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QCD axion and topological susceptibility in chiral effective
Lagrangian models at finite temperature

Salvatore Bottaro
Scuola Normale Superiore and INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Enrico Meggiolaro

+

Dipartimento di Fisica, Universita di Pisa, and INFN, Sezione di Pisa,
Largo Pontecorvo 3, I-56127 Pisa, Italy

®  (Received 4 May 2020; accepted 8 July 2020; published 31 July 2020)

In this work we compute the axion mass and, from this (exploiting a well-known relation), we also derive
an expression for the QCD topological susceptibility in the finite-temperature case, both below and above
the chiral phase transition at 7., making use of a chiral effective Lagrangian model which includes the
axion, the scalar and pseudoscalar mesons and implements the U(1) axial anomaly of the fundamental
theory. We also provide a numerical estimate of the topological susceptibility at 7 = O (in the physical case
of three light quark flavors) and discuss the question of the temperature and quark-mass dependence of the
topological susceptibility in the high-temperature regime.
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I. INTRODUCTION

Among the possible solutions of the so-called “strong-
CP problem” (that is, the experimental absence of CP
violations in the strong-interaction sector), the most
appealing is surely the one proposed by Peccei and
Quinn (PQ) in 1977 [1] and developed by Weinberg and
Wilczek in 1978 [2,3]. The key idea (see also Ref. [4] for
a recent review) is to extend the Standard Model by
adding a new pseudoscalar particle, called “axion,” in
such a way that there is a new U(1) global symmetry,
referred to as U(1)py, which is both spontaneously
broken at a scale f, and anomalous (i.e., broken by
quantum effects), with the related current J’,‘,Q satisfying
the relation

9,J I;’Q = apgQ,

(1.1)
¢

647°
density and ap, is the so-called color anomaly para-

meter. The most general Lagrangian describing the QCD
degrees of freedom ¥ and the axion field S, has the
following form:

where Q = PRy Fy, is the topological charge
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1
L= ‘CQCD =+ ansaaﬂsa + ‘cint[aﬂsav ‘P] - afLQ S.0,

a

(1.2)

where the term L;,[0,S,.¥] describes the interactions
between the axion and the quark fields and it is strongly
model dependent. Under U(1)p, the axion field S,
transforms nonlinearly as
U)pg: Sa = Sy =8s+7far (1.3)

so that the first three terms in (1.2) are left invariant,
while the last one reproduces the correct anomaly of
(1.1). By virtue of this extra U(1)p, symmetry, CP
comes out to be dynamically conserved in this model.

Moreover, it is well known that the U(1) axial symmetry
of QCD with n; light quark flavors (taken to be massless in
the ideal chiral limit; the physically relevant cases being
n; = 2, with the quarks up and down, and n; = 3, including
also the strange quark),

Ul),: g~ ¢ =ePrq, i=1,...n, (1.4)
is also anomalous, with the related U(1) axial current J§ =
qytysq satisfying the relation aﬂjg‘ = 2n,Q. Therefore, we
find that the U(1), ® U(1)p, transformations with the
parameters /3 and y satisfying the constraint 2n,f + apgy =
0 form a U(1) subgroup which is spontaneously broken but
anomaly-free (in the chiral limit): as a consequence, a new

Published by the American Physical Society


https://orcid.org/0000-0002-6670-8939
https://orcid.org/0000-0002-7522-6093
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.014048&domain=pdf&date_stamp=2020-07-31
https://doi.org/10.1103/PhysRevD.102.014048
https://doi.org/10.1103/PhysRevD.102.014048
https://doi.org/10.1103/PhysRevD.102.014048
https://doi.org/10.1103/PhysRevD.102.014048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SALVATORE BOTTARO and ENRICO MEGGIOLARO

PHYS. REV. D 102, 014048 (2020)

(pseudo-)Nambu-Goldstone boson appears in the spectrum,
the axion.

Indeed, the Lagrangian (1.2) is already sufficient to
derive an important relation (first introduced in Refs. [5-8])
between the axion mass and the fopological susceptibility
of QCD, defined as yocp = —i [ d*x(T{Q(x)Q(0)})ocps
namely,

2

2 9o

axion — f2 XQCD»
a

(1.5)
which is valid at the leading orderin 1/ f,, assuming that f,
is much larger than the QCD scale (f, > Agcp). Indeed,
this assumption is phenomenologically well established,
since at present (see, for example, Refs. [9,10]) astrophysi-
cal and cosmological considerations imply the following
bounds on the U(1)p, breaking scale f, [or, better, on
falapg, but apg~O(1) for the more realistic axion
models [11]]: 10° GeV < f, < 107 GeV.

In this paper we shall consider the relation (1.5) in the
theory at a finite temperature 7'. (See also Ref. [12] for a
recent investigation of the effects of a hot and magnetized
medium on the axion mass and the QCD topological
susceptibility, making use of the Nambu-Jona-Lasinio effec-
tive model.) It is well known (mainly by lattice simulations
[13]) that, at temperatures above a certain (pseudo)critical
temperature 7. ~ 150 MeV, thermal fluctuations break up
the chiral condensate (gg), causing the complete restoration
of the SU(n;), ® SU(n;)g chiral symmetry of QCD with n,
light quarks (n; = 2 and n; = 3 being the physically relevant
cases): this leads to a phase transition called “chiral
transition.” For what concerns, instead, the U(1) axial
symmetry, the nonzero contribution to the anomaly provided
by the instanton gas at high temperatures [14] should imply
that it is always broken, also for 7' > T.. (However, the real
magnitude of its breaking and its possible effective restora-
tion at some temperature above 7', are still important debated
questions in hadronic physics.)

In this work we shall compute the axion mass and
therefore, exploiting the relation (1.5), we shall also derive
an expression for the QCD topological susceptibility in the
finite-temperature case, both below and above the chiral
phase transition at 7., making use of a chiral effective
Lagrangian model, the so-called “interpolating model,”
which includes the axion, the scalar and pseudoscalar
mesons and implements the U(1) axial anomaly of the
fundamental theory. The inclusion of the axion in a low-
energy effective Lagrangian model of QCD is, of course,
fully justified, since, being f, > Aqcp, the axion is an
extremely light degree of freedom (its mass being smaller
than about 0.01 eV). The choice of the interpolating model,
described in detail in the next section, is due to its
“regularity” around the chiral phase transition (i.e., it is
well defined also above T'.) and to the fact that the other
known effective Lagrangian models (and the corresponding
results for the axion mass and the QCD topological

susceptibility, both below and above T'_.) can be obtained
by taking proper formal limits of the interpolating model
(and its results), as already noticed in Ref. [15] (for the
chiral effective Lagrangian models without the axion). The
advantages of this approach of computing yocp, as we shall
see, is that, being the axion a pseudoscalar particle and CP
now an exact symmetry, there can be no mixing with the
scalar degrees of freedom of the effective model (which
must be included if we want to perform our analysis also at
temperatures around and above the chiral phase transition),
so that the problem reduces to finding the lightest particle
(with a mass vanishing as 1/f, when f, — co0) among the
pseudoscalar degrees of freedom.

The plan of the paper is the following. In Sec. II we shall
present the (linearized) interpolating model with the inclu-
sion of the axion and we shall discuss its relation with other
known effective models. In Sec. III we shall compute the
axion mass and thus the topological susceptibility at finite
temperature, both below and above the chiral transition,
using the interpolating model: from this, using the corre-
spondence relations found in Sec. II, we shall also derive
the expression of the topological susceptibility for other
known effective Lagrangian models. In the Appendix, we
shall also give a numerical evaluation of the expressions for
the topological susceptibility at zero temperature in the
physical case n; = 3. Finally, in Sec. IV we shall briefly
summarize the results obtained in this paper, giving some
prospects and conclusions.

II. THE INTERPOLATING MODEL
WITH THE AXION

The effective Lagrangian model that we shall consider
(originally proposed in Ref. [16] and elaborated on in
Refs. [17-19]) is a generalization of the model proposed (in
the context of the large-N, expansion) by Witten, Di
Vecchia, Veneziano, et al. [20-25] (that, following the
notation introduced in Refs. [15,26], will be denoted for
brevity as the “WDV model”). Following Refs. [15,26], we
shall call it the “interpolating model” (IM), because (in a
sense which will be recalled below) it approximately
“interpolates” between the WDV model at 7 =0 and
the so-called “extended linear sigma (EL,) model” for
T >T. The EL, model was originally proposed in
Refs. [27-29] to study the chiral dynamics at 7 = 0 and
later used as an effective model to study the chiral-
symmetry restoration at nonzero temperature [30-35]:
according to 't Hooft (see Refs. [36,37], and references
therein), it reproduces, in terms of an effective theory, the
U(1) axial breaking caused by instantons in the funda-
mental theory.1

'We recall here, however, the criticism by Christos [38] (see
also Refs. [20,21]), according to which the determinantal inter-
action term in this effective model does not correctly reproduce
the U(1) axial anomaly of the fundamental theory.
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In the interpolating model the U(1) axial anomaly is
implemented, as in the WDV model, by properly intro-
ducing the topological charge density Q as an auxiliary
field, so that it satisfies the correct transformation property
under the chiral group (and is consistent with the large-N,.
expansion).2 Moreover, it also assumes that there is another
U(1)-axial-breaking condensate (in addition to the usual
quark-antiquark chiral condensate (gg)), having the
form Cyy = (Oy(1)), where, for a theory with n; light
quark flavors, Oy y) is a 2n;-quark local operator that has
the chiral transformation properties of [39-41] Oy ~
detst(qs‘thL) + detsr(‘_]qutR)’ where S, 1= 1’ ..., 1y are
flavor indices.” The effective Lagrangian of the interpolat-
ing model is written in terms of the topological charge
density Q, the mesonic field U;; ~ gjrq;;, (up to a multi-
plicative constant), and the new field variable X ~
det (g,rq,) (up to a multiplicative constant), associated
with the U(1) axial condensate:

£IM(U7 UT,X, X“‘? Q)
1 1 .
= S THOUPUT +358,XXT = V(U UT. X, X)

+ % Qlw, Tr(log U —log U")

1
+ (1 —a)l)(logX—logXT)]—i—ﬂQz, (2.1)
where
Vo(U, U, X, X7)

2 X2 U S
= ZTY[(UUT —p 1))+ 7 [Te(UUY))? t7 [XX" —px]?
B
——=TtM(U + U")|

2v/2

K1
——[X"detU + X det U],
2\@[ ]

(2.2)

M = diag(m,, ..., m,,) being the physical (real and diago-
nal) quark-mass matrix.

As in the case of the WDV model, the auxiliary field Q in
(2.1) can be integrated out using its equation of motion,
obtaining

1 1
Lo(U. U X.XT) = 2 TH[0, U U"] +50,X0"X'

-V(U,U", X, X", (2.3)

“However, we must recall here that also the particular way of
implementing the U(1) axial anomaly in the WDV model, by
means of a logarithmic interaction term [as in Egs. (2.1) and (2.4)
below], was criticized by 't Hooft in Ref. [36].

The explicit form of the condensate (including the color
indices) for the cases n; = 2 and n; = 3 is discussed in detail in
Appendix A of Ref. [18].

where

VU, U™, X, XT)
=Vo(U,U", X, XT)

A .
—g[a)lTr(logU—log U') 4+ (1 —o,)(logX —log X")]2.
(2.4)

We remind the reader that the only anomalous term in the
Lagrangian (2.1) and (2.2) of the interpolating model is the
term proportional to the topological charge density O,
depending on Tr(log U) and log X, i.e., after integrating out
the auxiliary field Q, the last term (proportional to A) in
Eq. (2.4): this term has exactly the same structure of the
anomalous term in the WDV model and guarantees that the
Lagrangian correctly transforms under U(1) axial trans-
formations. On the contrary, the last interaction term in
Eq. (2.2), proportional to X' det U + X det U", while being
very similar to the interaction term of the EL, model, is not
anomalous, but (since X transforms exactly as det U under
a chiral group transformation) it is invariant under the entire
chiral group U(n;) @ U(n;).

All the parameters which appear in Eqgs. (2.2) and (2.4)
have to be considered as temperature dependent. In
particular, we recall that the parameter p, is responsible
for the fate of the SU(n;);, ® SU(n;)x chiral symmetry,
which, as is well known, depends on the temperature 7" p,
will be positive, and, correspondingly, the “vacuum expect-
ation value” (VEV), i.e., the thermal average, of U will be
different from zero in the chiral limit M = O, until the
temperature reaches the chiral phase-transition temperature
T, [p.(T <T,.) > 0], above which it will be negative
[p.(T > T,.) <0], and, correspondingly, the VEV of U
will vanish in the chiral limit M = 0.* Similarly, the
parameter py plays for the U(1) axial symmetry the same
role the parameter p, plays for the SU(n;), ® SU(n;)g
chiral symmetry: py determines the VEV of the field X,
which is an order parameter of the U(1) axial symmetry. In
order to reproduce the scenario we are interested in, that is,
the scenario in which the U(1) axial symmetry is not
restored for T > T, while the SU(n;) ® SU(n;) chiral
symmetry is restored as soon as the temperature reaches 7.,
we must assume that, differently from p,, the parameter py
remains positive across T, i.e., p,(T < T,) >0, px(T <
T.)>0and p,(T>T,) <0, px(T >T,) > 0.

For what concerns the parameter w, (T'), in order to avoid
a singular behavior of the anomalous term in the potential
(2.4) above the chiral-transition temperature 7., where the

“We notice here that we have identified the temperature 7, at
which the parameter p, is equal to zero with the chiral phase-
transition temperature T',: this is always correct except in the case
n; = 2, where we have T, < T (see Refs. [15,19] for a more

Pr
detailed discussion).
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VEV of the mesonic field U vanishes (in the chiral limit
M = 0), we must assume that [16,19] (T > T,) =0.
[This way, indeed, the term including log U in the potential
vanishes, eliminating the problem of the divergence, at least
as far as the VEV of the field X is different from zero or, in
other words, as far as the U(1) axial symmetry remains
broken also above T,.]

At this point we can introduce the axion in our effective
Lagrangian model. If we write

Sa

N = ¢, (2.5)

it is sufficient to add to the Lagrangian (2.3) a few terms:

2
‘CIM+aXion = ‘CIM + EaaﬂNaﬂNT

+ iapQ(logN —log NT)Q.

: (2.6)

This is precisely how the axion is introduced in the WDV
model [42], since the anomaly is implemented in the same
way, and in fact it is easy to verify that the modified
Lagrangian has all the required properties described in the
previous section. Finally, we can eliminate Q through its
equation of motion to get the final Lagrangian that we shall
use throughout this paper:

| o 2
‘CIMJraxion = ETr[aﬂUa"U'] + EQMX(?”XT +78”N8”NT

-V(U,U", X,X",N,N"), (2.7)

where
V(U, U, X, X,N,N') = V,o(U, U", X, X"
A i
-3 [0, Tr(log U —log UT)

+ (1 —w;)(log X —log X")
+ apg(logN —log N")]?. (2.8)

Now we will clarify in which sense this model interpolates
between the WDV and the EL, models with the inclusion of
the axion, extending what was already noticed in Ref. [15]
for the models without the axion. As it had been already
observed in Refs. [18,26], the Lagrangian of the WDV
model is obtained from that of the interpolating model
by first fixing @; = 1 and then taking the formal limits
Ax = +o0 and also py — 0 (so that X — 0). The same
statement also applies to the models with the inclusion of
the axion, the presence of this being irrelevant for these
limits, i.e.,

(2.9)

EIM+aXi0n|“’l:1/1X—>+oo pX_)OEWDVqLaxion’

where (see Ref. [42])

1 2
‘CWDVJraxion = ETr[a;t vo* UW + fauNaﬂNT - VO(U7 UT)

A
t3 [Tr(log U —log U")

+ apg(logN —log N")]?, (2.10)
with
Vo(U,UT) = —ﬁTr[M(U + U™
2v2
/12
+ (VU - p, 1))
/1/2
+Z”[Tr(UU"')]2. (2.11)

On the other side, as we have seen above, the parameter
@; must be necessarily taken to be equal to zero above
the critical temperature 7., where the WDV is no more
valid (because of the singular behavior of the anomalous
term in the potential), and vice versa, as it was already
observed in Ref. [19], the interaction term 2% (X det U +

X det U"] of the interpolating model becomes very similar
to the “instantonic” interaction term k;[det U + det U] of
the EL, model. More precisely, it was observed in
Ref. [15] that, by first fixing @w; =0 and then taking
the formal limits 1y — +oo0 and A — oo (so that, writing
X = ae”, one has a > \/px and f — 0, i.e., X = \/px),
the Lagrangian of the interpolating model (without the
axion) reduces to the Lagrangian of the EL, model with
K; = K]\//E
2V2
condensate].
The same statement also applies to the models with the
inclusion of the axion, apart from a rescaling in the Peccei-
Quinn scale, i.e.,

[i.e., with k; proportional to the U(1) axial

£IM+axion |w1 =0

L < e
Jx—+00,A—+00’"EL,+axion k=00 f = =) Fot @ gpx”
(2.12)

where

1 2
LEr, +axion = ETr[aﬂ Uoru™) + T“aﬂNaﬂNT - Vo(U,U")

+k;[Nre detU + (NT)are det UT].  (2.13)

In fact, taking the formal limits Ay - 400 and A — o in
the interpolating model with the axion, one now gets
. o S[I .

X = ae’? — | /pye™7%%. As a first consequence, this leads
to an additional term coming from the kinetic term of the
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field X, which renormalizes the preexisting axion kinetic
term to give

—a XX+~ a Sa0"Sy =3 (1 +a,%Qf2>a S, "S,,
(2.14)

so that we have to rescale the axion field in order for it to be
canonically normalized:

~ 1/2 3
Sa_)Sa_< + %’Q?ﬁ) Sa:&sav

fa
fa: \/f%"—an%’Qv

which is equivalent to rescale the Peccei-Quinn scale:

(2.15)

1 - -
508,08, =

Sa iSa
a NO“NT, N=¢la=¢la. (2.16)
Moreover, the interaction term between U and X in the
interpolating model becomes exactly the instantonic
interaction term of the EL, model with the addition of

the axion, i.e.,

K .
—— [XTdetU + X det U’
2\/5[ ]
— Kk;[Ne detU + (N

are det U], (2.17)

KivVPx
2V2 "
By virtue of the correspondence relations (2.9) and

(2.12), it is sufficient to make all the calculations within
the interpolating model since the results for the WDV and
EL, models are easily obtained by making the above-
mentioned proper limits. In the next section we shall take
advantage of this last consideration by computing the axion
mass for the interpolating model in the large-f, limit in
order to extract the QCD topological susceptibility at finite
temperature, both above and below the chiral transition,
and then deduce the corresponding results for the WDV and
EL, effective models.

with the identification k; =

III. AXION MASS AND TOPOLOGICAL
SUSCEPTIBILITY AT FINITE TEMPERATURE

In this section we shall compute the axion mass at the
leading order in 1/f,, exploiting the fact that the deter-
minant of the full squared-mass matrix of the model
necessarily vanishes in the limit f, — oo, since in this
limit the axion becomes massless. This means that the
axion squared mass (and thus the QCD topological sus-
ceptibility) can be obtained, at the leading order in 1/f,,
from the ratio of the determinant of the full squared-mass
matrix and the determinant of the squared-mass matrix

without the axion (which coincides with the minor with
nonzero entries resulting from taking f, — o).

A. Below the chiral transition (7" < T,)

Using the following parametrization for the VEVs of the
fields U, X, and N (being the quark-mass matrix M
diagonal, we can take (U) to be diagonal too):

(Uy) = (3.1)

and (following the notation of Refs. [15,19]) writing the
parameter py as follows:

pehsy,  (X)=aeh,  (N) =,

2
px = 7)( >0, (3.2)

the potential (2.8) (evaluated on the VEVs of the fields)

turns out to be
Bm )“727 2 2
V= _%Zmipi cos ; + ZZ(pi = Pz)

1;12 2 2 /Ig( 2 F%( .
*?(Zﬂz‘) *I(“ ‘7)

(3.3)

2
(0)12451 (1-w)p+ aPQ¢> ,

from which the stationary-point equations read

ov._ B,
— 2 m;cos; + p;| A? +2p7 - 22 ,[>
o A ¢ p( E P} + Aapi = dzp
K
_1—\/_cos<ﬁ—g ¢/)le 0,
J J#I

=0. (3.4)
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Since now CP is an exact symmetry, the VEVs of the pseudoscalar fields (¢;, 3, ¢) must vanish. In addition, there can be no
mixing between scalar and pseudoscalar degrees of freedom, so that we can look at the squared-mass matrix for the

(canonically normalized) pseudoscalar fields z1; = p1¢h1, 720 = pahs, ..

LSy =ap, S, = f,¢ alone, which turns out to be

M? = FHF, (3.5)
where F = diag(p7',....p;" a7, f7') and
Sl +R+(1)%A R—i—w%A —R+(l)1(1—(l)1)A (!)1(1PQA
R—I—a)%A S2+R+CU%A —R+a)1(1 —Cl)])A a)lapQA
H = . . . . ’
—R+ (1l —w)A —R+w(l —w))A R+(1-w)?A (1-w)appA
(U]CpoA CU]CIPQA (1 —a)])apQA Cl%)QA
I
having defined ov B < il
- =——=m+pi( A7 p2~+/1%p?—i%pﬂ>
3 Ip; V2 ; !
Ko m
R E—le-, S, =—"Zmp,. (3.6) Kja
2 : 2 - T = - O’
V2t V2 Ll
We find that ov . (, F% K
— = -——a——= =0 3.11
o= A (= )a 1l G.11)

2 n
det M2 = (det F)2a2 AR [, = K14p0A <B—m) TIm
i \/Eafg V2

i

(3.7)

while the determinant of the minor obtained by removing
the last row and the last column is

A (B\" (1 (1—w)? 1
det M2 = ik (—m> <—+—l + —> i»
¢ Va\v2) \a R Zsj H’”

(3.8)

so that, at the leading order in 1/f,,

it o UM b !
WM det ME - f Ly Uze s L
J

(3.9)

By virtue of Eq. (1.5), this yields the following expression
for the topological susceptibility:

XQcp — (3-10)

1, (o) 1’
AR

where p; and «, contained in R and S;, solve the following
stationary-point equations:

Finally, making use of the relations (2.9) and (2.12) found
at the end of Sec. II, we can immediately write down the
expressions which one obtains for the topological suscep-
tibility using the WDV and the EL, effective models for
T<T,.

(i) WDV model:

)((WDV) _ 1 B A
cp = =
¢ %—F ZJSLJ 1+ AZJ' Bm\fjm

. (3.12)

where the parameters p; solve the equations

B ~
——Em;+ p; (%3 > 0+ 2t - ﬂ%m) =0.
=1

V2
(3.13)
(i) EL, model:
Z(ELH) _ 1 2] [ipi
QCD T 1 1~ >
rt st_,- 1+ 2K1Hipi2j#2jﬂj
(3.14)

where k; = % = K‘4FX

and the parameters p; solve
the equations
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B, &
B v (23 2+ 2 - 22 )
\/z i pz( j:lp] Pi P

- 2KIHpJ =0.

J#i

(3.15)

The results (3.10), (3.12), and (3.14) generalize the
corresponding results found in Ref. [26], studying the 6
dependence of the vacuum energy density (free energy)
and using the nonlinear versions of the various effec-
tive models, in which the scalar degrees of freedom had
been simply integrated out, by taking the limit A2 — oo
(decoupling limif): in this limit the solutions of the sta-
tionary-point equations simply reduce to p; = \/p, = %,

ie., (U) :%I, where F, is the so-called pion decay

constant.

In the Appendix, we shall give a numerical evaluation of
the expressions (3.12) and (3.14) for the topological
susceptibility at zero temperature, using the WDV and
EL, models in the physical case n; = 3: the results will be
compared with the corresponding results found in Ref. [26]
(using the nonlinear effective models) and with other
estimates present in the literature.

B. Above the chiral transition (7" > T,)

As already recalled in the previous section, in order to
avoid a singular behavior of the anomalous term in the
potential (2.4) above the chiral-transition temperature 7.,
where the VEV of the mesonic field U vanishes (in the
chiral limit M = 0), we must assume that [16,19]
(T > T.) = 0. In this regime of temperatures, therefore,
the potential is given by

+ Bm + /1721'
V(U, U X, X",N,N") = ——LTr[M(U + U")] —i—ZTr[(UTU - p,1)?]

2V2

n

2

A 2
+ I (MUt U] + XX - py? -

Ali i 2
+ = (% [log X —log XT] +mTPQ[logN - logNT]) :

K1

2V/2

(XdetUT + X' det U)

(3.16)

Using, now, the following parametrization for the VEVs of the fields U, X, and N:

(Uij) = (pi + in;)d;;,

(X) = ae',

(N) = e, (3.17)

and (following, as usual, the notation of Refs. [15,19]) writing the parameters p, and py for T > T as follows:

2
=--72<0,
Pr )

Fx

px=-—5> 0, (3.18)

the potential (evaluated on the VEVs of the fields) turns out to be

B 22 2Bl 12 m 2
m T e ¢/
V== mipit g (T (of ) <Z(p? + n?))
i=1 i=1

i=1 i=1

5 (o B 11

+ (=) ==’ || (pi—in) + e (p,-+im)>
4 2 2\/2 i=1 i=1

A

+t3 (B+ apod)*. (3.19)

Once more, the inclusion of the axion implies CP conservation and, as a consequence, the vanishing of all the VEVs of the
pseudoscalar degrees of freedom (1;, 3, ¢) and of their mixings with the scalar degrees of freedom, whose VEVs can be
obtained from the corresponding stationary-point equations:

ov B & 2B2\ Kk«
=—’”mi+pi<ﬂ$? pi + dapi + = ”)— pj =0,
" 2. 2 )=l

ov F? Ky
— = a2——x>a——1 S —0.
Oa X( 2 \/Ziljlpj

(3.20)
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The computation of the second derivatives of the potential at the minimum of V leads to the following squared-mass matrix

for the pseudoscalar field n,7,, ..., Sy = af, S, = f.¢:
K+Zpt Bllware —5llipe 0
%Hk#l,z Pk K+ 22p3 _%Hk;&z Pk 0
M = : : : . (3.21)
A
_%Hk;ﬁlpk —%Hk;ez/)k ﬁHiPi+§ %
0 0 woh  figh
where K = ” + A7 32 p;- Its determinant is given by
Ak, a> K a2 B\
det M? = Kl 7 H [p, (K +22p Kl“H ] T j’c - (7"1> Hm,-, (3.22)
j#t

where Eq. (3.20) has been used. Instead, the determinant of
the minor obtained by removing the last row and the last
column (which survives the f, — oo limit) is found to be
[making again use of Eq. (3.20)]

A (B \"/1
s =52 (Be) (1
V2a \\V2 A R

where R and S; are defined as in the previous subsection;
see Eq. (3.6). Therefore, the axion mass is given by (at the
leading order in 1/f,)

Z )Hm,, (3.23)

,  detM? a%Q 1

m o~— =0 (324
axion det M2< a + + Z} S ( )

From this, by virtue of Eq. (1.5), we derive the following
expression for the QCD topological susceptibility above the
chiral transition:

1

S — (3.25)
itrt Iy

XQCD =

which is formally identical to the expression (3.10) with
w; = 0, but with the difference that now p; and @ must
solve the stationary-point equations (3.20).

Finally, making use of the relation (2.12) found at the
end of Sec. II, we can immediately write down the
expression which one obtains for the topological suscep-
tibility using the EL, effective model for T > T.:

2k Lipi
N (3.26)

s, L2 [Leid; Bomp,

I
kKo _ Kk Fy

where K =55 =

and the parameters p; solve the

equations

B, “ 12B2
\/Em +p; </1’2 ij + A2p? + ”2 ”) - 2K1Hpj =0.

J#i
(3.27)

The results (3.25) and (3.26) generalize the corresponding
results which were derived in Ref. [15], studying the 6
dependence of the vacuum energy density (free energy) at
the first nontrivial order in an expansion in the quark
masses. Solving the stationary-point equations (3.20) and
(3.27) at the leading order in the quark masses, one finds
V2B,
2B
substituting in Egs. (3.25) and (3.26), one finds the same
approximate expression already derived in Ref. [15] for the

topological susceptibility:

F B 2B,\"
~ 1 X<f ) de tM—2K,<\/_ "> det M.

2 \ 2B2 A2B2

that, in the case n; = 3, p; ~ m; and a zF—\/’%, so that,

(3.28)

A similar result occurs also in the special case n; = 2. In
this case, solving the stationary-point equations (3.20) and
(3.27) at the leading order in the quark masses, one finds

that p, ~+/2B,, ’wf#, p2=\/2B, %#,
and a~Z%x so that, substituting in Egs. (3.25) and

\/E’
(3.26), one finds also in this case the same approximate
expression already derived in Ref. [15] for the topological
susceptibility:
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2
KIFXBm m
JiBE — K3F%

4K]B%n

Wmumd. (329)

xr= ulqg =

Further comments on the ‘“exact” expressions (3.25)
and (3.26), derived in this paper for the topological
susceptibility for 7 > T,., will be made in the next
section.

IV. SUMMARY OF THE RESULTS
AND CONCLUSIONS

In this paper we have computed the axion mass and, from
this [exploiting the well-known formula (1.5), valid in the
limit of very large f,, i.e., f, 3> Agcpl, we have derived an
expression for the QCD topological susceptibility in the
finite-temperature case, both below and above the chiral
phase transition at 7., making use of a chiral effective
Lagrangian model, the so-called interpolating model,
which includes the axion, the scalar and pseudoscalar
mesons and implements the U(1) axial anomaly of the
fundamental theory. The choice of this model (described in
detail in Sec. II) is due to its “regularity” around the chiral
phase transition (i.e., it is well defined also above T',) and to
the fact that the other known chiral effective Lagrangian
models, namely the WDV and EL, models (and the
corresponding results for the axion mass and the QCD
topological susceptibility, both below and above T'.), can
be obtained (as is shown at the end of Sec. II) by taking
proper formal limits of the interpolating model (and its
results).

As we can see by giving a closer look at the results
obtained for the topological susceptibility in the previous
section, the expressions (3.10) (for 7 < T_.) and (3.25)
(for T > T,) are formally the same since they are both
given by

1
1 (1-w))? 1’
S DY

Ka B,
R=— i S =—=mp;,
Ll Noh

XQCD =
(4.1)

where the VEVs p; and a are obtained by solving the
following stationary-point equations:

=0

j#t

zz(a __) H

_Tm +pl (llzzpj /171')01 }“/21:07:>

(4.2)

with the following temperature dependence of the para-
meters p, and w;:

BZ
p(T<T.)>0, p(T>T.)=- 7”<0,

o, (T>T,) =0. (4.3)
From this result, making use of the relations (2.9) and
(2.12) found at the end of Sec. II, we immediately derive
the expressions for the topological susceptibility using the
WDV and the EL, effective models for 7 < T, as well as
the expression for the topological susceptibility using the
EL, effective model for 7' > T..

Concerning the results for 7 < T., the expressions
(3.10), (3.12), and (3.14) generalize the corresponding
results found in Ref. [26], studying the € dependence of
the vacuum energy density (free energy) and using the
nonlinear versions of the various effective models, in
which the scalar degrees of freedom had been simply
integrated out, by taking the decoupling limit A2 — co.

In the Appendix [Egs. (A9) and (A10)], we have given
a numerical evaluation of the expressions (3.12) and
(3.14) for the topological susceptibility at 7 = 0, using
the WDV and EL, models in the physical case n; = 3. The
results,

(WDV)
XQep

Yoo = (758 £0.2 MeV)*,

= (75.7 4 0.2 MeV)?,
(4.4)

have been compared with the corresponding results
found in Ref. [26] using the nonlinear effective
models: the inclusion of the scalar degrees of freedom
leads to a non-negligible difference between the above-
reported results and those obtained in Ref. [26] in the
decoupling limit (i.e., simply integrating out the scalar
degrees of freedom). Moreover, the two above-reported
results are perfectly consistent with each other and in
agreement with the available most accurate lattice
determination of yocp and also with the results obtained
using the chiral perturbation theory with n; =2 light
flavors up to the next-to-next-to-leading order (see the
Appendix).

Concerning the results for 7 > T, the expressions (3.25)
and (3.26) generalize the corresponding results which were
derived in Ref. [15], studying the € dependence of the
vacuum energy density (free energy) at the first nontrivial
order in an expansion in the quark masses. Even if, of
course, in this case we cannot make any more quantitative
statements (like we have done, instead, in the case at
T = 0), nevertheless, we want to make some remarks
concerning the question of the temperature and quark-mass
dependence.

If we assume (as it appears reasonable on the basis of our
knowledge on the role of instantons at finite temperature)
that the U(1) axial condensate vanishes at high temper-
atures with a certain power law in 7, i.e., « (or, better, k;a)
~T~* (for some positive coefficient k), we would be

014048-9



SALVATORE BOTTARO and ENRICO MEGGIOLARO

PHYS. REV. D 102, 014048 (2020)

tempted to conclude from Eq. (3.25) that also yocp
vanishes at high temperatures in the same way, i.e.,

/YQCD ’;’? R~ T_k, (45)
being (at the leading order in the quark masses p; ~ ‘/{;gg” m;

and «a zF—\/’i; it is reasonable to assume that this approxi-

mation makes sense for T — T, > mf, but not for T very
close to T, i.e.,, for T—T, < mf)

= Tln="3" (Vo) Tl 9

We observe that, of course, this same result would be
obtained also in the case of the EL, model, starting from

Eq. (3.26), with the usual identification x; = ;7— =5 f X In
this way, both the temperature dependence of ycp and its
quark-mass dependence (proportional to det M) would turn
out to be in agreement with the results found using the so-
called dilute instanton-gas approximation (DIGA) [14],
with k = & N, 4+ 1n; —4 =7 + 1n;. The problem with the
above-reported argumentations is, of course, that the use of
an effective model in terms of mesonic excitations, while
being probably still legitimate immediately above T, is
surely no longer valid for very high temperatures (7' > T ),
where the quark and gluon degrees of freedom of the
fundamental theory become more and more relevant. In
other words, it is not obvious at all that the range of validity
(in temperature) of Eq. (3.25) has an overlap with the range
of validity of the DIGA prediction. (For example, in
Ref. [43], investigating the quantum and thermal fluctua-
tions in the EL, model and their effect on the chiral
anomaly, it was found that mesonic fluctuations cause an
increase, rather than a decrease, of the parameter k; for
temperatures 7T toward T, and the authors conclude that it
remains an important question whether the temperature
dependence of k; that arises from instanton effects can
compete with mesonic fluctuations.)

*We must also assume that the other quantities S; have a much
milder dependence on 7 and, moreover, that R < A, which is
equivalent to yocp << A. (Since also A is expected to vanish at
large temperatures, this means that A ~ T~%4, with k, < k: in the
opposite case ky > k, we would obtain that yocp A ~T7%.)
At least at T = 0, this condition is reasonably satisfied, since
in that case one identifies A with the pure-gauge topological
susceptibility and (see the Appendix) y (7T = 0) =~ (75 MeV)*,
A(T = 0) =~ (180 MeV)*. However, at finite temperature, it is not
even clear if, in our phenomenological Lagrangian for the
interpolating model, the parameter A(T) can be simply identified
w1th the pure-gauge topological susceptibility.

%Thanks to the vanishing of the U (1) axial condensate o ~ ~%
it is easy to see that this result applies for any 7, including fge
special case n; = 2.

In this respect, recent lattice investigations have shown
contrasting results. Some first studies [44,45] have found
appreciable deviations from the DIGA prediction for
temperatures 7 up to about 600 MeV, while later studies
[46-50] have shown a substantial agreement with the
DIGA prediction, in a range of temperatures which in
some cases starts right above T, in other cases starts from 2
or 3 times 7. and goes up to a few GeVs. The situation is
thus not yet fully settled and calls for further and more
accurate studies (in this respect, see also Ref. [51]).
Moreover, as far as we know, the question of the quark-
mass dependence of yocp at high temperatures (above T',)
has not yet been investigated on the lattice.

Therefore, future works (both analytical and numerical)
will be necessary to shed more light on these questions. We
also recall that, by virtue of the relation (1.5), a more
accurate knowledge of yocp(7) in the high-temperature
regime (at the GeV scale or above) would allow one to
obtain a more precise estimate of the coupling constant f,,
(or, better, f,/app), assuming that the axion is the main
component of dark matter (through the so-called “misalign-
ment mechanism” [6-8]): this in turn would allow one to
obtain a more precise estimate of the axion mass today (at
T = 0), a useful (if not necessary) input for all present and
future experimental searches for the axion.

APPENDIX: NUMERICAL RESULTS FOR THE
TOPOLOGICAL SUSCEPTIBILITY AT T=0

In this Appendix, we shall give a numerical evaluation of
the expressions (3.12) and (3.14) for the topological
susceptibility at zero temperature, using the WDV and
EL, models in the physical case n; = 3. In order to do this,
we need to know the values of the various parameters which
appear in these expressions: p;, B,,m;, A, and k;.

We first consider the parameters p;’s, which appear in the
vacuum expectation value (U) = diag(p,, p,,p3). Using
for U the following linear parametrization:

U= \/i(o'a _'_i”a)Ta’ (Al)

_ 2 q. __1
where T, (a=0,...,n1 —1; T, \/2711) are the usual

U(n;)) =U(1) ® SU(n;) generators, with the normaliza-
tion Tr([T,,T;] = 38,5, We can write the vacuum expectation
value of U as <U) =V2((60)To + (63)T5 + (65)Tg). 1t
was shown in Ref. [31] that, neglecting for simplicity
small violations of isospin SU(2), (the charged and the
neutral pions being almost degenerate in mass), i.e., taking
(63) ~ 0 (that is, neglecting (o3) with respect to (o) and
(og)), the values of the condensates (o) and (og) are
related, by means of the partially-conserved-axial-vector-
current relations, to the values of the pion and kaon decay
constants F, and Fg:
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(o) — Pt 2Fx
(o0} _—\/6 N
2
(og) = E(Fn - Fg). (A2)

= V2((60)Ty + (03)Ts), we

From (U) = diag(py, p2,p3)
finally find that

—p2=p = 3l00) +[glox) =~
P1L=Pr=pP= 300 668—\/5,

P3 = %(%) - \/§<08> = 2FK7\/_§F”

Always in Ref. [31] it was shown that the explicit
symmetry-breaking term H = 2 =h,T,=hyTy+
hsT5 + hgTg, for M = diag(m,.m,, my),’ can be deter-
mined in terms of the pion and kaon masses and decay
constants through the following relations [always neg-
lecting small SU(2), isospin violations, i.e., taking
hy = (mu my) ~ 0, that is, neglecting h3; with respect
to hg and hgl:

(A3)

B
hy =" 2+ m,) = 7( mF, + 2miF),
B, . 2, 2
he =l —ms) = 5 sk = micFe). (A4)

where 7 = ’"T’L"’”’ These relations can be inverted to give
B, it = m2F, and B,,m; =2m%Fy —
lently,

m2F,, or, equiva-

w
>
3

m2 " i, m% = —~ (i + my).

F_

We can obtain more precise relations (to be finally
compared with the experimental values of the pion and
kaon masses) by adding also an electromagnetic contribu-
tion Am?2, to the squared masses of the charged pions and
kaons and, moreover, taking into account the up-down
mass splitting in the squared masses of the charged and
neutral kaons, i.e.,

"In Ref. [31] the field ® = %U = (o, +in,)T, is used, in
place of U, with kinetic term Tr[0, ®#*®'] = 1 Tr[0,U0*U'] and
with an explicit symmetry-breaking term Tr[H(® + ®7)] =

s Tr[M(U + U")], for H =M.

M = o (Mt ma) = A,
B
o 2[;” (mu + md)7
¥
2 B 2
mKi - 2F (mu + ms) + A’nem ’
K
2 B,
which can be easily inverted to give AmZ,, = m>, —m?,
and
B,,m, = Fﬂmio — Fx(Am% + Am2),
B,m;=F m20 + Fx(Am% + Am?),
B,m, = ZFKmKO zo — Fom? — Fi(Amg + Am3), (A7)
where Amy = m2. —my (= Amgy, ) and Amy = my, o=
2 8
me..

For our numerical computations, the following values of
the known parameters have been used:

(1) F,=92.1+£1.2MeV and Fx=110.02+0.28 MeV
for the pion and kaon decay constants [correspond-
ing to the theoretical values reported in Eq. (84.16)
in Ref. [52] for f, = /2F, and fx = v/2F], and
the known values of the pion and kaon masses (see
Ref. [52]):

m,x = 139.57061 £ 0.00024 MeV,
my = 134.9770 £ 0.0005 MeV,
myg+ =493.677 £ 0.016 MeV,

m o~ =497.611 +0.013 MeV. (A8)

KO.KO
(i) The parameter A in the interpolating and WDV
model is identified (at T = 0) with the pure-gauge
topological susceptibility, which has been computed
on the lattice: A = (180 + 5 MeV)* (see Ref. [53]

and references therein).

(iii) The parameter k; in the EL, model with n; = 3 has
been computed in Ref. [31]: the result, updated with
the current values of the experimental inputs,
is k; = 1721 £ 50 MeV.

Putting everything together, we obtain the following numeri-
cal results for the topological susceptibility yocp at T=0
using the WDV and EL, models in the case n; = 3°:

'We easﬂy see that in the limit in which Fg = F,, ie.,
p=p3= \/-, we recover the well-known relations of the lead-
1ng) order chiral perturbation theory.

When including the flavor singlet in the effective Lagrangian
at T = 0, we must consider n; = 3 fora correct description of the
physical world, since the contribution of \/-”’ my is comparable to

/% ~ M in the pseudoscalar squared-mass matrix.
3
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(i) WDV model [see Eq. (3.12)]:

ARV = (757402 MeV)*;  (A9)
(i) EL, model [see Eq. (3.14)]:
2ot = (7158 £02 MeV)*.  (Al0)

These results should be compared with the corresponding

results found in Ref. [26] using the nonlinear effective

models: yory' ) = (76.283 £ 0.106 MeV)* and yoop” =

(76.271 £ 0.085 MeV)*. [We also recall here the recent
determination obtained in Ref. [54] using the SU(3) chiral
perturbation theory up to the next-to-leading order:

)(g\ICLl;)XPT“)) = (76.7+ 0.6 MeV)*.] The inclusion of the

scalar degrees of freedom (and, in particular, of the
finite splitting Fg — F,) leads to a non-negligible differ-
ence between the results (A9) and (A10) and those
obtained in Ref. [26] in the decoupling limit (i.e., simply
integrating out the scalar degrees of freedom). The two
above-reported results are perfectly consistent with each
other and in agreement with the available most accurate

lattice determination, that is, )(gfégce) =(75.6+2.0MeV)*
[47], and also with the results found using the SU(2)
chiral perturbation theory (i.e., with n; = 2 light flavors)

up to the next-to-leading order, ;(g\ICLl;)ZPT(”) =(755+

0.5 MeV)4 [55], and up to the next-to-next-to-leading

order, yocn T = (75.44 + 0.34 MeV)* [56].
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