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The single longitudinal spin asymmetry Asinð2ϕh−2ϕRÞ
UL of dihadron production in semi-inclusive deep

inelastic scattering (SIDIS) is examined through helicity-dependent dihadron fragmentation function
(DiFF) G⊥

1 . The correlation of the longitudinal polarization of a fragmenting quark with the transverse
momenta of the produced hadron pair is illustrated by this DiFF. The experimental investigation for this
azimuthal asymmetry in dihadron SIDIS by the COMPASS Collaboration has lately yielded a very small
signal. Here, the unknown T-odd dihadron fragmentation function G⊥

1 utilizing a spectator model is
computed. The model has been successfully used to describe the dihadron production in both the
unpolarized and the single polarized processes to access the asymmetry and clarify why the signal is very
small. The transverse momentum dependent factorization method, in which the transverse momentum of
the final state hadron pair is left unintegrated, has been considered. The sinð2ϕh − 2ϕRÞ asymmetry at the
COMPASS kinematics is estimated and we compare it with the data. Besides, the predictions on the same
asymmetry are also made at the HERMES and Electron Ion Collider.

DOI: 10.1103/PhysRevD.102.014044

I. INTRODUCTION

In the hadronization process, there is a nonvanishing
probability that at a hard scale a highly virtual parton
fragments into two hadrons inside a same jet. This non-
perturbative mechanism can be encoded in the so-called
dihadron fragmentation functions (DiFFs). The DiFFs were
introduced for the first time in Ref. [1] and their evolution
equations have been investigated in Refs. [2–4]. In par-
ticular, the authors of Ref. [4] presented the evolution
equations for extended dihadron fragmentation functions
explicitly dependent on the invariant mass, Mh, of the
hadron pair. Then Ref. [5] analysed the transversely
polarized fragmentation by using the transversely polarized
DiFF, which gave rise to the definition of H∢

1 . The basic
physical picture of all possible unpolarized DiFFs was
proposed in Ref. [6]. The authors in Ref. [7] expanded the
hadron pair system in relative partial waves, such that some
cases already studied in the literature can be naturally
incorporated in a unified formalism. They also presented
new positivity on the DiFFs. Soon after the analysis of
DiFFs was extended to the subleading twist within a

collinear picture [8]. It is necessary to emphasize that
the general expression of the cross section in terms of
structure functions for the dihadron SIDIS was proposed
within transverse momentum dependent (TMD) framework
[9]. The analysis is complete and up to the subleading twist.
Researchers started to keep a watchful eye on the DiFFs
when they tried to extract the chiral-odd transversity
distribution. The transversity distribution was firstly
extracted by considering the Collins effect [10] in one
hadron SIDIS and back-to-back production of dihadron in
eþe− annihilations [11]. In this approach, one must apply
the TMD factorization framework and consider the QCD
evolution of TMDs since two processes under consider-
ation occur at two different scale. To access the transversity
distribution in a more convenient way, an alternative
approach considering dihadron SIDIS came to notice which
only needs collinear factorization. Among this mechanism,
the chiral-odd DiFF H∢

1 [7,12] couples with h1 at the
leading-twist level. The function H∢

1 can be extracted from
two back-to-back hadron pairs production process in eþe−
annihilation [13]. In the literature, the transversity distri-
bution has been extracted from both dihadron SIDIS and
proton proton collision data [14–18]. On the other hand, to
estimate the magnitudes of various DIFFs, the model
predictions of the DiFFs were performed by the spectator
model [19–24] and by the Nambu-Jona-Lasinio (NJL)
quark model [25–28].
Experimentally, the HERMES collaboration [29] pro-

duced the experimental data of azimuthal asymmetry in
dihadron SIDIS process with a transversely polarized
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proton target. The COMPASS collaboration [30,31] also
release the similar experimental data with polarized protons
and deuterous targets. The BELLE collaboration [32] have
measured the azimuthal asymmetry of a back-to-back two
dihadron pair production, reaching the first parametrization
of H∢

1 . Recently, the COMPASS collaboration [33] col-
lected the experimental data of various azimuthal asym-
metries by scattering longitudinally polarized muons off
longitudinally polarized protons. Theoretically, these azi-
muthal asymmetries appear within the TMD factorization
framework, where a sinðϕh − ϕRÞ modulation has been
studied in the spectator model [24]. Here ϕh denotes the
azimuthal angle of the hadron pair system and ϕR is the
angle between the lepton plane and two-hadron plane. In
this paper we focus on the sinð2ϕh − 2ϕRÞ modulation.
Within the TMD factorization approach, the dihadron
SIDIS cross section is written as a convolution of transverse
momentum dependent parton distribution functions (TMD-
PDFs) and TMD-DiFFs. TMD factorization extends col-
linear factorization by accounting for the parton transverse
momentum. In practice, the COMPASS measurement
found that the sinð2ϕh − 2ϕRÞ asymmetry is compatible
with zero within experimental precision. In this paper, we
explore the sinð2ϕh − 2ϕRÞ asymmetry using the spectator
model results of the relevant PDFs and DiFFs. After
performing partial waves expansion, the only term con-
tributing to this asymmetry is g1LG⊥

1;TT whereG⊥
1;TT origins

from interference of two p-waves and g1L is the helicity
distribution. We adopt the spectator model [20] to calculate
G⊥

1;TT and find that one must consider loop contributions to
obtain a nonvanishing G⊥

1;TT . Applying the spectator model
results for the distributions and DiFFs, we estimate the
sinð2ϕh − 2ϕRÞ asymmetry at COMPASS kinematics and
compare it with the COMPASS preliminary data.
The paper is organized as follows. In Sec. II we review

the theoretical framework of the sinð2ϕh − 2ϕRÞ azimuthal
asymmetry of dihadron production in unpolarized muon
beam scattered off a longitudinally polarized proton target.
We apply the spectator model to calculate the T-odd helicity
DiFF G⊥

1;TT in Sec. III. In Sec. IV, we give the numerical
results of the sinð2ϕh − 2ϕRÞ azimuthal asymmetry at the
kinematics of COMPASS as well as EIC. We summarize
our work in Sec. V.

II. THE Asinð2ϕh − 2ϕRÞ
UL ASYMMETRY

IN DIHADRON SIDIS

We consider the SIDIS process of two pions production

μðlÞ þ p→ðPÞ → μðl0Þ þ πþðP1Þ þ π−ðP2Þ þ X; ð1Þ

where a longitudinally polarized target nucleon possessing
a mass M, polarization S and momentum P, through the
interchange of a virtual photon with momentum q ¼
l − l0, is scattered off by a unpolarized muon having a
momentum l. Inside the target, the dynamic quark with
momentum p is struck by the photon and the final state
quark with momentum k ¼ pþ q then fragments into two
leading unpolarized hadrons πþ and π− with massM1,M2,
and momenta P1, P2. In order to compute the differential
cross section pertaining to dihadron-dependent structure
function, we express the following kinematic invariants:

x ¼ pþ

Pþ y ¼ P · q
P · l

z ¼ P−
h

k−
¼ z1 þ z2

zi ¼
P−
i

k−
Q2 ¼ −q2 s ¼ ðPþ lÞ2

Ph ¼ P1 þ P2 R ¼ P1 − P2

2
M2

h ¼ P2
h: ð2Þ

The longitudinal light-cone coordinate a� ¼ a0�a3ffiffi
2

p and the

transverse light-cone coordinate a⃗T ¼ ða1; a2Þ are given in
terms of an arbitrary four vector a, in such a way that the
component form could be listed as ½a−; aþ; a⃗T �. The light-
cone fraction of target momentum taken by the initial quark
is designated by x, zi which symbolizes the light-cone
fraction of hadron πi in terms of the fragmented quark. The
light-cone fraction of fragmenting quark momentum car-
ried by the final hadron pair is identified by z. What is more,
the invariant mass, the total momentum, and the relative
momentum of the hadron pair are represented by Mh, Ph,
and R, respectively. It is suitable to select the ẑ axis
consistent with the condition P⃗hT ¼ 0. Consequently, the
momenta Pμ

h, k
μ and Rμ can be written as in [20]

Pμ
h ¼

�
P−
h ;

M2
h

2P−
h
; 0⃗T

�

kμ ¼
�
P−
h

z
;
zðk2 þ k⃗2TÞ

2P−
h

; k⃗T

�

Rμ ¼
�
−
jR⃗jP−

h

Mh
cos θ;

jR⃗jMh

2P−
h

cos θ; jR⃗j sin θ cosϕR; jR⃗j sin θ sinϕR

�

¼
�
−
jR⃗jP−

h

Mh
cos θ;

jR⃗jMh

2P−
h

cos θ; R⃗x
T; R⃗

y
T

�
; ð3Þ
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where

jR⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

h

4
−m2

π

r
ð4Þ

withmπ the mass of pion. It is desired to notice that in order
to perform partial-wave expansion, we have reformulated
the kinematics in the center of mass frame of the dihadron
system. θ is the center of mass polar angle of the pair with
respect to the direction of Ph in the target rest frame [12].
Here we can find some useful relations as

Ph · R ¼ 0

Ph · k ¼ M2
h

2z
þ z

k2 þ k⃗2T
2

R · k ¼
�
Mh

2z
− z

k2 þ k⃗2T
2Mh

�
jR⃗j cos θ − k⃗T · R⃗T: ð5Þ

The TMD DiFFs D1 and G⊥
1 which will appear in the

underlying asymmetry are extracted from the quark-quark
correlator Δðk; Ph; RÞ

Δðk; Ph; RÞ ¼
XZ

X

Z
d4ξ
ð2πÞ4 e

ik·ξh0jψðξÞjPh; R;XihX;Ph; Rjψ̄ð0Þj0ijξ−¼ξ⃗T¼0

¼ 1

16π

�
D1=n− þG⊥

1 γ5
ερσT RTρkTσ

M2
h

=n− þ � � �
�
: ð6Þ

Then we express the leading-twist quark-quark correlator Eq. (6) in terms of center of mass variables. The connection
between the two representations is defined as

Δðz; k2T; cos θ;M2
h;ϕRÞ ¼

jR⃗j
16zMh

Z
dkþΔðk; Ph; RÞ: ð7Þ

By projecting out the usual Dirac structures, we obtain the following decomposition results

4πTr½Δðz; k2T; cos θ;M2
h;ϕRÞγ−γ5� ¼

ερσT RTρkTσ
M2

h

G⊥
1 ; ð8Þ

where γ− is the negative light-cone Dirac matrix.
The TMDDiFFsD1,G⊥

1 can be expanded in the relative partial waves of the dihadron system up to the p-wave level [12]:

D1ðz; k2T; cos θ;M2
hÞ ¼ D1;OO þD1;OL cos θ þ

1

4
D1;LLð3cos2θ − 1Þ

þ cosðϕk − ϕRÞ sin θðD1;OT þD1;LT cos θÞ þ cosð2ϕk − 2ϕRÞsin2θD1;TT;

G⊥
1 ðz; k2T; cos θ;M2

hÞ ¼ G⊥
1;OT þ G⊥

1;LT cos θ þ cosðϕk − ϕRÞ sin θG⊥
1;TT; ð9Þ

whereG⊥
1;OT comes from the interference of s- and p-waves, andG⊥

1;TT originates from the interference of two p-waves with
the same transverse polarizations.
Then we will consider azimuthal asymmetries of SIDIS process with unpolarized muons scattering off longitudinally

polarized nucleon target. Using TMD factorization approach and denoting AðyÞ ¼ 1 − yþ y2

2
, the differential cross section

for this process reads [7]

d9σUU

dxdydzdϕSdϕhdϕRd cos θdP⃗
2
h⊥dM2

h

¼ α2

2πsxy2
AðyÞ

X
q

e2qI ½fq1Dq
1;OO� ð10Þ

and

d9σUL

dxdydzdϕSdϕhdϕRd cos θdP⃗
2
h⊥dM2

h

¼ α2

2πsxy2
AðyÞ

X
q

e2qsin2θ sinð2ϕh − 2ϕRÞI
�
2ðk⃗T · P̂h⊥Þ2 − k⃗2T

M2
h

gq1L

� jR⃗j
2jk⃗T j

G⊥
1;TT

��
;

ð11Þ
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where in Eq. (11) we only resort the term we are interested in, and ϕS is the azimuthal angles of S⃗T with respect to the lepton
scattering plane. P̂h⊥ satisfies P̂h⊥ ¼ P⃗h⊥=jP⃗h⊥j. For convenience, we have indicated the unpolarized or longitudinally
polarized states of the beam or the target with the labels U and L, respectively. The structure functions occurring in
Eqs. (10)–(11) are written as weighted convolutions of the form

I ½ωfD� ¼
Z

d2p⃗Td2k⃗Tδ

�
p⃗T − k⃗T −

P⃗h⊥
z

�
ωðpT; kTÞfðx; p2

TÞDðz; k2TÞ; ð12Þ

where ωðpT; kTÞ is an arbitrary function. In Eq. (10), fq1 and Dq
1;OO are the unpolarized PDF and unpolarized DiFF with

flavor q. In Eq. (11), gq1L is the helicity distribution function coupled with the T-odd DiFF G⊥
1;TT. Thus the sinð2ϕh − 2ϕRÞ

asymmetry of the considered process can be expressed as

Asinð2ϕh−2ϕRÞ
UL ¼ 2

3

P
qe

2
qI ½2ðk⃗T ·P̂h⊥Þ2−k⃗2T

M2
h

gq1Lð jR⃗j
2jk⃗T j

G⊥
1;TTÞ�P

qe
2
qI ½fq1Dq

1;OO�
: ð13Þ

III. THE MODEL CALCULATION OF G⊥
1;TT

In this section, we review the model calculation for G⊥
1;TT partly following previous works [22,24]. The tree level

correlator yields vanishing contributions to G⊥
1;TT on account of shortage of the imaginary phase. We can model the

correlator at one loop level provided with Fig. 1 as:

Δq
aðz; k2T; cos θ;M2

h;ϕRÞ ¼ i
CFαs

32π2ð1 − zÞP−
h

·
jR⃗j
Mh

·
ð=kþmÞ

ðk2 −m2Þ3 ðF
s�e

−k2

Λ2s þ Fp�e
− k2

Λ2p=RÞð=k − Ph þMsÞ

×

�
Fse

−k2

Λ2s þ Fpe
− k2

Λ2p=R

�
ð=kþmÞ

Z
d4l
ð2πÞ4

γμð=k − lþmÞγμð=kþmÞ
ððk − lÞ2 −m2 þ iεÞðl2 þ iεÞ ; ð14Þ

Δq
bðz; k2T; cos θ;M2

h;ϕRÞ ¼ i
CFαs

32π2ð1 − zÞP−
h

·
jR⃗j
Mh

·
ð=kþmÞ

ðk2 −m2Þ2 ðF
s�e

−k2

Λ2s þ Fp�e
− k2

Λ2p=RÞð=k − Ph þMsÞ

×
Z

d4l
ð2πÞ4

γμð=k − Ph − lþMsÞðFse
−k2

Λ2s þ Fpe
− k2

Λ2p=RÞð=k − lþmÞγμð=kþmÞ
ððk − Ph − lÞ2 −M2

s þ iεÞððk − lÞ2 −m2 þ iεÞðl2 þ iεÞ ; ð15Þ

Δq
cðz; k2T; cos θ;M2

h;ϕRÞ ¼ i
CFαs

32π2ð1 − zÞP−
h

·
jR⃗j
Mh

·
ð=kþmÞ

ðk2 −m2Þ2 ðF
s�e

−k2

Λ2s þ Fp�e
− k2

Λ2p=RÞð=k − Ph þMsÞ

×

�
Fse

−k2

Λ2s þ Fpe
− k2

Λ2p=R

�Z
d4l
ð2πÞ4

ð=kþmÞγ−ð=k − lþmÞ
ððk − lÞ2 −m2 þ iεÞð−l− � iεÞðl2 þ iεÞ ; ð16Þ

(a) (b) (c) (d)

FIG. 1. One loop order corrections to the fragmentation function of a quark into a meson pair in the spectator model. Where H.c.
represents the Hermitian conjugations of these diagrams.
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Δq
dðz; k2T; cos θ;M2

h;ϕRÞ ¼ i
CFαs

32π2ð1 − zÞP−
h

·
jR⃗j
Mh

·
ð=kþmÞ
k2 −m2

ðFs�e
−k2

Λ2s þ Fp�e
− k2

Λ2p=RÞð=k − Ph þMsÞ

×
Z

d4l
ð2πÞ4

γ−ð=k − Ph − lþMsÞðFse
−k2

Λ2s þ Fpe
− k2

Λ2p=RÞð=k − lþmÞ
ððk − Ph − lÞ2 −M2

s þ iεÞððk − lÞ2 −m2 þ iεÞð−l− � iεÞðl2 þ iεÞ : ð17Þ

The Feynman rule 1=ð−l− � iεÞ has been applied for the
eikonal propagator in Eqs. (14)–(17) as well as that for the
vertex between the eikonal line and the gluon. Also in
Eqs. (14)–(17), in principle the Gaussian form factors
should rely on the loop momentum l. Here resulting from
the choice in Ref. [34], we get rid of this dependence and
simply utilize k2 rather than ðk − lÞ2 in those form factors
to make straightforward the integration. This selection
could given reasonable final results since the form factor
is brought in to cut off the divergence. The same selection
has also been assumed in Refs. [35–37].

SinceG⊥
1;TT comes from the interference of two p-waves,

we have only one source in every diagrams at one loop level
that is the imaginary part of the loop integral over l,
coupling with the real quantity jFpj2. As for the imaginary
part of the integral, we apply the Cutkosky cutting rules

1

l2þ iε
→−2πiδðl2Þ 1

ðk−lÞ2þ iε
→−2πiδððk−lÞ2Þ:

ð18Þ
Employing the above conventions, we reach the final result
of G⊥

1;TT

G⊥a
1;TT ¼ 0

G⊥b
1;TT ¼ 1

2π3

�
CFαsMhjR⃗j2

ð1 − zÞ · jFpj2e−
2k2

Λ2p

�
1

ðk2 −m2Þ2 kTCb

G⊥c
1;TT ¼ 0

G⊥d
1;TT ¼ −

1

2π3

�
CFαsMhjR⃗j2

ð1 − zÞ · jFpj2e−
2k2

Λ2p

�
1

k2 −m2
ððI2 −AÞkTÞ ð19Þ

with

Cb ¼ ð3k2 −m2ÞAþ ðk2 þ 2M2
h −m2 þ 2mMs − 2M2

sÞB
þ ðm2 − k2ÞA0 þ ðm2 −M2

h − 2mMs þM2
sÞB0 þ ðm2 − k2ÞI2: ð20Þ

The coefficients A and B denote the following functions

A ¼ I1
λðMh;MsÞ

�
2k2ðk2 −M2

s −M2
hÞ
I2
π
þ ðk2 þM2

h −M2
sÞ
�

B ¼ −
2k2

λðM2
h;M

2
sÞ
I1

�
1þ k2 þM2

s −M2
h

π
I2

�
ð21Þ

which originate from the decomposition of the following integral [38]

Z
d4l

lμδðl2Þδ½ðk − lÞ2 −m2�
ðk − Ph − lÞ2 −M2

s
¼ Akμ þ BPμ

h: ð22Þ

The functions Ii represent the results of the following integrals
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I1 ¼
Z

d4lδðl2Þδ½ðk − lÞ2 −m2� ¼ π

2k2
ðk2 −m2Þ

I2 ¼
Z

d4l
δðl2Þδ½ðk − lÞ2 −m2�
ðk − l − PhÞ2 −M2

s
¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMh;MsÞ

p ln

�
1 −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMh;MsÞ

p
k2 −M2

h þM2
s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðMh;MsÞ

p
�

I3 ¼
Z

d4l
δðl2Þδððk − lÞ2 −m2Þ

−l− þ iε

I4 ¼
Z

d4l
δðl2Þδððk − lÞ2 −m2Þ

ð−l− þ iεÞððk − Ph − lÞ2 −M2
sÞ

ð23Þ

with λðMh;MsÞ ¼ ½k2 − ðMh þMsÞ2�½k2 − ðMh −MsÞ2�. In addition, the function B0 and D0 come from the decom-
position

Z
d4l

lμlνδðl2Þδððk − lÞ2 −m2Þ
ðk − p − lÞ2 −M2

s
¼ kμkνA0 þ kμpνB0 þ pμkνC0 þ pμpνD0 þ gμνE0; ð24Þ

where

A0 ¼
ðk2 −m2ÞðAk4 − Bk4 − 4Ak2M2

h − 2Bk2M2
h þAM4

h þ BM4
h − 2Ak2M2

s þ 2Bk2M2
s − 2AM2

hM
2
s þAM4

s − BM4
sÞ

2k2ðk4 − 2k2M2
h − 2k2M2

s þM4
h − 2M2

hM
2
s þM4

sÞ

B0 ¼
1

2

ðk2 −m2ÞðAk2 þ 3Bk2 þAM2
h − BM2

h −AM2
s − 3BM2

sÞ
k4 − 2k2M2

h − 2k2M2
s þM4

h − 2M2
hM

2
s þM4

s
: ð25Þ

IV. NUMERICAL RESULTS

In order to fix the parameters of the spectator model, the
authors of Ref. [20] compare it with the output of the
PYTHIA event generator [39] adopted for HERMES. The
values of the parameters obtained by the fit are: αs ¼
2.60 GeV, βs ¼ −0.751, γs ¼ −0.193, αp ¼ 7.07 GeV,
βp¼−0.038, γp¼−0.085, Ms¼2.97Mh, fs¼1197GeV−1,
fρ ¼ 93.5, fω ¼ 0.63, f0ω ¼ 75.2. For the quark mass m,
we adopt the same choice as in Ref. [20] and fix it to be zero
GeV. Notice that these model parameters are acquired by
comparing the theoretical model with the PYTHIA event
generator adopted for the HERMES kinematics. In the
following we also make predictions in COMPASS and EIC

kinematics, thus there exist uncertainties with regard to the
model parameters. In this paper, we make a rough con-
sideration by disregarding such uncertainties. Furthermore,
we choose the strong coupling αs ≈ 0.3 for our preliminary
estimation.
First, to quantify the magnitude of the DiFF G⊥

1;TT, we
plot the ratio between G⊥

1;TT and D1;OO as a function of z or
Mh, integrated over the region 0.3 GeV < Mh < 1.6 GeV
or 0.2 < z < 0.9 in the left panel and right panel of Fig. 2
respectively. Here we have used the analytical result of the
integrated D1;OO obtained in [20]. Comparing with the
unpolarized DiFF D1;OO, the G⊥

1;TT is three order of
magnitude smaller and we can find a peak located nearly

FIG. 2. The DiFF G⊥
1;TT as functions of z (left panel) and Mh (right panel) in the spectator model, normalized by the unpolarized

DiFF D1;OO.
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in Mh ¼ 0.8 GeV. The peak comes from the p-wave
quark-dihadron vertex introduced in Eq. (28) of [20],
where the first two terms of Fp is defined with the
contributions of the ρ and the ω resonances decaying into
two pions. The masses of the two resonances are taken from
the PDG [40]:Mρ ¼ 0.776 GeV,Mω ¼ 0.783 GeV, which
determines the peak. The ratio is extremely small which
mainly has two reasons. First, for calculating a T-odd DiFF
one should consider the loop contributions which results in
a strong coupling factor in G⊥

1;TT result. Second, both the s
and p waves contribute to the D1;OO, while only p wave
contribution arises in the G⊥

1;TT . Generally, the value of p
wave coupling vertex Fp is smaller than that of s wave.
Then we present the study of the sinð2ϕh − 2ϕRÞ

azimuthal asymmetry in the SIDIS process with unpolar-
ized muons scattering off longitudinally polarized nucleon
target. Basing on the isospin symmetry, the fragmentation
correlators for processes u → πþπ−X, d̄ → πþπ−X,
d → π−πþX, and ū → π−πþX are similar. Thus changing
the sign of R⃗ equivalently implies replacing θ → π − θ by
ϕ → ϕþ π. While expanding the flavor sum in the

numerator of Eq. (13), d → π−πþX and ū → π−πþX
contributions have the equal sign comparing to that of u →
πþπ−X since the sinð2ϕh − 2ϕRÞmodulation keeps its sign.
Furthermore, in principle sea quark distributions can be
produced via perturbative QCD evolution and they are zero
at the model scale. In this paper, QCD evolution has been
neglected, which leads to zero antiquark PDFs f1 and g1L.
The expressions of the x-dependent, z-dependent, and Mh-
dependent sinð2ϕh − 2ϕRÞ asymmetry can therefore be
adopted from Eq. (13) as follows

Asinð2ϕh−2ϕRÞ
UL ðxÞ ¼

R
N 0 dz dMh d cos θ d2P⃗h⊥d2p⃗Td2k⃗TR
D0 dz dMh d cos θ d2P⃗h⊥d2p⃗Td2k⃗T

Asinð2ϕh−2ϕRÞ
UL ðzÞ ¼

R
N 0 dx dMh d cos θ d2P⃗h⊥d2p⃗Td2k⃗TR
D0 dx dMh d cos θ d2P⃗h⊥d2p⃗Td2k⃗T

Asinð2ϕh−2ϕRÞ
UL ðMhÞ ¼

R
N 0 dx dz d cos θ d2P⃗h⊥d2p⃗Td2k⃗TR
D0 dx dz d cos θ d2P⃗h⊥d2p⃗Td2k⃗T

;

ð26Þ

with

N 0 ¼ 2Mh½4gu1Lðx; p⃗2
TÞ þ gd1Lðx; p⃗2

TÞ� sin θδ
�
p⃗T − k⃗T −

P⃗h⊥
z

�
2ðk⃗T · P̂h⊥Þ2 − k⃗2T

M2
h

� jR⃗j
2jk⃗T j

G⊥
1;TTðz; k⃗2T;MhÞ

�
;

D0 ¼ 2Mh½4fu1ðx; p⃗2
TÞ þ fd1ðx; p⃗2

TÞ�δ
�
p⃗T − k⃗T −

P⃗h⊥
z

�
D1;OOðz; k⃗2T;MhÞ: ð27Þ

Here for the twist-2 PDFs f1 and g1L, we apply the same spectator model results [41] for uniformity. The TMD DiFF
D1;OOðz; k⃗2T;M2

hÞ has been worked out and listed as [24]

FIG. 3. The sinð2ϕh − 2ϕRÞ azimuthal asymmetry in the SIDIS process of unpolarized muons off longitudinally polarized nucleon
target as a functions of x (left panel), z (central panel) and Mh (right panel) at COMPASS. The full circles with error bars show the
preliminary COMPASS data for comparison. The solid curves denote the model prediction. The dashed curves represent uncertainties
from spectator model parameters for g1L and G⊥

1;TT .
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D1;OOðz; k⃗2T;MhÞ ¼
4πjR⃗j

256π3Mhzð1 − zÞðk2 −m2Þ2
�
4jFsj2e−

2k2

Λ2s ðzk2 −M2
h −m2zþm2 þ 2mMs þM2

sÞ

− 4jFpj2e−
2k2

Λ2p jR⃗j2ð−zk2 þM2
h þm2ðz − 1Þ þ 2mMs −M2

sÞ

þ 4

3
jFpj2e−

2k2

Λ2p jR⃗j2
�
4

�
Mh

2z
− z

k2 þ k⃗2T
2Mh

�2

þ 2z
k2 −m2

Mh

�
Mh

2z
− z

k2 þ k⃗2T
2Mh

���
: ð28Þ

FIG. 4. The sinð2ϕh − 2ϕRÞ azimuthal asymmetry in the SIDIS process of unpolarized muons off longitudinally polarized nucleon
target as a functions of x (left panel), z (central panel) and Mh (right panel) at the HERMES, EIC, CLAS12 and EicC. The solid curves
denote the model prediction.
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To perform numerical calculation for the sinð2ϕh − 2ϕRÞ
asymmetry in dihadron SIDIS, we adopt the kinematical
cuts at the COMPASS, HERMES and EIC measure-
ments as

(i) Cut1 [42] at the COMPASS:
ffiffiffi
s

p ¼ 17.4 GeV,
0.003 < x < 0.4, 0.1 < y < 0.9, 0.2 < z < 0.9,
0.3GeV<Mh<1.6GeV, Q2>1GeV2, W> 5GeV,

(ii) Cut2 [43] at the HERMES:
ffiffiffi
s

p ¼ 7.2 GeV,
0.023 < x < 0.4, 0.1 < y < 0.95, 0.2 < z < 0.7,
0.3GeV<Mh<1.6GeV, Q2>1GeV2,W2>10GeV2,

(iii) Cut3 [44] at the EIC:
ffiffiffi
s

p ¼ 45 GeV, 0.001 < x <
0.4, 0.01 < y < 0.95, 0.2 < z < 0.8, 0.3 GeV <
Mh < 1.6 GeV, Q2 > 1 GeV2, W2 > 10 GeV2,

(iv) Cut4 [45] at the CLAS12:
ffiffiffi
s

p ¼ 4.9 GeV,
0.072 < x < 0.532, 0.2<y< 0.95, 0.2<z<0.8,
0.5GeV<Mh < 1.2GeV, 1GeV2<Q2<6.3GeV2,
W2 > 4 GeV2,

(v) Cut5 [46] at the EicC: s ¼ 280 GeV, 0.01 < x <
0.5, 0.07 < y < 0.9, 0.2<z<0.7, 0.3 GeV < Mh <
1.6 GeV, 1GeV2<Q2 < 100GeV2,W2 > 4 GeV2,

respectively, where W is the invariant mass of photon-
nucleon system with W2 ¼ ðPþ qÞ2 ≈ 1−x

x Q2.
Our main results are plot in Fig. 3, showing the

predictions for the sinð2ϕh − 2ϕRÞ azimuthal asymmetry.
The x-, z- and Mh-dependent asymmetries are depicted in
the left, central, and right panels of the figure, respectively.
The solid lines represent our model predictions. The full
circles with error bars show the preliminary COMPASS
data for comparison. The dashed curves represent uncer-
tainties from spectator model parameters for g1L and G⊥

1;TT .
We can find that the model predictions give a good
description of the COMPASS preliminary data being
compariable with zero. The model predicts a small peak
in Mh-distribution. According to the model calculation
result of G⊥

1;TT , the small DiFF may result in the small
asymmetry. It is desired to notice that the uncertainty
mainly comes from the spectator model parameters of g1L
and the uncertainty from model parameters of G⊥

1;TT is very
small. We also find that all the curves in three distributions
of Fig. 3 local above the x-axis. Therefore, within the
uncertainty band, the model predictions of sinð2ϕh − 2ϕRÞ
azimuthal asymmetry is slightly larger than zero. So we

argue that the asymmetry is too small to be observed but not
exactly equal to zero.
In order to make a further comparison, we also obtain the

sinð2ϕh − 2ϕRÞ asymmetry at the HERMES with kinematic
Cut2 [43], EIC with kinematic Cut3 [44], CLAS12 with
kinematic Cut4 [45] and EicCwith kinematic Cut5 [46]. The
x-, z- andMh-dependent asymmetries are plotted in the left,
central, and right panels in Fig. 4.We find that the theoretical
overall tendency of the asymmetry obtained from all these
experiments are similar to that at COMPASS. The size of the
asymmetries are lightly smaller than that at COMPASS, and
the results are still comparable with zero at the kinematics of
HERMES, EIC, CLAS12 and EicC. However, there is a
small peak at Mh ≈ 0.8 in all five Mh-distributions, which
come from the masses of the ρ and ω resonance. The
corresponding asymmetry could reach about 0.005. It is
expected that this peak might be reached in a more precise
future experiment.

V. CONCLUSION

The single spin asymmetry with a sinð2ϕh − 2ϕRÞ
modulation of dihadron production in SIDIS is studied
in this work. The T-odd DiFF G⊥

1;TT by taking the real and
imaginary loop contributions is worked out with the
accessible spectator model result for D1;OO. G⊥

1;TT is
originated from the interference contribution of two
p-waves with the use of partial wave expansion. We find
that one must consider loop contributions to obtain a
nonvanishing G⊥

1;TT . The prediction for sinð2ϕh − 2ϕRÞ
asymmetry is presented and compared with the COMPASS
measurement by the means of the numerical results of the
DiFFs and PDFs. Our result yields a good description of the
vanished COMPASS data. At the HERMES and EIC
kinematics we also obtain a very small asymmetry.
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