
m2

K� .
8

For our numerical computations, the following values of
the known parameters have been used:

(i) Fπ¼92.1�1.2MeV and FK ¼110.02�0.28MeV
for the pion and kaon decay constants [correspond-
ing to the theoretical values reported in Eq. (84.16)
in Ref. [52] for fπ ≡

ffiffiffi
2

p
Fπ and fK ≡ ffiffiffi

2
p

FK], and
the known values of the pion and kaon masses (see
Ref. [52]):

mπ� ¼ 139.57061� 0.00024 MeV;

mπ0 ¼ 134.9770� 0.0005 MeV;

mK� ¼ 493.677� 0.016 MeV;

m
K0;K0 ¼ 497.611� 0.013 MeV: ðA8Þ

(ii) The parameter A in the interpolating and WDV
model is identified (at T ¼ 0) with the pure-gauge
topological susceptibility, which has been computed
on the lattice: A ¼ ð180� 5 MeVÞ4 (see Ref. [53]
and references therein).

(iii) The parameter κI in the ELσ model with nl ¼ 3 has
been computed in Ref. [31]: the result, updated with
the current values of the experimental inputs,
is κI ¼ 1721� 50 MeV.

Putting everything together,we obtain the following numeri-
cal results for the topological susceptibility χQCD at T ¼ 0
using the WDV and ELσ models in the case nl ¼ 3

9:

7In Ref. [31] the field Φ ¼ 1ffiffi
2

p U ¼ ðσa þ iπaÞTa is used, in
place ofU, with kinetic term Tr½∂μΦ∂μΦ†� ¼ 1

2
Tr½∂μU∂μU†� and

with an explicit symmetry-breaking term Tr½HðΦþΦ†Þ� ¼
Bm

2
ffiffi
2

p Tr½MðU þ U†Þ�, for H ¼ Bm
2
M.

8We easily see that in the limit in which FK ¼ Fπ , i.e.,
ρ ¼ ρ3 ¼ Fπffiffi

2
p , we recover the well-known relations of the lead-

ing-order chiral perturbation theory.
9When including the flavor singlet in the effective Lagrangian

at T ¼ 0, we must consider nl ¼ 3 for a correct description of the
physical world, since the contribution of Bmffiffi

2
p

ρ3
ms is comparable to

A
ρ2
3

∼ 2A
F2
π
in the pseudoscalar squared-mass matrix.
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(i) WDV model [see Eq. (3.12)]:

χðWDVÞ
QCD ¼ ð75.7� 0.2 MeVÞ4; ðA9Þ

(ii) ELσ model [see Eq. (3.14)]:

χðELσÞ
QCD ¼ ð75.8� 0.2 MeVÞ4: ðA10Þ

These results should be compared with the corresponding
results found in Ref. [26] using the nonlinear effective

models: χðWDVÞ
QCD ¼ ð76.283� 0.106 MeVÞ4 and χðENLσÞ

QCD ¼
ð76.271� 0.085 MeVÞ4. [We also recall here the recent
determination obtained in Ref. [54] using the SUð3Þ chiral
perturbation theory up to the next-to-leading order:

χ
ðNLOχPTð3ÞÞ
QCD ¼ ð76.7� 0.6 MeVÞ4.] The inclusion of the
scalar degrees of freedom (and, in particular, of the
finite splitting FK − Fπ) leads to a non-negligible differ-
ence between the results (A9) and (A10) and those
obtained in Ref. [26] in the decoupling limit (i.e., simply
integrating out the scalar degrees of freedom). The two
above-reported results are perfectly consistent with each
other and in agreement with the available most accurate

lattice determination, that is, χðlatticeÞQCD ¼ð75.6�2.0MeVÞ4
[47], and also with the results found using the SUð2Þ
chiral perturbation theory (i.e., with nl ¼ 2 light flavors)

up to the next-to-leading order, χ
ðNLOχPTð2ÞÞ
QCD ¼ ð75.5�

0.5 MeVÞ4 [55], and up to the next-to-next-to-leading

order, χ
ðNNLOχPTð2ÞÞ
QCD ¼ ð75.44� 0.34 MeVÞ4 [56].
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