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The lightest hidden-bottom tetraquarks in the dynamical diquark model fill an S-wave multiplet
consisting of 12 isomultiplets. We predict their masses and dominant bottomonium decay channels using a
simple three-parameter Hamiltonian that captures the core fine-structure features of the model, including
isospin dependence. The only experimental inputs needed are the corresponding observables for
Zbð10610Þ and Zbð10650Þ. The mass of Xb, the bottom analogue to Xð3872Þ, is highly constrained in
this scheme. In addition, using lattice-calculated potentials we predict the location of the center of mass of
the P-wave multiplet and find that Yð10860Þ fits well but the newly discovered Yð10750Þ does not, more
plausibly being a D-wave bottomonium state. Using similar methods, we also examine the lowest S-wave
multiplet of six cc̄ss̄ states, assuming as in earlier work that Xð3915Þ and Yð4140Þ are members, and
predict the masses and dominant charmonium decay modes of the other states. We again use lattice
potentials to compute the centers of mass of higher multiplets and find them to be compatible with the
masses of Yð4626Þ (1P) and Xð4700Þ (2S), respectively.
DOI: 10.1103/PhysRevD.102.014036

I. INTRODUCTION

The modern study of hadrons that manifest exotic
valence-quark content has produced numerous surprises in
both experiment and theory, as reviewed in Refs. [1–11]. As
of this writing, more than 40 candidates have been observed
in the heavy-quark sector. However, the fundamental organ-
izing principle underlying their spectroscopy has proved
elusive, unlike the clear structure derived from quark-
potential models in the conventional cc̄ and bb̄ sectors [12].
For instance, one may attempt to model multiquark

exotics using the original molecular picture of two conven-
tional hadrons bound via light-meson (e.g., π) exchange
[13,14]. This approach can provide some guidance regarding
which thresholds might be expected to support a molecule
[15,16]. However, hadronic molecules lack a regularly
spaced spectrum because the pattern of mass splittings
among the light and heavy-light hadrons acting as their
constituents is itself nontrivial, being obscured by the
specifics of strong-interaction dynamics. In addition, a
composite state of a given width cannot form if either
constituent hadron has a larger width, and it remains unclear

whether molecular formation is limited to the case in which
the constituents are in a relative S wave. Indeed, calculating
the detailed properties of hadronic molecules appears to
require the careful consideration of a variety of near-thresh-
old effects such as cusps and rescattering diagrams [5].
The JPC ¼ 1þþ Xð3872Þ, the first heavy-quark exotic

state discovered [17], is touted as the ne plus ultra of
hadronic molecules, and no reasonable researcher can deny
that the absurdly small splitting mXð3872Þ −mD0 −mD�0 ¼
þ0.01� 0.18 MeV indicates the controlling influence of
the state D0D̄�0 (charge conjugates understood) over the
nature of the resonance. And yet, the very proximity of
Xð3872Þ to threshold indicates that it is almost certainly not
a “traditional” molecule of the type described above, but
rather its precise mass eigenvalue relies in an intrinsic
way upon threshold effects. Several observed features of
Xð3872Þ point to a complicated structure; for example, its
substantial collider prompt production rate suggests that
Xð3872Þ possesses a tightly bound component, but the
suppression of this rate with increasing charged-particle
multiplicity in pp collisions as compared to that of ψð2SÞ
[18] suggests that Xð3872Þ may more easily dissociate in a
dense particle environment, as one expects for a molecule.
A typical resolution of this conundrum is to suppose that
the 1þþ conventional charmonium state χc1ð2PÞ, predicted
by potential models to lie around 3925 MeV [19] but
conspicuously absent from the data, mixes to a significant
degree with a D0D̄�0 state to form the physical Xð3872Þ.
The χc1ð2PÞ is not the only example of a tightly bound

state that can mix with Xð3872Þ. Diquark models also
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produce a single isoscalar 1þþ tetraquark state as one of
their lowest hidden-charm excitations, appearing in the
color-attractive arrangement ðcqÞ3̄ðc̄ q̄Þ3 [20]. Typical
diquark δ≡ ðcqÞ3̄ masses of ∼1.9 GeV naturally produce
such a 1þþ δ − δ̄ state in the vicinity of 3.9 GeV [21].
Xð3872Þ might actually, in the end, prove to be a perfect
storm of a D0D̄�0 molecular state enhanced by threshold
effects, mixing with the otherwise isolated conventional
charmonium χc1ð2PÞ state and the lowest-lying isoscalar
1þþ δ-δ̄ state.
Thevariant diquarkmodel used in thiswork is the so-called

“dynamical” diquark model, which was developed [22] to
address the issue of how δ-δ̄ states persist long enough to
be observed, rather than their quarks instantly recombining
through themore strongly attractive 3⊗ 3̄→1 color coupling
into meson pairs. The physical picture has two components:
First, a heavy quarkQmust be created in closer proximity to a
quarkq than to an antiquark q̄, and form a somewhat compact
diquark quasiparticle δ≡ ðQqÞ3̄, and vice versa for δ̄; and
second, the large energy release of the production process
drives apart the δ-δ̄ pair before recombination into a meson
pair can occur, creating an observable resonance.1 A similar
mechanism using color-triplet triquarks extends the picture
to pentaquark formation [23].
This physical picture was developed into a predictive

model [24] by describing the color flux tube that connects
the separating δ-δ̄ pair using the language of potentials in
the Born-Oppenheimer (BO) approximation. These poten-
tials are the same ones appearing in QCD lattice gauge-
theory simulations of heavy-quark hybrid mesons [25–29],
so they may be applied directly to obtain numerical results
for the δ-δ̄ spectrum [21], since both systems involve glue
connecting heavy color 3 and 3̄ sources. The lowest BO
multiplets are all found numerically to lie in the Σþ

g

potential,2 and in order of increasing mass are 1S, 1P,
2S, 1D, and 2P. The parity of all states in each Σþ

g multiplet
is simply given by ð−1ÞL.
As first proposed in Ref. [30], the dominant spin-spin

couplings in the δ-δ̄ states (as supported by comparison to
observation) appear to be the ones within each of δ and δ̄.
The strength of this coupling is denoted by κqQ, where Q
refers to the heavy quark and q the light quark in δ. The

dominance of these particular spin couplings arises natu-
rally if δ and δ̄ are more compact than the full exotic state in
which they appear. Furthermore, the near-universal pre-
diction that spin-singlet couplings within diquarks are more
attractive than spin-triplet couplings leads to the expect-
ation that κqQ > 0. A detailed numerical examination of the
effect of including a finite diquark size is one of the primary
thrusts of Ref. [31]; there it is found that the calculated state
masses are remarkably stable as long as the diquark wave
functions no longer significantly overlap when the distance
R between their centers exceeds the critical value of 0.8 fm.
In other words, the diquarks may have radii as large as
R=2 ≃ 0.4 fm and still be considered compact for the
purpose of the model. Indeed, Ref. [31] also found that
observation [specifically, the experimental absence of a
charged partner to Xð3872Þ] does not support the dominant
isospin dependence in the δ-δ̄ state being one that couples to
diquarks as truly pointlike objects, but the model works quite
well when the dominant isospin dependence is instead taken
to couple only to the light quarks within δ and δ̄. (And, of
course, isospin exchange is irrelevant for cc̄ss̄ states.)
The mass spectrum and preferred heavy-quark spin-

eigenstate decay modes of the 12 isomultiplets (6 isosing-
lets and 6 isotriplets) comprising the cc̄qq̄0 Σþ

g ð1SÞ
multiplet (q; q0 ∈ fu; dg) was studied in Ref. [31]. This
was the first work to differentiate I ¼ 0 and I ¼ 1 states in
a diquark model. The model naturally produces scenarios in
which Xð3872Þ is the lightest member; and of the two
I ¼ 1, JPC ¼ 1þ− states, the Zcð3900Þ naturally decays to
J=ψ and the Zcð4020Þ to hc, as is observed. The simplest
model uses a three-parameter Hamiltonian: a common
multiplet mass, an internal diquark-spin coupling, and a
long-distance isospin-dependent coupling between the light
quark q in δ and light antiquark q̄0 in δ̄. The corresponding
analysis of the 28 states of the negative-parity cc̄qq̄0 Σþ

g ð1PÞ
multiplet, which includes precisely 4 Y states (JPC ¼ 1−−),
was performed in Ref. [32]. In this case, the simplest model
has five parameters, including now spin-orbit and tensor
terms. An earlier diquark analysis using a similar
Hamiltonian but not including isospin appears in Ref. [33].
In this paper we extend the study of the dynamical

diquark model to the Σþ
g ð1SÞ multiplet in the hidden-

bottom (bb̄qq̄0) sector (again, 12 isomultiplets) and the
hidden-charm, hidden-strange (cc̄ss̄) sector (six states).
Remarkably, using only the well-known Zbð10610Þ and
Zbð10650Þ states—often themselves identified as BB̄� and
B�B̄� molecules, respectively—and rough information
from their ϒ and hb branching ratios, one can predict
masses of the remaining 10 states and their preferred
heavy-quark decay channels with surprising accuracy.
The analysis of the cc̄ss̄ states builds upon that of
Ref. [34] [which assumes that Xð3915Þ and Yð4140Þ are
cc̄ss̄ states] to reflect the current state of data and to
develop a better understanding of the underpinnings of the
model. The negative-parity Σþ

g ð1PÞ multiplet consists of

1Equivalently, the full four-quark wave function has a large
overlap with two-meson states when its δ,δ̄ components have a
small relative momentum, and a large overlap with an idealized
δ-δ̄ state (and a suppressed overlap with two-meson states) when
this relative momentum is large.

2A full definition of the standard BO potential notation is
presented in Ref. [24]. The specific case Σþ

g means that the
projection of angular momentum along the axis connecting the
heavy sources has eigenvalue 0, and that the light degrees of
freedom are symmetric under two reflections: through a plane
perpendicular to and bisecting this axis, and under the CP
inversion of the light degrees of freedom (using the midpoint
of the heavy sources as the origin).
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28 states for bb̄qq̄0 and 14 states for cc̄ss̄, but only a very
small number of candidates have been observed for each
type; nevertheless, we use the approach of Ref. [21] to
predict the centers of mass of the Σþ

g ð1PÞ and Σþ
g ð2SÞ

multiplets, and we find that most of the candidates lie in the
anticipated mass regions [the exception being Yð10750Þ,
which we argue to be a conventional bottomonium state].
This paper is organized as follows: In Sec. II we review

the current data on bb̄qq̄0 and cc̄ss̄ candidates. Section III
reprises the analysis of Ref. [31], as applied to these
sectors. The naming scheme for levels comprising the
Σþ
g ð1SÞ multiplets is defined in Sec. IV, and we present

explicit expressions for their masses in terms of the model
parameters. Numerical analysis of states in the bb̄qq̄0 and
the cc̄ss̄ sectors appears in Sec. V, where both mass
eigenvalues and mixing parameters relevant to heavy-quark
decay modes are predicted. We conclude in Sec. VI.

II. EXPERIMENTAL REVIEW

A. The bb̄qq̄0 sector

Of all hidden-bottom states thus far observed, only a
handful are exotic candidates, which are summarized
in Table I. The most familiar examples are the I ¼ 1,

JPC ¼ 1þ− states Zbð10610Þ and Zbð10650Þ. Their prox-
imity to the thresholds for BB̄� (10604.2� 0.3 MeV) and
B�B̄� (10649.4� 0.4 MeV), respectively, suggests a natu-
ral identification as molecular states. These states also
possess hidden-charm analogues Zcð3900Þ and Zcð4020Þ
that carry the same quantum numbers, which indeed lie
near the DD̄� and D�D̄� thresholds, respectively.3

Nevertheless, Zcð3900Þ and Zcð4020Þ were found in
Ref. [31] to serve naturally as the I ¼ 1, JPC ¼ 1þ−

members of the ground-state Σþ
g ð1SÞ multiplet of the

dynamical diquark model, and so in this work we inter-
pret the two Zb states analogously. Furthermore, both
Zbð10610Þ and Zbð10650Þ, as the Zc states, have been
observed to decay to both closed [37] [ϒðnSÞ, hbðnPÞ] and
open [38] [Bð�ÞB̄�] heavy-flavor states. However, the Zb
and Zc states differ in one important regard: The observed
charmonium decays of Zcð3900Þ to date all have total
charm-quark spin scc̄ ¼ 1 (i.e., that of J=ψ), while those of
Zcð4020Þ have scc̄ ¼ 0 (i.e., that of hc), and obtaining this

TABLE I. All bottomoniumlike exotic-meson candidates catalogued by the Particle Data Group (PDG) [12]. Also included is the
recently observed Yð10750Þ [39]. Both the particle name most commonly used in the literature and its label as given in the PDG are
listed. Only bottomonium decays are listed, and branching ratios are given where available.

Particle PDG label IGJPC Mass [MeV] Width [MeV] Production and decay

Zbð10610Þ� Zbð10610Þ� 1þ1þ− 10607.2� 2.0 18.4� 2.4 eþe− → Z; Z →

8>>><
>>>:

ϒð1SÞπþπ− ð5.4þ1.9
−1.5 Þ × 10−3

ϒð2SÞπþπ− ð3.6þ1.1
−0.8 Þ%

ϒð3SÞπþπ− ð2.1þ0.8
−0.6 Þ%

hbð1PÞπþπ− ð3.5þ1.2
−0.9 Þ%

hbð2PÞπþπ− ð4.7þ1.7
−1.3 Þ%

Zbð10610Þ0 Zbð10610Þ0 1þ1þ− 10609� 6 18.4� 2.4 eþe− → Z; Z →

�
ϒð2SÞπ0
ϒð3SÞπ0

Zbð10650Þ� Zbð10650Þ� 1þ1þ− 10652.2� 1.5 11.5� 2.2 eþe− → Z; Z →

8>>><
>>>:

ϒð1SÞπþπ− ð1.7þ0.8
−0.6 Þ × 10−3

ϒð2SÞπþπ− ð1.4þ0.6
−0.4 Þ%

ϒð3SÞπþπ− ð1.6þ0.7
−0.5 Þ%

hbð1PÞπþπ− ð8.4þ2.9
−2.4 Þ%

hbð2PÞπþπ− ð15� 4Þ%

Yð10750Þ ϒð10750Þ 0−1−− 10752.7þ5.9
−6.0 35.5þ18.0

−11.8 eþe− → γY; Y →

(ϒð1SÞπþπ−
ϒð2SÞπþπ−
ϒð3SÞπþπ−

Yð10860Þ ϒð10860Þ 0−1−− 10889.9þ3.2
−2.6 51þ6

−7 eþe− → γY; Y →

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ϒð1SÞπþπ− ð5.3� 0.6Þ × 10−3

ϒð2SÞπþπ− ð7.8� 1.3Þ × 10−3

ϒð3SÞπþπ− ð4.8þ1.9
−1.7 Þ × 10−3

ϒð1SÞKþK− ð6.1� 1.8Þ × 10−4

hbð1PÞπþπ− ð3.5þ1.0
−1.3 Þ × 10−3

hbð2PÞπþπ− ð5.7þ1.7
−2.1 Þ × 10−3

ηϒJð1DÞ ð4.8� 1.1Þ × 10−3

χb1ð1PÞπþπ−π0 ð1.85� 0.33Þ × 10−3

χb2ð1PÞπþπ−π0 ð1.17� 0.30Þ × 10−3

3Although we identify the Zcð3900Þ as a δ-δ̄ state, its nature
is still fiercely debated in the literature (among many references,
note Ref. [35] for its discussion in amplitude analyses and
Ref. [36] for a recent lattice simulation).
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idealized mixing in a natural way is one of the central
results of Ref. [31]. However, a glance at Table I shows that
the Zb system is rather different: Both Zb states decay to
states with sbb̄ ¼ 0 and 1 (ϒ and hb) with fairly comparable
branching ratios.
The current experimental situation for the hidden-bottom

sector also differs from the hidden-charm sector in one
obvious respect: In the latter, the most obvious and best-
studied state is the neutral 1þþ Xð3872Þ. However, the
hidden-bottom analogue Xb (IG ¼ 0þ, JPC ¼ 1þþ) has not
yet been observed, despite a number of searches [40–42].
Partly, this absence reflects the relative difficulty of probing
the hidden-bottom sector with limited energy [e.g., at
the original Belle experiment operating at a center-of-
momentum energy equal to the ϒð4SÞ mass [40] ] or
limited only to the decay channel ϒð1SÞπþπ− (at the
LHC [41,42]), which has oppositeG-parity to that expected
for Xb. It would be truly surprising in both molecular
models and diquark models (as well as in coupled-channel
and QCD sum-rule approaches) were the Xb state to fail to
exist; as a result, a great deal of theoretical effort has been
invested in studying the conjectured Xb [14,16,40–58].
Bounding the possible range for the Xb mass and deter-
mining whether any hidden-bottom exotics can be even
lighter constitute a major goal of this work.
Table I presents two further observed exotic candidates,

both with JPC ¼ 1−−. The Yð10750Þwas recently observed
at Belle [39] and has already been studied as a diquark
state [59] and within QCD sum rules [60]. Additionally,
Yð10750Þ and the remaining exotic candidate Yð10860Þ
have been argued to be conventional bottomonium states
[61,62]. One should note, however, that Yð10860Þ (as the
Zb states) has both sbb̄ ¼ 0 and sbb̄ ¼ 1 decay modes (thus
violating heavy-quark spin symmetry in its decays if it is
conventional bottomonium). In contrast, Yð10750Þ has thus
far been observed to decay only to ϒðnSÞ. In addition,
Yð10750Þ lies only 100 MeV above the Zb states, which
would indicate a much smaller 1P-1S splitting (assuming
they share a related structure) than between corresponding
bottomonium states (e.g.,mχbJð1PÞ −mϒð1SÞ > 400 MeV).

We argue in Sec. V that Yð10860Þ is well suited to being a
Σþ
g ð1PÞ excitation of Σþ

g ð1SÞ states such as Zbð10610Þ and
Zbð10610Þ, but Yð10750Þ is not.

1. The cc̄ss̄ sector

The most likely hidden-charm-strange (cc̄ss̄) exotic
candidates are listed in Table II. Almost all have been
seen exclusively in the decay channel ϕJ=ψ , which
indicates that each either has a valence cc̄ss̄ quark content
or is a pure cc̄ state decaying through an Okubo-Zweig-
Iizuka (OZI)-suppressed channel. Similar statements apply
to the newly observed Yð4626Þ [63,64], which has been
observed to decay thus far only to channels of open charm
and strangeness.
Xð3915Þ has been included in Table II as the lightest

cc̄ss̄ candidate despite having no observed decays to states
of hidden or open strangeness.4 Upon its discovery,
Xð3915Þ was immediately assigned by the PDG as the
first radial excitation χc0ð2PÞ of the conventional charmo-
nium state χc0ð1PÞ. However, this identification was found
to be problematic for several reasons [66–69]: First, the
mass splitting between χc2ð2PÞ and Xð3915Þ (only about
10 MeV [12]) is smaller than the χc2ð2PÞ-χc0ð2PÞ splitting
expected from quark potential models; furthermore, one
would expect χc0ð2PÞ (or a cc̄qq̄ exotic) to decay promi-
nently into DD̄, but the dominant observed Xð3915Þ decay
channel is actually the OZI-suppressed mode ωJ=ψ . These
features led Ref. [34] to suppose that Xð3915Þ is actually a
cc̄ss̄ state, its ωJ=ψ decay possibly proceeding by means
of a small ss̄ component in ω. Indeed, the subsequent Belle
discovery of χc0ð3860Þ [70] as a candidate with the
expected properties of the missing χc0ð2PÞ sharpens the
case for arguing that Xð3915Þ is exotic [71].
S-wave hidden-charm-strange exotics have been dis-

cussed by multiple authors [72–93], using methods as

TABLE II. All candidate hidden-charm-strange states catalogued by the Particle Data Group [12]. Also included is Yð4626Þ [63,64].
Both the particle name most commonly used in the literature and its label as given in the PDG are listed.

Particle PDG label IGJPC Mass [MeV] Width [MeV] Production and decay

Xð3915Þ χc0ð3915Þ 0þð0 or 2Þþþ 3918.4� 1.9 20� 5
eþe− → X; X →

�
ωJ=ψ
γγ

Yð4140Þ χc1ð4140Þ 0þ1þþ 4146.8� 2.4 22þ8
−7 B → KY

pp̄ → Y þ anything

�
; Y → ϕJ=ψ

Yð4274Þ χc1ð4274Þ 0þ1þþ 4274þ8
−6 49� 12 B → KY; Y → ϕJ=ψ

Xð4350Þ Xð4350Þ 0þ??þ 4351� 5 13þ18
−10 γγ → X; X → ϕJ=ψ

Xð4500Þ χc0ð4500Þ 0þ0þþ 4506þ16
−19 92� 29 pp̄ → X; X → ϕJ=ψ

Yð4626Þ ψð4626Þ 0−1−− 4624� 5 49� 13 eþe− → γY; Y → Dþ
s Ds1ð2536Þ−; Dþ

s D�
s2ð2573Þ−

Xð4700Þ χc0ð4700Þ 0þ0þþ 4704þ17
−26 120� 50 pp̄ → X; X → ϕJ=ψ

4Xð3915Þ lies below both the ϕJ=ψ and the DsD̄s thresholds.
The mode ηηc is possible, but here only an upper bound is
known [65].
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varied as ordinary (tetra)quark models, diquark models,
molecular/rescattering models, and QCD sum rules (as well
as combinations of these). Following on the observation of
the negative-parity Yð4626Þ, P-wave cc̄ss̄ states have also
recently been considered [94,95].
The precise nature of the two 1þþ states Yð4140Þ and

Yð4274Þ in Table II is particularly interesting. On the one
hand, they both appear in the mass range predicted for the
conventional 1þþ charmonium state χc1ð3PÞ. One might
naively think that since the (missing) χc1ð2PÞ state is
expected to be quite wide (> 100 MeV), its radial excita-
tion χc1ð3PÞ should be even wider. However, it has been
known for some time that the more complicated wave-
function nodal structure of χc1ð3PÞ actually suppresses its
width [19] to the same order of magnitude as that of both
Yð4140Þ and Yð4274Þ. So then which one, if either, is the
χc1ð3PÞ? Studies in which the Yð4140Þ-Yð4274Þ sector is
described in terms of conventional charmonium appear in
Refs. [96–101]. Moreover, as seen in these papers and in
Refs. [67,79], no true consensus has emerged on the
assignment of either one. Additionally, in the simplest
diquark models such as the one used in this work, the
ground-state Σþ

g ð1SÞ multiplet contains only one 1þþ cc̄ss̄
state [see Eq. (3)]. In this paper, we show that the
most natural assignment identifies Yð4140Þ as the unique
JPC ¼ 1þþ cc̄ss̄ state and Yð4274Þ as χc1ð3PÞ.

III. MASS HAMILTONIAN

In the most minimal model variant associated with the
dynamical diquark picture, bb̄qq̄0 exotics (q; q0 ∈ fu; dg)
connected by a color flux tube in its ground state (the 1S
multiplet of the Σþ

g BO potential) can be described using a
very simple three-parameter Hamiltonian:

H¼M0þΔMκqb þΔMV0

¼M0þ2κqbðsq ·sbþsq̄0 ·sb̄ÞþV0ðτq ·τq̄0 Þðσq ·σq̄0 Þ: ð1Þ

Here, M0 is the common Σþ
g ð1SÞ multiplet mass, which

depends only upon the chosen diquark [δ≡ ðbqÞ3̄ or
δ̄≡ ðb̄ q̄Þ3] mass and a central potential VðrÞ computed
numerically on the lattice from pure glue configurations
that connect 3 and 3̄ sources, as done in Ref. [21].M0 is the
lowest eigenvalue of the Schrödinger equation using the Σþ

g

BO potential VΣþ
g
ðrÞ; higher eigenvalues have also been

computed for this potential [e.g., for Σþ
g ð1PÞ, Σþ

g ð2SÞ], as
well as eigenvalues for lattice-computed excited-glue
configurations (e.g., for BO potentials Πþ

u , Σ−
u ).

The second term in Eq. (1) represents the spin-spin
interaction within diquarks, assumed to couple only q ↔ b
and q̄0 ↔ b̄, and κqb indicates the strength of this inter-
action. These couplings are singled out as having a greater
physical effect upon the nature of the state by assuming that
δ and δ̄ are at least somewhat separated quasiparticles

within the full exotic state, so that their internal spin
couplings are expected to be stronger than the ones between
δ and δ̄. This ansatz originates with Ref. [30] and is
incorporated into the motivation behind the dynamical
diquark picture, as described in the Introduction and
discussed in further detail in Refs. [22,31].
The final term in Eq. (1) is an isospin-spin-dependent

interaction between the light-quark spins, where V0 is
the strength of the coupling. The exotic candidates,
appearing in distinct I ¼ 0 and I ¼ 1 multiplets, undis-
putedly exhibit nontrivial isospin dependence, thus
requiring a term such as this to be included in the
Hamiltonian. Its precise form as given in Eq. (1) is, of
course, motivated by that of chiral pion exchanges in
hadronic physics, and one plausible interpretation of
this operator [31] is to represent the effect of exchanging
a Goldstone-boson-like mode across the flux tube
connecting the light quarks q and q̄0 in δ and δ̄,
respectively. Nevertheless, one could argue for alternate
forms that still carry isospin dependence. For example,
Refs. [31,32] consider the possibility that the final
operator in Eq. (1) couples not to light-quark spins
sq;q̄, but to the full diquark spins sδ;δ̄, which would be an
appropriate scheme were the diquarks truly pointlike.
However, as seen in Refs. [31,32] for the hidden-charm
sector, this alternate formulation leads to results incon-
sistent with experiment, such as degeneracy between
Xð3872Þ and its (unobserved) I ¼ 1 partners.
The form of Eq. (1) has been presented for use in

the bb̄qq̄0 Σþ
g ð1SÞ sector, but as indicated above, it was

originally used for cc̄qq̄0 [31]. It can be generalized to
Bc-like exotics bc̄qq̄0 by using the reduced mass
obtained from unequal mδ and mδ̄ in the Schrödinger
equation and introducing unequal κqb and κqc coeffi-
cients into the relevant Hamiltonian terms. Equation (1)
has also been generalized to the Σþ

g ð1PÞ sector [32] by
the addition of spin-orbit and (isospin-dependent) tensor
couplings.
The ground-state [Σþ

g ð1SÞ] hidden-charm-strange
(cc̄ss̄) exotics can be described using an even simpler
Hamiltonian, since the states lack isospin dependence:

H ¼ M0 þ ΔMκsc

¼ M0 þ 2κscðss · sc þ ss̄ · sc̄Þ; ð2Þ

where M0 and κsc are defined analogously to the param-
eters above. This Hamiltonian actually first appeared in
Ref. [34] and also included orbital and spin-orbit terms to
allow comparison between S- and P-wave states; in the
current model, the S-P splitting (as well as the 2S-1S
splitting) can be computed directly using the techniques
of Ref. [21], as seen in Sec. V. Moreover, subsequent
experimental findings that confirm the existence and
JPC quantum numbers of relevant states, as well as the
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discovery of Xð4500Þ and Xð4700Þ (Table II) and their
assignment to the 2S multiplet in a diquark model [80],
make a fresh analysis of the cc̄ss̄ sector quite relevant.

IV. MASS FORMULA

The fully general notation for all states in the dynamical
diquark model appears in Ref. [24]. Since the current work
focuses solely on states in the lowest BO potential Σþ

g , and
most often those in its lowest multiplet 1S, we can reduce to
a much more compact notation. For diquark-antidiquark
(δ-δ̄) states of good total JPC in the S-wave band (i.e., zero
orbital angular momentum), the defining notation is

JPC ¼ 0þþ∶ X0 ¼ j0δ; 0δ̄i0; X0
0 ¼ j1δ; 1δ̄i0;

JPC ¼ 1þþ∶ X1 ¼
1ffiffiffi
2

p ðj1δ; 0δ̄i1 þ j0δ; 1δ̄i1Þ;

JPC ¼ 1þ−∶ Z ¼ 1ffiffiffi
2

p ðj1δ; 0δ̄i1 − j0δ; 1δ̄i1Þ;

Z0 ¼ j1δ; 1δ̄i1;
JPC ¼ 2þþ∶ X2 ¼ j1δ; 1δ̄i2; ð3Þ

where outer subscripts indicate total quark spin S ¼ J
in the absence of orbital angular momentum. The same
states may be expressed in any other spin-coupling basis by
using angular momentum recoupling coefficients, specifi-
cally 9j symbols. For both the simplest evaluation of the
final operator in Eq. (1) and for convenient physical
interpretation, the most useful alternate basis is that of
definite heavy-quark (and light-quark) spin eigenvalues,
ðQQ̄Þ þ ðqq̄Þ:

hðsqsq̄Þsqq̄; ðsQsQ̄ÞsQQ̄; SjðsqsQÞsδ; ðsq̄sQ̄Þsδ̄; Si

¼ ð½sqq̄�½sQQ̄�½sδ�½sδ̄�Þ1=2
8<
:

sq sq̄ sqq̄
sQ sQ̄ sQQ̄

sδ sδ̄ S

9=
;; ð4Þ

where ½s�≡ 2sþ 1 denotes the multiplicity of a spin-s
state. Using Eqs. (3) and (4), one then obtains

JPC ¼ 0þþ∶ X0 ¼
1

2
j0qq̄; 0QQ̄i0 þ

ffiffiffi
3

p

2
j1qq̄; 1QQ̄i0;

X0
0 ¼

ffiffiffi
3

p

2
j0qq̄; 0QQ̄i0 −

1

2
j1qq̄; 1QQ̄i0;

JPC ¼ 1þþ∶ X1 ¼ j1qq̄; 1QQ̄i1;

JPC ¼ 1þ−∶ Z ¼ 1ffiffiffi
2

p ðj1qq̄; 0QQ̄i1 − j0qq̄; 1QQ̄i1Þ;

Z0 ¼ 1ffiffiffi
2

p ðj1qq̄; 0QQ̄i1 þ j0qq̄; 1QQ̄i1Þ;

JPC ¼ 2þþ∶ X2 ¼ j1qq̄; 1QQ̄i2: ð5Þ

A similar recoupling can be used to express these states in
terms of equivalent heavy-light meson spins, ðqQ̄Þ þ ðq̄QÞ.
The pairs of states X0; X0

0 and Z, Z0 carry the same
values of JPC and can therefore mix. One may define the
equivalent heavy-quark spin eigenstates, which are X1, X2,
and

X̃0 ≡ j0qq̄; 0QQ̄i0 ¼ þ 1

2
X0 þ

ffiffiffi
3

p

2
X0
0;

X̃0
0 ≡ j1qq̄; 1QQ̄i0 ¼ þ

ffiffiffi
3

p

2
X0 −

1

2
X0
0;

Z̃≡ j1qq̄; 0QQ̄i1 ¼
1ffiffiffi
2

p ðZ0 þ ZÞ;

Z̃0 ≡ j0qq̄; 1QQ̄i1 ¼
1ffiffiffi
2

p ðZ0 − ZÞ: ð6Þ

Assuming q; q0 ∈ fu; dg, the Σþ
g ð1SÞ multiplet for either

cc̄qq̄0 or bb̄qq̄0 then consists of precisely 12 isomultiplets:
an isosinglet and an isotriplet corresponding to each of
the six states in Eqs. (3) or (5) [or as reorganized in
Eq. (6)]. The current PDG nomenclature [12] adopted

for the bb̄qq̄0 states is Xð0ÞI¼0
J → χbJ, Xð0ÞI¼1

J → WbJ,
Zð0ÞI¼0 → hb, Zð0ÞI¼1 → Zb. The corresponding multiplet
for Bc-like exotics would also contain 12 isomultiplets, but
which are no longer C-parity eigenstates. If the light quarks
are replaced by an ss̄ pair, then only six distinct states
remain; in PDG notation, the cc̄ss̄ states are labeled

Xð0Þ
J → χcJ, Zð0Þ → hc.

A. Bottomoniumlike exotics

Using the Hamiltonian of Eq. (1) and working (for
definiteness) in the heavy-quark spin basis of Eq. (6),
one obtains mass matrices for all 12 isomultiplets of the
bb̄qq̄0 Σþ

g ð1SÞ multiplet. The cases with nonvanishing off-
diagonal elements, for which the entries are arranged in the
order sbb̄ ¼ 0, 1, read

M̃I¼0
0þþ ¼M0

�
1 0

0 1

�
− κqb

�
0

ffiffiffi
3

p
ffiffiffi
3

p
2

�
− 3V0

�−3 0

0 1

�
;

M̃I¼1
0þþ ¼M0

�
1 0

0 1

�
− κqb

�
0

ffiffiffi
3

p
ffiffiffi
3

p
2

�
þV0

�−3 0

0 1

�
;

M̃I¼0
1þ− ¼M0

�
1 0

0 1

�
þ κqb

�
0 1

1 0

�
− 3V0

�
1 0

0 −3

�
;

M̃I¼1
1þ− ¼M0

�
1 0

0 1

�
þ κqb

�
0 1

1 0

�
þV0

�
1 0

0 −3

�
: ð7Þ

Diagonalizing these expressions, and appending the
expressions for the other states (whose mass matrices are
already diagonal), one obtains the mass eigenvalues for all
12 isomultiplets of the bb̄qq̄0 Σþ

g ð1SÞ multiplet:

JESSE F. GIRON and RICHARD F. LEBED PHYS. REV. D 102, 014036 (2020)

014036-6



MI¼0
0þþ ¼ ðM0 − κqb þ 3V0Þ

�
1 0

0 1

�
þ 2V1

�−1 0

0 1

�
;

MI¼1
0þþ ¼ ðM0 − κqb − V0Þ

�
1 0

0 1

�
þ 2V2

�−1 0

0 1

�
;

MI¼0
1þ− ¼ ðM0 þ 3V0Þ

�
1 0

0 1

�
þ V3

�−1 0

0 1

�
;

MI¼1
1þ− ¼ ðM0 − V0Þ

�
1 0

0 1

�
þ V4

�−1 0

0 1

�
;

MI¼0
1þþ ¼ M0 − κqb − 3V0;

MI¼1
1þþ ¼ M0 − κqb þ V0;

MI¼0
2þþ ¼ M0 þ κqb − 3V0;

MI¼1
2þþ ¼ M0 þ κqb þ V0; ð8Þ

where we abbreviate

V1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 þ 3κqbV0 þ 9V2
0

q
;

V2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 − κqbV0 þ V2
0

q
;

V3 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 þ 36V2
0

q
;

V4 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 þ 4V2
0

q
: ð9Þ

The pairs of states in Eq. (8) degenerate in JPC are arranged
in order of increasing mass.
To obtain the mixing angles, one must first derive the

corresponding normalized eigenvectors for the four mixed
pairs of states with JPC ¼ 0þþ; 1þ−. Further denoting

ϵqQ ≡ sgnðκqQÞ; ð10Þ

the normalized eigenvectors collected into columns of
unitary matrices R read

RI¼0
0þþ ¼ 1

2
ffiffiffiffiffiffi
V1

p

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1−ðκqbþ6V0Þ

p
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1þðκqbþ6V0Þ

p
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1þðκqbþ6V0Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1−ðκqbþ6V0Þ

p
!
;

RI¼1
0þþ ¼ 1

2
ffiffiffiffiffiffi
V2

p

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V2−ðκqb−2V0Þ

p
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V2þðκqb−2V0Þ

p
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V2þðκqb−2V0Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V2−ðκqb−2V0Þ

p
!
;

RI¼0
1þ− ¼ 1ffiffiffiffiffiffiffiffi

2V3

p
 
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V3þ6V0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V3−6V0

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V3−6V0

p
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V3þ6V0

p
!
;

RI¼1
1þ− ¼ 1ffiffiffiffiffiffiffiffi

2V4

p
 
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V4−2V0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V4þ2V0

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V4þ2V0

p
ϵqb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V4−2V0

p
!
: ð11Þ

The probability P of the lighter mass eigenstate in each
mixed case to be measured to have heavy-quark spin
eigenvalue sbb̄ ¼ 1, which is simply obtained by squaring
the 1,2 element in each matrix of Eq. (11), is given by

PI¼0
0þþ;sbb̄¼1

¼ 1

2
þ κqb þ 6V0

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 þ 3κqbV0 þ 9V2
0

q ;

PI¼1
0þþ;sbb̄¼1

¼ 1

2
þ κqb − 2V0

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 − κqbV0 þ V2
0

q ;

PI¼0
1þ−;sbb̄¼1

¼ 1

2
−

3V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 þ 36V2
0

q ;

PI¼1
1þ−;sbb̄¼1

¼ 1

2
þ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κqb
2 þ 4V2

0

q : ð12Þ

Assuming that heavy-quark symmetry is unbroken in the
decays of these states, the P values give the relative
branching ratios for the lighter mass eigenstate in each
case to decay into a bottomonium state with sbb̄ ¼ 1 (ϒ, χb)
vs sbb̄ ¼ 0 (ηb, hb).

B. Hidden-charm-strange exotics

Using the Hamiltonian of Eq. (2) and working (for
definiteness) in the heavy-quark spin basis of Eq. (6), one
obtains mass matrices for all six states of the cc̄ss̄ Σþ

g ð1SÞ
multiplet. The cases with nonvanishing off-diagonal ele-
ments, for which the entries are arranged in the order
scc̄ ¼ 0, 1, read

M̃0þþ ¼ M0

�
1 0

0 1

�
− κsc

�
0

ffiffiffi
3

p
ffiffiffi
3

p
2

�
;

M̃1þ− ¼ M0

�
1 0

0 1

�
þ κsc

�
0 1

1 0

�
: ð13Þ

Diagonalizing these expressions, and appending the
expressions for the other states (whose mass matrices are
already diagonal), one obtains the mass eigenvalues for all
six states of the cc̄ss̄ Σþ

g ð1SÞ multiplet:

M0þþ ¼ ðM0 − κscÞ
�
1 0

0 1

�
þ 2jκscj

�−1 0

0 1

�
;

M1þ− ¼ M0

�
1 0

0 1

�
þ jκscj

�−1 0

0 1

�
;

M1þþ ¼ M0 − κsc;

M2þþ ¼ M0 þ κsc: ð14Þ
The pairs of states in Eq. (14) degenerate in JPC are
arranged in order of increasing mass. Note at this point we
have not constrained the spin-spin coupling κsc to assume a
positive value.
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To obtain the mixing angles, one must first derive the
corresponding normalized eigenvectors for the two mixed
pairs of states with JPC ¼ 0þþ; 1þ−. Collected into col-
umns of unitary matrices R, the eigenvectors read

R0þþ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ϵsc

p
ϵsc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ϵsc

p

ϵsc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ϵsc

p
−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ϵsc

p
�
;

R1þ− ¼ 1ffiffiffi
2

p
�
ϵsc 1

−1 ϵsc

�
: ð15Þ

The probability P of the lighter mass eigenstate in each
mixed case to be measured to have heavy-quark spin
eigenvalue scc̄ ¼ 1, which is simply obtained by squaring
the 1,2 element in each matrix of Eq. (15), is given by

P0þþ;scc̄¼1 ¼
1

2
þ 1

4
ϵsc;

P1þ−;scc̄¼1 ¼
1

2
: ð16Þ

Assuming that heavy-quark symmetry is unbroken in the
decays of these states, the P values give the relative
branching ratios for the lighter mass eigenstate in each
case to decay into a charmonium state with scc̄ ¼ 1 (ψ , χc)
vs scc̄ ¼ 0 (ηc, hc).

V. ANALYSIS AND RESULTS

A. cc̄qq̄0 Exotics redux

The masses of the 12 isomultiplets in the bb̄qq̄0 Σþ
g ð1SÞ

multiplet depend upon only three Hamiltonian parameters:
M0, κqb, and V0, as seen in Eqs. (8) and (9). A similar,
but not identical, analysis of the 12 cc̄qq̄0 Σþ

g ð1SÞ iso-
multiplets appears in Ref. [31] (with, of course, κqb → κqc,
and different M0 and V0 numerical values for the cc̄qq̄0

and bb̄qq̄0 systems). There, the masses of the three states
Xð3872Þ, Zcð3900Þ, and Zcð4020Þ [12] are used as inputs,
and the mixing angles of 0þþ and 1þ− states are allowed
to vary under the reasoning that any additional operators
omitted from the minimal three-parameter form have small
numerical coefficients and would leave the mass spectrum
stable, but could nevertheless substantially change the
precise values of the mixing angles. Using the additional
phenomenological observation that XI¼0

1 [corresponding to
Xð3872Þ] appears to be the lightest cc̄qq̄0 state, Ref. [31]
obtained

M0¼3988.75MeV; κqc¼17.76MeV; V0¼33.10MeV:

ð17Þ

From these values, Ref. [31] found that Zcð3900Þ decays
almost exclusively to J=ψ and Zcð4020Þ to hc, in full
accord with current observations.
However, one may just as easily adopt the strict three-

parameter form of Eq. (1) for the cc̄qq̄0 sector, and use the
three measured mass eigenvalues for MI¼0

1þþ and MI¼1
1þ− in

Eqs. (8) and (9) to obtain values for the parametersM0, κqc,
and V0, as well as for the mixing parameters P of Eq. (12).
A double-valued set of equations then arises; one solution
gives nearly identical values to Eq. (17),

M0¼3988.69MeV; κqc¼17.89MeV; V0¼33.04MeV;

ð18Þ

and the very satisfactory value Pscc̄¼1½Zcð3900Þ� ¼ 0.983.
The other solution gives rather different values,

M0¼3964.59MeV; κqc¼66.07MeV; V0¼8.94MeV;

ð19Þ

and the phenomenologically unacceptably small value
Pscc̄¼1½Zcð3900Þ� ¼ 0.631. One learns from this exercise
that the value of P, even if not precisely measured, serves as
a decisive input to the model.
But one also finds, using the fit values of Eq. (18) in the

minimal three-parameter model, that XI¼0
1 is no longer the

lightest cc̄qq̄0 state; XI¼0
0 (the 0þþ isosinglet) assumes that

status, with

MXI¼0
0

¼ 3851.6 MeV: ð20Þ
This prediction is remarkable in that it overlaps with the
observed mass 3862þ50

−35 MeV of the conventional charmo-
nium χc0ð2PÞ candidate [70], which shares the same quan-
tum numbers. The large observed width 201þ180

−110 MeV
indicates unimpeded S-wave decays into DD̄ pairs (thresh-
old≈3740 MeV) for either χc0ð2PÞ or XI¼0

0 , and indeed, the
observed χc0ð3860Þ could be a mixture of the two.

B. Bottomoniumlike exotics

Table I shows that only 2 out of 12 bb̄qq̄0 candidates in
the positive-parity Σþ

g ð1SÞ multiplet have been observed
to date, both with ðIGÞJPC ¼ ð1þÞ1þ−: Zbð10610Þ and
Zbð10650Þ. Two known masses for a model with three
Hamiltonian parameters hardly seems sufficient input to
draw many conclusions, but the results of the previous
subsection indicate that using the sbb̄ ¼ 1 content PI¼1

1þ−;sbb̄¼1

of Zbð10610Þ can be helpful. Indeed, we define

M̄0 ≡M0 − V0

¼ 1

2
½mZbð10650Þ þmZbð10610Þ� ¼ 10629.7 MeV;

V4 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κqb

2 þ 4V2
0

q
¼ 1

2
½mZbð10650Þ −mZbð10610Þ� ¼ 22.5 MeV;

P≡ PI¼1
1þ−;sbb̄¼1

¼ 1

2
þ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κqb
2 þ 4V2

0

q ¼ 1

2
þ V0

V4

; ð21Þ
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where the definitions of V4 and PI¼1
1þ−;sbb̄¼1

are the same as

in Eqs. (9) and (12), respectively, and for definiteness our
numerical analysis uses the mass of the charged Zbð10650Þ.
Using these definitions, one may express the original
parameters in Eq. (1) as

M0 ¼ M̄0 þ V4

�
P −

1

2

�
;

jκqbj ¼ 2V4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
;

V0 ¼ V4

�
P −

1

2

�
: ð22Þ

Given a particular numerical value for P, the only remain-
ing ambiguity in predicting the entire Σþ

g ð1SÞ mass
spectrum is the sign of κqb. With reference to Eq. (1),
κqb > 0 indicates a scenario in which the spin-singlet
diquark δ≡ ðqbÞ is lighter than the spin-triplet, which is
the expectation of virtually every model. Thus making
the mild assumption that κqb > 0, the formulas of Eqs. (8)
and (9) for the mass eigenstates (indicated henceforth by
overlines, with primes for the heavier of states that are
degenerate in JPC) then read

MI¼0
X̄0

¼ M̄0 − V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
− 2ð2P − 1Þ þ C1ðPÞ�;

MI¼0
X̄0

0 ¼ M̄0 − V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
− 2ð2P − 1Þ − C1ðPÞ�;

MI¼1
X̄0

¼ M̄0 − V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
þ C2ðPÞ�;

MI¼1
X̄0

0 ¼ M̄0 − V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
− C2ðPÞ�;

MI¼0
Z̄ ¼ M̄0 þ V4½2ð2P − 1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 32Pð1 − PÞ

p
�;

MI¼0
Z̄0 ¼ M̄0 þ V4½2ð2P − 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 32Pð1 − PÞ

p
�;

MI¼1
Z̄ ¼ M̄0 − V4 ¼ MZbð10610Þ;

MI¼1
Z̄0 ¼ M̄0 þ V4 ¼ MZbð10650Þ;

MI¼0
X1

¼ M̄0 − V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
þ ð2P − 1Þ�;

MI¼1
X1

¼ M̄0 − V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
− ð2P − 1Þ�;

MI¼0
X2

¼ M̄0 þ V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
− ð2P − 1Þ�;

MI¼1
X2

¼ M̄0 þ V4½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
þ ð2P − 1Þ�; ð23Þ

where we abbreviate

C1ðPÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9−20Pð1−PÞþ12ð2P−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1−PÞ

pq
;

C2ðPÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ12Pð1−PÞ−4ð2P−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1−PÞ

pq
: ð24Þ

The expressions in Eq. (12) for the heavy-quark spin
content of the remaining mixed states then assume the
forms

PI¼0
X̄0;sbb̄¼1

¼ 1

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞp þ 3ð2P − 1Þ

C1ðPÞ
�
;

PI¼1
X̄0;sbb̄¼1

¼ 1

2

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞp

− ð2P − 1Þ
C2ðPÞ

�
;

PI¼0
Z̄;sbb̄¼1

¼ 1

2

�
1 −

3ð2P − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 32Pð1 − PÞp �

; ð25Þ

and all observables for the entire Σþ
g ð1SÞ multiplet are now

expressed as functions of the single parameter P≡ PI¼0
Z̄;sbb̄¼1

,

which varies between 0 and 1; the only numerical inputs are
the Zbð10610Þ and Zbð10650Þ masses.
In fact, sufficient data exist to go even further: An

examination of the exclusive ϒ- and hb-channel branch-
ing ratios in Table I reveals some interesting effects. First,
the branching ratios to ϒð1SÞ are the smallest among
bottomonium decays for both Zbð10610Þ and Zbð10650Þ,
and the branching ratios to hbð2SÞ are the largest. Noting
from simple quark-potential models that ϒð1SÞ has by far
the most spatially compact bottomonium wave function
while hbð2PÞ has the largest of those kinematically
allowed in the Zb decays, one is led to the qualitative
conclusion that the Zb states are not spatially compact.
Moreover, hbð2PÞ has a complicated wave function with
not only angular but radial nodes, suggesting initial Zb
wave functions that are similarly nonuniform in their
spatial density. For our immediate purposes, however, the
most interesting feature arises in a direct comparison of
the branching ratios for individual ϒ and hb channels,
noting that the phase space factors for exclusive
Zbð10610Þ and Zbð10650Þ decay modes are almost
identical. With the possible exception of the ϒð3SÞ,
the ϒ branching ratios of the Zbð10610Þ appear to be a
factor of about 3 times larger than those of the Zbð10650Þ,
and the hb branching ratios of the Zbð10610Þ appear
to be a factor of about 3 times smaller than those of the
Zbð10650Þ. One is therefore led to the natural esti-
mate P ≈ 3=4.
In addition, the last of Eq. (22) shows that the sign of

P − 1
2
directly gives the sign of V0. Since as mentioned

below its definition in Eq. (1), the V0 term is motivated
[31] by its similarity in form to the attractive pion
interaction in hadronic physics, the value of P ≈ 3=4
obtained above gives V0 > 0 and suggests a similar
interaction in the Σþ

g ð1SÞ multiplet for both charmonium-
like and bottomoniumlike states. Based upon these
considerations, we expect 1=2 < P < 1. In fact, inde-
pendently of V0, the values of M0 and κqb obtained
solely from the Zb masses are numerically very stable
over the entire range of P, and demonstrate this fact
by exhibiting results at P ¼ 1=4 in addition to P ¼ 1=2
and 3=4:
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P ¼ 1

4
→ M0 ¼ 10624.08 MeV;

κqb ¼ 19.49 MeV;

V0 ¼ −5.63 MeV; ð26Þ

P ¼ 1

2
→ M0 ¼ 10629.70 MeV;

κqb ¼ 22.50 MeV;

V0 ¼ 0.00 MeV; ð27Þ

P ¼ 3

4
→ M0 ¼ 10635.33 MeV;

κqb ¼ 19.49 MeV;

V0 ¼ þ5.63 MeV: ð28Þ

Of special note, the allowed values of κqb in this range of
P are numerically very close to those obtained in Eq. (18)
for κqc, indicating a common physical origin for both.
In contrast, the allowed values of V0 are several times
smaller in the hidden-bottom sector, reflecting the expect-
ation that V0 contains a coefficient scaling inversely with
a power of the heavy-quark mass and therefore being
smaller for bottomoniumlike than for charmoniumlike
states.
Inserting the values of parameters determined in Eq. (28)

from these three choices of P, we obtain predictions for
masses of all 12 isomultiplets of the bb̄qq̄0 Σþ

g ð1SÞ
multiplet in Table III. The most notable feature of these
results is the remarkably small numerical variation of
individual state mass predictions over the whole range
1=4 ≤ P ≤ 3=4, keeping in mind that the expected sign of
V0 and the decay pattern disfavor P < 1=2.
Another way to visualize these results is to impose our

expectation that P ≥ 1=2 and consider the entire range
1=2 ≤ P ≤ 1. We then plot the results from combining
Eqs. (21), (23), and (24) for all 12 Σþ

g ð1SÞ isomultiplet
masses in Fig. 1. The ordering of the states in this range of
P is remarkably stable. Of particular note: Over most of the
allowed range for P, the isosinglet JPC ¼ 0þþ state X̄I¼0

0 is
lightest, and its isotriplet partner X̄I¼1

0 is second lightest.
Both lie above the threshold (≈10560 MeV) of their
expected dominant BB̄ decay channel but not excessively

so, suggesting that reasonably narrow 0þþ bb̄qq̄0 states
will be discovered in future experiments. Meanwhile,
X̄b ≡ XI¼0

1 , the bb̄qq̄0 analogue to the Xð3872Þ, only
becomes the second-lightest bb̄qq̄0 state for values of P
very close to 1 (which is what occurs in the cc̄qq̄0 system).
More interestingly, X̄I¼0

1 lies at most only a fewMeV below
the BB̄� threshold (≈10605 MeV) over almost the whole
range 1=2 ≤ P ≤ 1, and thus analogously to Xð3872Þ in
its relation to DD̄�, X̄I¼0

1 will need to be analyzed by
considering the impact of BB̄� threshold effects. Explicitly,
we predict

10598 MeV ≤ mXb
≡mX̄I¼0

1
≤ 10607 MeV: ð29Þ

TABLE III. Predictions for the 12 isomultiplet masses (in MeV) of the Σþ
g ð1SÞ bb̄qq̄0 multiplet, using the Hamiltonian of Eq. (1) as

evaluated using Eqs. (21), (23), and (24). Boldface indicates the measured Zb mass inputs.

P ¼ PI¼1
Z̄;sbb̄¼1

¼ 1=4 P ¼ PI¼1
Z̄;sbb̄¼1

¼ 1=2 P ¼ PI¼1
Z̄;sbb̄¼1

¼ 3=4

JPC I ¼ 0 I ¼ 1 I ¼ 0 I ¼ 1 I ¼ 0 I ¼ 1

0þþ 10551.1 10624.4 10564.6 10655.9 10562.2 10652.2 10562.2 10652.2 10569.7 10695.7 10575.4 10644.9
1þþ 10621.5 10599.0 10607.2 10607.2 10598.9 10621.4
1þ− 10568.3 10646.2 10607.2 10652.2 10607.2 10652.2 10607.2 10652.2 10613.2 10691.1 10607.2 10652.2
2þþ 10660.5 10638.0 10652.2 10652.2 10637.9 10660.4

FIG. 1. Prediction of the 12 isomultiplet masses (in MeV) of the
Σþ
g ð1SÞ multiplet as functions of the heavy-quark sbb̄ ¼ 1 spin-

content parameter P of Zbð10610Þ defined in Eq. (21). Solid
(dashed) lines indicate I ¼ 1 (I ¼ 0) states. Using the naming
scheme of Eq. (3) with isospin superscripts, an overline for mass
eigenstates, and a prime for the heavier of mixed eigenstates, the
levels from top to bottom at P ¼ 3=4 are as follows: X̄0I¼0

0

(dashed magenta); Z̄0I¼0 (dashed black); XI¼1
2 (solid green); Z̄0I¼1

(solid black); X̄0I¼1
0 (solid magenta); XI¼0

2 (dashed green); XI¼1
1

(solid red); Z̄I¼0 (dashed blue); Z̄I¼1 (solid blue); XI¼0
1 (dashed

red); X̄I¼1
0 (solid gold); X̄I¼0

0 (dashed gold).
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The heavy-quark spin structure of the mixed eigenstates
can also be computed solely as functions of P, according
to Eqs. (24) and (25). The results are presented in Fig. 2.
We find in the range 1=2 ≤ P ≤ 1 that X̄I¼0

0 decays
preferentially to ϒ or χb, Z̄I¼0 decays to hb or ηb, and
the proportion for X̄I¼1

0 depends sensitively upon the
precise value of P.
Having completed the analysis of the Σþ

g ð1SÞ multiplet,
we now use the techniques of Ref. [21] to compute the
center of mass M0 for any other multiplet. The results
of Eq. (28) indicate that M0ð1SÞ ¼ 10630 MeV, with an
uncertainty of no more than 5 MeV. Using this mass
eigenvalue in a Schrödinger equation with the lattice-
computed potentials of Refs. [25–29], one finds the diquark
δ≡ ðbqÞ3̄ and its antiparticle δ̄≡ ðb̄ q̄Þ3 to have mass

mδ ¼ mδ̄ ¼ 5383.1–5406.2 MeV; ð30Þ

where the range indicates the effect of varying over
potentials taken from the different lattice simulations. In
turn, thesemδ;δ̄ values serve as inputs used to compute other
multiplet mass eigenvalues, and we predict

M0ð1PÞ ¼ 10960.9–10966.3 MeV;

M0ð2SÞ ¼ 11087.7–11093.2 MeV: ð31Þ

One immediately notes that of the two remaining bb̄qq̄0
candidates in Table I (both with negative parity), Yð10860Þ
lies about 70 MeV below M0ð1PÞ and thus uncontrover-
sially fits into the 1P multiplet.5 On the other hand,
Yð10750Þ does not fit well into this scheme; indeed, it is
only about 100 MeV heavier than the 1S state Zbð10650Þ.
The nP-nS average mass splitting for conventional botto-
monium is about 450 MeV for n ¼ 1 and 250 MeV for
n ¼ 2, suggesting that Yð10750Þ is not sufficiently heavy to
be a Σþ

g ð1PÞ bb̄qq̄0 state. However, it was noted even in the
discovery paper [39] that Yð10750Þ is a natural candidate
for a higher conventional ϒ state, likely identifying with a
missing ϒðnDÞ state, and possibly mixing with ϒðnSÞ
states, although the exact composition remains a matter of
debate [61,62]. In support of this view, note from Table I
that only Yð10750Þ → ϒ (but not hb) decay modes have
been observed to date, thus promoting the hypothesis
of a pure sbb̄ ¼ 1 state, as expected for conventional
bottomonium.

C. Hidden-charm-strange exotics

As noted in the Introduction, the cc̄ss̄ sector was first
considered using a model with separated (cs) and (c̄ s̄)
diquarks in Ref. [34]. The possibility that the lightest cc̄ss̄

state is Xð3915Þ was introduced in that work, a reprise of
the arguments in favor of this assignment appearing in
Sec. II A 1. We also noted that two strong candidates for the
sole 1þþ state in the cc̄ss̄ Σþ

g ð1SÞ multiplet, Yð4140Þ and
Yð4274Þ, have been experimentally confirmed (Table II),
but also that the conventional charmonium state χc1ð3PÞ is
predicted to have a mass and a width comparable to those
observed for the two candidates. Indeed, the early calcu-
lation of Ref. [19] predicts

mχc1ð3PÞ ¼ 4271 MeV; Γχc1ð3PÞ ¼ 39 MeV: ð32Þ

The Hamiltonian introduced in Ref. [34] restricted to the
Σþ
g ð1SÞ multiplet is actually identical to the one given in

Eq. (2). In Ref. [34] it was introduced as a purely phenom-
enological construct, but in this work it is seen to be the
direct expression of the dynamical diquark model, and mass
splittings between different BO multiplets can be computed
using lattice-calculated potentials, as in Ref. [21].
A nagging difficulty with the Xð3915Þ has been an ambi-

guity in its measured JPC quantum numbers. As suggested
in Table II and discussed by the PDG [12], the original 0þþ
assignment relies on the assumption of dominance by a
particular γγ helicity component in Xð3915Þ production,
and if this assumption is relaxed, then the assignment 2þþ
is also possible.
Using the measured masses in Table II, we therefore

obtain fits to the Hamiltonian of Eq. (2) under two alternate
assumptions: that the Xð3915Þ is the lighter of the two 0þþ

states in Σþ
g ð1SÞ, or that it is the sole 2þþ state. For the

moment we also assign Yð4140Þ to be the sole 1þþ state,

FIG. 2. Prediction of the heavy-quark spin-content parameters
Psbb̄¼1 of Eq. (25) for the lighter of mass eigenstates that are
degenerate in JPC, as functions of the parameter P defined in
Eq. (21). Solid (dashed) lines indicate I ¼ 1 (I ¼ 0) states. These
levels from top to bottom at P ¼ 3=4 are as follows: X̄I¼0

0 (dashed
gold); Z̄I¼1 (solid blue, which is P itself); X̄I¼1

0 (solid gold); Z̄I¼0

(dashed blue).

5In comparison, the lowest 1−− state Yð4230Þ in the cc̄qq̄0
Σþ
g ð1PÞ multiplet lies about 140 MeV below the multiplet center

of mass and yet fits well in the multiplet [32].
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supposing by default that Yð4274Þ is χc1ð3PÞ. The results
of fits with both Xð3915Þ assignments are presented in
Table IV. In either case, the spectrum is quite simple,
consisting of only three distinct (and equally spaced) mass
eigenvalues for the six states.
A stunning feature of Table IV is that both assignments

predict a 0þþ state at the mass of the Xð3915Þ, which
suggests one remarkable scenario in which the observed
Xð3915Þ is actually a mixture of 0þþ and 2þþ states.
Furthermore, the third distinct mass in either case,
4375.2 MeV, lies quite close to that of the Xð4350Þ, another
cc̄ss̄ candidate in Table IV. Confirmation of this state and a
precise measurement of its mass and JP quantum numbers
(C ¼ þ is known) at Belle II will be quite incisive.
These two fits, however, have a major difference that

selects one as more relevant to the spirit of the dynamical
diquark model. If Xð3915Þ is 0þþ, then one obtains

M0 ¼ 4261.0 MeV; κsc ¼ þ114.2 MeV; ð33Þ

while taking Xð3915Þ to be 2þþ gives

M0 ¼ 4032.6 MeV; κsc ¼ −114.2 MeV: ð34Þ

We have already noted in Sec. V B that the diquark spin-
spin coupling κqQ is positive in virtually every model, so
the scenario of Eq. (34) leading to a large, negative value
of κsc and the Xð3915Þ being a degenerate 0þþ-2þþ
combination seems phenomenologically less appealing.
The large value of κsc obtained in Eq. (33) as compared

to κcq in Eq. (18) or κqb in Eq. (28) (a factor of 5-6) suggests
that the lighter constituent of the diquark δ has a signifi-
cantly greater influence on the size of the spin-spin
coupling within δ than does the flavor of the heavy quark.
One may argue that the s quark, being much heavier than u
or d, has less Fermi motion and allows δ to be substantially
more compact, thus enhancing the effects of spin couplings
within δ. In the language of quark models, the equivalent
spin-spin operator would have an expectation value scaling
as some inverse power of the δ size.
Turning now to the identity of the sole 1þþ state, we

consider the alternate possibility that Yð4274Þ is a cc̄ss̄
state and Yð4140Þ is χc1ð3PÞ. Then the third distinct mass

eigenvalue in the fits of Table IV becomes 4629.6 MeV, a
much higher value than in the previous fit, and completely
unsuitable for the Xð4350Þ.
Using the methods of Ref. [21] and the inputs of Eq. (33)

[taking Xð3915Þ as the unique lightest state and Yð4140Þ as
the sole 1þþ state in the cc̄ss̄ Σþ

g ð1SÞ multiplet], we obtain

mδ ¼ mδ̄ ¼ 2063.7–2085.5 MeV ð35Þ

and predict

M0ð1PÞ ¼ 4625.3–4628.8 MeV;

M0ð2SÞ ¼ 4814.9–4818.1 MeV: ð36Þ

In comparison with the remaining states of Table II, the
Σþ
g ð1PÞ multiplet center of mass lies extraordinarily close

to that of Yð4626Þ, while Xð4500Þ is somewhat light to
serve as a Σþ

g ð2SÞ state [plausibly, it could even be the
heavier Σþ

g ð1SÞ0þþ state], but Xð4700Þ works well as the
lighter 0þþ state in the Σþ

g ð2SÞ multiplet. Had Yð4274Þ
instead been used for these fits, the results would have been
hundreds of MeV higher, reinforcing the conclusion that
Yð4140Þ works much better as a cc̄ss̄ state and Yð4274Þ
as χc1ð3PÞ.

VI. CONCLUSIONS

This paper expands upon the work of Refs. [21,31,32]
to incorporate the hidden-bottom (bb̄qq̄0) and hidden-
charm-strange (cc̄ss̄) sectors into the dynamical diquark
model, primarily (but not exclusively) for the states that lie
in their respective ground-state [Σþ

g ð1SÞ] multiplets.
Starting from a Hamiltonian with only three parameters

(for bb̄qq̄0) or two parameters (for cc̄ss̄) that describe the
fine structure within each multiplet of the model, we obtain
explicit, closed-form expressions for all 12 bb̄qq̄0 isomul-
tiplet masses and all six cc̄ss̄ masses.
In the bb̄qq̄0 sector, the masses of the Zbð10610Þ and

Zbð10650Þ combined with their relative preferences to
decay to ϒ or hb states are sufficient to highly constrain
all other masses and heavy-quark-spin decay-mode prefer-
ences in the Σþ

g ð1SÞ multiplet. In particular, the lightest
states carry JPC ¼ 0þþ and lie only a few 10’s ofMeVabove
the BB̄ threshold, and thus may have observably small
widths. The 1þþ analogue of the Xð3872Þ is predicted to lie
in an especially constrained range (10598–10607 MeV),
near the BB̄� threshold.
In a redux of the cc̄qq̄0 sector (following on Ref. [31]),

we find that the three-parameter Hamiltonian also predicts
an isoscalar 0þþ state that is lighter than Xð3872Þ, but with
exactly the right mass to merge with the conventional
charmonium χc0ð2PÞ candidate at 3860 MeV. Moreover,
the fit values of the diquark internal spin coupling κqb in the
bb̄qq̄0 sector and κqc in the cc̄qq̄0 sector are numerically

TABLE IV. Prediction of the six state masses (in MeV) of the
Σþ
g ð1SÞ cc̄ss̄ multiplet, using the Hamiltonian of Eq. (2). Bold-

face indicates the measured Xð3915Þ and Yð4140Þmasses used as
inputs for the fit.

JPC JPCXð3915Þ ¼ 0þþ JPCXð3915Þ ¼ 2þþ

0þþ 3918.4 4375.2 4375.2 3918.4
1þ− 4146.8 4375.2 4375.2 3918.4
1þþ 4146.8 4146.8
2þþ 4375.2 3918.4
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equal, but both are much smaller than κsc in the cc̄ss̄.
The isospin-dependent couplings V0 in the bb̄qq̄0 and
cc̄qq̄0 sectors are both positive, having the same sign as
the corresponding pion-exchange operator in hadronic
physics.
Once the center of mass for the Σþ

g ð1SÞ multiplet is
determined from this analysis, we use potentials calculated
in lattice simulations to compute the corresponding centers
for higher multiplets, such as Σþ

g ð1PÞ and Σþ
g ð2SÞ. We find

that Yð10860Þworks well as a bb̄qq̄0 1P state but Yð10750Þ
is too light, very likely being primarily a D-wave conven-
tional bottomonium state.
In the cc̄ss̄ sector, we find it possible to identify Xð3915Þ

as a 2þþ state, but only if the diquark spin coupling κsc has
opposite sign to the positive one nearly universally
accepted. Thus the assignment JPC ¼ 0þþ is much more
natural in the dynamical diquark model. Additionally,
Xð4350Þ emerges directly as a cc̄ss̄ state. We also find
that Yð4140Þ is much more likely the sole 1þþ Σþ

g ð1SÞ cc̄ss̄

state and Yð4274Þ is the conventional charmonium state
χc1ð3PÞ. Computing higher center-of-multiplet masses, we
find that Yð4626Þ fits the Σþ

g ð1PÞ multiplet well and
Xð4700Þ [but not Xð4500Þ] fits the Σþ

g ð2SÞ multiplet well.
To summarize, the dynamical diquark model produces

a large number of remarkable results, both in the fine
structure of individual multiplets by employing an
extremely simple model and in the calculated splittings
between multiplets, by using potentials calculated from first
principles on the lattice. It further produces interesting
physical insights in multiple sectors of exotic states, thus
far including cc̄qq̄0, cc̄ss̄, and bb̄qq̄0. One could similarly
analyze hidden-charm–open-strange states, Bc-like exotics,
pentaquarks, and other possibilities.
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