
 

Λ(1405) as a K̄N Feshbach resonance in the Skyrme model
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We describe the Λð1405Þ hyperon as a Feshbach resonance of a K̄N quasibound state coupled by a
decaying channel of πΣ in the Skyrme model. A weakly bound K̄N state is generated in the laboratory
frame, while the Σ hyperon as a strongly bound state of K̄N in the intrinsic frame. We obtain a coupling of
K̄N and πΣ channels by computing a baryon matrix element of the axial current. This coupling enables the
decay of the K̄N bound state to πΣ. It is shown that the Skyrme model supports the Λð1405Þ as a narrow
Feshbach resonance.
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I. INTRODUCTION

The negative parity state of the hyperon of the lowest
mass, Λð1405Þ, has brought many discussions over half a
century, because its properties are not easily explained by
the standard quark model [1]. For example, its excitation
energy of about 300 MeVabove the ground stateΛ hyperon
with mass 1116 MeV is considerably smaller than the other
light flavored baryons of typical excitation energy about
600 MeV, i.e., Nð1535Þ − Nð940Þ ∼ 600 MeV. In fact,
before the quark model became popular, Dalitz and
Tuan analyzed the antikaon and nucleon (K̄N) scattering
data and suggested the existence of a quasibound state of
K̄N corresponding to Λð1405Þ [2,3]. To support such a
bound state, the interaction between K̄ and N must be
sufficiently attractive. The K̄N bound state turns into a
resonance state by coupling with the open πΣ channel of
lower mass. The resonances formed in this way are called
Feshbach resonances, the mechanism of which is a reali-
zation of a general many-body quantum systems [4,5].
Employing the mass of Λð1405Þ at the nominal value of

1405 MeV, a K̄N potential was proposed to reproduce the
mass in Refs. [6,7] and applied to few-body systems of K̄
and a few nucleons, resulting in unexpectedly deeply bound
states. On the other hand, a chiral model for the K̄N was
developed, which predicted a less attractive interaction that
is still sufficient to generate a loosely bound K̄N state with
a mass spectrum of Λð1405Þ being consistent with exper-
imental data [8]. In contrast with the former approach, the

chiral model does not generate deeply bound strange
nuclei. Moreover, a unique feature of the chiral models
is that it generates two-pole structure for Λð1405Þ; one is of
K̄N origin while the other πΣ origin [9–11]. The one of πΣ
origin locates at a deep imaginary region on the complex
energy plane, resulting in a broad background structure in
the spectrum.
These different natures originate from the uncertainties

in the basic interaction. The phenomenological interaction
is determined by the nominal mass of the Λð1405Þ. The
structure of the interaction such as the ranges and strengths
depends much on the data employed. The chiral model that
is based on spontaneous breaking of chiral symmetry of
QCD still contains parameters for renormalization or
subtraction. In both methods, parameters are adjusted to
reproduce the existing data for the Λð1405Þ.
Observing this situation, we have developed an alter-

native approach in the Skyrme model [12,13]. It is a
nonlinear field theory with chiral symmetry for mesons,
where baryons emerge as solitons [14–21]. The model has
been shown to be successful, at least qualitatively, for
meson and baryon spectroscopy and their interactions. The
advantage of this model is that once the two parameters are
fixed from meson properties, the dynamics of baryons are
determined without additional parameters. In this manner
we expect that we better discuss exotic phenomena such as
high-density matter with knowing the origin of the dynam-
ics. This is the reason that we employ the Skyrme model in
the present study.
In our previous publications [12,13], we have inves-

tigated the K̄N interaction in the Skyrme model using an
analogous method to the bound state approach by Callan
and Klebanov [22,23]. Their method is formulated follow-
ing the 1=Nc expansion with the collective quantization of
solitons and was shown to be successful for the descriptions
of the ground state Λ and Σ hyperons. An interesting
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observation is that the K̄ is strongly bound to the hedgehog
soliton in its rest frame (intrinsic frame), and consequently
K̄ is interpreted as a strange quark with spin 1=2 when
quantized. Their method corresponds in many-body phys-
ics to the projection after variation, or the strong coupling
scheme [24]. In our approach, observing that the K̄ in
Λð1405Þ is weakly bound to the nucleon, we have proposed
an alternative method, that is the method of projection
before variation, or the weak coupling scheme. Setting the
two parameters at suitable values, the pion decay constant
and the Skyrme parameter, it has been shown that the K̄
feels an attractive interaction from the nucleon and is bound
with a binding energy of order 10 MeV, which is identified
with Λð1405Þ. Another interesting feature is that when the
K̄N interaction is expressed in the form of a local potential,
it exhibits an attractive pocket at medium distances

supplemented by a repulsion at short distances. These
features would influence on the properties of high-density
matter with kaons.
In this paper, we introduce a coupling of K̄N to πΣ

to enable the K̄N bound state to decay and investigate
whether the bound K̄N state survives as a Feshbach
resonance. In terms of the low-energy method of chiral
symmetry, the one-pion emission decay is computed by the
baryon matrix element of the axial current. Details of
technical issues in performing such a computation are
developed.

II. ACTIONS AND ANSATZ

Let us start with the SU(3) Skyrme model action given
by [21]

Γ ¼
Z

d4x

�
1

16
F2
πtrð∂μU∂μU†Þ þ 1

32e2
tr½ð∂μUÞU†; ð∂νUÞU†�2 þ LSB

�
þ ΓWZ: ð1Þ

The first and second terms are the original Skyrme model actions and the third term is the symmetry-breaking term due to
finite masses of the pseudoscalar mesons,

LSB ¼ 1

48
F2
πðm2

π þ 2m2
KÞtrðU þ U† − 2Þ þ

ffiffiffi
3

p

24
F2
πðm2

π −m2
KÞtr½λ8ðU þU†Þ�: ð2Þ

In this paper, we treat the pion as a massless particle while the kaon as a massive one. The last term in Eq. (1) is the
contribution of the chiral anomaly called the Wess-Zumino-Witten (WZW) action given by [18,19]

ΓWZ ¼ iNc

240π2

Z
d5xεμναβγtr½ðU†∂μUÞðU†∂νUÞðU†∂αUÞðU†∂βUÞðU†∂γUÞ�; ð3Þ

with Nc the number of colors, Nc ¼ 3. In (1), the only
apparent SU(3)-breaking term is the kaon mass term of
finite mK ≠ 0. In general, different meson decay constants
are also the source of the breaking, Fπ ≠ FK . One way to
take it into account is discussed in, for instance, [25]. We
will come back to this point when we discuss numerical
results later.
The K̄N system is described by employing an ansatz [22]

UðxÞ ¼ ξðxÞUKðxÞξðxÞ; ð4Þ

where ξðxÞ is for the pion field embedded in the upper 2 × 2
components,

ξðxÞ ¼
� ffiffiffiffiffiffiffiffiffiffi

UðxÞp
0

0 1

�
; UðxÞ ¼ exp ½2iτ · πðxÞ=Fπ�;

ð5Þ

with Fπ ∼ 186 MeV the pion decay constant, and UK for
the kaon field defined by

UKðxÞ ¼ exp

�
2
ffiffiffi
2

p
i

Fπ

�
0 KðxÞ

K†ðxÞ 0

��
;

KðxÞ ¼
�
KþðxÞ
K0ðxÞ

�
: ð6Þ

The Skyrme model describes the nucleon as solitons of
the pion field. The model accommodates a static classical
solution with a specific symmetry, that is called the
hedgehog solution:

UHðxÞ ¼ exp ½iτ · x̂FðrÞ�; ð7Þ
where FðrÞ is a soliton profile function of radius r≡ jxj
and x̂ ¼ x=jxj. Such a classical solution does not corre-
spond to the physical nucleons with spin and isospin
quantum numbers. They are generated in the collec-
tive coordinate method, where the variables for spin and
isospin rotations of the hedgehog solution are quantized.
Therefore, the nucleon is regarded as a rotating hedgehog:

UHðxÞ → AðtÞUHðxÞAðtÞ†: ð8Þ
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Due to the symmetry of the hedgehog solution, rotations in
spin and isospin spaces are related leading to the constraint
of equal spin (J) and isospin (I) values, J ¼ I.
In the present study for the decay Λð1405Þ → πΣ, we

need the kaon field that plays dual roles. One is for
Λð1405Þ where the physical K̄ of isospin 1=2 is bound
to the nucleon, the rotating hedgehog in the laboratory
frame. Hence we have proposed an ansatz [12]:

UEHðxÞ ¼ AðtÞξHAðtÞ†UKAðtÞξHAðtÞ†; ð9Þ

which is used for the construction of the Λð1405Þ. The
other is for Σ where the K̄ is bound to the hedgehog
soliton in its intrinsic rest frame. The total configuration of
the hedgehog soliton with a bound K̄ is then rotated
simultaneously:

UCKðxÞ ¼ AðtÞξHUKξHAðtÞ†; ð10Þ

where the subscript CK is from Callan-Klebanov [22]. This
equation can be written also

UCK ¼ ðAξHA†ÞðAUKA†ÞðAξHA†Þ; ð11Þ

which explicitly indicates that the hedgehog and kaon are
rotating in the same way by the rotation matrix AðtÞ. In
terms of the two-component isospinor the kaon field is
rotated as

K → AðtÞK: ð12Þ

In short, the difference between (9) and (10) [or (11)] is in
the quantization of the kaon, while the quantization of the
nucleon is the same. In (9) the kaon is physical while in
(10) the kaon behaves like a strange quark after quantiza-
tion [22].
At this point we would like to discuss general features of

meson fields beyond static classical solutions. The kaon
field introduced here is a quantum fluctuation or vibration
of order N0

c in the 1=Nc expansion of QCD. Here Nc is the
number of colors and the classical solutions are of orderN1

c.
The collective rotation AðtÞ is then of order 1=Nc as is
characterized by the rotation velocity Ω ∼ A† _A. In this
regard, the nature of the kaon field here differs from meson
fields that were discussed many times in extended soliton
models with vector mesons [26–28]. There, some compo-
nents of the vector mesons appear at the classical level of
order Nc such as the time component of the ωmeson, while
others induced by rotations such as spatial components of
the ω meson of order 1=Nc. These mesons are regarded as
mean fields around the slowly rotating hedgehog.
Now Callan-Klebanov’s method for Λ and Σ follows the

scheme of 1=Nc expansion, first obtain the hedgehog
soliton, next find a kaon bound state and then rotate the
system of the soliton and bound kaon. In our ansatz (9) for

Λð1405Þ, the order in the last two steps is reversed based on
the following physical intuition. The two different schemes
are understood by comparing the time for the rotating
hedgehog to turn around once, ΔtH, and the time of the
bound kaon to go around the soliton (nucleon) once, ΔtK .
The time ΔtH for the nucleon of spin J ¼ 1=2 is estimated
if we know the angular velocity Ω of the rotating hedgehog
for the nucleon by ΔtH ∼ 2π=Ω. Using the relation J ¼
IΩ ¼ 1=2 and the moment of inertia value I ∼ 1 fm of the
rotating hedgehog, we estimate Ω ∼ 1=2 fm−1 and hence
ΔtH ∼ 10 fm. The time ΔtK for Λð1405Þ is estimated by
using a typical binding energy of the K̄ that is of order
10 MeV, while that for Σ is estimated by using a typical
binding energy of order 100 MeV. We find the relation

ΔtH < ΔtK ∼ several ten fm ð13Þ

for the K̄ of Λð1405Þ (the K̄ goes around more slowly than
the hedgehog rotates), implying that the K̄ is treated as a
particle moving around the rotating hedgehog in the
laboratory frame. On the other hand, we find

ΔtH > ΔtK ∼ a few fm ð14Þ

for the K̄ of Σ (the K̄ goes around faster than the hedgehog
rotation), implying that the K̄ is treated as a particle moving
around the static hedgehog in the intrinsic (rotating) frame.

III. COUPLING TO THE πΣ CHANNEL

A. Definitions

The decay of Λð1405Þ → πΣ is regarded as a baryon
transition accompanied by one-pion emission, which is
described by the amplitude

hπΣjLintjΛð1405Þi: ð15Þ

To the leading order of chiral expansion in powers of small
momentum, the interaction Lagrangian with one pion Lint
is written as

Lint ¼
2

Fπ
∂μπ

aJμ;a5 : ð16Þ

The isospin axial current Jμ;a5 with the isospin index a is
the one with the one-pion pole term subtracted and is
computed in the Skyrme model in the present study. We
note that it is normalized in accordance with the isospin; for
instance, for the effective interaction with the nucleon,
Jμ;a5 → ψ̄Nγμγ5ðτa=2ÞψN . For the transition of Λð1405Þ →
πΣ we need the isovector axial current in the form

Jμ;a5 → ψ̄a
ΣγμψΛð1405Þ; ð17Þ

where ψa
Σ and ψΛð1405Þ are the Dirac spinors for Σ and

Λð1405Þ, respectively, with a an isospin index for Σ. Here
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γ5 is not needed due to the negative parity of Λð1405Þ. The
baryon matrix element computed in the Skyrme model is
then identified with the coupling constant for the effective
Lagrangian

LΛð1405Þ→πΣ ¼ gΛð1405ÞπΣ
2

Fπ
∂μπaψ̄a

ΣγμψΛð1405Þ: ð18Þ

The coupling constant gΛð1405ÞπΣ is then defined to be the
matrix element

gΛð1405ÞπΣ ¼ hΣ0jJ5;3μ jΛð1405Þi; ð19Þ

the estimation of which is the main purpose of the
present paper.

B. The axial current

The axial current is derived from the action Eq. (1) as the
Noether current associated with the axial transformation:

U → gAUgA; gA ¼ eiθ·λ=2; ð20Þ

where λ ¼ λa ða ¼ 1; 2; 3;…; 8Þ and θ are the Gell-Mann
matrices and SU(3) parameters, respectively. The result is
½x ¼ ðt; xÞ�

Jμ;a5 ðxÞ ¼ iF2
π

16
tr½λaðRμ − LμÞ�

þ i
16e2

tr½λaf½Rν; ½Rν; Rμ�� − ½Lν; ½Lν; Lμ��g�

−
Nc

48π2
ϵμναβtr

�
λa

2
ðLνLαLβ þ RνRαRβÞ

�
; ð21Þ

where Rμ ¼ U∂μU† and Lμ ¼ U†∂μU. The current here is
regarded as an operator acting on the quantized soliton
states written in terms of the collective coordinates of
rotations and on the second-quantized states of the kaon as
we will see below.
Substituting the ansatz (4) for (21), and expanding in

powers of the kaon field K up to the second order, we find

Jμ;a5 ¼ Jμ;a;ð0Þ5 þ Jμ;a;ð2Þ5 þOðK3Þ; ð22Þ

where superscripts (0) and (2) stand for the order of the
kaon field. For our purpose, we need the second-order

term Jμ;a;ð2Þ5 which contains two kaon fields, K and K†.
Moreover, in the nonrelativistic approximation that we
employ for baryons, the time component μ ¼ 0 is domi-
nant. The explicit form of the relevant piece of the first term
of (21) is

J0;a5 ðxÞ ¼ i
4
trðξ†τaξ − ξτaξ†ÞðK _K† − _KK†Þ: ð23Þ

The computation of the second and third terms of (21)
is tedious, but possible and is given in Appendix A. As
anticipated in the previous section, the dual roles of
the kaon fields in (23) are implemented by identifying
one of the K’s in (23) with that for Λð1405Þ and the
other one for Σ, when computing the matrix element
hΣ0jJ5;a¼3

μ¼0 jΛð1405Þi. Explicitly, we follow the relation

K → AðtÞKCK for Σ;

K† → K†
EH for Λð1405Þ: ð24Þ

The presence of collective coordinate AðtÞ in the first
equation is inferred from (12) and is regarded as a
coordinate operator.
Following the standard method for field quantization, the

kaon fields are expanded in terms of a complete set of wave
functions with the corresponding creation or annihilation
operators as their coefficients. The field K†

EH is regarded as
an annihilation operator for the antikaon for Λð1405Þ and is
expanded by the wave functions in the laboratory frame:

K†
EHðt; xÞ ¼ ϕ†

K−ðt; xÞaK− þ ϕ†
K̄0ðt; xÞaK̄0 þ � � � ; ð25Þ

where ϕ’s and a’s are the wave functions and the corre-
sponding annihilation operators, respectively. Here we have
shown only the terms of the lowest s wave for the antikaon
that are necessary for our purpose:

ϕ†
K−ðt; xÞ ¼ ð 1; 0 Þ 1ffiffiffiffiffiffi

4π
p k�ðrÞeþiEEHt;

ϕ†
K̄0ðt; xÞ ¼ ð 0; −1 Þ 1ffiffiffiffiffiffi

4π
p k�ðrÞeþiEEHt; ð26Þ

where kðrÞ is the s-wave radial function of the antikaon
bound to the nucleon with EEH being the corresponding
energy including its rest mass. The minus sign in the second
component for ϕ†

K̄0 reflects the proper isospin transforma-
tion of K̄.
For Σ, the kaon is bound to the hedgehog with quantum

numbers of the grand spin, the sum of isospin and orbital
angular momentum, T ¼ I þ L. As discussed in Ref. [22],
such a bound kaon is interpreted as a strange quark in p
wave. Therefore,

KCKðt; xÞ ¼ ϕs↑ðt; xÞa†s↑ þ ϕs↓ðt; xÞa†s↓ þ � � � ; ð27Þ

with

ϕs↑ðt; xÞ ¼ −
ffiffiffiffiffiffi
1

4π

r
τ · x̂

�
1

0

�
sðrÞe−iECKt;

ϕs↓ðt; xÞ ¼ −
ffiffiffiffiffiffi
1

4π

r
τ · x̂

�
0

−1

�
sðrÞe−iECKt; ð28Þ
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where the p-wave nature is in the combination τ · x̂, sðrÞ
the corresponding radial function and ECK the energy. Once
again the minus sign in the lower component of the second
line of (28) reflects properly the spin transformation rule.
The functions kðrÞ and sðrÞ are obtained by solving the
Klein-Gordon-like eigenvalue equations [12,13,22,23].
Their normalization needs to be treated properly to reflect
the structure of the Klein-Gordon-like equations, as shown
in Appendix B.

C. Baryon states

The isosinglet state of Λð1405Þ is formed by the two
isospin 1=2 states of the nucleon and the kaon:

jΛð1405Þi¼
ffiffiffi
1

2

r
jpK−i−

ffiffiffi
1

2

r
jnK̄0i

¼
ffiffiffi
1

2

r
ψN
p↑ðAÞa†K− j0i−

ffiffiffi
1

2

r
ψN
n↑ðAÞa†K̄0 j0i: ð29Þ

The proton (p) and neutron (n) wave functions with spin
up and down ψpn;↑↓ðAÞ are given by the collective
coordinate A:

A ¼ a0 þ iτ · a ¼ iπ

 
−ψN

n↑ −ψN
n↓

ψN
p↑ ψN

p↓:

!
: ð30Þ

The Σ state is given by a combination of diquarklike
wave functions of spin and isospin 1 and of the strange
quark. For neutral spin up Σ,

jΣ0ðJ3 ¼ 1=2Þi ¼
ffiffiffi
2

3

r
jdðJ3 ¼ 1Þs↓i −

ffiffiffi
1

3

r
jdðJ3 ¼ 0Þs↑i

¼
ffiffiffi
2

3

r
ψd
10ðAÞa†s↓j0i −

ffiffiffi
1

3

r
ψd
00ðAÞa†s↑j0i;

ð31Þ

where the vector-isovector diquark wave functions are
labeled by its spin J3 and isospin I3, ψd

J3I3
, and the relevant

ones here are given as

ψd
10ðAÞ ¼

ffiffiffi
3

p

π
ða1 þ ia2Þða0 þ ia3Þ; ð32Þ

ψd
00ðAÞ ¼

ffiffiffi
3

2

r
i
π
ða02 − a12 − a22 þ a32Þ: ð33Þ

IV. CALCULATION OF THE MATRIX ELEMENT

After establishing the axial current and the wave func-
tion, we demonstrate how the matrix element (18) is
computed. The procedure is rather straightforward, though
actual computation is quite long and tedious. Therefore, we

will show the outline briefly. Let us consider the transition
to the neutral Σ (a ¼ 3). Replacing the kaon fields as in
(24) and the time derivatives by the eigenenergies of the
relevant terms of (26) and (28), we find

J0;35 ðx; AÞ ¼ −ðEEH þ ECKÞ
1

4
trðξ†τ3ξ − ξτ3ξ†ÞAKCKK

†
EH;

ð34Þ

where we have indicated that the current is a function of x
and the collective coordinate A. Using the rotating hedge-
hog configuration ξ ¼ AξHA† with

ξH ¼ cos
F
2
þ iτ · x̂ sin

F
2
; ð35Þ

we obtain

J0;35 ðx; AÞ ¼ −ðEEH þ ECKÞ
sinðF=2Þ

4
trðτ3τ · x̂0 − τ · x̂0τ3Þ

× AKCKK
†
EH; ð36Þ

where τ · x̂0 ¼ Aτ · x̂A†.
For the transition amplitude, we need to take the matrix

element of the interaction Lagrangian (16) with the initial
Λð1405Þ and the final Σπ, with a finite pion momentum
qμ ¼ ðEπ; q), Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2
p

. Performing necessary trace
algebra for the relevant 2 × 2 matrices, we integrate over
the space-time d4x and collective coordinates dμðAÞ, whereZ

dμðAÞ ¼
Z

π

0

dθ1dθ2

Z
2π

0

dθ3 sin2 θ1 sin θ2; ð37Þ

and the relation between the three angles and the SU(2)
rotation matrix is given by

a0 ¼ cos θ1;

a1 ¼ sin θ1 sin θ2 cos θ3;

a2 ¼ sin θ1 sin θ2 sin θ3;

a3 ¼ sin θ1 cos θ2:

The time integral leads to the δ function for energy
conservation. After these manipulations, we arrive at a
rather compact expression:

hπ0ðqÞΣ0jLintjΛð1405Þi

¼ 2

Fπ

Z
d4xdμðAÞhπj∂0π3ðxÞj0ihΣjJ0;35 ðx; AÞjΛð1405Þi

¼ iδðEπ þ ECK − EEHÞ
2

Fπ

Z
∞

0

drr2j0ðqrÞ

×
EπðEEH þ ECKÞ

9
sinFsðrÞk�ðrÞ: ð38Þ
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The presence of the spherical Bessel function j0ðqrÞ ¼ sinðqrÞ=ðqrÞ indicates that the decaying pion is in the s wave as it
should be.
So far we have shown the result for the second-order derivative term. The computation goes similarly for the Skyrme and

WZW terms. The results are summarized as follows:

hπ0ðqÞΣ0jLintjΛð1405Þi

¼ 2

Fπ

Z
d4xdμðAÞhπj∂0π3ðxÞj0ihΣjJ0;35 ðx; AÞð2þ4þWZWÞjΛð1405Þi

¼ iδðEπ þ ECK − EEHÞ
2

Fπ

Z
∞

0

drr2j0ðqrÞðI2 þ I2 þ IWZWÞ; ð39Þ

where

I2 ¼
EπðEEH þ ECKÞ

9
sinFsðrÞk�ðrÞ;

I4 ¼ −
ðEs þ EK̄Þ

3
sðrÞk�ðrÞ

�
2

3
sinF

�
ðF0Þ2 þ sin2 F

r2

��

þ EK̄

3
sðrÞk�ðrÞ

�
4

3

c2 sinF
r2

ð5c2 − s2Þ
�
þ Es

3
sðrÞk�ðrÞ

�
4

3

s2 sinF
r2

ð−c2 þ 5s2Þ
�

−
EK̄

3
s0ðrÞk�ðrÞ

�
2F0
�
−
5c2

3
þ 7s2

3

��
þ Es

3
sðrÞk�0ðrÞ

�
2F0
�
7c2

3
−
5s2

3

��
;

IWZW ¼
�
sðrÞk�ðrÞ 4 sinFF

0

r2
þ s0ðrÞk�ðrÞ 2sin

2 F
r2

− sðrÞk�0ðrÞ 2sin
2 F

r2

�
: ð40Þ

Here we have introduced the notation c ¼ cosðF=2Þ and
s ¼ sinðF=2Þ.

V. RESULTS AND DISCUSSIONS

In this section, we present and discuss our numerical
results for the decay of Λð1405Þ → πΣ. The formulas that
are derived in the previous sections determine the coupling
constant gΛð1405ÞπΣ as defined in the effective Lagrangian
(18). The decay width is then computed by the formula

ΓΛð1405Þ→πΣ ¼ g2Λð1405ÞπΣ
jqj
π

EΣ þmΣ

4ðEΣ þ EπÞ
× 3: ð41Þ

The factor 3 is for isospin sum. For kinematic parameters
we employ the physical values that are fixed by the
experiment as summarized in Table I. Here we take the
mass of Λð1405Þ slightly higher than the nominal value,
that is, 1420 MeV, considering the recent discussions of the
two-pole structure of Λð1405Þ, and the K̄N quasibound

state is considered to locate at around the higher-mass
region [29].
Our main results in this paper are shown in Table II,

where various contributions to the coupling constants and
the resulting decay widths are given for three sets of
the Skyrme model parameters, A, B and C. In set A, the
decay constant Fπ is taken at an average of the pion and
kaon decay constants, considering the difference in the
two constants, while in set B it is set at the pion decay
constant. Set C is from Ref. [20]. In all cases, the Skyrme
parameter e is determined such that the NΔ mass splitting
is reproduced.
As seen from Table II, the present model predictions of

the decay width Γ are small as compared to the exper-
imental data and scatter in a range from the minimum value
to the maximum value that is about 3 times larger than the
minimum value. The experimental data is taken from PDG
where they quote the average number 50.5� 2.0 MeV
[29]. There are, however, discussions about the two-pole
structure of Λð1405Þ having the K̄N and πΣ origin. The
K̄N originated one locates relatively higher in mass at
around 1420 MeV and has a narrower width, while the πΣ
originated one locates lower with a wider width. Our
present result is to be compared with the former K̄N
dominant one, whose width is expected to be around
20 MeV [29]. Thus the corresponding coupling constants
are shown in parentheses.

TABLE I. Kinematical inputs for the decay of Λð1405Þ in units
of MeV.

mπ mK mΣ mΛð1405Þ jqj Eπ EΣ

138 495 1193 1420 166 216 1204

TAKASHI EZOE and ATSUSHI HOSAKA PHYS. REV. D 102, 014046 (2020)

014046-6



The reason that the model predictions scatter in a rather
wide range is that the amplitude is proportional to 1=Fπ and
that the overlap integral in the matrix element is sensitive to
the structure of the kaon wave functions of Λð1405Þ and of
Σ. It is not difficult to see that these factors may change the
coupling constant by a few times. Then a possible reason
for small values may be explained by the overlap integral;
in the present approach the two limits are employed for the
construction of the wave functions of Λð1405Þ and Σ, the
weak coupling and strong coupling limits. The matrix
elements for the transition amplitudes computed by the
integral of the two wave functions are therefore suppressed.
In a realistic situation, both wave functions are between the
two limits and therefore the overlap integral would gain
some strength. We also consider that the suppression is
related to the bound state approach where the kaon is
regarded as a heavy meson and is, as well as hyperons, not
treated as flavor SU(3) multiplets. Physically, the transition
from K̄N to πΣ requires an exchange of a (heavy) strange
quark from K̄ to Σ. It is natural to consider that such a
heavy particle exchange is suppressed.
Aside from the quantitative aspect, it is worth emphasiz-

ing as the main conclusion of the present study that the
resulting decay width turns out to be narrow. This enables
the K̄N bound state to remain as a Feshbach resonance,
seemingly a natural consequence that the Skyrme model
supports.
The final remark is the relevance of the present analysis

with the two-pole structure of Λð1405Þ in the chiral unitary
approach [9–11]. The Skyrme model is a realization of
chiral symmetry with baryon structure described by sol-
itons. Therefore, it shares common features in meson-
baryon dynamics with the chiral unitary approach. To show
this explicitly in the present approach we need the πΣ − πΣ
interaction, the derivation of which requires terms of meson
fluctuations of fourth order, ππKK soliton; kaons here are
used to generate the Σ baryon as a K̄N bound state.
Although the inclusion of such higher-order terms seems
rather formidable, we expect to have an energy-dependent
πΣ potential, generating a πΣ resonance as obtained in the
chiral unitary approach. Hence what we can conclude at
this point is that theΛð1405Þ resonance is dominated by the

Feshbach molecule of K̄N complemented by a broad
structure due to the πΣ dynamics, the feature of the chiral
approach with the inclusion of the internal structure of the
nucleon.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE
AXIAL CURRENT

In this Appendix, we show the explicit form of the axial
current:

Jμ;a5 ¼ iF2
π

16
tr½λaðRμ − LμÞ�

þ i
16e2

tr½λaf½Rν; ½Rν; Rμ�� − ½Lν; ½Lν; Lμ��g�

−
Nc

48π2
ϵμναβtr

�
λa

2
ðLνLαLβ þ RνRαRβÞ

�
: ðA1Þ

The term from the second derivative term has been already
given in (23) for μ ¼ 0:

J0;a5 ð2ndÞ ¼ i
4
trðξ†τaξ − ξτaξ†ÞðK _K† − _KK†Þ: ðA2Þ

For the term from the fourth derivative (Skyrme) term, we
find

J0;a5 ð4thÞ ¼ −
i

4e2F2
π
trðλa½αi;ð0Þ; ½αð0Þi ; α0;ð2Þ��

þ 2λa½αi;ð0Þ; ½αð1Þi ; α0;ð1Þ��
þ 2λa½αi;ð1Þ; ½αð0Þi ; α0;ð1Þ��Þ − ðξ ↔ ξ†Þ; ðA3Þ

where

αð0Þi ¼
�
ŨH∂iŨ

†
H 0

0 0

�
; ðA4Þ

TABLE II. Results for the three sets of Skyrme model parameters. Contributions of the coupling constant from the second-order,
fourth-order and WZW terms are shown separately as g2, g4 and gWZW, respectively. The experimental data for Λð1405Þ are taken from
the averaged value from PDG and the corresponding coupling constant gΛð1405ÞπΣ is evaluated by them. The numbers in the parentheses
are those expected for the K̄N dominant pole. The data for e are also shown when identifying them with the coupling of ρ → ππ decay
[30].

Fπ (MeV) e B.E. (MeV) g2 g4 gWZW gΛð1405ÞπΣ Γ (MeV)

Set A 205 4.67 20.6 0.0545 0.0385 0.0938 0.187 2.3
Set B 186 4.82 32.2 0.0609 0.0439 0.1180 0.223 3.3
Set C 129 5.45 81.3 0.0437 0.0520 0.2371 0.333 7.4

Data 186 5.75 30 0.87ð∼0.55Þ 50.5ð∼20Þ
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αð1Þi ¼
 

0 −ŨH∂iðξ̃†AKCKÞ
K†

EHξ̃∂iŨ
†
H − ∂iðK†

EHξ̃
†Þ 0

!
; ðA5Þ

αð1Þ0 ¼
�

0 −ξ̃A∂0ðKCKÞ
−∂0K

†
EHξ̃

† 0

�
; ðA6Þ

αð2Þ0 ¼
 
ξ̃A _KCKK

†
EHξ̃

† − ξ̃AKCK
_K†
EHξ̃

† 0

0 −K†
EHA _KCK þ _K†

EHAKCK

!
: ðA7Þ

For the term from the WZW term, we find

J0;a5 ðWZWÞ ¼ Ncϵ
ijk

24π2F2
π
½λaðβð0Þi βð0Þj βð2Þk þ βð0Þi βð2Þj βð0Þk þ βð2Þi βð0Þj βð0Þk Þ

þ 2λaðβð0Þi βð1Þj βð1Þk þ βð1Þi βð0Þj βð1Þk þ βð1Þi βð1Þj βð0Þk Þ� þ fξ ↔ ξ†g; ðA8Þ

where

βð0Þμ ¼ U†
π∂μUπ ¼

�
Lμ 0

0 0

�
; ðA9Þ

βð1Þμ ¼
�

0 −ξ†2∂μðξKÞ
K†ξ†∂μξ

2 − ∂μðK†ξÞ 0

�
; ðA10Þ

βð2Þμ ¼
�
ξ†

2∂μðξKÞK†ξ − ξ†K∂μðK†ξ†Þξ2 0

0 −2K†ξ†∂μðξKÞ þ ∂μðK†KÞ

�
: ðA11Þ

APPENDIX B: NORMALIZATION CONDITIONS

In this Appendix, we show the normalization conditions
for the kaon and s-quark wave functions which are
consistent with the solutions of the Klein-Gordon equation
and with the canonical commutation relations. First, in the
CK approach, the normalization is given by [22,23]

4π

Z
drr2s�nðrÞsmðrÞ½fðrÞðωn þ ωmÞ þ 2λðrÞ� ¼ δnm;

4π

Z
drr2s̃�nðrÞs̃mðrÞ½fðrÞðω̃n þ ω̃mÞ − 2λðrÞ� ¼ δnm;

4π

Z
drr2s�nðrÞs̃mðrÞ½fðrÞðωn − ω̃mÞ þ 2λðrÞ� ¼ 0; ðB1Þ

where smðrÞ and s̃mðrÞ are the wave functions of the s and s̄
quark in the m mode, respectively, and ωm and ω̃m the
corresponding eigenenergies. The radial-dependent func-
tions fðrÞ and λðrÞ are given, respectively, by

fðrÞ ¼ 1þ 1

ðeFπÞ2
�
2
sin2 F
r2

þ F02
�
; ðB2Þ

λðrÞ ¼ −
NcE

2π2Fπ
2

sin2 F
r2

F0: ðB3Þ

In the EH approach, the normalization conditions are
given by

4π

Z
drr2k�nðrÞkmðrÞ

�
fðωn þ ωmÞ þ 2fρ1 þ λ1g −

1

r2
d
dr

ðr2ρ2Þ
�
¼ δnm; ðB4Þ

4π

Z
drr2k̃�nðrÞk̃mðrÞ

�
fðω̃n þ ω̃mÞ − 2fρ1 þ λ1g þ

1

r2
d
dr

ðr2ρ2Þ
�
¼ δnm;

4π

Z
drr2k�nðrÞk̃mðrÞ

�
fðωn − ω̃mÞ þ 2fρ1 þ λ1g −

1

r2
d
dr

ðr2ρ2Þ
�
¼ 0; ðB5Þ
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where

ρ1ðrÞ ¼ −
4sin2ðF=2Þ

3Λ
IK

· IN

�
1þ 1

ðeFπÞ2
�
4

r2
sin2 F þ F02

��

−
sin2ðF=2Þ

Λ

�
1þ 1

ðeFπÞ2
�
5

r2
sin2 F þ F02

��
;

ðB6Þ

ρ2ðrÞ ¼
1

ðeFπÞ2
�
sinF
Λ

F0ð4IK · IN þ 3Þ
�
; ðB7Þ

λ1ðrÞ ¼
Nc

Fπ
2
B0; B0 ¼ −

1

2π2
sin2 F
r2

F0; ðB8Þ

where kmðrÞ and ωm are the wave functions and the
corresponding eigenenergies, respectively, and the tilded
variables are for the kaon.
These normalization conditions Eqs. (B2) and (B6) are

obtained in order to satisfy the canonical quantization
condition

½knðr; tÞ; πmðr0; tÞ� ¼ iδnmδð3Þðr − r0Þ; ðB9Þ

where πmðr0; tÞ is the canonical momentum conjugate
to kmðr; tÞ.
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