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We discuss a general diagrammatic description of n-point functions in the QCD instanton vacuum that
resums planar diagrams, and enforces gauge invariance and spontaneously broken chiral symmetry. We use
these diagrammatic rules to derive the pion and kaon quasiparton amplitude and distribution functions at
leading order in the instanton packing fraction for large but finite momentum. The instanton and anti-
instanton zero modes and nonzero modes are found to contribute to the quasidistributions, but the latter are
shown to drop out in the large-momentum limit. The pertinent pion and kaon parton distribution amplitudes
and functions are made explicit at the low renormalization scale fixed by the inverse instanton size.
Assuming that factorization holds, the pion parton distributions are evolved to higher renormalization
scales with one-loop DGLAP evolution and compared to existing data.
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I. INTRODUCTION

Light-cone distribution amplitudes are central to the
description of hard exclusive processes with large momen-
tum transfer. They account for the nonperturbative quark
and gluon content of a hadron in the infinite-momentum
frame. Using factorization, hard cross sections can be split
into soft partonic distributions convoluted with perturba-
tively calculable processes. The soft partonic distributions
are inherently nonperturbative. They can be extracted
through moments using experiments [1], or more recently
lattice simulations [2,3].
Several QCD lattice simulations have suggested that the

bulk characteristics and correlations of the light hadronic
operators are mostly unaffected by lattice cooling [4],
strongly suggesting that semiclassical gauge and fermionic
fields may be dominant in the ground state. At weak
coupling, instantons and anti-instantons are exact classical
gauge tunneling configurations with large actions and finite
topological charge which support exact quark zero modes
with specific chirality.
Extensive analytical and numerical calculations [5–7],

describing the QCD ground state as an ensemble of
instantons and anti-instantons with hopping quark zero

modes were found to reproduce most of the cooled lattice
simulations. In the quenched approximation, these calcu-
lations can be organized by observing that the ensemble is
characterized by a small packing fraction in the large-Nc
limit which is dominated by planar graphs.
The twist-2 pion distribution amplitude and function have

been discussed in the context of the QCD sum rules [8],
bottom-up holographic models [9], bound-state resumma-
tions [10], basis light-front quantization using an effective
Nambu–Jona-Lasinio (NJL) interaction [11], covariant NJL
models with effective interactions [12], and the instanton
model using nonlocal effective interactions and modified
quark masses time-like [13,14].
The instanton model for the QCD vacuum is inherently

space-like. It is amenable to QCD through semiclassics and
allows for an organizational principle that enforces chiral
and gauge Ward identities. It is well suited for the
description of the bulk of the QCD vacuum with its
flavor-singlet axial and scale anomalies, and its mesonic
and baryonic excitations through pertinent Euclidean cor-
relators [5–7]. However, its inherent Euclidean character
makes it difficult to characterize the nonperturbative time-
like structure of its partonic constituents as probed by deep
inelastic scattering.
The recent suggestion put forth by Ji [2] and its matching

protocol [15], to extract the light-cone distribution func-
tions from equal-time quasidistributions in Euclidean
space, has been carried on the lattice with some reasonable
success [16]. This formulation makes the instanton calculus
also ideal for a first-principle semiclassical analysis of the
quasidistributions, and therefore the light-cone distribu-
tions by matching. Since the distribution functions obey
rigorous sum rules, the enforcement of the Ward identities
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is important. This can be sought through a diagrammatic
expansion and power counting around the planar approxi-
mation, both of which preserve chiral and gauge invariance.
We note that recently, the quasipion distribution functions
were analyzed using some of the models described above
in Refs. [17,18].
The purpose of this paper is to revisit the n-point

functions in the random instanton model in the planar
approximation as in Ref. [19]. The latter resums a large
class of instanton contributions in the form of nonpertur-
bative integral equations with full chiral and gauge sym-
metry. While these equations are in general involved and
require a numerical analysis, we will analyze them relying
on the diluteness of the instantons and anti-instantons in the
QCD vacuum, where the packing fraction is small with
κ ≈ 10−3. All calculations will be carried at leading order
(LO) and/or next-to-leading order (NLO) in α ≈

ffiffiffi
κ

p
.

This expansion provides an organizational principle
and addresses some of the shortcomings in Refs. [6,7]
by enforcing the axial and vector Ward identities in the
planar approximation. It turns out that the zero modes
and nonzero modes are equally important in this enforce-
ment, as initially noted for the two-point vector correlator
in Ref. [20]. Also, the virtual character of the induced
effective quark constituents generated by the planar resum-
mation makes their time-like manifestation in the pion
distribution amplitude and function very subtle.
This paper consists of several new results: 1) a generali-

zation of the planar resummation to the n-point functions;
2) an explicit derivation of the two- and three-point functions
at NLO; 3) a derivation of the quark effective mass at NLO;
4) a planar resummation of the pion quasiparton amplitude
and distribution functions at LO; 5) explicit expressions for
the pion and kaon parton distribution amplitude (PDA),
parton distribution function (PDF) and transverse momen-
tum distribution (TMD) at LO; 6) an explicit proof of the
axial Ward identity for the axial-axial correlation function at
NLO; and 7) the explicit evolution of the pion PDA and PDF
and a comparison with currently available data.
The organization of the paper is as follows. In Sec. II we

briefly review the general aspects of the random instanton
vacuum, and detail the planar approximation for the
derivation of the quark propagator. We derive the induced
effective quark mass and in general the spin-valued self-
energy at NLO. In Sec. III we show how the two-point
meson correlators are resummed, and use the result to
derive the pion pseudoscalar vertex at NLO. The pion
decay constant is worked out in the leading-logarithm
approximation. In Sec. IV we derive the pion quasiparton
distribution amplitude (QPDA) at LO in the leading-
logarithm approximation and beyond. In Sec. V we show
how the planar resummation applies to the three-point
functions and use it to construct the pion valence quasidis-
tribution function (QPDF), PDF and TMD also at LO. Our
conclusions are in Sec. VI. A number of details can be

found in several appendixes, including the LO result for the
pion generalized distribution function (GPDF).

II. QUARK PROPAGATOR

Key to the analysis of the spontaneous breaking of chiral
symmetry in the random instanton vacuum is the dynamic
appearance of a momentum-dependent constituent mass.
To illustrate this, consider the quark propagator in the chiral
limit and the quenched approximation of QCD

hψðxÞψ†ðyÞi ¼ hhxjð−i=∂ − =A − imÞ−1jyiiA ð1Þ

where the averaging is over the gauge configurations A.
In the instanton vacuum, the gauge configurations are
restricted to the semiclassical set of instantons and anti-
instantons which are sampled either randomly (random
instanton model) or through their semiclassical interactions
(interacting instanton model). Throughout, we will refer to
the instanton liquid model as the random instanton model.
With this in mind and to enforce topological neutrality of
the vacuum, the semiclassical configurations are chosen to
be N

2
instantons and N

2
anti-instantons noninteracting and

randomly distributed in a 4-volume V4, with

A ¼
XN

2

I¼1

AI þ
XN

2

Ī¼1

AĪ: ð2Þ

The instanton and anti-instanton AI;Ī in Eq. (2) are each
represented by an SU(2)-valued matrix embedded in
SU(Nc) with arbitrary orientation UI;Ī in color space and
position zI;Ī in 4-space. For simplicity, all instantons are
chosen to have the same size ρ ≈ 1=3 fm with a density
fixed at n ¼ N=V4 ≈ 2 fm−4. In Fig. 1 we show the
instanton size distribution versus their size ρ in fm from
the instanton liquid model in comparison to SU(2) lattice
simulations [5,21].
In the semiclassical background (2) the quark propagator

can be organized as an expansion in multiple rescatterings
with increasing numbers of instantons and anti-instantons

S−S0 ¼
�X

I

SI −S0þ
X
I≠J

ðSI −S0ÞS−10 ðSJ−S0Þ

þ
X

I≠J;J≠K
ðSI −S0ÞS−10 ðSJ−S0ÞS−10 ðSK −S0Þþ �� �

�
:

ð3Þ

Here S0 ¼ 1=ð−i=∂ − imÞ is the free quark propagator,
SI ¼ 1=ð−i=∂ − =AI − imÞ is the quark propagator in a single
instanton or anti-instanton background and the sum is
over all instantons and anti-instantons. The averaging
denotes independent integrations over the instanton and
anti-instanton positions and color orientations.
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A. Planar resummation

Large-Nc QCD is essentially a quenched approximation
dominated by planar graphs. The same applies to its
semiclassical approximation in terms of a random instanton
vacuum, if we note that n ∼ Nc and that the averaging over
the SU(Nc) color orientations provides extra factors of
1=Nc. The planar contributions to the quark propagator are
resummed through the formal equation [19]

S − S0 ¼
N
2V4

Z
IþĪ

dzIdUI

�
1

1 − SIΔ

�
SIS−10 S

¼ N
2V4

Z
IþĪ

dzIdUIS0

�
1

S0S−1I S0 − S0ΔS0

�
S ð4Þ

with the single instanton (anti-instanton) propagator
SI ¼ S0 þ SI , and the amputated and resummed propagator

S−10 SS−10 ¼ Δþ S−10 : ð5Þ

The integrations in Eq. (4) are over the instanton moduli
for fixed instanton size. The integration over the rigid
gauge color UI projects onto the color-singlet channel,
while the integration over the global 4-position zI restores
translational invariance. Equation (4) is readily recast in
the form

S−1 − S−10 ¼ N
2V4

Z
IþĪ

dzIdUI

�
1

S − S0ðS−10 þ S−1I ÞS0

�
:

ð6Þ

Inserting the identity

S−1I ¼ 1

SI − S0
¼ S−10 ð−AIÞ−1S−1I ð7Þ

in Eq. (6) yields a formal integral equation for the self-
energy [19]

S−1 − S−10 ¼ N
2V4

Z
IþĪ

dzIdUI
1

S − AI
−1

≡ N
2V4

Z
IþĪ

dzIdUIΣI ð8Þ

which sums over a single instanton plus anti-instanton.
The SUðNcÞ averaging in Eq. (8) over UI projects onto the
color-singlet channel, and the z integral restores transla-
tional invariance. Throughout and for simplicity, only the
massless case will be considered with m ¼ 0 unless
specified otherwise.
For S−1 − S−10 ¼ −iσ, Eq. (8) takes the formal gap-like

form

iσ ¼ N
2NcV4

Z
IþĪ

dzITrC

�
=AI

1

i=∂ þ =AI þ iσ
ði=∂ þ iσÞ

�

ð9Þ

with TrC referring to the color trace (in some places below
it will also mean spin as well). The small parameter κ or
packing fraction,

κ ¼ Nρ4

2V4Nc
≡ α2ρ4 ≈ 3.186 × 10−3 ð10Þ

is of order N0
c provided that the instanton density is made to

scale as N=V4 ∼ Nc.

B. Effective mass at LO

The effective mass operator (8) can be sought iteratively
σ ¼ ασ0 þ α2σ1 þ � � �, with a starting correction of order α
and not α2 [19]. At LO,

ΔIðx; yÞ≡ hxj 1

i=∂ þ =AI þ iασ0
jyi ¼ ψ0IðxÞψ†

0IðyÞ
iασ00

þOðαÞ

ð11Þ

where σ00 ¼ h0jσ0j0i ¼
ffiffiffi
2

p jjqφ02jj ∼ ρ is the expectation
value of σ0 in the zero-mode state ψ0I . Its form is given in
Appendix A both in regular and singular gauge. The norm
notation is subsumed. Inserting Eq. (11) into Eq. (9) yields
the effective mass at LO

FIG. 1. Instanton size distribution in pure SU(2) gauge theory
calculated on the lattice [21] and in the interacting instanton
liquid model (IILM) [5]. The unit scale is fm. Closed points
correspond to lattice data with decreasing lattice spacing. Open
points are from an IILM calculation. The solid line is a para-
metrization of the IILM result as discussed in Ref. [5]. The dotted
and dashed lines simply aid the eye. In both pure SU(2) and pure
SU(3), an average value ρ ≈ 1=3 fm is found.
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MðpÞ ≈ ασ0ðpÞ ¼
α

σ00
TrCð=pðψ0IðpÞψ†

0IðpÞ þ ψ0ĪðpÞψ†
0ĪðpÞÞ=pÞ≡

α

σ00
TrCð=pðPIðpÞ þ PĪðpÞÞ=pÞ ¼

αffiffiffi
2

p jpφ0ðpÞj2
jjqφ02jj ð12Þ

where PI is the zero-mode projector. After color tracing,
the effective mass operator is diagonal in spin. The last
relation holds for both the regular and singular gauge, but
with different zero-mode profiles. In singular gauge from
Appendix A we have

MðpÞ
Mð0Þ ¼ ðjzðI0K0 − I1K1Þ0j2Þz¼1

2
ρp: ð13Þ

The effective mass is not analytic in the packing
fraction since α ∼

ffiffiffi
κ

p
. In Fig. 2 we show Eq. (12) for

Mð0Þ ¼ 383 MeV and ρ ¼ 0.313 fm (solid red curve) in
comparison to the lattice-generated effective quark mass
in Coulomb gauge [22]. The spread corresponds to a
99% confidence interval generated by a standard weighted
least-squares regression on the data in Fig. 2, giving
the parameter ranges Mð0Þ ¼ 383� 39 MeV and ρ ¼
0.313� 0.016 fm. At large momenta, MðpÞ ≈ 1=p6 falls
faster than αDs ðp2Þ=p2 with D ¼ 39=27 derived using
short-distance QCD arguments [23], but in good agreement
with the lattice results.

C. Effective mass at NLO

At NLO the effective mass is obtained by further
expanding Eq. (11) and keeping the contributions to order
α. For that, we can organize Eq. (11) formally so that

ΔI ¼
1

i=∂ þ=AI þ iασ00
þ 1

i=∂ þ =AI þ iασ00
ð−iαðσ0 − σ00ÞÞΔI

¼
�

PI

iασ00
þGI

�
þ
�

PI

iασ00
þGI

�
ð−iαðσ0 − σ00ÞÞΔI

ð14Þ
where PI is the projector on the quark zero mode, and GI is
the quark nonzero-mode propagator in the instanton back-
ground. Using the virtual quark eigenstates ði=∂ þ =AIÞψkI ¼
EkψkI and the mode expansion for GI ¼

P
k≠0 ψkIψ

†
kI=Ek

we can explicitly solve for ΔI at NLO

ΔI ¼
PI

iασ00
þ
X
k≠0

ψkIψ
†
kI

Ek
þ PI

X
k≠0

σ0kσk0
Ekσ00

−
X
k≠0

ψkIψ
†
0Iσk0

Ekσ00
−
X
k≠0

ψ0Iψ
†
kIσ0k

Ekσ00
þOðαÞ: ð15Þ

The matrix elements σkl ¼ hkjσjli involve σ only at leading
order or σ0. From Eq. (9) the self-energy at NLO is spin
valued and reads

ΣI ¼ =AI
−1

i=∂ þ =AI þ iσ
ði=∂ þ iσÞ

≈ i=∂ PI

iασ00
i=∂ þ i=∂ð1 − PI σ̂ÞGIð1 − σ̂PIÞi=∂ − i=∂

þ i=∂PI σ̂ þ σ̂PIi=∂ −
β00
iσ200

i=∂PIi=∂ ≈
ΣI0

α
þ ΣI1 ð16Þ

with σ̂ ¼ σ0=σ00. The last contribution was added to
account for the planar resummation to the self-energy
through the gap equation

−iβ00ðpÞ¼
Z

d4xd4yeip·ðx−yÞTrCΣI1ðx;yÞ¼TrCΣI1ðp;pÞ:

ð17Þ
The anti-instanton contribution follows from the substitu-
tion I → Ī. The effective mass at NLO follows by sub-
stituting Eq. (16) into Eq. (9) which is now a true gap
equation because of the contribution (17). The first con-
tribution is in agreement with Eq. (12). The nonzero-mode
contributionGI in Eq. (16) is important for the enforcement
of symmetries at NLO. Its explicit form in singular gauge is
given in Appendix A.

III. MESONIC VERTICES IN THE PLANAR
APPROXIMATION

In this section we formulate the planar resummation for
the two-point functions. We will focus on flavor-singlet

FIG. 2. Momentum dependence of the instanton-induced
effective quark mass in singular gauge (13) at LO (solid
curves), compared to the effective quark mass measured on
the lattice in Coulomb gauge [22] (open circles). The unit scale
is GeV. We obtain the fitted parameter intervals Mð0Þ ¼ 383�
39 MeV and ρ ¼ 0.313� 0.016 fm.
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correlators with a single flavor and ignore vacuum loops,
with the assumption that we are evaluating nonsinglet
flavor correlators where the loop corrections are suppressed
by 1=Nc. We will analyze in detail the resummation for the
two-point pseudoscalar source at LO and NLO.

A. Meson correlators

The T matrix in the planar approximation for rescattering
of two quarks in the 2 → 2 channel, can be formally
constructed using the two-particle irreducible (2PI) kernel

K ¼ N
2V

Z
IþĪ

dzIdUIðΣI ⊗ ΣIÞ ð18Þ

with the color-spin-space-valued self-energy ΣI given in
Eq. (8). We can now use the 2PI kernel to construct any
two-point correlation function in the QCD instanton
vacuum. For that, consider the general local and colorless
source JΓ ¼ ψ†Γψ , say for a meson of spin flavor Γ, and
define the amputated spin-flavor-valued operator

OΓabðP; kÞ ¼ S−1ðkÞhψaðkÞψ†
bðP − kÞJΓðPÞiS−1ðk − PÞ

ð19Þ
where the averaging is carried over the instanton–anti-
instanton vacuum gauge configurations. Equation (19) refers
to a quark of color-spin a and momentum k combining with
a quark of color-spin b and momentum P − k to give a
colorless meson of spin Γ and momentum P.
The resummed instanton contributions to Eq. (19) in the

planar approximation can be obtained by tracing Eq. (19)
with the 2PI kernel (18) with the result

OΓðP; kÞ ¼ Γþ α2ρ4
X
IþĪ

Z
d4p
ð2πÞ4 TrCðΣIðk; pÞ

× SðpÞOΓðP; pÞSðp − PÞΣIðp − P; k − PÞÞ:
ð20Þ

The net effect of averaging over the instanton–anti-
instanton ensemble is the projection onto the color-singlet

channel and momentum conservation. Equation (20) is the
analogue of the Bethe-Salpeter equation for the vertex
functions. Using Eq. (20) the resummed two-point function
for an arbitrary meson correlator in the planar approxima-
tion is

CΓ1Γ2
ðPÞ≡ hOΓ1

ð−PÞOΓ2
ðPÞi

¼ −
Z

d4k
ð2πÞ4 TrCðΓ1SðkÞOΓ2

ðP; kÞSðk − PÞÞ:

ð21Þ

B. Pseudoscalar pion vertex at LO

The leading-order α contribution to the pion pseudosca-
lar correlator can be obtained by setting Γ ¼ γ5, ΣI ∼ Σ0=α
and S ∼ 1=ð=k − iασ0ð0ÞÞ in Eqs. (20)–(21). As will be seen,
many of our expressions will in fact be (logarithmically)
divergent in α. We will encounter integrals of the form

Z
d4k
ð2πÞ4

FðkÞ
ðk2 þ α2σ20ð0ÞÞ

ð22Þ

where FðkÞ is a smooth function that approaches a constant
value as k2 → 0 and rapidly drops off as k2 ≫ ρ−2. To
extract the leading divergent behavior from an integral
of this kind, we may shift k2 → k2 − α2σ20ð0Þ, and sub-
sequently drop corrections to Fðk2 − α2σ20ð0ÞÞ ≈ Fðk2Þ
which only contribute subleading divergent corrections
[e.g., α logðαÞ, α2 logðαÞ, etc.]. As will prove useful later,
it is totally equivalent to instead only shift k2⊥ →
k2⊥ − α2σ20ð0Þ, which then leads to a shift in the lower
bound of integration of only k2⊥,

k2⊥ > α2σ20ð0Þ ¼ M2ð0Þ: ð23Þ
With this in mind, a formal solution follows for the

vertex operator O5ðP; kÞ ≈ γ5F5ðP; kÞ, where the vertex
function F5ðP; kÞ is diagonal in spin space. In singular
gauge, the latter formally satisfies the integral equation

γ5F5ðP; kÞ ¼ γ5 þ φ0ðkÞφ0ðk − PÞjkjjk − Pj
σ200

Z
d4p
ð2πÞ4 F5ðP; pÞ

�
−ψ†

I ðpÞψ Iðp − PÞ 1 − γ5
2

þ ψ†
Ī ðpÞψ Īðp − PÞ 1þ γ5

2

�
:

ð24Þ

This is a Fredholm integral equation of the second kind,
and can be solved with a Liouville-Neumann series, which
is found to be geometric. The solution then follows by
summation with the result

F5ðP; kÞ ¼ 1þ λðPÞφ
0ðkÞφ0ðk − PÞjkjjk − Pj

σ200
ð25Þ

with λðPÞ satisfying

λðPÞ
�
1 −

2

σ200

Z
d4k
ð2πÞ4 φ

02ðkÞφ02ðk − PÞðk2 − k · PÞ
�

¼ 1:

ð26Þ
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For small momentum we have λðPÞ ≈ ð ffiffiffiffiffiffi
Nc

p
=fπÞ=P2,

corresponding to the pion pole in the chiral limit. We note
that the LO contribution (25) amounts to the effective
coupling at the pion pole

ðiO5ðP; kÞÞP2≈0 ≈
ffiffiffiffiffiffi
Nc

p
fπ

ffiffiffiffiffiffiffiffiffiffiffi
MðkÞ

p �
iγ5
P2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðk − PÞ

p
ð27Þ

with the running mass of order α given in Eq. (12). This
LO result is in agreement with the effective vertex follow-
ing from the partially resummed planar diagrams in
Refs. [5–7]. Equation (25) gives the full pion pseudoscalar
vertex on and off mass shell in the massless limit. The
massive case will be discussed below.

C. Pion decay constant f π at LO

The explicit values of gπ and fπ follow from the
pseudoscalar two-point correlation function (21) with
the vertex function (25), which is of order α0 to LO.
More specifically, the pion-pole contribution reads

Cγ5;γ5ðPÞ ≈ −
Z

d4k
ð2πÞ4 Tr

�
γ5F5ðP; kÞ

1

=k
γ5

1

=k − =P

�
≈
g2π
P2

:

ð28Þ

gπ defines the pseudoscalar pion-quark-quark coupling and
at LO is given by

g2π ¼ −Nc

�Z
d4k
ð2πÞ4 ð3φ

04 þ 7ðkρÞφ03φ00

þ ðkρÞ2ðφ03φ000 þ φ02φ002ÞÞ
�

−1
: ð29Þ

The pion decay constant fπ is related to gπ in Eq. (29) by
chiral reduction with

fπgπ ¼ −2ihψ†ψi ≈ 2Nc
Mð0Þ
ð2πρÞ2 ð30Þ

at leading order in the current quark mass. The last identity
is the LO contribution to the chiral condensate, and is the
expected Goldberger-Treiman relation for the effective
quark coupling. Equation (30) is infrared finite and of
order α. Both fπ and gπ are infrared sensitive with

g2π ≈ Nc

�Z
d4k
ð2πÞ4

ð2πρÞ4
k4

�
−1

ð31Þ

and similarly for fπ

f2π ≈ 4Nc

Z
d4k
ð2πÞ4

M2ð0Þ
k4

: ð32Þ

Note that gπ in Eq. (29) and therefore fπ in Eq. (30) are UV
finite with an approximate range of 1=ρ. The infrared
sensitivity follows from the shift which led to Eq. (23). This
shift will be understood throughout.
To logarithmic accuracy g2π ∼ Nc= lnð1=αÞ and f2π ∼

Ncα
2 lnð1=αÞ with

f2π ≈
NcM2ð0Þ

2π2
ln

�
C

ρMð0Þ
�

ð33Þ

modulo a constant C of order 1. f2π captures the chiral
conductivity in the QCD vacuum [24]. Using the values of
Mð0Þρ displayed in Fig. 2 we have C ¼ 0.849 for fπ ¼
86 MeV in the chiral limit, C ¼ 0.897 for fπ ¼ 93 MeV
for massive pions, and C ¼ 1.04453 for fK ¼ 110 MeV
for massive kaons (see below).

D. Pseudoscalar pion vertex at NLO

The pseudoscalar pion vertex can be sought at NLO
using

O5ðP; kÞ ¼ γ5ð1þ F5ðP; kÞÞ þ αF̄5ðP; kÞ þOðα2Þ ð34Þ

in Eq. (20) and the explicit form of the spin-valued self-
energy (16) at NLO. The result is

F̄5ðP; kÞ ¼ KπF̄5ðP; kÞ þ ρ4
X
IþĪ

Z
d4p
ð2πÞ4 TrCðΣI1ðk; pÞS0ðpÞγ5F5ðP; pÞS0ðp−ÞΣI0ðp−; k−Þ

þ ΣI0ðk; pÞS0ðpÞγ5F5ðP; pÞS0ðp−ÞΣI1ðp−; k−ÞÞ ð35Þ

with k−; p− ¼ k − P; p − P. The reduced kernel Kπ involves only the zero modes and satisfies

KπO ¼ ρ4
X
I;Ī

Z
d4p
ð2πÞ4 TrCðΣI0ðk; pÞS0ðpÞOS0ðp−ÞΣI0ðp−; k−ÞÞ: ð36Þ

Equation (35) formally defines an integral-type equation for the spin-valued operator F̄5ðP; kÞ. The homogeneous part does
not iterate due to a mismatch in chirality. In the inhomogeneous contribution, we note that most of the contributions in ΣI1
as given in Eq. (16) do not contribute due to a mismatch in chirality except for δGI ¼ GI − S0, and thus we have
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F̄5ðP; kÞ ¼
X
IþĪ

Z
d4p
ð2πÞ4 TrC

�
=kδGIðk; pÞγ5F5ðP; pÞψ0Iðp−Þ

1

iσ00
ψ†
0Iðk−Þ=k−

�

þ
X
IþĪ

Z
d4p
ð2πÞ4 TrC

�
=kψ0IðkÞ

1

iσ00
ψ†
0IðpÞγ5F5ðP; pÞδGIðp−; k−Þ=k−

�
: ð37Þ

It may be checked that the nonvanishing spin-valued structures of Eq. (37) are of the type γ5=P and γ5=k times invariant
scalars. For estimates, we may use δGI in the Born approximation (singular gauge)

δGIðk; pÞ →
1

S−10 þ i=AI

− S0 ≈ −iS0=AIS0 ≈ iS0

�
γMσ̄MNxNρ2

ðx2 þ ρ2Þx2
�
S0 → 4π2

1

=k

�
γMσ̄MNqN

ðqρÞ2K2ðqρÞ − 2

q4

�
1

=p
ð38Þ

with q ¼ jp − kj. We note that asymptotically GI ≈ S0,
which prompts the use of δGI ≈ 0 in most calculations in
the random instanton model. The Born approximation
allows us to go further.

IV. PION QUASIPARTON DISTRIBUTION
AMPLITUDE

The most extensively studied partonic distribution is the
twist-2 pion PDAwhich characterizes the amplitude to find
a pair of q, q̄ with parton fraction x, x̄ of the pion total
longitudinal momentum and xþ x̄ ¼ 1. The PDA is con-
strained by the empirical pion form factor [1] and is known
at asymptotic scales to be 6xx̄ [25]. At lower scales, there
are model calculations [12–14]. Recently, a QCD lattice
simulation was used to extract the pion QPDA based on the
large-momentum effective theory [2] following the original
suggestion in Ref. [3].
The proposed quasiparton distribution put forth in

Ref. [3], translates to the pion QPDA for twist 2 as

ϕ̃πðx; PzÞ

¼ i
fπ

Z
dz
2π

e−iðx−x̄ÞzPz=2hπðpÞjψ†ðz−Þγzγ5½z−; zþ�ψðzþÞj0i

ð39Þ

where the quark fields are separated along the z direction
at z� ¼ �z=2 in Euclidean space, and ½z−; zþ� is a gauge
link enforcing gauge invariance. Gauge links in Euclidean
space correspond to heavy quark propagators. In the single
instanton or anti-instanton background they are defined in
Appendix C. Long links develop a self-energy of the form
e−Δz, with generically Δ ∼ αρ and typically Δ ≈ 70 MeV
[26]. Note that in the infinite-momentum limit this con-
tribution is of order e−Δ=Pz ≈ 1.
The amplitude (39) is normalized by the partially

conserved axial-vector current condition

Z þ∞

−∞
dxϕ̃πðx; PzÞ ¼

i
fπPz

hπðpÞjψ†ð0Þγzγ5ψð0Þj0i ¼ 1:

ð40Þ

The pion light-cone distribution amplitude follows by
taking the limit Pz → ∞ (infinite momentum) through
perturbative matching [15]. We note that x, x̄ are in general
unbound with 0 ≤ x; x̄ ≤ 1 only expected in the infinite-
momentum limit. More general properties of the QPDA
were recently discussed in Ref. [17]. A more general QPDA
is discussed in Appendix D.

A. Planar approximation

In the random instanton vacuum, typical planar contri-
butions to the matrix element in Eq. (39) are illustrated in
Figs. 3 and 4. It follows from the two-point-like correlator
hJ5J5zi where J5z is a point-split nonlocal source. If we set
the gauge link in Eq. (39) to 1 as we argued earlier, the
properly normalized result at the pion pole is

ϕ̃πðx; PzÞ ¼ lim
P2→0

−i
fπgπ

P2

Pz

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�

× TrCðγzγ5S1O5ðp1; p2ÞS2Þ ð41Þ

where p1;2 ¼ k� P
2
and

FIG. 3. Tree contribution at LO to the pion QPDA.
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p2
1 ¼

�
k4 �

i
2
Eπ

�
2

þ k2⊥ þ x2P2
z ; ð42Þ

p2
2 ¼

�
k4 ∓ i

2
Eπ

�
2

þ k2⊥ þ x̄2P2
z ð43Þ

with Eπ ¼ Pz. We note that Eq. (41) is of order α0 since the
trace part is of order α and fπ ∼ α from Eq. (32).
Specifically, using the pseudoscalar vertex at NLO
[Eq. (34)], we have at the pion pole

ϕ̃πðx; PzÞ ≈ lim
P2→0

−i
gπfπ

P2

Pz

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�
TrC

�
γzγ5

1

=p1

γ5F5ðp1; p2Þ
iασ0ðp2Þ

p2
2

�

þ lim
P2→0

−i
gπfπ

P2

Pz

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�
TrC

�
γzγ5

iασ0ðp1Þ
p2
1

γ5F5ðp1; p2Þ
1

=p2

�

þ lim
P2→0

−i
gπfπ

P2

Pz

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�
TrC

�
γzγ5

1

=p1

αF̄5ðp1; p2Þ
1

=p2

�
ð44Þ

where the trace is now over color-spin. Inserting the pseudoscalar vertices at NLO [Eqs. (25) and (37)] into Eq. (44) gives
the leading contribution of order α0 to the QPDA

ϕ̃πðx; PzÞ ≈ −
4Nc

f2π

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�
ðMðp1ÞMðp2ÞÞ12

�
x̄Mðp1Þ þ xMðp2Þ

p2
1p

2
2

�

þ lim
P2→0

α

gπfπσ00

P2

Pz

X
IþĪ

Z
d4kd4q
ð2πÞ8 δ

�
x −

1

2
−
kz
Pz

�

× ðTrCðγzγ5δGIðp1; q1Þγ5F5ðq1; q2Þψ0Iðq2Þψ†
0Iðp2ÞÞ

þ TrCðγzγ5ψ0Iðp1Þψ†
0Iðq1Þγ5F5ðq1; q2ÞδGIðq2; p2ÞÞÞ ð45Þ

with p1;2¼k�P=2, q1;2¼q�P=2, and Eπ ¼ðP2
zþ

m2
πÞ12→Pz in the chiral limit. The first contribution involves

only the zero modes, while the second contribution
involves the cross contribution from zero modes and
nonzero modes. With the help of the axial Ward identity,
we have checked that to order α0, Eq. (45) with the link
modification (see below) is properly normalized,

Z þ∞

−∞
dxϕ̃πðx; PzÞ ¼ 1: ð46Þ

B. QPDA and PDA at LO

1. Zero-mode contribution

The first contribution in Eq. (45) can be readily evaluated
in singular gauge. It is solely due to the zero modes. We
note that for k4 ¼ 0 a pair of poles satisfying k2⊥ þ x2P2

z ¼
1
4
E2
π pinch the real k4 integration line. To address the pinch,

we rotate to Minkowski space k4 → ik4, shift k4 → k4 þ
ðx − 1

2
ÞPz and carry out the kz integration to have

ϕ̃0
πðxÞ ≈ lim

Pz→∞

−4iNc

f2π

Z
dk4d2k⊥
ð2πÞ4 ðMðy1ÞMðy2ÞÞ12

×

�
x̄Mðy1Þ þ xMðy2Þ

y21y
2
2

�
ð47Þ

with

y21 ¼ −k4ðk4 þ 2xPzÞ þ k2⊥ − iϵ;

y22 ¼ −k4ðk4 − 2x̄PzÞ þ k2⊥ − iϵ: ð48Þ

The integrand in Eq. (47) involves massless poles and also
square-root branch points through the running mass (see
below). The k4 integration can be carried out by contour
integration. The poles are located at

k4� ¼ −xPz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2P2

z þ k2⊥ − iϵ
q

;

k̄4� ¼ þx̄Pz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2P2

z þ k2⊥ − iϵ
q

: ð49Þ

FIG. 4. Star contribution at LO to the pion QPDA.
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The pair k4−; k̄4þ moves to infinity at large momentum
Pz → ∞ and will be ignored (their contribution is expo-
nentially small), while the pair

k4þ ≈
k2⊥ − iϵ
2xPz

;

k̄4− ≈
k2⊥ − iϵ
−2x̄Pz

ð50Þ

approaches the real axis, on opposite sides for xx̄ ≥ 0 and
the same side for xx̄ < 0. In the absence of the cuts, the
QPDA has support only for xx̄ ≥ 0 after pole closing. To
proceed further, we need to address the cuts.

2. Unmodified effective mass at large Pz

In singular gauge, the running mass Mðy1;2Þ at LO in
Eq. (12) is given in terms of modified Bessel functions I, K
[Eq. (A1)]. When expressed in integral form, I and K
exhibit ðy21;2Þ

1
2 branch points. Note that the branch points are

very explicit in regular gauge with Eq. (A3)

Mðy1;2Þ ≈ e−2ρðy
2
1;2Þ

1
2 :

We choose the branch cut for the square-root function
ðða − k4Þðbþ k4ÞÞ12 to be along the negative imaginary axis
such that at large k4 > 0 the value of the square root equals
−i. The contour deformation of the k4 integral into the
upper half-plane, guarantees the positivity of the real part
of y1;2 and thus the decay of Mðy1;2Þ asymptotically. For
xx̄ > 0 the contribution from the poles is purely real, while
for xx̄ < 0 their contribution is complex. To ensure x ↔ x̄
symmetry of the PDA after contour integration, the branch
cuts have to be arranged symmetrically for the x and x̄
contributions in Eq. (47). With this in mind, the result for
the pion distribution amplitude at LO is [k⊥ ≥ Mð0Þ]

ϕ0
πðxÞ ≈

2NcM2ð0Þ
f2π

Z
d2k⊥
ð2πÞ3

1

k2⊥

�
θðxx̄Þ

�
x̄M

1
2⊥ þ xM

1
2⊥
�

þ θð−x̄Þx̄
�
M

1
2⊥ − M̄

3
2⊥
�
þ θð−xÞx

�
M

1
2⊥ − M̄

3
2⊥
��

ð51Þ

with

M⊥ ¼ Mðk⊥=
ffiffiffi
x

p Þ
Mð0Þ ; M⊥ ¼ Mðk⊥=

ffiffiffī
x

p Þ
Mð0Þ ;

M̄⊥ ¼ Mð−ik⊥=
ffiffiffi
x

p Þ
Mð0Þ ; M̄⊥ ¼ Mð−ik⊥=

ffiffiffī
x

p Þ
Mð0Þ ð52Þ

followed by the replacement Mð0Þ → MðkÞ in the pion
decay constant (32), to guarantee the normalization (46).

In the physical region xx̄ > 0, Eq. (51) can be evaluated in
closed form since the integrand is a total derivative,

ϕ0
πðxÞ ≈

2NcM2ð0Þ
ð2πÞ2f2π

�
x̄F

�
ρMð0Þ
2

ffiffiffi
x

p
�
þ xF

�
ρMð0Þ
2

ffiffiffī
x

p
��

→
1

lnð C
ρMð0ÞÞ

�
x̄F

�
ρMð0Þ
2

ffiffiffi
x

p
�
þ xF

�
ρMð0Þ
2

ffiffiffī
x

p
��

: ð53Þ

The rightmost relation follows from the leading-logarithm
approximation for the pion decay constant, with ρMð0Þ ∼ α
and

FðzÞ≡ I1ðzÞK1ðzÞ − I0ðzÞK0ðzÞ: ð54Þ

The infrared sensitivity of the PDA follows from the
enforcement of the power counting as we noted earlier.
It matches the infrared sensitivity of the squared pion decay
constant as given in Eq. (32), and cancels in the ratio after
regulation k⊥ ≥ Mð0Þ as we indicated earlier. To logarith-
mic accuracy, the PDA simplifies to

ϕ0
πðxÞ → θðxx̄Þ ð55Þ

with support only in the physical range and unit normali-
zation. In this deep infrared regime, the pion is composed
democratically of partonic quarks in the range 0 ≤ x ≤ 1
including the end points.
For finite-size instantons, the form factors M⊥;⊥ cause

the PDA to vanish at the end points x ¼ 0, 1 as initially
noted in Ref. [13], but it otherwise develops spurious
contributions in the nonphysical region xx̄ < 0 with real
and imaginary parts. We recall that in the physical region
with xx̄ ≥ 0, the running mass involves a real combination
of the modified Bessel functions I, K as in Eq. (A1),
and a complex combination of the cylindrical Bessel
functions J, N for xx̄ < 0 in the unphysical regions where
momentum is conserved (Pz ¼ xPz þ x̄Pz) but energy is
not (jPzj ≠ jxPzj þ jx̄Pzj).
Current lattice simulations of the quasiparton distribu-

tions [16] exhibit finite contributions outside the physically
allowed x support. However, they are vanishingly small
at large momentum Pz. These spurious contributions are
related to the transversality of the pion distribution in the
QCD instanton vacuum. They do not arise in the 1=Nc
analysis in two dimensions [27]. We now show how to
remove them approximately, without affecting the power
counting in α at LO, and therefore gauge and chiral
symmetry.

3. Modified effective mass at large Pz

At large Pz, an approximative way to eliminate the
spurious contributions without affecting the power count-
ing in α, is through the substitutionMðyÞ → Mðk⊥Þ, which
removes explicit k4 dependence at the integrand level. It is
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cut-free and restricts the final k⊥ integration to the expected
physical range Mð0Þ ≤ k⊥ ≤ 1=ρ. Unfortunately, this sub-
stitution fails at the end points x; x̄ ¼ 0. To see this, we
recall that for fixed k⊥, the contribution to the QPDA
follows from each of the two poles in Eqs. (49)–(50) with at
large Pz

�
y21 ¼ 0∶y22 ¼ 2k4Pz ≈

k2⊥
x

�
and

�
y22 ¼ 0∶y21 ¼ −2k4Pz ≈

k2⊥
x̄

�
: ð56Þ

When a quark (antiquark) goes on mass shell the antiquark
(quark) virtuality becomes parametrically large at the end
points x; x̄ ¼ 0. Say that x; x̄ ≈ α2 ≪ 1 at the end points;
then the k⊥ integration range at each of the poles is
vanishingly small with Mð0Þ ≤ k⊥ ≈ α=ρ ≈Mð0Þ, causing
the PDA to vanish. In contrast, when x; x̄ ≈ α0 away from
the end points, the k⊥ integration range is large with
Mð0Þ ≤ k⊥ ≤ 1=ρ in line with the leading-logarithmic
approximation and power counting in Eq. (53).
A simple modification of the induced effective quark

mass (13) at large Pz, that enforces these observations
without upsetting the power counting in α, that is com-
mensurate with Eq. (56) with manifest x ↔ x̄ symmetry
and free of spurious contributions, is

MðyÞ→M
�

k⊥
λ

ffiffiffiffiffiffiffiffijxx̄jp
�
¼Mð0ÞðjzðI0K0−I1K1Þ0j2Þz¼ ρk⊥

2λπ
ffiffiffiffi
jxx̄j

p

≡Mð0ÞðjzF0ðzÞj2Þz¼ ρk⊥
2λ

ffiffiffiffi
jxx̄j

p ð57Þ

where λπ ≈ α0 is a parameter of order 1, which is fixed by
normalizing the PDA. We note that the PDA is normalized
in power counting at LO for the unmodified effective mass.

With this in mind, the closed-form PDA at LO following
from the large-Pz limit is [k⊥ ≥ Mð0Þ]

ϕ0
πðxÞ →

2Nc

f2π

Z
d2k⊥
ð2πÞ3

θðxx̄Þ
k2⊥

M2
�
k⊥=λπ

ffiffiffiffiffi
xx̄

p �

→
θðxx̄Þ

lnð C
ρMð0ÞÞ

Z
∞

ρMð0Þ=2λ ffiffiffiffi
xx̄

p dzz3F04ðzÞ: ð58Þ

Equation (58) is similar to Eq. (53), but with no spurious
contributions! For x; x̄ ≈ α2, the effective quark mass in
Eq. (58) is probed at virtualities larger than 1=ρ, which is
still justified by noting the agreement of the effective quark
mass with the lattice data at large momenta in Fig. 2.

4. Nonzero-mode contribution

The nonzero-mode contributions in Eq. (45) do not
vanish at finite Pz, but are in general small due to the fact
that at short distances GI ≈ S0 or δGI ≈ 0 (UV limit), a
standard approximation in the random instanton model. For
an estimate of their contribution, we may use the Born
approximation (38) in Eq. (45). A close inspection shows
that the ensuing color-spin traces are short of the binary
pole structure 1=ðy21y22Þ which is required for 1) a finite
contribution as Pz → ∞, and 2) a finite contribution for
xx̄ ≥ 0. In this approximation, the nonzero modes do not
contribute to the PDA as Pz → ∞.
A more explicit evaluation of the nonzero modes in

Eq. (45) follows from the observation that after analytical
continuation the external quark lines are put on mass shell.
The ensuing contribution to Eq. (45) can be worked out in
closed form. Using the modified cutoff, and the brief
definitions of the mass-shell conditions in Appendix E,
the result is

ϕ0
πðxÞ ≈ lim

Pz→∞

α

f2π

ð ffiffiffi
2

p
πρÞ2

σ00Pz

Z
d2k⊥
ð2πÞ3Mðk⊥=λπ

ffiffiffiffiffi
xx̄

p ÞTrðσzððF̄ðP; k2Þ − F̄ðP; k1ÞÞ − ðFðP; k2Þ − FðP; k1ÞÞÞÞ: ð59Þ

Here k1;2 ¼ k� P=2 with k21;2 ≈ 0 in the large-Pz limit and P2 ¼ 0 on mass shell. The first contribution is from the
instanton and the second contribution is from the anti-instanton in the bracket. The form factors are

FðP; pÞ ¼ σzp̄þ pσz
2p · P

f
�
ρ

ffiffiffiffiffiffi
P2

p �
þ
�
σzðP̄þ p̄Þ þ ðPþ pÞσz

ðPþ pÞ2 −
σzp̄þ pσz
2p · P

�
f

�
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ PÞ2

q �
;

F̄ðP; pÞ ¼ σzpþ p̄σz
2p · P

f
�
ρ

ffiffiffiffiffiffi
P2

p �
þ
�
σzðPþ pÞ þ ðP̄þ p̄Þσz

ðP̄þ p̄Þ2 −
σzpþ p̄σz
2p · P

�
f

�
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ PÞ2

q �
ð60Þ

with fðzÞ ¼ zK1ðzÞ − 1. Throughout, the Weyl notation p ¼ pμσ
μ, p̄ ¼ pμσ̄

μ etc. is used with σμ ¼ ð1; σ⃗Þ and
σ̄μ ¼ ð1;−σ⃗Þ. The finite contribution in Eq. (60) when inserted into Eq. (59) cancels out. The nonzero-mode contribution
(59) to the PDA vanishes at LO.
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5. Massive pion and kaon

The explicit breaking of chiral symmetry by light
quark masses u, d, s is understood in the QCD instanton
vacuum, with the masses for the pion and kaon at LO
obeying the Gell-Mann–Oakes–Renner (GOR) relation
[5–7]. In our case, this can be explicitly checked to hold
in power counting. For a finite current mass m a rerun of
the arguments leading to the effective quark mass in
Eq. (12) yields

Mðp;mÞ ¼ αjpφ0ðpÞj2
ð2jjqφ02jj2 þ m2

4α2
Þ12 þ m

2α

þm

≡ Mðp; 0Þ
ð1þ ξ2Þ12 þ ξ

þm ð61Þ

with the mass parameter

ξ ¼ mMð0; 0Þρ2
8π2κ

: ð62Þ

For light quarks Mð0Þ≡Mð0; 0Þ ≈ 386 MeV and ρ ≈
1=ð631 MeVÞ. For massive quarks we find Mð0; 5Þ ≈
383.7 MeV ≈Mð0Þ and Mð0; 150Þ ≈ 372.6 MeV ≈Mð0Þ
for the up/down and strange quarks respectively. The
effective quark mass is almost unchanged. As a result,
the pseudoscalar decay constants for the pion and kaon are
about the same at LO for massive quarks.
For the massive case, the integral equation (25) for the

pseudoscalar meson vertex holds with the substitution

σ00 →

�
2jjqφ02jj2 þ m2

4α2

�1
2 þ m

2α
≈

ffiffiffi
2

p
jjqφ02jj þ m

2α
:

ð63Þ

As a result the mass-shell vertex (27) at LO changes to

ðiO5ðP; kÞÞP2≈−m2
P

≈
ffiffiffiffiffiffi
Nc

p
fP

ffiffiffiffiffiffiffiffiffiffiffi
MðkÞ

p �
iγ5

P2 þm2
P

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðk − PÞ

p
ð64Þ

with fP ≈ fπ andm2
P ≈ i2mhψ†ψi as expected. Note that in

Eq. (64) both fP and MðkÞ are found to be unaffected by
the current massm at the meson pole at LO. The latter only
shifts the meson pole in agreement with the GOR relation.
The ensuing PDA for massive pseudoscalars simplifies

to LO

ϕ0
PðxÞ ≈

2NcM2ð0Þ
f2P

Z
d2k⊥
ð2πÞ3

1

k2⊥ − xx̄m2
P

× ðθðxx̄Þðx̄M⊥ þ xM⊥Þ þ θð−x̄Þx̄ðM⊥ −M⊥Þ
þ θð−xÞxðM⊥ −M⊥ÞÞ ð65Þ

with the same cutoff k⊥ ≥ Mð0Þ for light quarks u, d, s.
For comparison, the result for the modified effective quark
mass (57) is

ϕ0
PðxÞ →

2Nc

f2P

Z
d2k⊥
ð2πÞ3

θðxx̄Þ
k2⊥ − xx̄m2

P
M2ðk⊥=λP

ffiffiffiffiffi
xx̄

p Þ: ð66Þ

In Fig. 5 we show the pion PDA (66) at LO for varying ρ
but fixed Mð0Þ ¼ 386 MeV (solid curves) in comparison
to the asymptotic result of 6xx̄ [25] (dashed curve). We
have set fπ ¼ 93 MeV andmπ ¼ 135 MeV and fixed λπ ¼
3.41894 for the overall normalization of the PDA with the
modified effective mass. (No such modification is needed
for the unmodified effective quark mass). The result at this
low renormalization scale Q0 ¼ 1=ρ is remarkably close to
the QCD asymptotic result of 6xx̄ [25]. The single qq̄
component of the pion wave function is well described
in the random instanton vacuum (RIV) in the planar
approximation at LO. Since the constituent mass Mð0Þ ≈
Mð0; 5Þ ≈Mð0; 150Þ is almost unchanged for u, d, s, the
kaon PDA is almost undistinguishable from the pion
PDA at LO.
Our result for the pion PDA at LO is similar to the one

obtained originally in Ref. [13] using time-like argu-
ments with a modified dipole effective quark mass with
very different analytical properties. It is overall analo-
gous to the one derived from modified holographic
models [9]. As ρ → 0, and the cutoff is removed, the
pion PDA asymptotes to middle solid red curve in Fig. 5
which is close to the normalized step function θðxx̄Þ.
The same result was noted for chiral quark models
with point interactions [11,12], and some bound-state
resummations [10].
In Fig. 6 we compare our result for the pion PDA (RIV,

red solid line) to the recently generated pion PDA
(blue band), using lattice simulations using the large
momentum effective theory (LaMET) [2]. The QCD
asymptotic result (black dashed curve) is again shown
for comparison.

FIG. 5. Pion PDA (66) for varying instanton size ρ but fixed
Mð0Þ ¼ 386 MeV (solid curves) in comparison to the asymptotic
result of 6xx̄ [25] (dashed curve).
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C. QCD evolution of pion PDA

The pion PDA (66) is defined at a low renormalization
scale set by the instanton size Q0 ¼ 1=ρ ¼ 631 GeV.
Assuming factorization, its form at higher renormalization
scales follows fromaQCDkernel evolutionequation(ERBL).
Its closed-form solution in the form of Gegenbauer poly-
nomials was given in Ref. [25]. More specifically, using
Eq. (58) as an initial condition, the ERBL-evolved pion
PDA is [25]

ϕπðx;QÞ ¼ 6xx̄
X

n−even
anðQ0Þ

�
αsðQÞ
αsðQ0Þ

�
γn=β0

C
3
2
nðx − x̄Þ

ð67Þ

with the initial coefficients

anðQ0Þ ¼
2ð2nþ 3Þ

3ðnþ 1Þðnþ 2Þ
Z

1

0

dyC
3
2
nðy − ȳÞϕ0

πðyÞ: ð68Þ

Here αsðQÞ ¼ 4π=β0 lnðQ2=Λ2Þ is the one-loop running
QCD coupling with β0 ¼ 11

3
Nc − 2

3
Nf and Λ ¼ 250 MeV

(MS scheme). The γn are pertinent anomalous dimensions

γn ¼ CF

�
1þ 4

Xnþ1

k¼2

1

k
−

2

ðnþ 1Þðnþ 2Þ
�

ð69Þ

with the Casimir CF ¼ ðN2
c − 1Þ=2Nc. Since γ0 ¼ 1 and

γn > 0, it follows that Eq. (67) asymptotes to 6xx̄ with
a0ðQ0Þ ¼ 1 for Q → ∞ as illustrated in Fig. 5.
In Fig. 7 we show the ERBL-evolved pion PDA (58) at

Q ¼ 2 GeV as a green solid curve (RIV), which is in good
agreement with the empirical pion PDA (blue data points)
extracted from dijet data from the E791 Collaboration [28]
at the same scale. For comparison, we also show the chiral

quark model evolved PDA to Q ¼ 2 GeV as a solid pink
band (QM) [12] and the asymptotic QCD result [25].
Again, since Mð0Þ does not change much for massive
pions and kaons, the ERBL-evolved kaon PDA is indis-
tinguishable from its evolved pion counterpart at LO in the
present analysis.

V. PION QUASIPARTON DISTRIBUTION
FUNCTION

In this section we show how to resum the planar
contributions to the three-point functions in general. We
then apply the results to the derivation of the pion
valence quasiparton distribution function to LO. Since this
distribution obeys charge and momentum sum rules, the
enforcement of the gauge and chiral symmetry through the
Ward identity is needed.

A. Three-point function

The quasiparton distribution functions involve three-
point functions with one of the source point-split in space.
In the planar approximation, their construction follows a
similar reasoning as the one developed earlier. For that,
consider the general three-point function

hO1O3O2i ð70Þ

where the O’s are resummed and colorless local or
quasilocal fermionic bilinears defined as

Oab ¼ TrCðSγβOβαSαδTaγ;δbÞ ð71Þ

and are spin-flavor valued in general. In the planar
approximation, the leading contributions to Eq. (70) are

FIG. 6. Pion PDA from the random instanton model (RIV, solid
red curve) (66) and asymptotic QCD (dashed black curve) [25] in
comparison to the lattice simulations using LaMET (blue wide
band) [2].

FIG. 7. Pion PDA from the random instanton model evolved
to Q ¼ 2 GeV (RIV, solid red curve) (58), the quark model
QM@2 GeV (QM, solid pink band) [12], and asymptotic QCD
(dashed black curve) [25] in comparison to the E791 dijet
data [28].

ARTHUR KOCK, YIZHUANG LIU, and ISMAIL ZAHED PHYS. REV. D 102, 014039 (2020)

014039-12



hO1O3O2i ¼ TrCðO3SO2SO1SÞ þ
N

2NcV

Z
IþĪ

dzITrCðO3Sð−ΣIÞSO2Sð−ΣIÞSO1Sð−ΣIÞSÞ: ð72Þ

The first contribution sums up all planar diagrams with no
common instanton to the three quark lines as illustrated in
Fig. 8. The second contribution corresponds to the planar
contributions with one instanton shared by the three quark
lines. Planarity implies that only one instanton is com-
monly shared by the three quark lines as shown in Fig. 9.
For a finite gauge link ½z−; zþ� there is an additional
contribution shown in Fig. 10 with I, J referring to a
double summation over distinct instantons (anti-instan-
tons). It is readily seen that this contribution reduces to
that shown in Fig. 9 when the gauge link is 1, so it will be

ignored. The direct and cross contributions follow from
pertinent rerouting of the momenta. The extension of
these observations to the n-point functions is now
straightforward.

B. Pion QPDF and PDF at LO

The pion QPDF can also be extracted from the equal-
time correlator following Eq. (1) as suggested in Ref. [3]. In
our case it follows by reduction using the pseudoscalar
source. Specifically, in the chiral limit we have

ψ̃πðx; PzÞ ¼
Z

dz
2π

e−
i
2
ðx−x̄ÞzPzhπðPÞjψ†ðz−Þγz½z−; zþ�ψðzþÞjπðPÞi

≈ lim
P2→0

P4

g2π

Z
dz
2π

e−
i
2
ðx−x̄ÞzPzhO5ð−PÞψ†ðz−Þγz½z−; zþ�ψðzþÞO5ðPÞi: ð73Þ

Following the previous reasoning we may approximate the gauge link as 1 in the large-Pz limit. Using the density expansion
for the pseudoscalar vertex (34) and the effective mass (16) at NLO, we can unwind Eq. (73). The result at LO is

ψ̃πðx;PzÞ

≈− lim
P2→0

P4

g2πPz

Z
d4k
ð2πÞ4δ

�
x−

1

2
−
kz
Pz

�
TrC

�
γz

1

=k1
γ5F5ðP;kÞ

1

=k2
γ5F5ðP;kÞ

1

=k1

�
þcross

þ lim
P2→0

P4

g2πσ200Pz

Z
d4k
ð2πÞ4

d4q
ð2πÞ4

d4p
ð2πÞ4δ

�
x−

1

2
−
kz
Pz

�
TrCðγzψ0Iðk1Þψ†

0Iðq1Þγ5F5ðP;qÞδGIðq2;p2Þγ5F5ðP;pÞψ0Iðp1Þψ†
0Iðk1ÞÞ

þ lim
P2→0

P4

g2πσ200Pz

Z
d4k
ð2πÞ4

d4q
ð2πÞ4

d4p
ð2πÞ4δ

�
x−

1

2
−
kz
Pz

�
TrCðγzψ0Iðk1Þψ†

0Iðq1Þγ5F5ðP;qÞψ0Iðq1Þψ†
0Iðp2Þγ5F5ðP;pÞδGIðp1;k1ÞÞ

þ lim
P2→0

P4

g2πσ200Pz

Z
d4k
ð2πÞ4

d4q
ð2πÞ4

d4p
ð2πÞ4δ

�
x−

1

2
−
kz
Pz

�
TrCðγzδGIðk1;q1Þγ5F5ðP;qÞψ0Iðq2Þψ†

0Iðp2Þγ5F5ðP;pÞψ0Iðp1Þψ†
0Iðk1ÞÞ

ð74Þ

FIG. 8. Tree contribution at LO to the pion QPDF. FIG. 9. Star contribution at LO to the pion QPDF.
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with k1;2 ¼ k� P
2
and so on. The summation over I, Ī is

subsumed. The cross refers to the cross contributions (see
below). All contributions are of order α0 since gπ ∼ α0 and
σ00 ∼ α0. The first contribution involves only the zero
modes. The second to fourth contributions involve the
cross contributions from the zero and nonzero modes. The
latter are required for the enforcement of theWard identities
in power counting, and all contributions are of the same
order in α. We note that the second contribution in Eq. (74)
vanishes due to a mismatch in chirality.

1. Nonzero-mode contribution

An explicit evaluation of the nonzero modes in Eq. (74)
is involved, but follows from the observation that after
analytical continuation the external quark lines are put on
mass shell as we noted earlier for the PDA. In Appendix E
the rules for putting the instanton zero modes and non-
zero-mode propagator on mass shell are given. The
ensuing contribution to Eq. (74) can be worked out in
closed form much like for the PDA. Using the modified
cutoff, the result is

ψ0
πðxÞ ≈ lim

Pz→∞

ð ffiffiffi
2

p
πρÞ2

f2πσ200Pz

Z
d2k⊥
ð2πÞ3 M

2
�
k⊥=λπ

ffiffiffiffiffi
xx̄

p �

× Trðσzð2Fð0; k1Þ þ 2F̄ð0; k1ÞÞ ð75Þ

with k1 ¼ kþ P=2 and k21 ≈ 0 at large Pz. The form
factors are given in Eq. (60). They are zero for the present
kinematics. The nonzero-mode contribution (75) van-
ishes. So in the large-momentum limit the pion PDF at

LO is dominated by the zero-mode contribution which we
now explicitly show.

2. Pion and kaon PDF at LO and large Pz

The first contribution in Eq. (74) is dominated by the
pion pole. Inserting Eq. (25), carrying the spin trace,
unwinding the kz integration and analytically continuing
k4 → ik4 yields [k⊥ ≥ Mð0Þ]

ψ̃0
πðx; PzÞ ≈

4iNc

f2π

Z
dk4d2k⊥
ð2πÞ4

�
Mðy1ÞMðy2Þ

�
xþ x̄
y21y

2
2

þ x
y41

�

þMðy1ÞMðy02Þ
�
−

xþ x̄
y21ðy02Þ2

þ x
y41

��
ð76Þ

with y1;2 given in Eq. (48), and y02 ¼ kþ P in the cross
contribution. Equation (76) can be undone by pole closing.
In the large-Pz limit, the cross contribution in Eq. (76) and
the contribution 1=y41 in Eq. (76) are subleading. Using the
unmodified effective quark mass (13), the result for the
pion valence PDF at LO and large Pz and in the chiral
limit is

ψ0
πðxÞ ≈

2NcM2ð0Þ
f2π

Z
d2k⊥
ð2πÞ3

1

k2⊥
ðθðxx̄Þðx̄M⊥ þ xM⊥Þ

þ θð−x̄Þx̄ðM⊥ −M⊥Þ þ θð−xÞxðM⊥ −M⊥ÞÞ:
ð77Þ

Note that a similar conclusion follows from the free
approximation for the nonzero modes δGI ≈ 0, or the
Born approximation (38). For comparison, the result with
the modified effective quark mass (57) is

ψ0
πðxÞ →

2Nc

f2π

Z
d2k⊥
ð2πÞ3

θðxx̄Þ
k2⊥

M2ðk⊥=λπ
ffiffiffiffiffi
xx̄

p Þ ≈ ϕ0
πðxÞ:

ð78Þ

Away from the chiral limit, the QPDF involves several
contributions that will be presented elsewhere. We have
checked that the PDF limit at LO simplifies. One can split
the valence PDF between the different individual quark
distributions. For the unmodified quark effective mass (13),
the PDF for flavor f in pseudoscalar P or f=P is

ψ0
f=PðxÞ ≈

NcM2ð0Þ
f2P

Z
f

d2k⊥
ð2πÞ3

k2⊥
ðk2⊥ − xx̄m2

PÞ2
ðθðxx̄Þðx̄M⊥ þ xM⊥Þ þ θð−x̄Þx̄ðM⊥ −M⊥Þ þ θð−xÞxðM⊥ −M⊥ÞÞ ð79Þ

while for the modified quark effective mass (57) it is

ψ0
f=PðxÞ →

Nc

f2P

Z
f

d2k⊥
ð2πÞ3

θðxx̄Þk2⊥
ðk2⊥ − xx̄m2

PÞ2
M2ðk⊥=λP

ffiffiffiffiffi
xx̄

p Þ: ð80Þ

FIG. 10. Split contribution at LO to the pion QPDF.
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The f integration is carried out with k⊥ ≥ Mð0; mfÞ,
with f ¼ u, d for the pion and f ¼ u, s for the kaon.
The full valence PDFs are obtained by summing the
individual valence-quark PDFs, i.e., ψπ ¼ ψu=π þ ψd=π ,
and ψK ¼ ψu=K þ ψ s=K.
In Fig. 11 the pion and kaon valence PDFs are shown at

the factorization scale Q ¼ Q0 ¼ 631 MeV (see next
section). Unlike the PDAs, there is a noticeable difference
between the two PDFs. In Fig. 12 the kaon u and s quark
distributions are shown. These two plots exhibit the extent
to which flavor SU(3) symmetry is broken in our calcu-
lations of the integrated PDFs at LO.

C. QCD evolution of pion PDF

To compare the pion valence PDF in the random
instanton vacuum at the inverse instanton size scale
Q0 ¼ 1=ρ ¼ 631 MeV, with the measured pion PDF at
higher resolution we need to evolve the pion PDF (80) to a
higher scale using QCD evolution (DGLAP). The one-loop
DGLAP evolution of the valence (nonsinglet/forward)
pseudoscalar PDF ψPðx; tÞ is

dψPðx; tÞ
dt

¼ αsðtÞ
2π

Z
1

x

dy
y
Pð0Þ
qq

�
x
y

�
ψPðy; tÞ ð81Þ

with t ¼ logðQ2=Λ2
QCDÞ and Pð0Þ

qq ðzÞ is the one-loop non-
singlet splitting function

Pð0Þ
qq ðzÞ ¼ CF

	
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ



: ð82Þ

We numerically evolve from t to tþ Δt by simple forward-
Euler. We sample ψPðx; tÞ on a uniform grid in x, create a
spline interpolation, and evaluate the rhs of Eq. (81) to
calculate dψ . The consistency of the evolution is checked in
two ways: first by verifying that the first few Mellin
moments evolve according to the analytical result

MnðtÞ≡
Z

1

0

xnψPðx; tÞdx ¼ Mðt0Þ
�
αsðtÞ
αsðt0Þ

�
γn=β0 ð83Þ

where γn is the same as before in Eq. (69), and second
by reproducing the evolution of Ref. [12] where the
authors evolved a step function ψPðx; t0Þ ¼ θðxx̄Þ from
Q0 ¼ 313 MeV to Q ¼ 2 GeV with ΛQCD ¼ 226 MeV.
In Fig. 13 we show the result for the pion longitudinal

momentum distribution in our QCD RIV (77) (solid red
curve) evolved to Q2 ¼ 16 GeV2. The data are from the
E615 Collaboration (blue squares) [29], and the improved
E615 data (inverse blue triangles) [30]. The Electron-Ion
Collider (EIC) projection is shown by the solid orange
curve [31]. All are evolved to the same Q2 ¼ 16 GeV2. In
Fig. 14 we show the pion longitudinal distribution in
the QCD RIV (solid red curve) in comparison to recent
lattice results (LCSs, blue band) [32] at a higher scale
Q2 ¼ 27 GeV2. There is good agreement at large x, but the
RIV results fall short at low x. This may be a shortcoming
of our planar approximation which ignores multi-qq̄ or sea
contributions to the pion wave function at low x. We note
that for smaller size instantons ρ → 0, the pion (and kaon)
PDF approaches a step function, as does the PDA shown in
Fig. 5. Its DGLAP evolution is more in line with the data

FIG. 12. Comparison of the valence kaon u-quark distribution
(orange solid) vs s-quark distribution (purple dashed) at the
factorization scale Q ¼ Q0 ¼ 631 MeV.

FIG. 11. Comparison of the pion (red solid) vs kaon (green
dashed) valence longitudinal momentum distributions at the
factorization scale Q ¼ Q0 ¼ 631 MeV.

FIG. 13. Pion valence longitudinal momentum distribution in
the QCD instanton vacuum RIV (solid red curve) (77), the E615
data (blue squares) [29] devolved to Q ¼ 4 GeV with next-to-
NLO DGLAP of Lan et al. [11], improved E615 data (inverse
blue triangles) [30], and the EIC projection (solid orange curve)
[31]. All are presented at the factorization scale Q2 ¼ 16 GeV2.
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for all x (specifically low x where we currently see notice-
able disagreement). These are the results found in Ref. [12].
However, smaller size instantons do not support the key
vacuum parameters we established earlier.

D. Pion and kaon TMD at LO and large Pz

Finally, we note that the integrand in Eq. (80) describes
the parton TMD in a pseudoscalar P. However at this
point we must recall Eq. (23), namely, that our actual
leading-order TMD is only obtained after shifting back
k2⊥ → k2⊥ þM2ð0Þ. It follows that the TMD for the massive
pion at LO is

ψ0
πðx; k⊥Þ →

2Nc

f2π

1

ð2πÞ3
θðxx̄Þðk2⊥ þM2ð0ÞÞ

ðk2⊥ þM2ð0Þ − x̄xm2
πÞ2

×M2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2ð0Þ

p
λ

ffiffiffiffiffi
xx̄

p
�

ð84Þ

while the transverse spatial distribution is

ψ0
πðx; b⊥Þ

→
2Nc

f2π

Z
d2k⊥
ð2πÞ3 e

ik⊥·b⊥ θðxx̄Þk2⊥
ðk2⊥ − x̄xm2

πÞ2
M2ðk⊥=λ

ffiffiffiffiffi
xx̄

p Þ

ð85Þ

with k⊥ ≥ Mð0Þ subsumed. The leading-logarithm contri-
bution to the TMD in the massless case is

ψ0
πðx; b⊥Þ

→
θðxx̄Þ

4 ln
�

C
ρMð0Þ

�
Z

∞

ρMð0Þ=2λ ffiffiffiffi
xx̄

p dzJ0

�
2

ffiffiffiffiffi
xx̄

p zb⊥
ρ

�
z3F04ðzÞ:

ð86Þ

For comparison, the massless pion TMD with the
unmodified effective quark mass (13) in the physical region
xx̄ ≥ 0, is

ψ0
πðx; b⊥Þ ≈

Ncρ
2M2ð0Þ
2f2π

Z
∞

Mð0Þ

k⊥dk⊥
ð2πÞ2 J0ðk⊥b⊥Þ

×

�
x̄
x
F02

�
zk ¼

ρk⊥
2

ffiffiffi
x

p
�
þ x
x̄
F02

�
z̄k ¼

ρk⊥
2

ffiffiffī
x

p
��

ð87Þ

where F0ðzÞ is the z derivative of Eq. (54).
In Fig. 15 we show the pion and kaon transverse spatial

distributions from the QCD random instanton vacuum (87),
at the low renormalization scale Q0 ¼ 631 MeV. The
corresponding distributions in transverse momentum space
are also shown in Fig. 16 at the same scale.

FIG. 15. Pion and kaon transverse spatial distribution from the QCD instanton vacuum (87) with physical masses and at the
renormalization scale Q0 ¼ 631 MeV.

FIG. 14. Pion longitudinal momentum distribution in the QCD
instanton vacuum evolved to Q2 ¼ 27 GeV2 (RIV, solid red
curve) (77) in comparison to the lattice results LCSs (blue band)
at the same scale [32].
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VI. CONCLUSIONS

We revisited the QCD instanton vacuum in the context of
an exact planar resummation of the n-point correlations that
preserves both gauge and chiral symmetry in power counting
using the root of the packing fraction α ≈

ffiffiffi
κ

p
. We analyzed

the induced quark mass, and effective pion pseudoscalar and
pseudovector vertices at NLO with full conformity with the
axial Ward identity in the chiral limit. Next-to-NLO con-
tributions are readily available but tedious.
We used this framework to derive the soft contributions

to the pion and kaon QPDA, QPDF and quasigeneralized
distribution function (QGPDF) following from the QCD
instanton vacuum. The results at LO show that these pion
quasidistributions receive contributions from both the zero
modes and the nonzero modes, but the latter contributions
drop out in the large-momentum limit from the PDA and
PDF. They are made explicit at LO or in the leading-
logarithm approximation.
The results we presented for the pion and kaon partonic

distributions are all evaluated at the low renormalization
scale set by the inverse instanton size 1=ρ ¼ 631 MeV. A
more compelling comparison with data at larger scales
requires perturbative QCD evolution, assuming that fac-
torization holds at this relatively low scale. Good agree-
ment with the existing data for the pion PDAwas found for
all x, and the pion PDF at moderate x.
The present analysis of the pion and kaon quasiparton

distributions relies on a diagrammatic expansion and power
counting in α to analytically enforce chiral and gauge
symmetry. It can be extended to all orders in α using well-
tested numerical simulations for the QCD instanton vac-
uum, that we will present elsewhere. In this respect, cooled
lattice simulations of quasiparton distributions which are
expected to be less noisy than the current simulations,
would be welcome for comparison. The present results can
be extended to the baryons away from the chiral limit.

One of the chief proposals for the forthcoming EIC is the
understanding of the origin of mass and spin in most visible
matter and its budgeting in terms of the fundamental
constituents. The arguments we presented for the pion
and kaon show that most of their composition is due to light
quarks rescattering in a QCD instanton vacuum, giving rise
to a large effective quark mass and small pion and kaon
decay constants or chiral conductivity. The pion and kaon
parton transverse distributions are controlled by the
momentum-dependent effective quark mass, which is
strongly sensitive to the instanton size but weakly sensitive
to the current quark mass for the light u, d, s quarks. The
same mass and chiral conductivity control the valence
partonic distributions of most light and heavy-light hadrons
at low renormalization scale.
Finally, standard lore says that in light front quantiza-

tion (LFQ) the vacuum is trivial. So how do we reconcile
this with the present arguments that show that the
quasiparton distributions for the light mesons carry
vacuum physics all the way to the infinite-momentum
limit? After all, the chiral condensate observed here is a
scalar in all frames, including the light-cone frame. The
answer lies in the neglected zero modes which when
carefully treated in lower dimensions reproduce the chiral
condensate in LFQ [33]. Recently, these zero modes were
argued to accumulate at zero x parton [34], much like a
superfluid component in the otherwise normal fluid light-
cone wave function, and show up as singular distributions
in higher-twist observables as noted in Ref. [35]. It will be
interesting to address these higher-twist distributions in
the present context.
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FIG. 16. Pion and kaon transverse momentum distribution from the QCD instanton vacuum (87) with physical masses and at the
renormalization scale Q0 ¼ 631 MeV.
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APPENDIX A: ZERO MODES AND NONZERO-
MODE QUARK PROPAGATOR

In singular gauge, the instanton and anti-instanton quark
zero modes in momentum space are locked in color-spin
with a specific chirality

ψ0I;ĪðpÞ ¼
ffiffiffi
2

p
φ0ðpÞ=p̂χ�;

φ0ðpÞ ¼ πρ2ðI0ðzÞK0ðzÞ − I1ðzÞK1ðzÞÞ0z¼pρ=2: ðA1Þ

The prime denotes a z derivative and I, K are modified
Bessel functions. The corresponding zero-mode projectors
are

PIðpÞ¼ 2φ02 =p̂χþχ̄− =p̂ ¼φ02ðpÞ
8p2

τ−μ τ
þ
ν =pγμγν=p

1− γ5
2

;

PĪðpÞ¼ 2φ02 =p̂χ−χ̄þ =p̂ ¼φ02ðpÞ
8p2

τþμ τ−ν =pγμγν=p
1þ γ5
2

ðA2Þ

with τ�μ ¼ ðτ⃗;∓ iÞ. For comparison, note that the zero
modes in regular gauge are simpler

ψ0I;ĪðpÞ ¼
ffiffiffi
2

p
φ0ðpÞχ�; φ0ðpÞ ¼ 4πρ2e−pρ=ðpρÞ: ðA3Þ

The nonzero mode are more involved to construct, but
a closed form for their propagator is known in singular
gauge [36]

GIðx; yÞ ¼ γμDx
μΔþðx; yÞ

1þ γ5
2

þ Δþðx; yÞγμDy
μ
1 − γ5
2

;

GĪðx; yÞ ¼ γμDx
μΔ−ðx; yÞ

1 − γ5
2

þ Δ−ðx; yÞγμDy
μ
1þ γ5

2
;

Δ�ðx; yÞ ¼
1

4π2ðx − yÞ2 ð1þ
ρ2

x2
Þ−1

2

�
1þ ρ2τ∓μ τ�ν xμyν

x2y2

�

×

�
1þ ρ2

y2

�
−1
2 ðA4Þ

with the long derivative Dμ ¼ ∂μ − iAμ. Both at short and
large distances Eq. (A4) reduces to the free propagator,
while at intermediate distances it is modified. More
specifically,

GIðx;yÞ≈−
1

2π2
γ · ðx−yÞ
ðx−yÞ2 −

1

16π2
ðx−yÞμγνγ5
ðx−yÞ2 F̃μν ðA5Þ

where F̃ is the dual of F. All omitted terms in Eq. (A5) are
regular in the coincidental limit x → y.

APPENDIX B: PSEUDOVECTOR PION SOURCE
AND AXIAL WARD IDENTITY

In this appendix we detail the construction of the
pseudovector pion source and show that it obeys a
pertinent axial Ward identity at LO. The resummed planar
approximation satisfies the strictures of gauge and chiral
symmetry.

1. Axial-vector pion vertex at LO

For the pion axial correlator we insert

Oμ5ðP; kÞ ¼ γμγ5 þ αFμ5ðP; kÞ þOðα2Þ ðB1Þ

into Eq. (19), and use the LO contribution for the quark
propagator in Eq. (8) and the NLO contribution for the
spin-valued self-energy (16). Power matching in α yields
the spin-valued integral equation

Fμ5ðP; kÞ ¼ KπFμ5ðP; kÞ

þ
X
I;Ī

Z
d4p
ð2πÞ4

�
TrCΣI0ðk; pÞ

iσ
p2

γμγ5S0ðp−ÞΣI0ðp−; k−Þ þ TrCΣI0ðk; pÞS0ðpÞγμγ5
iσ

ðp−Þ2
ΣI0ðp−; k−Þ

þ TrCΣI1ðk; pÞS0ðpÞγμγ5S0ðp−ÞΣI0ðp−; k−Þ þ TrCΣI0ðk; pÞS0ðpÞγμγ5S0ðp−ÞΣI1ðp−; k−Þ
�
: ðB2Þ

Here p− ¼ p − P. The reduced kernel Kπ involves only the zero modes and satisfies

KπO ¼
X
I;Ī

Z
d4p
ð2πÞ4 TrCðΣI0ðk; pÞS0ðpÞOS0ðp−ÞΣI0ðp−; k−ÞÞ: ðB3Þ

The β00 contribution in ΣI1 in Eq. (16) does not contribute to this order, and the ði=∂PI σ̂ þ iσ̂PI=∂Þ contribution cancels
exactly the first two terms in Eq. (B2). The final relation for Fμ5 simplifies
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Fμ5ðP; kÞ ¼ KπFμ5ðP; kÞ þ
X
IþĪ

Z
d4p
ð2πÞ4

�
TrC

�
=kG̃Iðk; pÞγμγ5ψ0ðp−Þψ†

0ðk−Þ
=k−
iσ00

�

þ TrC

�
=k

iσ00
ψ0ðkÞψ†

0ðpÞγμγ5G̃Iðp−; k−Þ=k−
��

: ðB4Þ

Here

G̃I ¼ ð1 − PIσ̂ÞGIð1 − σ̂PIÞ − S0 ðB5Þ

is the projected and subtracted nonzero-mode propagator
which is UV finite. The only nonvanishing contributions to
Eq. (B4) are

−PIσ̂GI −GI σ̂PI þGI − S0: ðB6Þ

If we approximateGI ≈ S0, then Eq. (B4) will reduce to the
first two contributions in Eq. (B2) only. This corresponds to
expanding the propagator to first order while keeping all
Σ’s unchanged. However, this approximation upsets the
axial Ward identity.

2. Axial Ward identity at LO

In the chiral limit the pseudovector pion vertex satisfies
the exact Ward identity

PμOμ5ðk; PÞ ¼ γ5S−1ðk − PÞ þ S−1ðkÞγ5 ðB7Þ

to all orders in α, which guarantees the transversality of the
axial-vector correlator

PνhFμ5ð−PÞFν5ðPÞi

¼
Z

d4k
ð2πÞ4 TrCðγ

μγ5ðS−1ðkÞγ5 þ γ5S−1ðk − PÞÞÞ ¼ 0

ðB8Þ

since S−1ðkÞ ¼ =k − iσðkÞ. The enforcement of the Ward
identity and power counting guarantees chiral and gauge
symmetry. In particular, the extraction of the pion decay
constant in power counting whether from the pseudoscalar
vertex or the pseudovector vertex is unique order by order
in α. This is not the case in the partial resummations used in
Refs. [6,7] where different values of fπ were noted. Since
the normalization of the PDA and PDF involve fπ , the strict
enforcement of the Ward identities is required.
Equation (B7) uniquely fixes the longitudinal part of the

pseudovector pion vertex to all orders in α

Fμ5
L ðk; PÞ ¼ −iγ5ðσðkÞ þ σðk − PÞÞPμ

P2
: ðB9Þ

In contrast, the transverse part is more involved, and can
only be obtained through an expansion. At LO

Fμ5ðk;PÞ¼ λðPÞh0jδFμ5ðk;PÞj0iγ5jkjjk−Pjφ0ðkÞφ0ðk−PÞ
þδFμ5ðk;PÞ: ðB10Þ

Here δFμ5 refers to the inhomogeneous contribution in
Eq. (B4) to order α. The pion pole resides in λðPÞwith δFμ5

regular at P2 ¼ 0. Since h0jδFμ5j0i is of the form ∼kμγ5 or
Pμγ5, it follows that the axial–axial vector correlation
function vanishes to order α. We expect the axial–axial
vector correlator to be transverse and of order f2π ∼ α2, as
we now show.
We now proceed to show that our power counting

enforces Eq. (B8) order by order. For that, consider the
contribution −PI σ̂GI −GIσ̂PI in the inhomogeneous part
of Eq. (B4), and contract it with Pμ. The result is

− TrC=pψ I0ðpÞAμ
I ðPÞψ†

I0ðp − PÞ =p − =P
iσ00

− TrC=pψ I0ðpÞBμ
I ðPÞψ†

I0ðp − PÞ =p − =P
iσ00

ðB11Þ

where we have defined

Aμ
I ¼

Z
d4k
ð2πÞ4 β

†ðpÞγμγ5ψ I0ðk − PÞ;

Bμ
I ¼

Z
d4k
ð2πÞ4 ψ

†
I0ðpÞγμγ5βðp − PÞ ðB12Þ

with

βðpÞ ¼
Z

d4k
ð2πÞ4GIðp; kÞσ̂ðkÞψ I0ðkÞ ðB13Þ

or equivalently (x space)

AI ¼
Z

d4xβ†ðxÞγμγ5ψ I0ðxÞeiPx;

BI ¼
Z

d4xψ†
I0ðxÞγμγ5βðxÞeiPx ðB14Þ

so that
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PμB
μ
I ¼

Z
d4xð−i=DIψ0IÞ†γ5βðxÞeiPx −

Z
d4xψ†

0Iγ5i=DIβðxÞeiPx;

PμA
μ
I ¼

Z
d4xð−i=DIβÞ†γ5ψ0IðxÞeiPx −

Z
d4xβ†γ5i=DIψ0IðxÞeiPx: ðB15Þ

From Eq. (B13) it follows that βðxÞ ¼ R
d4dd4yGIðx; zÞσ̂ðz − yÞψ0ðyÞ, so that the action of =DI on βðxÞ is fixed by the zero

mode only, and similarly for the contribution with GI , which gives

TrC=pC
μ
Iψ

†
0Iðp − PÞ =p − =P

iσ00
þ TrC

=p
iσ00

ψ0IðpÞDμ
I ð=p − =PÞ ðB16Þ

with

Cμ
I ¼

Z
d4yGIðp; yÞγμγ5ψ0IðyÞeiPy;

Dμ
I ¼

Z
d4yψ†

0Iγ
μγ5GIðy; p − PÞeiPy: ðB17Þ

They can be simplified using the same observations. Hence, after contracting with Pμ the results are

PμðAμ
I þ Bμ

I Þ ¼
Z

d4p
ð2πÞ4 ψ

†
0IðpÞγ5ψ0Iðp − PÞ

�
2 −

σp þ σp−P
σ00

�
;

PμC
μ
I ¼ −γ5ψ0Iðp − PÞ þ ψ0IðpÞ

Z
d4k
ð2πÞ4 ψ

†
0IðkÞγ5ψ0Iðk − PÞ;

PμD
μ
I ¼ −ψ†

0IðpÞγ5 þ
Z

d4k
ð2πÞ4 ψ

†
0IðkÞγ5ψ0Iðk − PÞψ†

0Iðp − PÞ: ðB18Þ

Finally, the contribution with 1=i=∂ can be directly calculated and gives after contracting with Pμ

TrC=Pγ5ψ0Iðp − PÞψ†
0Iðp − PÞ =p − =P

iσ00
− TrC

=p
iσ00

ψ0ðpÞψ†
0IðpÞγ5=P: ðB19Þ

While combining the above results, we note that the second terms in C and D cancel with the 2 in the parentheses
ð2 − σ=σ00Þ for A and B, and the contributions γ5ψ0 and ψ

†
0γ

5 in C and D respectively, combine with the contribution 1=i=∂
to give =p − =P or =p respectively. The final result after contracting with Pμ is

X
I

TrC

�
=pψ0IðpÞ

�Z
d4k
ð2πÞ4 ψ

†
0IðkÞ

σk þ σk−P
σ00

γ5ψ0Iðk − PÞ
�
ψ†
0Iðp − PÞ =p − =P

iσ00

�

þ
X
I

TrI

�
γ5ðp − =PÞψ0Iðp − PÞψ†

0Iðp − PÞ
iσ00

ð=p − =PÞ
�
þ
X
I

TrC

�
γ5=p

ψ0IðpÞψ†
0IðpÞ

iσ00
=p

�
: ðB20Þ

Using the definition of Kπ in Eq. (B3) and the gap equation for σ, Eq. (B20) can be written as

ð1 − KπÞð−iγ5σðkÞ − iγ5σðk − PÞÞ ðB21Þ

which is the action of Pμ on the inhomogeneous part of Eq. (B4), or

ð1 − KπÞðPμFμ5ðk; PÞÞ ¼ ð1 − KπÞð−iγ5σðkÞ − iγ5σðk − PÞÞ: ðB22Þ

It follows that

PμFμ5ðk; PÞ ¼ −iγ5σðkÞ − iγ5σðk − PÞ ðB23Þ
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which is the axial Ward identity expanded to first order in α. This concludes our proof that Eq. (B1) and the corresponding
two-point correlation function satisfy the axial Ward identity at LO in α.

APPENDIX C: GAUGE LINK

We can show that to the same order α0 the only contribution of the gauge link in Eq. (39) follows from Eq. (45) with the
substitution

Z
d3p
ð2πÞ3 ψ

†
0Iðp−Þγzγ5δGIðp; kÞ →

Z
d4ydze−iPyþiPzðx−1

2
Þzψ†

0I

�
yþ z

2

�
γzγ5

	
yþ z

2
; y −

z
2



I
δGI

�
y −

z
2
; k

�
ðC1Þ

for the first term, and similarly for the second term. The gauge link involves the z propagation of a quark in a single
instanton,

	
yþ z

2
; y −

z
2



I
¼

D
yþ z

2

��� 1

i∂z − AIz

���y − z
2

E
ðC2Þ

and restores explicit gauge invariance in Eq. (45) to order α0. For instance, in the regular gauge with AM ¼ −σ̄MNxN 1
x2þρ2

,

the gauge link simplifies

	
yþ z

2
; y −

z
2



I;Ī

¼ cosFðr3; yz; zÞ � iσ · r̂3 sinFðr3; yz; zÞ ðC3Þ

with

Fðr3; yz; zÞ ¼
Z

1

−1
dτ

	
r3 z

2

r23 þ ρ2 þ ðyz þ τz
2
Þ2


¼ r3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r23 þ ρ2
p

	
arctan

�
yz þ z

2

ðr23 þ ρ2Þ12
�
− arctan

�
yz − z

2

ðr23 þ ρ2Þ12
�


: ðC4Þ

APPENDIX D: GENERALIZED QPDA

The pion QPDA (18) in the random instanton vacuum is part of a larger class of quasidistributions. For instance, the LO
contribution (47) can be recast in the general form

ϕ̃0
πðx; n; PÞ ¼ −

4iNc

f2π

Z
d4k
ð2πÞ4 δ

�
n · k −

�
x −

1

2

�
n · P

�
ðMðy1ÞMðy2ÞÞ12

ðn · p1Mðy2Þ þ n · p2Mðy1ÞÞ
y21y

2
2

ðD1Þ

where n is an arbitrary 4-vector, using Minkowski signature
and the causal assignment for the poles. Lorentz and
“scale” invariance imply

ϕ̃0
πðx; n; PÞ≡ ϕπ

�
x; P2;

n2

ðn · PÞ2
�
: ðD2Þ

For time-like n ¼ n− and space-like n ¼ nz we have
respectively the PDA and QPDA, i.e.,

ϕ0
πðxÞ ¼ ϕ̃0

πðx;m2
π; 0Þ; ϕ̃0

πðx; PzÞ ¼ ϕ̃0
π

�
x;m2

π;
1

P2
z

�
:

ðD3Þ

For large Pz, the pion QPDA reduces to the PDA in the
random instanton vacuum.

APPENDIX E: ZERO AND NONZERO
MODES ON SHELL

The zero and nonzero modes entering our analysis of the
PDA and PDF simplify when they are put on mass shell
which is the leading contribution for the quasidistributions
in the large-Pz limit. For the zero modes, the mass-shell
reduction yields constant Weyl spinors. From Eq. (A1) we
have for the zero modes

=pψ0I;0ĪðpÞ → −
ffiffiffi
2

p
πρχ� ðE1Þ
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with p2 ¼ 0. For the nonzero modes we have

Z
d4xe−iq·xψþ

0IðxÞσ̄zδGIðx; pÞip̄ → Fðq; pÞ;
Z

d4xe−iq·xipδḠIðp; xÞσzψ0IðxÞ → F̄ðq; pÞ ðE2Þ

with δḠI following from δGI by barring the Weyl con-
tributions. A tedious derivation following the arguments

presented in Ref. [37] gives for the mixed and sub-
tracted instanton nonzero-mode contributions the results
in Eq. (60).

APPENDIX F: PION QGPDF AT LO

The pion QGPDF can also be extracted from the equal-
time correlator following Eq. (1) as suggested in Ref. [3],
with formally

Ψ̃πðx; q; PÞ ¼
Z

dz
2π

e−iðx−x̄ÞzpzhπðPþ qÞjΨ̄ðz−Þγz½z−; zþ�ΨðzþÞjπðPÞi: ðF1Þ

In the random instanton vacuum Eq. (F1) follows from the same reduction rules as those for the quasi-distribution amplitude
(QDA) and QPDA detailed above. Both the zero modes and nonzero modes contribute to order α0 to LO, but the dominant
contribution stems from the zero modes in the large-momentum limit as we noted earlier. The LO result for the QGPDF after
spin-color contractions and the free approximation for the nonzero modes δGI ≈ S0, is

Ψ̃0
πðx; q; PÞ ≈

4iNc

f2π

Z
dk4d2k⊥
ð2πÞ4 ðMðk1ÞM2ðk2ÞMðk3ÞÞ12

�
kz1 þ kz3
2k21k

2
3

þ kz1
2k21k

2
2

þ kz3
2k22k

2
3

−
kz2
k22k

2
3

−
kz2k1 · q
k21k

2
2k

2
3

�
þ cross ðF2Þ

with k⊥ ≥ 0 subsumed, kz ¼ xPz and

k1 ¼ k −
q
2
; k2 ¼ −P −

q
2
þ k; k3 ¼ kþ q

2
: ðF3Þ

The cross terms have the same structure but with the substitution k2 → k02 ¼ Pþ kþ q
2
. The GPDF follows from Eq. (F2) in

the large-Pz limit. It will be analyzed elsewhere.
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