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Transport and hydrodynamics in the chiral limit
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We analyze the evolution of hydrodynamic fluctuations for QCD matter below T in the chiral limit,
where the pions (the Goldstone modes) must be treated as additional non-Abelian superfluid degrees of
freedom, reflecting the broken SU; (2) x SUR(2) symmetry of the theory. In the presence of a finite pion
mass m,, the hydrodynamic theory is ordinary hydrodynamics at long distances, and superfluidlike at
short distances. The presence of the superfluid degrees of freedom then gives specific contributions to the
bulk viscosity, the shear viscosity, and diffusion coefficients of the ordinary theory at long distances
which we compute. This determines, in some cases, the leading dependence of the transport parameters
of QCD on the pion mass. We analyze the predictions of this computation, as the system approaches the

O(4) critical point.
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I. INTRODUCTION

Viscous hydrodynamics, based on the conservation of
energy and momentum, is remarkably successful at describ-
ing a wide range of correlations observed in heavy ion
collisions and has become a kind of “standard model” for
heavy ion events [1,2]. Hydrodynamics is a long wavelength
effective theory which captures the underlying symmetries
of the microscopic theory. In QCD this symmetry is
approximately U(1)xSU;(2)xSUg(2), which below a
transition temperature is broken to U(1) x SUy(2) when
the chiral condensate (gq) develops. In the chiral limit
m, — 0 this symmetry is exact and is associated with strictly
massless Goldstone modes. In the chiral limit, and below the
transition temperature, these modes should be added to the
usual hydrodynamic modes associated with energy momen-
tum and charge conservation, leading to an effective theory
which is analogous to a non-Abelian superfluid [3,4].

In the presence of a finite quark mass, chiral symmetry
is no longer an exact symmetry, and at long distances
the appropriate effective theory is ordinary hydrodynamics.
Nevertheless, the quark mass is small, and one can reason-
ably ask whether the superfluid effective theory leaves any
imprint on the evolution of the system. At finite quark
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mass the theory should be superfluidlike for modes with
wavelength # ~ m;!' and should asymptote to ordinary
hydrodynamics for # > m;', with the superfluid modes
correcting the ordinary transport coefficients of QCD. These
corrections are determined by the dissipative parameters of
the superfluid theory. One of our goals in this paper is to
present these corrections, which (in some regimes) are the
leading contributions of the pion mass to the transport
coefficients of QCD. The physical picture is summarized
in Fig. 1.

This is a particularly current time to consider chiral
physics. Work from the lattice [5,6] provides evidence that
finite temperature QCD in the real world approximately
exhibits the scaling behavior of O(4) symmetric models. It
is thus natural to think that passing close to the chiral phase
transition, the phase of the condensate will get generated as
the condensate builds. The pions emitted in this way will
have small momenta and therefore can escape the system
unscathed, possibly leaving a soft pion signal of the chiral
dynamics in the detector.

Observation of soft pions has been difficult. Fortunately,
an upgrade is underway to the ITS detector at ALICE [7]
that could provide a wider window into low p; particles,
especially pions. This can shed light on the physics driven
by the chiral phase transition. There are many interesting
scenarios to explore using soft pions, such as the Bose-
Einstein condensation of pions [8], or disoriented chiral
condensate (DCC) [9-11]. The standard observable pro-
posed to detect the soft dynamics of pions induced by the
chiral phase transition is the multiplicity ratio of charged
pions with the neutral one [10]. Another possible source of
information about the chiral phase transition can be
expected to manifest itself in the correlation functions
between charged pions [12].

Published by the American Physical Society
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FIG. 1. Long wavelength modes (black lines) with
¢~ (V-u)"' ~L are described with ordinary hydrodynamics.
To model wavelengths of order £ ~ (m,)~!, the effective theory
must treat the soft pion modes explicitly (green lines). These
modes can be described with a non-Abelian superfluid theory,
due to the fact that the pions are Goldstone bosons. Finally, the
microscopic degrees of freedom (purple arrows), which include
typical pions with p ~A7! ~zT and other hadronic states,
determine the thermodynamic and dissipative parameters of
the superfluid. The superfluid modes leave calculable imprints
on the transport parameters of the ordinary fluid.

Previous work includes a model where a fluid coupled to
the chiral condensate (and the gluon condensate) was
considered [13—16] in the context of computing multiplic-
ity fluctuations near the phase transition. In the chiral
sector, the model only captured the evolution of the order
parameter, neglecting the dynamics of the SU(2) phase. In
the present model, we explicitly consider the dynamics of
the phase in the broken phase.

The basic non-Abelian superfluid equations of motion
were written down by D. Son many years ago [3]. These
equations were extended to include dissipation and at a
linearized level the effect of a finite quark mass [4,17].
Formal developments by Jain (building on [18-20]) have
considerably clarified the general structure of the equations
of motion [21]. After reviewing the equations in Sec. II, we
will describe the behavior of the hydrodynamic correlation
functions in Sec. III, which can be used to determine how
the transport coefficients of QCD depend on the pion mass.
Finally in Sec. IV, we discuss the expected scaling behavior
of the computed transport coefficients in the vicinity of the
critical point.

II. THE HYDRODYNAMIC EQUATIONS CLOSE
TO THE CHIRAL LIMIT

This section briefly reviews the equations of motion
discussed in [3,4,17,21,22]. Chiral symmetry breaking and
its associated effective Lagrangian are reviewed with
precision and clarity in [23,24].

A. Ideal hydrodynamics

The hydrodynamic theory is based on the conserved
charges and phases associated with broken SU;(2)x
SUg(2). The invariance of the theory yields two
conserved currents with independent left and right isospin
rotations,

Ji = (Jp)at", (1)
Tr = (Jg)at", (2)

where the generators ¢ are proportional to the Pauli
matrices, with trace normalization tr[t*¢*] = T 6. The
equilibrium state is characterized by the chiral condensate
Y = (qrqr), which transforms as £ — gLZg}e under a chiral
rotation. At each point in space and time, the local value
chiral condensate X = (gzq;)(x) is rotated relative to a
reference state £(°) = ¢(T)I by an axial rotation, where
g = g; = &. The phase & = exp(ig) is parametrized by the
pion field' ¢ = ¢, (x)r. Since under independent left and
right rotations ¥ — nggje, the condensate may be written
¥ = oU, where U = £ is the phase, i.e., the unitary matrix
that is traditionally used to parametrize the chiral
Lagrangian. For the purposes of this paper, we will take
o to be a constant. Fluctuations of ¢ will be considered in
future works.

As just discussed, the system at a point x is rotated
relative to a reference state by an SU;(2) x SUR(2)
rotation parametrized by [U; (x), Ug(x)]. The left and right
chemical potentials are related to time derivatives of these
rotation matrices [25],

pp = iw'DEUL U = iw'd, U U} +u'L,,  (3)
pr = ' DRURU = iu0,UxUy + 'R,,  (4)

where £, and R, are external left and right gauge
fields, and the flow velocity u* is timelike normalized,
wu, = —1. These relations are called Josephson con-
straints in the superfluid theory. The chiral condensate =
is given by X = U, (6T) U}, and thus the unitary matrix U is
simply U = U, U;. In constructing the chiral Lagrangian it
is customary to introduce the left- and right-handed
currents, L, =iUD,U" and R, =iU'D,U=-U'L,U,
defined with the appropriate covariant derivatives,

D,U=09,U—-iL,U+iUR,, (5)

DU =9,U"+iU'L, —iR,U". (6)

Using these definitions, we find that the zeroth component

of the left- and right-handed currents are related to the
difference in chemical potentials,

—u'L, = iw'D,UU" = p; — UppU", (7)

—u'R, = i*D,U'U = pup — U'p, U. (8)

'In chiral perturbation theory ¢ = z/F where at leading order
F~f,.
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These are analogous to the U(1) superfluid Josephson
relation, where —u"0,¢ = p.

To quadratic order in 4, pug, and L,, the SU,(2) x
SUg(2) invariants are uj + p%, (4, — UpgU")* and L, L*.
Thus, a general action for ideal hydrodynamics close to the
chiral limit is

S = /d4x\/__g(p(T) + [’superﬂuid)ﬂ (9)

2
where

1
‘Csuperﬂuid = m tfb(o (:u% + /’t%?)]

——tr[y,u*u’D,UD,U" — f*D, UDU"

T Tr
+ f2m* (UM + MUT)). (10)

Here we are tracing over isospin. p(7T) is the pressure
as a function of temperature, defined through the vector
B e, T =(—p'g,p")"? with p = Lu'. M is a fixed
matrix, which can be taken to be unity, and is responsible
for the explicit breaking of chiral symmetry. Note that m
refers to the screening mass, which is directly related to the
pole mass,” m? = v?>m? [4]. The coefficients o, x;, f and
m are functions of the temperature. For the purposes of this
paper, ultimately we will work around a Minkowski
background, g,, =1, and also turn the gauge fields
off, £, = R, = 0. Similar Lagrangians considering U(1)
superfluids, and U(1) vector and axial currents coupled to
gauge fields, including a discussion about anomalies, can
be found in [28,29].

The hydrodynamic equations are given by the conser-
vation of the energy momentum tensor [3],

v, T =0, (11)

with

Our normalization constants here are chosen so that the vector
chemical potential is an average of the left and right chemical
potentials, while the vector current is a sum of the left and right
currents, so that u; - Jp +,uR Jr=puy-Jy +/4A J4. Thus, the
0(4) symmetric term reads §yo(u7 + px) = Sxo(ud + 13).

*In the finite temperature chiral perturbation theory literature
the susceptibility of the superfluid component, f2, is called the
spatial pion decay constant, f2 [26,27]. The total axial charge
susceptibility, y4 = yo +x1 + f>, is called temporal pion decay
constant, f?. The pion velocity v> = f?/y4. In the anti—de Sitter
superfluid literature, the susceptibility of the normal component,
™ = yo +x1, 1s called y [18,28].

w2 LG
N
2

=eyuu’ + A py + 8thr(D” UD'U" +D*UD!UY),
F

(12)

where A* = ' 4 utu” is the projector onto the local rest
frame, the redefined pressure is

Pu = p(T) + [’superﬂuid9 (13)

and the redefined energy density is given by a Legendre
transform of p,

e (1412 e O e O
Ey =€ aT IML aluz /’lR aﬂ?@

) ‘Csuperﬂuid'
(14)

When determining &, the Lagrangian should be consid-
ered a function of the independent variables 7', pu;, ug,
tr(0,U0*U"), and MU + MU', and thus the y, term in
the £ should be written,
210w D,UD, U = y1t(uy = UngU' ). (15)
The ideal equations of motion of the chiral degrees of
freedom read

i(UM?

fzg’"z — MUY, (16)

DLy = —

f22

DRJY = i(MIU=UTM), (17)

where the left and right currents are given by

oS 1 1 . 1
J’Z:(SEW a:EXOP‘LM”+Z)(1(ML—UHRU')M”‘szzL”,
(18)
S 1 1 . 1
J’ie:zSRa,,ta:QﬂfoﬂRu"JrZ)n(ﬂR—U‘ﬂLU)u’”erzR"-

(19)

Note that the conserved isovector current for M unity
(i.e., the real world) is given by J;, = J; + MJRM . It is
also useful to consider J5, = J5 + UJRU", the associated
chemical potential py, = (u; + UugU")/2, and corre-
sponding axial definitions, J4=J7 —UJRU' and py =
(1 — UugU") /2, which can be interpreted as the projec-
tion of the current and chemical potentials onto the
isovector and iso-axial-vector directions as seen from the
reference state [21]. These projected currents read
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—— (20)
1
Sy = A" +§f2L”, (21)

where we have defined y\™ = y, + ;. The form of the
isovector current leads us to identify y, as the isovector
susceptibility. The iso-axial-vector current consists of a
normal component with susceptibility y;'™ and a superfluid
component with susceptibility f2. The total iso-vector-axial
charge density, —uﬂlﬁ, is the total axial susceptibility,
24 = (¥™ + f2), times the axial chemical potential, 4.

B. Viscous corrections, entropy production,
and noise

1. Viscous corrections and entropy production

The equations that we have considered so far are ideal.
We will be interested in computing the viscous corrections
to the energy momentum tensor due to the viscous effects
of the chiral sector. This section extends [17,21] by
including the mass terms (which are very important in
practice), and [4] by treating the theory nonlinearly, which
leads to an additional constraint.

To this end we write

™= T’il(;/eal + HW’ (22)
JL =L igear + 9L (23)
Jr = TRidea + d> (24)

and allow for a viscous correction to the Josephson
constraint,

1 4
- 5 uﬂLﬂ = pa+ ﬂilss- (25)

The phenomenological currents should be proportional to
the strains, and entropy production should be positive. We
may choose the Landau frame such that

u gy = u,qp = u,J" = 0. (26)

Finally, we will further decompose the stress tensor into
shear and bulk strains,

™ = 7 4 TIA™, (27)

where 7}, = 0.
The entropy is defined by the energy density ey, pressure
py and left and right density n; /g,

_CeutPu—HLnL—HRNR
T b

Sy (28)

where we introduced the shorthand, y; - n; = tru;n;|/Tk.
A straightforward analysis of entropy production using the
equations of motion as seen in Appendix A yields

ay(SUM” _/'lL'q;Ii —MR"I};e)
diss

N ~ M
= _Hﬂyaﬂﬁv - Q’Z ' 8;uuL - ql;e ! a/4,"‘R -4

T -0, (29)

where ji = pu/T. The superfluid expansion scalar in this
expression is

2 2,2
e, = [a,, <%L”> +f;" (UM —MU"')], (30)
and is given by the variation of the ideal action leaving the
temperature, uy, and p, fixed

(88) g0, = / d“x(—%éUUT) e, (31

Requiring positivity of entropy production leads in the
tensor sector to

2 = 6 with 5> 0. (32)

In the scalar sector there are two structures, leading to the
constitutive relations,

M =(OV.-u+¢Wy, -0, (33)
s = (W, Vw1 (P, (34)

For the quadratic form, —(TIV - u + u§% - ©;), to be non-
negative we must have

(O >0,  ¢@x0, O@ - (¢M2; >0, (35)

4
In the vector-sector we have

4q"‘, is not strictly speaking a vector. Under parity it is

transformed to ¢}, — U'¢},U. The quantity &g} ¢ is a vector
in a strict sense. The terms in Eq. (37b) are grouped according to
familiar covariant derivatives of chiral perturbation theory. In
particular, rotating py to the reference state uf, = £ pyé, and
defining the vector field, v, = —i(£'0,& + £9,&7), the covariant
derivative is

i = O, + v, = & (O =3 Lyom] )& (0

Both x$ and dﬂﬂf/ are directed in the unbroken isovector
subgroup in the reference state, while aﬂ/ﬁ; is not [21,24].
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qt = —Tago) AP (D, iy + UdgigU")/2, (37a)

i

0) ra L . N .

o\ >0. (37b)
In the pseudovector sector we have
qg = —TGAAaﬁ(aaﬂL - UaﬂﬂRUT)/Z, (383)

L . i N .

(38b)

To summarize, the superfluid theory contains the three
transport coefficients of the normal theory, 5®), (), a§°>. In
addition, it contains two parameters, {2) and 6,, which
describe the damping of the pions, and which will be
parameterized below by axial charge diffusion coefficient
D, and the damping rate D,,. Finally, the theory contains
one additional coefficient, ¢(!) that intrinsically couples the
normal and pion sectors. This term involves two small
parameters, the axial chemical potential 1, and the viscous
correction arising from V - u, and can probably be ignored
in practice.

It is notable that the two independent scalars comprising
the superfluid expansion scalar, d,(f*L*) and UM -
MU, must have the same dissipative coefficient, ¢(2.
This constraint, arising from entropy considerations, was not
recognized in the linearized analysis of dissipation by Son
and Stephanov [4], which leads to an additional transport
coefficient in their theory.’

This consequence of entropy conservation simplifies
the interpretation of the theory. For simplicity of presen-
tation, we will set { M), o4, and o,  to zero, and call
Cohem = 1/¢ (2). (These constraints are all easily relaxed.)
The chemical potential of the normal components is s,
while the chemical potential of the pion component is
ph=- % u'L,, and the two potentials are trying to be made
equal by the microscopic dynamics. From this perspective
it is not surprising that the equations of motion can be easily
rewritten in an intuitive form,

aﬂ(nLu”) - Uaﬂ (nRuﬂ)U% = _Fchem(/"A - ﬂjﬁ)? (39)

2 2 .2
d, (% Lu> L ;“ (UM = MU") = =T ghem (4 — ).

(40)

5Specifically, we find that Son and Stephanov’s coefficients
and «, are both given by 1,, = (yi™v)2¢?.

which clearly shows the chemical coupling between the
pion equation of motion (40) and the normal axial
components (i.e., hard pions and other hadronic states).

2. Noise

The analysis of entropy production also determines the
thermodynamic noise in the system. Neglecting (1) for
simplicity, the mean entropy production rate can be written

O (syu —py - dy —pa-q)
_ ﬂ”yﬂm/ H2 ql\l/ (qV>;4 ql;\ (qA)/l + (ﬂiiss)Z
2790 1O 750 To, ¢

(41)

In stochastic hydro, noise should be added to each
dissipative strain, i.e.,

qy = dy + &, (42a)

M%iss _)Miiss_'_ gi‘ss7 (42b)

in addition to the familiar noises of ordinary hydrody-
namics, &, &, and &,. The general theory of these
fluctuations determines the variances of the noises from
the equilibrium susceptibility matrix and the dissipative
quadratic form for entropy production [30-33]. In the
current case, these variances can be read off from the
denominators of (41), i.e.,

(CA()EL()) = 2T A 5(x — y),

()& () = 2T¢P6(x - y),

(43a)
(43b)

in addition to the usual variances for &, &, and &,. In
writing these formulas in this simple form it was important
that we expanded p4** in terms of the canonical conjugate
of U, as given by ©; in (31). Otherwise, the form of the
variances would also involve the equilibrium matrix of
susceptibilities.

Finally, we note that in the presence of noise, the
rearrangements of the equations of motion that lead to
(39) and (40) now give rise to a stochastic equation of
chemical balance,

aﬂ (nL uﬂ) - Uaﬂ (nR Mﬂ) UT = _Fchem (MA - Mfﬁ) - ichemv
(44)

2 2 002
9, (%L”) +f:1 (UM = MU")
= —Lchem (M:ﬁ - MA) + &chem> (45)

where the chemical noise &, (Which enters as I'om ;‘f/’;”

satisfies the expected chemical fluctuation-dissipation
relation,

014042-5
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<§chem (X) gchem (y) > = (l—‘chem)2 < ;ﬁss (x) /CE;SS (y>> ’

= 2Trchemé(x - y)’

(46a)
(46b)
confirming the consistency of the interpretation.

C. Linearized equations of motion

Following Son and Stephanov [4], we now parametrize
the phase as U = ¢** and linearize the equation of motion
for J% together with the Josephson’s constraint around
global equilibrium,

O (™ ua) + V- (=04 Vs + EA)

= —Ithem (ﬂA - ﬂi) — Echems (47)
= 0i(f*0,0) +V - (f*Vo) = f2m*
= —T'chem (/‘Zx} - ﬂA) + Eechems (48)
with u% = —0,¢. After using lower order equations of

motion, the stochastic equation for the pion field reads (see
Appendix B)

24070 — 20t + fPm*p— 2, V?0,p+ A,,m* 0, p =&,  (49)

where 1, and 4,, are related to the coefficients described
above (with Ty = 1/¢?),

I =04+ (F™0)22), (50)
A = (™0)2¢2, (51)

and the noise ¢ satisfies the fluctuation-dissipation relation,

EX)ED)) = 2T (~A V2 + Am?)5(x = y).  (52)

The equation of motion can be used to evaluate the
corresponding propagators. We will need the symmetrized
correlation function,

Goyoym(@,q) = / d*x e (g, (1,%),(0)) = 5,5 G
(53)

The retarded response function associated with the left-
hand side of (49) is

1 1
GY(w.q) = — , 54
7 (@) )(A—a)z—f—a)g—ia)l“q (54)
wy =02 (q* + m?), (55)

. o 2
where the pion velocity is given by »? = )J;—A and the
attenuation is defined as

A A
I, =D,q*+D,,m*, whereD, ="2 and D, =22
XA XA

(56)

D, and D,, are the axial charge diffusion and damping
coefficients, respectively. Using the fluctuation-dissipation
relation, or equivalently by solving (49) with the noise, we
can obtain the symmetrized correlation function,

21T
G = — el ) 57
T (et + w3)* + (T,w)? (57)

The propagator is sharply peaked near the poles leading
to an approximate expression,

T
Giyjm = Yk (0, 0,) + p(w, —o,)]. (58)
where
r
= ! . 59
P = Caota) + (T2 9)

This approximation is justified when the imaginary part of
the dispersion relation, Iy, is negligible with respect to its
real part @, i.e., I';/o, < 1.

III. DEPENDENCE OF THE TRANSPORT
COEFFICIENTS OF QCD ON THE PION MASS

Here we will first use the Kubo formula to deduce the
dependence of the shear viscosity, 7, bulk viscosity, (,
and isovector conductivity, ¢;, on the pion mass. The
technical step is to integrate out the pion loop (see Fig. 2)
shown below to determine the corresponding fluctuations
in the stress tensor or current.

An equivalent approach to superfluid hydrodynamic
loops is to develop a hydrokinetic equation for the soft
pions [34,35]. In this case the phase space distribution of
soft pions evolves according to a Boltzmann equation with
the normal fluid driving the distribution function out of
equilibrium. The collision kernel of Boltzmann equation is
determined by the axial charge diffusion and damping

Ge¥

sym

v v

GP¥

sym

FIG. 2.
furmulas.

An example of a hydrodynamic pion loop in Kubo
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coefficients of the superfluid, D, and D,,, respectively. A
distinct advantage of the hydrokinetic approach is that it
can be simulated in expanding environments, capturing the
physics associated with the chiral fluctuations. We will
describe this approach in Sec. III. B after analyzing the
hydrodynamic loop.

A. Kubo formulas

The three transport coefficients of interest here are
expressed as [36]

2Ty = / d‘bc(%{Txy(t,x),Tx~"(0,0)}>, (60)

270, = [ (0 (00). 35,000, (61)

21 = [ (3 {Oun1:5). O 0,00, (62)

Here d4 = 3 is the dimension of the adjoint, and we are
summing over the isospin index. In determining the bulk
viscosity is very convenient to use the operator,

1 .
Obulk = C?Tg + gTﬁ, (63)

where ¢? is a fixed parameter for the system at temperature
T. This operator has several related advantages over T7
[37]. Specifically, it is invariant in equilibrium under small
shifts in the temperature, and therefore it is not necessary to
impose the Landau matching condition when perturbing the
system. It also behaves smoothly as the spatial momentum
k — 0, while T}, does not [38,39].

To evaluate the pion contributions to these correlations
we will need the symmetrized correlation function dis-
cussed in the previous section and more explicit expres-
sions for the operators of interest. Here we have

™ = f20°0, 0 ¢, (64)

j)\c/,a = fzfabcax¢b(pcv (65)

I B
O = |po 4390, - & (a0 - 20|
1
Po = 51al(09.) = (V0,)” = Pni@i). (67)

Evaluating the Feynman graphs for the shear stress, current,
and bulk operator gives

2Ty = 2TV (A) + 2d, f*

AdgOd?
X/ 1= ()2 (Gon(a". 9)% (68)

Gy’
21210 ()27 [N 6 )
(69)
2T¢ =2T¢ O (A)
#24, [ CE N a0 PGl 0
(70)

where T, = 2 is the trace of the adjoint. The numerator
algebra associated with the operator Oy, evaluates to

1 0
Nouik = 5 <)(A + 2 (g)ﬁm)) (95 — @3) _f_)%vzqz
B 0w,
— iy <61(2) + 3 8,81 .

For each integral we will perform the ¢° integration first.
The propagators are sharply peaked near ¢° = +w,, and
cross terms in (G&m)? can be neglected in the integration.
Performing the ¢, integral we find

(71)

Addq (o 2/T\ 1
—p(0) — 1 4 i
n=n (A)+dA/ ( qv> ( ) . (72a)
(2z)*\0q, ) \w;)T,
3 2
) d’q (90)4 T\ 1
op=0; (A)+Ty /—(271-)3 (a%) <_a)(21) F_q , (72b)

£=CO(A) +dy /A_d3q [2.%_cga(ﬂ%)]2<lz>i'

(27) |3 0q op | \a2)T,

(72c)

As is briefly described in the next subsection these
expressions are familiar from kinetic theory.

These integrals depend on the two transport coefficients,
D, and D,,, the thermodynamic properties of the soft
pions, m3, = v*m? and v* = f?/y,, as well as the speed of
sound squared, c2, which can be determined from the
Euclidean measurements. These quantities enter in the final
results as

. T Ov?

L YT (73)
. T Om?
m%, = m%, - E—an s (74)
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and via a dimensionless ratio
r= /=" (75)

It is worthwhile to point out that in chiral perturbation

theory r = /3/4 [40].
Evaluating the integrals, we find the final expressions to
the corrections of the transport coefficients,

¢ C(O) d,Tm 2 omy 1+2r (1 S 9%)\?
= + —L_ ==
s T 8xDy (\1+rm%  1+r \3 722

1 72\ 2
—(4+2I’)<§—C%F> j|, (768')
0) d,Tm 2P + 42 +6r+3
= — 76b
= Tphys 120D, { (1+7r)? (76b)
B (0) TAT 14+ 2r
or= (al)phys + 24zmD 4 [(1 +r)? (76¢)

Here the shear viscosity and the bulk viscosity are
renormalized quantities,

~2\ 2
0 _ A0 (A dyTA (1 5
Z—”phys C ( )+27T2DA 3 Cy 1)2 s (7721)
0 dATA
ons = 1O(A) + 1023 D (77b)
In each case, the “zero” transport coefficients

(e.g., () are the parameters in the chiral limit, m, = 0.
The conductivity o; is not renormalized, and its soft
pion contribution is proportional to the inverse screening
mass, m~!. This contribution diverges in the chiral limit and

is parametrically larger than (01)}(%8. This reflects the fact
that in this limit the soft pion is a free particle which
transports isospin.

As emphasized in [4] many of the parameters in (76) can
be evaluated on the lattice [41]. Indeed all of the parameters
of the ideal superfluid hydro, such as v, ¢, m3, and m?, are
amenable to a Euclidean computation, while the viscous
parameters D, and r must be extracted from data or
estimated from theoretical considerations. We will analyze
the behavior of Eq. (76) near the O(4) critical point

in Sec. IV.

B. Kinetic approach

The physical content of hydrodynamic loop calculations,
such as described in the previous section, are (always)
equivalent to deriving a Boltzmann equation for the hard
sound modes in the plasma and using this Boltzmann
equation to analyze the response [34,35]. Indeed, our

results for the transport coefficients (76) are much more
transparently obtained from a hydrokinetic Boltzmann
equation for the soft pion phase-space distribution function
f=(x,q;), which takes the form of a relaxation time like
approximation. We are motivated by a similar Boltzmann
equation for sound modes in normal hydrodynamics [35].
First we generalize the linear analysis of the previous
section to a flowing fluid background in Appendix B, using
the scale separation depicted in Fig. 1. The ideal terms in
the equation of motion are of order 9*>¢ ~ m?@, while flow
corrections to these terms are of order (O¢)(du) ~ me/L.
Denoting the mean free path A, the dissipative terms in the
equation of motion are of order 103@ ~ Am>¢, while flow
corrections to these terms are of order (A/L)m? and are
ignored. We are thus working in a kinetic regime where

(A/L)m?* < (m/L) ~ Im* < m?. (78)

With these approximations the stochastic wave equation
takes the form,

—0,(xaG"™0,p) + f*m* 9 — 2, V3 0,0 + A, m* 0,0 = &.
(79)

Here V/| = A*9, and 0, = u"d, are the local spatial and
temporal derivatives, and the pion field moves in an
effective metric created by the flowing fluid,

G*(x) = —ut (x)u* (x) + v*(x) A% (x), (80)

where v?(x) = f2/y4 is the local pion velocity.

Appendix C shows that under the evolution of the
stochastic wave equation, the pion phase-space distribution
f=(x, g;) evolves according to a Boltzmann equation which
takes the form,

OHOf OHOf,
dq, Ox*  9x' Og,

= —Tylwyfr— T (81)
where the effective Hamiltonian,

1 1

H(x,q) =5 G*(X)auq, +5v*(x)m*(x),  (82)
is a function of the four vectors x and g. Given the covariant
momenta ¢;, the covariant energy component ¢, is found
by solving the on shell constraint, H(x, g) = 0, taking the
negative root ¢, = —h, (x, g;); see (C19). The components
G"q, = 0H/0q, should be distinguished from ¢* = n"*q,,.
The damping rate I, and dispersion curve , = —u"g, are
to be evaluated in the rest frame of the fluid; see (C13). The
equilibrium distribution is simply the classical part of the
Bose-Einstein distribution function, 7/ . We note that
the Boltzmann equation can also be written
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TABLE I. Here we list the critical scaling of relevant parameters near the chiral critical point, as discussed in [42].

Physical quantity Symbol Scaling Estimate
Order parameter (o) = (pw) # $~0.380
Inverse correlation length Mgy v v=~0.738
Static correlation function [ dxe=™*41(c(x)5(0)) T|q|"2 n=~0.03
o relaxation rate I, =D m?2 ms z=4
Axial susceptibility xa X0 Const
(pion velocity)? 2 =12 /x4 w(d-2) 0.738
(screening mass)? m? m, ih=d=2) m 0358
(pole mass)? m? = v*m? m, i’ m 10380

a_H afn' ah+afﬂ_ah+afﬂ
dqy | Ot Oq; Ox'

o oc| = Teloal==T) (83

Once the phase space distribution is found, the pion
contribution to the stress tensor is given by the superfluid
stress in (12). Recalling that the phase space distribution
f=(x,q;) is the Wigner transform of the noise averaged two
point function (¢(x)@(y)); Appendix C 2 shows that pion
contribution to average stress tensor evaluates to

v d3Qi a(ﬂwq) v
= ‘dA/ (27)3(9H/Dq0) [‘” B "
+ va"“A”ﬁqaqﬁ} fz(x.q;). (84)

Given this Boltzmann equation for the soft pion dis-
tribution and the stress tensor, familiar steps from the
relaxation time approximation lead to the shear and bulk
viscosities presented in (72) with relaxation time 1/T"; and
dispersion curve w,. We have not derived the isospin
conductivity using the kinetic approach in this paper.

IV. DISCUSSION AND BEHAVIOR NEAR THE
CHIRAL CRITICAL POINT

In this section we will estimate our results for the
transport coefficients, Eq. (76), near the O(4) critical point.

A. The chiral phase transition: A brief review

First we review the expected scaling behavior of various
quantities following [42,43]. The order parameter,
o(x) = yw(x), and the inverse correlation length, m,, have
the following scaling behavior near the critical point:

)~ g~ (85)

where the reduced temperature is t = [T — T.|/T,, and
and v are the usual critical exponents.6 In the vicinity of the

®We are only interested in temperatures below 7' in this study.

critical point, the static correlation function of the order
parameter behaves like

/ e~ (5(x)(0)) ~ |¢1|L2‘” , (86)

for momentum, |g|, much larger than m,, but smaller than
the temperature 7, m, < |q| < T. The critical exponent 5
is small in practice, and can be related to f and v using the
hyperscaling relation

2 =v(d-2+n), (87)

where d = 3 is the spatial dimension. Finally, the order
parameter relaxation rate scales with correlation length
as [43]

Ly~ (mg)%, (83)

where z = d/2 is the dynamical critical exponent. As we
will describe in the next paragraphs, I', is of order D m2,
and therefore we will define I'; = D,m2 in our estimates
below. A summary of the relevant scalings can be found in
Table 1.

In the chirally broken phase close to T, but not so close
that fluctuations in ¢ are important, the Lagrangian in
Eq. (10) applies. The static pion propagator 7, = (W)@,
at momentum scale m < |q| < m,, can be read off from the
Euclidean version of the Lagrangian,

T(py)® 1
A e

In the vicinity of the phase transition, the # and o
propagators become degenerate. Thus, the scaling of the
two propagators [Eq. (86) and Eq. (89)] must be the same
at their boundaries of applicability |q| ~ m,, leading to a
relation between the pion decay constant 2, m2, and (jry),

/ e, (1), (0)) % B (89)

f2 g () ~ 1472 (90)
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Then the pion velocity near T, scales like
2
2 =L p), 1)
XA

where y4 ~y, is approximately constant near 7.. The
screening mass, m, can be related to the pion decay constant

/7, the condensate (py), and the quark mass m, via
() (-
m? = —m, 7 ~ m P2, (92)
Similarly, the pole mass scales like
ms = v’m? = —mqM ~myth (93)
XA

Close to T, but again not so close that ¢ fluctuates, the
hydrodynamic analysis applies and the pion dispersion
curve for g > m reads

i
w(q) = vlq| —EDACIZ- (94)

As we approach the phase transition, the real and imaginary
parts of the dispersion curve become the same order of
magnitude. Also, the pion and ¢ damping rates should
scale similarly near 7. at the boundaries of applicability
|g| ~ m,. This reasoning yields the following estimates:

vmy ~ Dam? ~ (m,)*. (95)

For definiteness we will define the relaxation rate I', using
the axial charge diffusion coefficient I'y = D m2. The
temperature scaling of D, is

Dy~ 52 = /2, (96)

B. The transport coefficients near T

Armed with these scaling relations, we can determine the
temperature and quark mass dependence of the transport
coefficients near 7.. We are assuming that we are not so
close to T, that the ¢ field fluctuates strongly. The o
fluctuations cannot be neglected when the screening mass
in (92) becomes of order m,, which yields

m
P /_mqt(ﬂ‘3”>/2, (97)

and therefore the analysis breaks down when ¢ ~ (, /m, )"
Since the pion mass m, o | /m, is fairly massive compared

to, e.g., 2T, it is likely that ¢ fluctuations can never be
completely ignored over the temperature range relevant to
heavy ion collisions.

Nevertheless, we wish to evaluate the temperature and
quark mass dependence of the corrections to the transport
coefficients given in Eq. (76). Using the scalings described
above, first note that

m: B

75— 0380, 98
= (98)
L (99)
112721‘”7 ST

near the critical point. In addition, we make the approxi-
mation v ~ 2§, and note that the speed of sound remains
finite ¢ ~ c2, in the O(4) model [44]. Thus, the bulk
viscosity in (76) reduces to

¢=¢0

(100)

_dyTm (e \? [8r° +16r7 +-16r+7
8xD, \ t 4(1+7r)? '

near the critical point. The parameter r approaches an order
one constant near the critical point [43,45], and thus our
results for ¢, n, and o; depend on an unknown constant.’
However, we have found that the r dependence of (76) and
(100) is mild, and changing r from zero to one changes the
shear and conductivity coefficients by less than 25%, and
the bulk coefficient by 60%. (In low temperature chiral

perturbation theory r = 1/3/4; see [40]). Thus, for sim-
plicity, we will set » = 0 below, and estimate a constant
factor of 2 uncertainty from this ansatz.

With these rough approximations the three transport

equations read
21 T 3 2\ 2
[—m (ﬁﬂ (101a)

_ #0)
€= Sy T30 D2 \ 1

3
o) 3 Tm
= Mphys — 407 {DAmz} ) (101b)
0 1 Tm
o = (0-1>1()h)ys + 127 [DAmz} (101c)

In each case, the “zero” transport coefficients [e.g., { 00
are the coefficients in the chiral limit m, =0, and the
additional bits describe how these parameters depend
(nonanalytically) on the quark mass. The soft pion parts
can be easily understood as the pion contribution to the

"Translating the notation of the current work into the notation
of the original Refs. [43,45], we have r* = T'/(T" + y/y,) where
I" and y are the two dissipative parameters characterizing the O(4)
Langevin model of [43]. These parameters scale similarly near
critical point, T'm2 ~ (y/y)m2 ~ mZ, and thus r is approximately
constant.
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corresponding susc:eptibility8 [the numerators in (101)]
divided by the damping rate, I'; ~ D m?.

The isospin (or charge) conductivity is dominated by the
soft pion contribution, which diverges in the chiral limit
and therefore is large compared to (a,)p?lyS until m ~ m.
This reflects the fact that on a length scale m~', the
Goldstone bosons can transport charge freely rather than
diffusively. When m ~ m,, the isovector conductivity
(101c) and the axial charge diffusion coefficient (96) have
the same scaling with reduced temperature,

Tm
6Nt_y/2 N)(ADA’

(103)

oy~
o

as is required by the restoration of vector-axial-vector
symmetry at the critical point.

Finally, we may put in the expected scaling for I';, m,,
and m/m, to find

2\ 2
AC——ng/ﬂmqtﬁ/Q(ﬂLﬁo, Al x—t7181 (104a)

n=—C,\/myt"?, An o« — 1919, (104b)
tzz—/i/2
oy =C,———, oy o 19348, (104c)
m
VALY

Thus approaching 7', from below, the pion contribution
to the bulk viscosity decreases sharply, while the shear
viscosity contribution grows mildly. The transport of soft
pions dominates the isospin conductivity, and the conduc-
tivity decreases as the damping rate of the Goldstone mode
increases near 7T',.

In practice, the asymptotic behavior in (104) will be
difficult to see in the narrow window where the theory
applies. Indeed, we are only able to understand the
modifications of the transport coefficients due to pions
in the broken phase. As pointed out in (97), our results are
valid up to a scale where the fluctuations of the order
parameter ¢ becomes large. A natural follow-up would be
to include such fluctuations, significantly increasing the
range of applicability of the current study.

In addition to the modifying the transport coefficients
of the fluid, chiral critical fluctuations modify the
dispersion relation of soft pions, e.g., w ~?q? +m

with v and m,, small compared to their vacuum Values

¥For instance,
susceptibility is

d*p On
soft p
(}(1) /(271_)3 8/41

the soft pion contribution to the isospin

~Tm, (102)
u=0

where n, ~T/(w, — y;). Similarly, the soft pion enthalpy (the
susceptibility ass001ated with 7)) is (e + p)t ~ Tm?.

These modifications are expected to lead to an anomalous
enhancement of pions at small momenta [42,43], which is a
phase space region ideally suited to the upcoming ITS
detector in ALICE [7]. Currently, there is some evidence
for such a soft pion enhancement—see for example Fig. 3 in
[46] and Fig. 11in [47]. In the future we hope to use the kinetic
equations developed in Sec. III. B to quantitatively compute
these enhancements and their associated fluctuations.
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APPENDIX A: ENTROPY PRODUCTION

In this appendix, we describe the computation of the
entropy production in detail, repeating formulas as neces-
sary to keep the presentation self-contained. The entropy is

&yt py—HL-ng
Sy = T

The thermodynamic relation is a consequence of the inde-
pendent variables used to describe the partition function,

_/“’R'nR' (A1)

2
de = SUdT+nL . d,uL —|—nR d//lR —%sz

f2m2
* 8

dlU-M"+ M- U"). (A2)
The “extra” superfluid differentials at fixed 7 and u
follow from the form of the action (10), and the discussion
surrounding the derivation of the stress tensor (12). Using
w'L, = —idUU", they can be written

22
= —Jia’L2 + lf g

uL, - (UM™ = MUY).

(dpu)r, (A3)

Then the entropy current satisfies
Ou(syu") = dsy + syou,

where we have implemented the following shorthand:

(A4)

wd,sy = dsy, Ou=0,u*,

and note that the differentials in (A2) can be interpreted
with an analogous notation, e.g., dT" = u* 8” T. Inserting the
definition of entropy yields
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1
Dy (syu) T (dpu)r,

_,U_; [d}’lL + nLﬁu] —”—715 [an -+ VlRaM}.

1
=7 [dey + (ey + py)Ou] +

(AS)

Now we should use the equations of motion of
energy conservation, u,0,T" =0, and current partial
conservation,

9,0 = -

f2 2

g (UM = MUY), (A6a)
f2 2
8]”

(MU -U'M), (A6b)
to evaluate the terms in square brackets of (AS). Note we
have imposed the microscopically exact PCAC relation.
From the body of the text, the stress tensor, currents, and
Josephson relation, can be written

f2
T = (ey + py)u*u* + pg" + LF- LY +11", (AT7a)

Ji =nput +fZLﬂ +q, (A7b)

’ 1
—pug - (dng + ngdu) = ug - 0,qk + ug - {— L (fPRH) — i——

= pug - 0,q%

1
—~U'ugU - 0.
2 HR K

2

Ji = ngu# —|—%R" + ¢, (A7c)
1

—S ULy, = pat pudiss, (A7d)

with dissipative strains T1*, ¢, ¢, and pd's.
The left current partial conservation equation yields

—pr - (dng +-n 0u)

1 2m?
=py - Ouqy +pr- [ L (fPL*) + fS (UMT—MUT)],
1
=g+ O (A8)

where we have defined the superfluid expansion scalar
discussed in the text [see (31)],

0, = |:8ﬂ (;L#) f2 2

Similarly, the right current partial conservation equation
yields

(UM - Mmﬂ.

f2 (MU - U/\/l)}

(A9)

In passing to the second line we have used the definition of R* as R* = —U'L*U and the definition of L, =-i0,U U' to

rewrite

8ﬂ(f2RM) = —UupU" -

Next, we consider the timelike projection of the energy momentum tensor conservation equation,

1
dey + (ey + py)Ou = u,

= iuz/l‘y : au(le‘#)
1 2
= Zu,,L” -0, (f* L") —I—f

In passing to the last line we have used the structure
equation,

0,L, —d,L,

3 ~i[L,,L,) =0,

(A12)
noting that
L*-1L,. L) =

[L#,L,)-L, =0. (A13)

Adding the superfluid pressure differentials (dp)
find after pleasing cancellations,

T we

—fLY - dL
FyPL L

gsz + u, 0,117

8, (f2LF - L¥) + u, 0,11,

0,(f*L*). (A10)
—u,0,T" =0,
1

+3 LA - (9,L, - 9,L,) + u,0,I1",

(A11)
I
[dey + (ey + py)oul + (dpu)r,
1
= 5Ly O+ u, 0,11,

= —(pa + u3=) - O, +u, 0,1, (Al4)

where we used the Josephson relation (A7d) in the
last step.

Combining the ingredients needed for (AS5), from (AS8),
(A9), and (A14), we find
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diss
Oulspw) ==H—-0,+2Lo, 0 +5L.0,q; +E1-0,q%
(A15)

Integrating by parts we find finally Eq. (29) given in
the text.

APPENDIX B: LINEARIZED EQUATIONS FOR
THE PION FIELD IN AN EXPANDING
BACKGROUND

In this appendix we will derive the linearized equation
for the pion field for a fluid with temperature 7'(x) and
flow u*(x), using certain hydrokinetic approximations
discussed below. The equation for the axial current is
given by

)
0" =2 (L, "] + [Lﬂ,J’;]:—ff (UM = MU"),

3l 2
(B1)

and constitutive relations read
Ta = 23" part + 5 fZL”w +&
1 u diss diss
—Eu L, = pa+uy™ + &0
Setting the isospin current Ji, to zero, writing U = e2ie

so that —%L” ~ 0,0, the equations of motion to linear
order in 4 and ¢ can be written

0, A pau) +0,(f209) = f2m* 9+ 0,44 + 0,4 =0,

(B2)
—u Dy = pp + UGS + E, (B3)
where the dissipative strains are
= _To, AR, (’%) (B4a)
Uy = {0(=0,(f*0"p) + fm*p).  (BAb)

We will work to first order in the dissipative parts
yielding

—0,(xaG"0,0) + f2m*p — 0,qy + 0, (Ui ut) = &,
(B5)

where

_ 2
G" = —utu? + v AM,

(B6)

is the fluid metric introduced in (80), and we have
amalgamated the noises into a generic one,

é::_aﬂ( [/l\rm diss ) )+a ‘};A

(B7)
We will neglect the space time derivatives of the back-
ground temperature and flow velocity in the dissipative
terms (which are already small), but keep the gradients in
the ideal terms. Indeed, denoting the mean free path = w A,
the typical fluid gradient Ou ~ 1/L, and the pion derivative
Og ~ me, the different terms in the equation of motion are
of order,
P o ~m’,

L O3 903
(Ou)(0g) L XAG(/) Am’ g,

(B8)

c A
— (0u)0*p ~ —m*¢p,
){A (Ou) I

up to an overall factor of y,. In the hydrokinetic approxi-
mation of [34,35], we have

(A/L)m? < (m/L) ~ Im*> < m?. (B9)
We note in passing that the neglected dissipative coef-

ficient (1) gives a correction to the equation of motion of
order,

() (Ou) ~ (2/L)m?

which should be dropped in our approximation scheme.
With these approximations we have

(B10)

_8//!(1/2 ~ —UAViar¢, (Bll)
0, (Al k) 72 f2(9p — V2 D0 + m20,p).
(B12)

Here we have defined various derivatives in the rest
frame,

V4 = Amg,,
oM = —ud, + V',

0.0 =u"0,p,

Vigp= AM9,0,p, (B13)
which all commute when approximating the dissipative
currents. Next we use the lowest order equations of
motion,

2 2.2
L1
XA XA

to rewrite the triple time derivative,

0u (A u ut) = = (im0 EBV O
+ (™22 02 m? 0. (B15)
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With these steps, the wave equation can be written

—0,(xaG*0,p) + [*m* 9 — A, V3 0,0+ A, m* D, =&,

(B16)

where
Ay = (Am0)*¢? + o4, (B17)
A = (4™ 0)?C2), (B18)

which is the form used in the text (49) and the Appendix C;
see (C1).

Finally, let us check the form of the noise term, using
the same approximation scheme. In Fourier space, with
four vector g, the correlation function of the noise takes
the form,

(E(q)&(—q)) =~ 2TSP (™) (u' q,)? + 2ToA A" q,q,.
(B19)

where we have used the noise correlators given in (43).
Next, we should recall that we are close to being on shell
where (u*q,)* = v*(A*q,q, + m?*). [This on shell rela-
tion is (B14) written in Fourier space.] Inserting the on shell
relation into (B19), and taking the Fourier transform, shows
noise correlator can be written

(E(x)E(y) 2 2T(=As V3 + 2,,m*)5(x —y).  (B20)

This completes the derivation of (49) given in the text.

APPENDIX C: HYDROKINETIC TRANSPORT
EQUATION FOR SOFT PIONS AT
ZERO ISOSPIN DENSITY

The equations of superfluid hydro describe how soft
Goldstone modes (i.e., pions) interact with the stress tensor
of the normal fluid. Since the wavelength of these modes is
short compared to the wavelengths associated the energy
momentum tensor, the evolution of the pion modes is
described by a Boltzmann equation. The stochastic super-
fluid hydrodynamic theory can be used to determine the
form of this Boltzmann equation (which looks like a
relaxation time equation), in much the same way that
the kinetic equations for sound modes can be determined
from stochastic hydrodynamics [34,35]. Our goal here is to
derive the results of Sec. III. B. Good derivations of
the Boltzmann equation from a stochastic wave equation
can be found in several places [48-50]. Here we will
follow [49].

1. Derivation of the Boltzmann equation

We will derive the transport equation in the absence
of a net isospin charge. In this case each component of
@, 1s independent, and the distribution function f,, is
diagonal. We will therefore derive the transport equation for
a one component scalar field. The wave equation for the
pion fluctuations takes the form (see Appendix B for
definitions),

_8/4()(AGW/61/§0) + f2m2¢ - ’IAviar(p + lmmzar(p =¢.
(C1)

Here the parameters, G*, u¥, f?, m*, A, and A,, depend
slowly on space and time, and the variance of the noise is
given in (B20). The gradients drive the pion distribution
weakly out of equilibrium, while the dissipation and noise
tries to reestablish local equilibrium.

Our goal is to derive the kinetic equation associated with
this stochastic wave equation by making the appropriate
quasiparticle approximations. The first two terms come
from the ideal equations of motion, while the last two terms
are viscous corrections. Space-time gradients to the ideal
equations of motion are of the same order as viscous
corrections and will be included in developing the transport
equations. However, space-time gradients to the viscous
parts of the equations of motion are smaller and will be
ignored (see Appendix B).

To streamline the discussion we introduce the following
linear operator with retarded boundary conditions:

Exy = [_8M(XAGI“/81/) + f2 2 - )’Avia‘[

+ Apym?0,)8(x — ). (C2)
Here it is understood that the parameters [such as G**(x)]
are functions of the space-time coordinates x* = (x°,x).
Below we will employ a hypercondensed notion where
repeated coordinates are integrated over, e.g.,

Gr(x.y)o(y) = / d*yGr(x.y)p(y).  (C3)
The retarded Green function satisfies
L.;Gr(z.y) = 6(x —y). (C4)
while the advanced Green function satisfies
L,,Ga(x,2) =6(x—y). (C5)
The equations of motion are thus
Lvp(x') = &), (Co)

and the two point functions satisfy
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Lo Ly (0 )p(y)) = (EX)E))- (€7)

The distribution function N(x,y) is defined (see below
for motivation) from the symmetrized two point functions
of fields via an integral equation [49],

(@(x)p(y)) =—i(Gr(x,2)N(z,y) =N(x,2)Ga(z,y)). (C8)
With this definition, N(x,y) evolves as
i(LoN(z,y) = Ly:N(x,2)) = ((x)E(y)).  (C9)

Now we will make a Wigner transform, defining average
X = (x+y)/2 and difference s = x — y coordinates. The
Wigner transform takes the form,

/d4se_i”"‘A(x,z)B(z,y)

=A(%. p)B(%.p)
L L(0A(.p)OB(X.p) OARX.p)OB(%.p)\ |
2 ox+ opy opy ox*

(C10)

The Wigner transform of the differential operator takes
the form,

/ s eI L, = 2 (B)(H(E. p) — (%, p)T (5. p)/2).

(C11)
Here the “Hamiltonian” is
1 1, 5
H(x. p) =5 G (x)pup, + 507 (0)m>(x),  (C12)
where the rest frame energy is E(X, p) = —u"p,,, and the
quasiparticle damping rate is T',(x,p)=D,A" p,p,+

D,,m?. The retarded Green function is the inverse of Ly,

1 1 1 1
2aH—iE(T,/2)  ya(—E>+ @’ —iET,)’
(C13)

Gr(x,p) =

where ? = v*(A*p,p, + m?) is the quasiparticle energy
in the rest frame.

We now will give present the motivation for the
definition of the distribution function based on (C8).
The first motivation comes by considering equilibrium.
In this case we may use full Fourier transforms and use
translational invariance (¢(x)@(y)) = Gyym(x —y), where
the symmetrized distribution correlation function as a
function of momentum is

—i(Gr(p) = Ga(p))N(p).  (Cl4)

Gsym<p> -

In order to satisfy the fluctuation dissipation theorem, we
must have

N(p) = n(E) + 3= . (c15)

| =

in equilibrium.
The next motivation comes from taking averages of the
fields. Consider the average,

4
(0,0(x)0,0(x) ~—— [ L7 SLspnN .

(2n

% [H —iE(T,/2) H+iET,/2))
(C16)

The presence of the difference between the retarded
and advanced propagators means that the integration over
Do is “pinched” whenever H approaches zero, i.e., when-
ever the particle goes on shell. Using the pinch approxi-
mation, we find

1 d*p
0 1s) 2 ) ien(E N(x,p).
(0,0 (x)0,0(x)) = ) " (H)sign(E)p,p,N(x,p)
(C17)
The §-function is satisfied at two roots py = —h(x, p;),
and we write
275(H) 2% 5o+ b (x,p)
b1 =——5(p x.p
0H/pe| T
b S(pe+ho(vp)),  (CI8)
Tars /a1 p X, )
|0H/0po
where OH/0p, = G% p,, and
GOi ; 01G0)
h:t(xvpi): G(){)7 \/—\/ —0()>p p]+7)2m2~
(C19)

Note that 4_(x, —p) = —h, (x,p). For future reference we
also note that £ = —p'u, = tw,.

The integral in (C16) breaks up into a positive piece and
negative piece. After changing variables p — —p in the
negative piece, the integral takes the form,
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(0,0(x)0,9(x))
1 & p
- %/ mpmw (x, p) = N(x.=p)].
(C20)

where now the momentum is evaluated on the positive
mass shell,

p= (=ho(ep)p). with 7m0 (c21)
0
For real fields N(x, p) = =N(x,—p), so
1 & p;
9, xayxz—/—’ JN(x, p).
(Dup(x)0,0(x)) =~ ry (@H ape) P (x. p)
(C22)

With these preliminaries we can determine the equation
of motion N(x, p) on mass shell. The Wigner transform of
(C9) yields an equation of motion for N(x, p) of the form,

OxaM) ON(x,p) O(xaH)ON(x, p)
op, ox+ OxH op
— AT, [EN(x. p) — T

u

(C23)

As a first step towards putting the distribution on shell (with
p° or E positive), we define f(x, p;, H), which is para-
metrized by H instead of p,

N(x, po, pi) = f(x, pisxa™). (C24)

The equation of motion for f,(x, p;, yxa™H), simply loses
the 0/dp, term since the Poisson bracket of y ,H with itself
18 zero,

OaH)0fr  OxaH) Of»

op, Ox* ox' Op;

=1L [Efz =T].  (C25)
In evaluating equal time expressions of fields as in (C22),
we only need the distribution evaluated on shell where
H =0 and E = w,, yielding the equation of motion given
in the text (81). We also note that the velocity and force of
the soft pions is given by

OH/0p; o Oh.(x, p;)

_ , C26
H[ops o, (20
OH/Ox'  Oh,(x,p;)

OH/Opy ox 7 (€27)

leading to an alternate form of the Boltzmann
equation (83).

2. Derivation of the Boltzmann stress tensor

To complete the Boltzmann picture we need to evaluate
the stress tensor. We have already discussed how to

evaluate stochastic averages such as (0,¢0,¢), with the
result,

dSPi

mpul’uﬁz(% Pi)-

A (D,9(x)0,0(x)) = /
(C28)

Expanding the superfluid stress tensor given in (12) to
quadratic order in ¢ and u, with py =0, and then
averaging over the stochastic fluctuations of the pion field
yields the coarse grained stress tensor,

(T (x)) = e(T)utu* + p(T)A™ + T, (C29)
where the pion contribution is’

Tx = da((e, + f?)u'u” + p, A" + fENATO p0p0).

(C30)
Here the axial chemical potential is y = —u*d,qp, the
pressure to quadratic order is
! LT
Py =—XA EG’ubaﬂ(anQD + EU m-g~ |, (C31)
and the energy density is
dp dp
=- T2 . C32
€y Pyt or tu o (C32)

The pressure p, is a function of T, u, (9¢)* and ¢?,
echoing the discussion surrounding (14).

Now let us evaluate 7% in a kinetic approximation. The
(A** A9 ,pDpp) term leads to the second term in (84). The
pressure p,, is closely related to the Hamiltonian H, and we
find

dSPi

(Py(x)) :/WH(%P)E(%P%

(C33a)

=0, (C33b)

since H(x,p) =0 on shell. Finally, careful algebra
together with the constraint H(x, p) = 0 yields

2\ d3pi 8(,3(0[,)
(e +115) = / (n) (aHjopy) " 0p

fx(x.p).
(C34)

Putting together the ingredients leads to (84).

“Recall that in this appendix ¢ denotes one isospin component
of the pion field. We have multiplied (C30) by d, = 3 to account
for the three pion states.
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