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We study the implications of recent lattice QCD results for the magnetic field dependence of the quarks
dynamical masses on the ’t Hooft determinant extended Nambu–Jona-Lasinio model in the light and
strange quark sectors (up, down and strange). The parameter space is constrained at vanishing magnetic
field, using the quarks dynamical masses and the meson spectra, whereas at nonvanishing magnetic field
strength the dependence of the dynamical masses of two of the quark flavors is used to fit a magnetic field
dependence on the model couplings, both the four-fermion Nambu–Jona-Lasinio interaction and the six-
fermion ’t Hooft flavor determinant. We found that this procedure reproduces the inverse magnetic
catalysis, and the strength of the scalar coupling decreases with the magnetic field, while the strength of the
six-fermion ’t Hooft flavor determinant increases with the magnetic field.
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I. INTRODUCTION

The effect of strong magnetic fields in strongly interact-
ing matter plays a very important role in several physical
contexts such as in heavy ion collisions [1–3], in astro-
nomic compact object like magnetars [4,5], and in the first
phases of the early Universe [6,7]. Quantum chromody-
namics (QCD) is the theory of the strong interaction
between quarks and gluons whose phase diagram have
been widely studied by lattice QCD (LQCD) simulations
and in the context of effective models also in the presence
of magnetic fields (see [8] for a review).
At zero temperature, and in the presence of magnetic

fields, LQCD and the vast majority of effective models
predict magnetic catalysis, which is the increment of the
chiral order parameter, the light quark condensate, as the
magnetic field, B, increases. This phenomenon is origi-
nated by the dominant contribution of the lowest Landau-
level [9]. Nevertheless, at finite temperature and magnetic
field, apart from a few exceptions, for example Ref. [10],
without the insertion of additional mechanisms, the most
effective models fail to predict inverse magnetic catalysis

(IMC), contradicting LQCD results, where the pseudocrit-
ical temperature for the chiral symmetry restoration
decreases as B increases [11–13]. Possible reasons for this
discrepancy have been given in Refs. [14–17]. Particularly,
in Ref. [16], it was argued that IMC comes from the
rearrangement of the Polyakov loop induced by the
coupling of magnetic field with the sea quarks. This kind
of backreaction of the Polyakov loop was implemented in
the entangled Polyakov–Nambu–Jona-Lasinio (EPNJL)
model [18], where the scalar coupling of the Nambu–
Jona-Lasinio (NJL) model [19] is a function of the
Polyakov loop. Even though this model by itself also fails
to reproduce IMC, in Ref. [20], it was shown that if the
pure-gauge critical temperature T0 is fitted to reproduce
LQCD data [11], then the EPNJL model reproduces IMC.
Later, it was argued that IMC can be reproduced by
mimicking asymptotic freedom, which is absent in many
effective models and it is one of the most important
characteristics of QCD. For instance, in Ref. [21], the
scalar coupling GðBÞ of the SU(3) version of the
NJL model, was fitted to reproduce the LQCD pseudoc-
ritical temperatures for the chiral transitions, TcðBÞ. In
Refs. [22,23] the scalar coupling is also made explicitly
temperature dependent by fitting it to reproduce the LQCD
quark condensate [11]. More recently, in Ref. [24], the
constituent quark masses were calculated as a function of
the magnetic field, B, using LQCD simulations and then
the coupling GðBÞ was set to reproduce those constituent
quark masses. It is important to remark that this new way
to set GðBÞ was made within the SU(2) version of the
Polyakov–Nambu–Jona-Lasinio model using the proper
time formalism.

*jmoreira@uc.pt
†pcosta@uc.pt
‡tulio.restrepo@posgrad.ufsc.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 014032 (2020)

2470-0010=2020=102(1)=014032(10) 014032-1 Published by the American Physical Society

https://orcid.org/0000-0002-3321-5353
https://orcid.org/0000-0003-4809-6542
https://orcid.org/0000-0003-3579-5520
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.014032&domain=pdf&date_stamp=2020-07-20
https://doi.org/10.1103/PhysRevD.102.014032
https://doi.org/10.1103/PhysRevD.102.014032
https://doi.org/10.1103/PhysRevD.102.014032
https://doi.org/10.1103/PhysRevD.102.014032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In the present paper we aim to apply the method
proposed in [24] to the more laborious SU(3) version of
the ’t Hooft extended NJL model (which will henceforth be
referred to as the NJL model), where now, due to the
’t Hooft six fermions interactions that appear in the model,
we have to set two couplings, the scalar coupling, GðBÞ,
and the six fermions coupling, κðBÞ.1 Also, in this
application we consider the more general nondegenerate
case mu ≠ md ≠ ms. We are particularly interested in the
behavior of κ, since in previous applications of the
’t Hooft extended NJL model, this coupling was kept
independent of the magnetic field.
For the fit of the parameters we follow the procedure:

first we fit the six parameters of the model, Λ, G, κ, mu, md
and ms at T ¼ B ¼ 0; then, at B ≠ 0 the couplings G and κ
are set to reproduce Md and Ms magnetized constituent
quark masses respectively, calculated in [24], while the
other parameters are kept B independent. The other
constituent quark mass, Mu, is an output in our procedure.
The present paper is organized as follows. In Sec. II we

present the SU(3) ’t Hooft extended NJL model. In Sec. III
we fit the parameters of the model to reproduce LQCD
results [24], and we present the respective analysis of our
results. Finally, in Sec. IV we draw our conclusions and
final remarks.

II. THE MODEL

A. ’t Hooft extended NJL model

The SU(3) version of the NJL model is given by the
Lagrangian density [28],

LNJL ¼ ψ̄f½=Dμ − m̂c�ψf þ Lsym þ Ldet; ð1Þ
in which the quark sector includes scalar-pseudoscalar and
’t Hooft six fermions interactions that models the axial
UAð1Þ symmetry breaking, with Lsym and Ldet being [28]

Lsym ¼ G½ðψ̄fλaψfÞ2 þ ðψ̄fiγ5λaψfÞ2�;
Ldet ¼ κfdetf ½ψ̄fð1þ γ5Þψf�

þ detf ½ψ̄fð1 − γ5Þψf�g; ð2Þ
where ψf are the quark fields with f ¼ u; d; s, mc ¼
diagfðmu;md;msÞ is the quark current mass matrix, λa
are the Gell-Mann matrices and G and κ are coupling
constants.
In the mean field approximation de effective quarks

masses are given by the gap equations,
8
><

>:

Mu ¼ mu −Ghψ̄uψui − κhψ̄dψdihψ̄ sψ si
Md ¼ md −Ghψ̄dψdi − κhψ̄uψuihψ̄ sψ si
Ms ¼ ms − Ghψ̄ sψ si − κhψ̄uψuihψ̄dψdi;

ð3Þ

where the condensates are

hψ̄fψfi ¼ −4Mf

Z
d4p
ð2πÞ4

1

p2
4 þ p2 þM2

f

: ð4Þ

B. Inclusion of temperature, chemical potential and
background magnetic field

The inclusion of the effect of a finite magnetic field at a
Lagrangian level is done by replacing the Lagrangian (1) by

L ¼ LNJL −
1

4
FμνFμν; ð5Þ

where Fμν is the electromagnetic field tensor. The coupling
between the magnetic field B and the quarks is now
inside the covariant derivative Dμ ¼ ∂μ − iqfA

μ
EM, where

qf is the quark electric charge, AEM
μ ¼ δμ2x1B is a

constant magnetic field, pointing in the z direction and
Fμν ¼ ∂μAEM

ν − ∂νAEM
μ .

At the mean field level, the extension to take into account
the medium effects of finite temperature and/or chemical
potential can be done in the usual way by replacing the p4

integration by a summation over Matsubara frequencies,

p4 → πTð2nþ 1Þ − iμ
Z

dp4 → 2πT
Xþ∞

n¼−∞
: ð6Þ

TABLE I. Dynamical mass of the light sector quarks (Mf) as a function of the magnetic field strength (B) [24] as well as the errors in
their estimations (σMf

).

eB [GeV2] Mu [GeV] σMu
[MeV] Md [GeV] σMd

[MeV] Ms [GeV] σMs
[MeV]

0.0 0.3115047 8.900894 0.3116843 8.852091 0.5500066 15.88578
0.1 0.3272839 17.06525 0.2933519 14.70449 0.5246419 23.01390
0.2 0.3341793 20.73042 0.2799108 17.68701 0.4999245 27.28394
0.3 0.3348220 19.81968 0.2695186 17.65552 0.4776900 26.89854
0.4 0.3301029 18.31746 0.2611673 17.98711 0.4568607 28.97203
0.5 0.3194990 20.62144 0.2581306 19.89098 0.4369001 34.67607
0.6 0.3037266 28.12296 0.2595464 24.61544 0.4163851 40.79873
0.7 0.2859020 34.44003 0.2607701 29.56910 0.4029641 44.11870

1It is interesting to note that, motivated by phenomenology
arguments, a temperature [25] and a density dependence [26,27]
of κ, in the form of decreasing exponentials, were already
proposed in order to achieve an effective restoration of axial
UAð1Þ symmetry.
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The inclusion of the effect of a finite magnetic field can be
viewed as the substitution of the integration over transverse
momentum, with respect to the direction of the magnetic
field by a summation over Landau levels (denoted by the
index m) averaged over the spin related index, s,

Z
d2p⊥
ð2πÞ2 →

2πjqjB
ð2πÞ2

1

2

X

s¼−1;þ1

Xþ∞

m¼0

;

p2⊥ → ð2mþ 1 − sÞjqjB: ð7Þ

Here we have taken the direction of z-axis as to coincide
with that of the magnetic field such that B⃗ ¼ Bẑ.
The medium part as well as the nonmagnetic field

dependent at a vanishing chemical potential (the standard
vacuum part) are regularized using a three-dimensional
cutoff on the spatial part of the momentum integrals
whereas the magnetic field dependent contribution at a

vanishing temperature and chemical potential is done as in
[29–31]. This is achieved by first performing the full sum
over the Landau levels in the vacuum part, which enables
the separation of the magnetic field dependent contribution
from the standard, nonmagnetic field dependent, contribu-
tion. The former is then evaluated using dimensional
regularization as in [29].

III. FITTING LQCD RESULTS

As stated previously, the main purpose of this paper
is to explore the consequences of the magnetic field
dependence of the dynamical masses of the light sector
quarks [MfðBÞ; f ∈ fu; d; sg] as reported in [24] (at a
vanishing temperature and chemical potential) in the
framework of the NJL model (for convenience these values
are listed in Table I). We chose to split this procedure in
two steps:

(a) (b) (c)

FIG. 1. Coupling strengths and cutoff dependence on the choice of a strange quark current mass and a fit to reproduce the physical
masses of the charged pion and kaon.

(a) (b) (c)

FIG. 2. Pseudoscalar meson masses dependence on the choice of strange quark current mass in Fig. 2(a). The lightest solution drops
below that of the pion for κ > 0 (which happens for this fit for ms < 0.180 GeV) and goes to zero below the critical value of
ms ¼ 0.163 GeV. The imaginary part of the pole of the propagator (for a given meson X the pole is located at MX − {

2
ΓX , with ΓX

corresponding to the decay width) is presented for the η meson in Fig. 2(b) (finite for the massless solution) and for the η0 in Fig. 2(c).
It is noteworthy that the decay with for the η0 vanishes for κ ¼ 0, when it is degenerate with π0.
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(1) fix the values of G, κ and Λ and the current masses
(mf; f ∈ fu; d; sg) at a vanishing magnetic field
strength;

(2) use the values of two of the dynamical quark masses
at finite magnetic field strength to fit the coupling
strengths of the interactions thus introducing a
magnetic field strength dependence on them
[GðBÞ and κðBÞ] while keeping Λ and mf fixed.

A. Fits at vanishing magnetic field

There are 6 degrees of freedom in our fit: current masses,
coupling strengths and cutoff. Three of these should be
fixed using the dynamical masses (through Eqs. (3) as the

main idea behind this paper relies on taking at face value
the LQCD values for Mf. Let us think of the coupling
strengths and cutoff as being fixed by these conditions.
That leaves us with the choice of the three current masses.
Naively one could expect to be able to fit these using the

mass of some of the lightest pseudoscalar mesons. As the
NJL model, by construction, relies on the relevance of
chiral and axial symmetry breaking (spontaneous and
explicit in the case of the former and explicit, through
the ’t Hooft determinant, in the case of the latter) using the
pion, kaon and eta prime meson masses seems the obvious
choice. Some other reasonability criteria, such as the size of
the cutoff and the sign of the coupling strengths (or more
precisely its consequences in the obtained meson spectra),
will however come into play.
Let us start by fixing the charged pion and kaon to their

physical values fitting mu and md and leaving ms as a free
parameter. In Fig. 1 the results of the fit are presented.
A negative coupling constant for the ’t Hooft determinant is
only obtained for strange quark current mass above a
critical value of ms > 0.180 GeV.
As can be seen in Fig. 2(a) at a positive κ

(ms < 0.180 GeV) one of the neutral light pseudoscalars
becomes lighter than the pion. Below a critical value of the
strange quark current mass (ms < 0.163 GeV) it becomes
massless and, as can be seen in Fig. 2(b), gains a finite
decay width. As can be seen in Fig. 2(c), the decay width of
the η0 meson vanishes for the choice ofms corresponding to
vanishing κ [see Fig. 1(b)] which also results in degenerate
π0 and η. These positive κ scenarios are unphysical and
avoiding them results in a maximum value of the cutoff
Λ < 0.414 GeV as can be seen in Fig. 3.
A simultaneous fit of Mπ , MK and Mη0 could not be

achieved in the preformed scan [which already goes into
unreasonably low values of the cutoff as can be seen in
Fig. 1(c)]. It should be noted, however, that raising the
value MK enables us to reach the physical value of Mη0 .

FIG. 3. Dependence of the coupling strength of the ’t deter-
minant interaction on the cutoff imposing both the pion and kaon
masses on the physical values.

(a) (b) (c)

FIG. 4. From left to right the dependence of the cutoff, mass of the eta meson and decay width of the eta prime on the choice of kaon
mass while keeping the pion and eta prime meson masses fixed to their experimental values (all in GeV).

MOREIRA, COSTA, and RESTREPO PHYS. REV. D 102, 014032 (2020)

014032-4



In Fig. 4 one can see the dependence of the cutoff, eta
meson mass and eta prime decay width on the choice
of mass for the kaon, while keeping the pion and eta
prime meson masses at their experimental values. In
Tables II and III some parameter sets resulting in cutoffs
of 0.500, 0.600, 0.700 GeV are presented as well as a set
which reproduces the physical values of the masses of pion,
eta prime and eta mesons.

B. Fitting the magnetic field dependence

For the second point, pertaining to the magnetic field
dependence, we kept the cutoff (Λ) and the current masses
(mf) fixed while fitting the couplings strengths, which thus

gain a magnetic field dependence [GðBÞ and κðBÞ], using
two of the dynamical masses. The results presented here
were obtained by fitting the down and strange quarks
dynamical mass. The magnetic field dependence of the
dynamical mass of the up quark can therefore be used as
one of the criteria to check the adequacy of the several
scenarios. An attempt to use the mass of the up and down
quarks as inputs in this fit (leaving the dynamical mass of
the strange quark as output) was not successful.
The results of the magnetic field dependent fit of the

couplings can be seen in the Fig. 5 and Table IV. The split
between Mu and Md is smaller for our parameter sets [see
Fig. 5(a)] and starts to deviate markedly for larger fields.
This larger deviation appears however to be related to
regularization effects as it occurs for larger magnetic field
strengths when we move to higher cutoffs. These regu-
larization effects are also patent when considering the
dependence of the couplings [see Figs. 5(b) and 5(c)].
There is a clear onset of a deviation from the behavior that
is observed at lower magnetic field strengths which occurs
at smaller field strengths for smaller cutoff. For the sets
with larger cutoff (sets c and d) the behavior is approx-
imately linear with a decreasing positive G as a function of

TABLE II. Parameter sets obtained fitting the dynamical masses of the quarks to the values reported in [24], the
mass of the pion (Mπ� ¼ 0.140 GeV) and the eta prime mesons (Mη ¼ 0.958 GeV) at a vanishing magnetic field
strength. Sets a, b and c were chosen so as to have a cutoff of 0.500, 0.600 and 0.700 GeV respectively. Set d is
chosen so as to reproduce the eta meson mass Mη ¼ 0.548 GeV.

mu [MeV] md [MeV] ms [MeV] G ½GeV−2� κ ½GeV−5� Λ ½GeV�
a) 7.06242 7.19017 196.403 14.2933 −409.947 0.500000
b) 5.89826 6.01442 180.450 9.47574 −149.340 0.600000
c) 4.99322 5.09877 165.328 6.77511 −63.7862 0.700000
d) 4.75221 4.85464 160.820 6.17046 −50.1181 0.731313

TABLE III. Kaon and eta meson masses along with the eta
prime decay width for the sets listed in Table II.

MK� [GeV] Γη0 [MeV] Mη [GeV]

a) 0.543936 0.205968 0.512422
b) 0.557196 0.222571 0.530023
c) 0.568573 0.224593 0.544170
d) 0.571768 0.223918 0.548000

(a) (b) (c)

FIG. 5. Results of the magnetic field strength dependent fit of the couplings: GðBÞ and κðBÞ. In 5(a) the magnetic field dependence of
the dynamical masses of the quarks [24]. The fit is done by imposing the reproduction of the LQCD results forMd andMs, as such,Mu
is an output. In increasing thickness the full lines labeledMu correspond to Λ ¼ 0.500 GeV, 0.600 GeVand 0.700 GeV (sets a, b and c
in Table II) whereas the thick dashed line corresponds to the choice of cutoff which reproduces the eta meson mass Mη ¼ 0.548 GeV
(set d in Table II). All sets reproduce the pion and the eta prime masses.

MAGNETIC FIELD DEPENDENT ’t HOOFT DETERMINANT … PHYS. REV. D 102, 014032 (2020)

014032-5



the magnetic field and an increasing contribution coming
from the ’t Hooft determinant interaction as we see a
negative κ increasing in absolute value. This increase in the
’t Hooft term relevance is possibly connected to an increase
in the relevance of UAð1Þ due to the quark spin interaction
with electromagnetic fields [32].
Recent LQCD simulations [11,12] have shed light into

an interesting interplay of temperature and magnetic field
concerning chiral symmetry. On the one hand they point to
a decrease in the critical temperature for chiral (partial)
restoration with increasing magnetic field strength, while
on the other hand, when looking at the change in the
renormalized chiral condensate due to the magnetic field,
the LQCD estimates point to an increasing condensate with
magnetic field strength for temperatures well below the
critical temperature for chiral restoration, a decrease well
above said temperature and a nonmonotonic behavior close
to that temperature (an increase followed by a decrease):
the inverse magnetic catalysis phenomenon.

This variation of the magnetic field dependence of the
renormalized chiral condensate change at different temper-
atures is depicted in Fig. 6 (LQCD data taken from [12])
and 7 (the results obtained with the parameter sets
from Table II). The quantity displayed in Figs. 6(a) and 7
is given by

ΣiðB; TÞ ¼
2mi

M2
πF2

π
ðhψ̄ iðB; TÞψ iðB; TÞi

− hψ̄ ið0; 0Þψ ið0; 0ÞiÞ þ 1;

ΔΣiðB; TÞ ¼ ΣiðB; TÞ − Σið0; TÞ: ð8Þ

Here Fπ is the pion decay constant (Fπ ¼ 86 MeV for
the LQCD data and Fπ ¼ 77.088, 87.7928, 96.8062 and
99.3428 MeV for sets a, b, c and d from Table II), Mπ the
pion mass (Mπ ¼ 135 GeV for the LQCD data and
Mπ ¼ 140 GeV for our sets) and i is the flavor of
the quark.

TABLE IV. Values of the coupling strengths of the model at sample values for the magnetic field fitted as to reproduce the dynamical
masses of the down and strange quarks (as reported in [24]) and using the current quark masses and regularization cutoff from Table II.

aÞ bÞ cÞ dÞ
eB G κ G κ G κ G κ
½GeV� ½GeV−2� ½GeV−5� ½GeV−2� ½GeV−5� ½GeV−2� ½GeV−5� ½GeV−2� ½GeV−5�
0.000 14.2933 −409.947 9.47574 −149.34 6.77511 −63.7862 6.17046 −50.1181
0.025 13.9768 −425.237 9.30076 −155.053 6.66863 −66.2936 6.07794 −52.1048
0.050 13.6360 −438.726 9.11346 −160.544 6.55517 −68.8060 5.97949 −54.1126
0.075 13.2740 −450.005 8.91565 −165.649 6.43581 −71.2560 5.87602 −56.0895
0.100 12.8933 −459.012 8.70884 −170.285 6.31147 −73.6004 5.76833 −58.0012
0.125 12.4960 −465.883 8.49437 −174.415 6.18300 −75.8110 5.65714 −59.8236
0.150 12.0840 −470.836 8.27354 −178.029 6.05121 −77.8674 5.54317 −61.5385
0.175 11.6593 −474.099 8.04770 −181.123 5.91694 −79.7513 5.42716 −63.1290
0.200 11.2244 −475.857 7.81835 −183.686 5.78113 −81.4428 5.30991 −64.5773
0.225 10.7980 −474.748 7.59499 −185.209 5.64925 −82.7222 5.19612 −65.7105
0.250 10.3624 −472.860 7.36897 −186.329 5.51640 −83.8301 5.08159 −66.7121
0.275 9.91500 −470.722 7.13923 −187.186 5.38198 −84.8125 4.96583 −67.6159
0.300 9.45341 −468.778 6.90474 −187.905 5.24545 −85.7123 4.84837 −68.4533
0.325 8.98913 −465.858 6.67073 −188.101 5.10956 −86.3739 4.73150 −69.1042
0.350 8.50145 −464.395 6.42799 −188.553 4.96940 −87.0983 4.61110 −69.7986
0.375 7.98110 −465.306 6.17265 −189.561 4.82289 −88.0050 4.48542 −70.6284
0.400 7.41725 −469.525 5.90025 −191.437 4.66770 −89.2195 4.35249 −71.6908
0.425 6.78212 −479.527 5.59935 −194.981 4.49788 −91.0640 4.20734 −73.2350
0.450 6.07885 −494.515 5.27189 −199.917 4.31445 −93.4357 4.05079 −75.1837
0.475 5.29586 −515.254 4.91364 −206.442 4.11522 −96.4163 3.88102 −77.6013
0.500 4.41941 −542.789 4.51957 −214.790 3.89762 −100.101 3.69584 −80.5623
0.525 3.34654 −585.110 4.04499 −227.351 3.63731 −105.472 3.47463 −84.8363
0.550 2.16839 −636.099 3.53317 −241.747 3.35846 −111.524 3.23796 −89.6340
0.575 0.907604 −695.043 2.99558 −257.393 3.06752 −117.988 2.99134 −94.7446
0.600 −0.403001 −760.236 2.44764 −273.513 2.77300 −124.521 2.74199 −99.8967
0.625 −1.71787 −828.289 1.90952 −289.085 2.48582 −130.687 2.49918 −104.747
0.650 −2.97697 −893.873 1.40666 −302.800 2.21958 −135.947 2.27440 −108.874
0.675 −4.10572 −950.085 0.969434 −313.073 1.99032 −139.679 2.08117 −111.791
0.700 −5.01754 −989.212 0.631820 −318.137 1.81575 −141.211 1.93440 −112.978
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As can be seen in Fig. 7 the behavior is well reproduced
qualitatively by our parameter sets. It should be noted
however that while on the LQCD data the nonmonotonic
behavior (the bump) is more marked just below the
pseudocritical transition temperature for partial chiral
restoration in the light sector (Tχl

c ¼ 0.158 GeV for the
LQCD data), in our case this behavior occurs for lower
temperatures. The pseudocritical temperatures for our sets
(determined as the inflexion points of the average light
quark condensates) are Tχl

c ¼ 0.170, 0.175, 0.180 and
0.182 GeV for sets a, b, c and d from Table II respectively.
The marked bump occurs in ours sets for a temperature
around half the pseudocritical temperature or even slightly
lower. There is also a small decrease for lower magnetic
fields which is not observed in LQCD data points and
which is more pronounced at larger cutoff.
The decrease in the pseudocritical temperature for partial

chiral defined by the inflection point in the average light
quark condensate,

d2

dT2

1

2
ðhψ̄uψui þ hψ̄dψdiÞj

T¼T
χl
c

¼ 0; ð9Þ

is depicted in Fig. 8(b) where one can see that the
temperature is larger and its behavior becomes more linear

for larger cutoffs. The decrease of the critical temperature
with increasing magnetic field strength is however much
more pronounced in our model calculations. As one can
see in Fig. 8(b) by eB ¼ 0.7 GeV2 the critical temperature
has dropped to a value which is approximately half of
its value for vanishing field while, for the same magnetic
field strength, LQCD show a reduction of only ∼10%
approximately. It should also be noted that while for
larger cutoff an approximate linear response to magnetic
field is obtained in our model, for the LQCD simulation
the slope changes with magnetic field, hinting at an
inflexion point.
One should stress that both the magnetic field depend-

ence of the pseudocritical temperature for partial chiral
restoration as well as the temperature dependence of the
magnetic field change induced renormalized chiral con-
densate are easily modified by considering further exten-
sions of the model such as the inclusion of a Polyakov
potential which mimics gluon dynamics and would modify
the finite temperature aspects of the model. Also the idea
that extensions of the model to include higher order
interaction terms, for instance as in [33–37], or go beyond
mean field corrections as in [38–41], could possibly fix
these issues and deserves to be explored.

IV. CONCLUSIONS

In this work we have studied the implications
of the magnetic field dependence of the dynamical quark
masses on the up, down and strange sectors (as reported in
[24]) by using the ’t Hooft extended Nambu–Jona-Lasinio
model. Our study can be broken down into two sepa-
rate steps:

(i) at vanishing magnetic field we developed four
parameter sets, all of which reproduce the pion
and the eta prime physical meson masses as well
as the vacuum dynamical masses of the quarks; for
three of them we imposed a choice of cutoff whereas
for the remaining set we chose to reproduce the eta
meson mass.

(ii) at vanishing magnetic field we used the variation in
the down and strange quarks dynamical masses to
fit the coupling strengths of the model interactions
[GðBÞ and κðBÞ for the NJL four-quark interaction
and the ’t Hooft flavor determinant six-quark inter-
action respectively] while keeping the other param-
eters frozen at their vacuum value. Then, we studied
the inverse magnetic catalysis phenomenology hav-
ing arrived at an acceptable qualitative agreement
with LQCD data both for the decrease in the
pseudocritical temperature for the partial chiral
symmetry restoration in the up and down sector
with increasing magnetic field as well as the differ-
ent magnetic field dependent behaviors at different
temperatures.

FIG. 6. Renormalized chiral condensate change with magnetic
field at different temperatures as given by LQCD calculations
[12] displaying the behavior known as inverse magnetic catalysis.
The chiral condensate dependence on the magnetic field strength
is qualitatively different for temperatures depending on its
relation to the chiral transition temperature, Tχ

c. For temperatures
well below Tχ

c it increases monotonically with B (slope decreases
with increasing temperature) whereas for temperatures well
above Tχ

c it decreases monotonically (slope increases with
temperature). Close to the transition temperature it exhibits a
nonmonotonic behavior with a local maxima.
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We found for the four-fermion coupling, GðBÞ, an overall
similar behavior to the ones reported in previous works.
Regarding the six-fermion ’t Hooft coupling, κ, our results
showed that the absolute value of κ increases as B
increases. To our knowledge this is the first work with
a six-fermion ’t Hooft flavor determinant running with the

magnetic field. We also verified that the obtained parameter
sets, as well as their magnetic field dependencies, show
promising results which can be easily applied to further
studies, for instance, the Polyakov loop dynamics (see
[42–53]). This same procedure can also be applied to any
new LQCD data as well as for different regularization
procedures.

(a) (b)

(c) (d)

FIG. 7. Renormalized chiral condensate change with magnetic field at different temperatures as given by our model calculations for
sets from Table II.

MOREIRA, COSTA, and RESTREPO PHYS. REV. D 102, 014032 (2020)

014032-8



ACKNOWLEDGMENTS

This work was supported by a research grant under
Project No. PTDC/FIS-NUC/29912/2017, funded by
national funds through FCT (Fundação para a Ciência e
a Tecnologia, I.P, Portugal) and cofinanced by the
European Regional Development Fund (ERDF) through
the Portuguese Operational Program for Competitiveness
and Internationalization, COMPETE 2020, by national
funds from FCT, within the Projects No. UID/04564/
2019 and No. UID/04564/2020. This study was financed

in part by Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior-(CAPES-Brazil)-Finance Code 001. We
would like to thank G. Endrödi for his availability in
supplying the data points from the LQCD study reported in
[24]. T. E. R. thanks the support and hospitality of CFisUC
and acknowledges Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq-Brazil) and Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-
Brazil) for PhD grants at different periods of time.

[1] V. Skokov, A. Yu. Illarionov, and V. Toneev, Int. J. Mod.
Phys. A 24, 5925 (2009).

[2] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,
V. P. Konchakovski, and S. A. Voloshin, Phys. Rev. C 83,
054911 (2011).

[3] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.
Phys. A803, 227 (2008).

[4] R. C. Duncan and C. Thompson, Astrophys. J. 392, L9
(1992).

[5] C. Kouveliotou et al., Nature (London) 393, 235
(1998).

[6] T. Vachaspati, Phys. Lett. B 265, 258 (1991).
[7] K. Enqvist and P. Olesen, Phys. Lett. B 319, 178

(1993).
[8] J. O. Andersen, W. R. Naylor, and A. Tranberg, Rev. Mod.

Phys. 88, 025001 (2016).
[9] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Nucl.

Phys. B462, 249 (1996).
[10] E. S. Fraga and L. F. Palhares, Phys. Rev. D 86, 016008

(2012).

[11] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D. Katz,
S. Krieg, A. Schäfer, and K. K. Szabo, J. High Energy Phys.
02 (2012) 044.

[12] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D. Katz,
and A. Schäfer, Phys. Rev. D 86, 071502 (2012).

[13] G. Endrődi, J. High Energy Phys. 07 (2015) 173.
[14] K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 110, 031601

(2013).
[15] T. Kojo and N. Su, Phys. Lett. B 720, 192 (2013).
[16] F. Bruckmann, G. Endrődi, and T. G. Kovacs, J. High

Energy Phys. 04 (2013) 112.
[17] E. S. Fraga, J. Noronha, and L. F. Palhares, Phys. Rev. D 87,

114014 (2013).
[18] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys. Rev. D

82, 076003 (2010).
[19] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961);

122, 345 (1961).
[20] M. Ferreira, P. Costa, D. P. Menezes, C. Providência, and N.

Scoccola, Phys. Rev. D 89, 016002 (2014); 89, 019902(A)
(2014).

(a) (b)

FIG. 8. Pseudocritical temperature for the partial restoration of chiral symmetry in the light sector. On the left-hand side the LQCD
results reported in [11] whereas on the right-hand side the results obtained with our model are presented. On the latter, the full lines in
increasing order of thickness correspond to: Λ ¼ 0.500 GeV, 0.600 GeVand 0.700 GeV. The thick dashed line corresponds to set d in
Table II which reproduces Mη ¼ 0.548. All sets reproduce Mπ ¼ 0.140 GeV and Mη0 ¼ 0.958 GeV.

MAGNETIC FIELD DEPENDENT ’t HOOFT DETERMINANT … PHYS. REV. D 102, 014032 (2020)

014032-9

https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1086/186413
https://doi.org/10.1086/186413
https://doi.org/10.1038/30410
https://doi.org/10.1038/30410
https://doi.org/10.1016/0370-2693(91)90051-Q
https://doi.org/10.1016/0370-2693(93)90799-N
https://doi.org/10.1016/0370-2693(93)90799-N
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1016/0550-3213(96)00021-1
https://doi.org/10.1016/0550-3213(96)00021-1
https://doi.org/10.1103/PhysRevD.86.016008
https://doi.org/10.1103/PhysRevD.86.016008
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1103/PhysRevD.86.071502
https://doi.org/10.1007/JHEP07(2015)173
https://doi.org/10.1103/PhysRevLett.110.031601
https://doi.org/10.1103/PhysRevLett.110.031601
https://doi.org/10.1016/j.physletb.2013.02.024
https://doi.org/10.1007/JHEP04(2013)112
https://doi.org/10.1007/JHEP04(2013)112
https://doi.org/10.1103/PhysRevD.87.114014
https://doi.org/10.1103/PhysRevD.87.114014
https://doi.org/10.1103/PhysRevD.82.076003
https://doi.org/10.1103/PhysRevD.82.076003
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRevD.89.016002
https://doi.org/10.1103/PhysRevD.89.019902
https://doi.org/10.1103/PhysRevD.89.019902


[21] M. Ferreira, P. Costa, O. Lourenço, T. Frederico, and C.
Providência, Phys. Rev. D 89, 116011 (2014).

[22] R. L. S. Farias, K. P. Gomes, G. I. Krein, and M. B. Pinto,
Phys. Rev. C 90, 025203 (2014).

[23] R. Farias, V. Timoteo, S. Avancini, M. Pinto, and G. Krein,
Eur. Phys. J. A 53, 101 (2017).

[24] G. Endrődi and G. Markó, J. High Energy Phys. 08 (2019)
036.

[25] T. Kunihiro, Phys Lett. B 219, 363 (1989).
[26] P. Costa, M. C. Ruivo, C. A. de Sousa, and Y. L. Kalinovsky,

Phys. Rev. D 70, 116013 (2004).
[27] P. Costa, M. C. Ruivo, C. A. de Sousa, and Y. L. Kalinovsky,

Phys. Rev. D 71, 116002 (2005).
[28] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[29] D. P. Menezes, M. B. Pinto, S. S. Avancini, A. Perez

Martinez, and C. Providencia, Phys. Rev. C 79, 035807
(2009).

[30] D. Menezes, M. B. Pinto, S. Avancini, and C. Providencia,
Phys. Rev. C 80, 065805 (2009).

[31] S. S. Avancini, D. P. Menezes, and C. Providencia, Phys.
Rev. C 83, 065805 (2011).

[32] X. Guo and P. Zhuang, Phys. Rev. D 98, 016007
(2018).

[33] A. A. Osipov, B. Hiller, and J. da Providencia, Phys. Lett. B
634, 48 (2006).

[34] A. A. Osipov, B. Hiller, A. H. Blin, and J. da Providencia,
Ann. Phys. (Amsterdam) 322, 2021 (2007).

[35] A. Osipov, B. Hiller, and A. Blin, Eur. Phys. J. A 49, 14
(2013).

[36] A. Osipov, B. Hiller, and A. Blin, Phys. Rev. D 88, 054032
(2013).

[37] B. Hiller, J. Moreira, A. A. Osipov, and A. H. Blin, Phys.
Rev. D 81, 116005 (2010).

[38] R. C. Pereira and P. Costa, Phys. Rev. D 101, 054025
(2020).

[39] R. C. Pereira, R. Stiele, and P. Costa, arXiv:2003.12829.
[40] J.-L. Kneur, M. B. Pinto, and R. O. Ramos, Phys. Rev. C 81,

065205 (2010).
[41] T. E. Restrepo, J. C. Macias, M. B. Pinto, and G. N. Ferrari,

Phys. Rev. D 91, 065017 (2015).
[42] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[43] E. Megias, E. R. Arriola, and L. L. Salcedo, Phys. Rev. D

69, 116003 (2004).
[44] E. Megias, E. R. Arriola, and L. Salcedo, Phys. Rev. D 74,

065005 (2006).
[45] S. Roessner, C. Ratti, and W. Weise, Phys. Rev. D 75,

034007 (2007).
[46] S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa, and R. Ray,

Phys. Rev. D 77, 094024 (2008).
[47] W.-j. Fu, Z. Zhang, and Y.-x. Liu, Phys. Rev. D 77, 014006

(2008).
[48] P. Costa, M. C. Ruivo, C. A. de Sousa, H. Hansen, and

W.M. Alberico, Phys. Rev. D 79, 116003 (2009).
[49] K. Fukushima, Phys. Rev. D 77, 114028 (2008).
[50] A. Bhattacharyya, P. Deb, S. K. Ghosh, and R. Ray, Phys.

Rev. D 82, 014021 (2010).
[51] J. Moreira, B. Hiller, A. Osipov, and A. Blin, Int. J. Mod.

Phys. A 27, 1250060 (2012).
[52] R. Stiele and J. Schaffner-Bielich, Phys. Rev. D 93, 094014

(2016).
[53] A. Bhattacharyya, S. K. Ghosh, S. Maity, S. Raha, R. Ray,

K. Saha, and S. Upadhaya, Phys. Rev. D 95, 054005 (2017).

MOREIRA, COSTA, and RESTREPO PHYS. REV. D 102, 014032 (2020)

014032-10

https://doi.org/10.1103/PhysRevD.89.116011
https://doi.org/10.1103/PhysRevC.90.025203
https://doi.org/10.1140/epja/i2017-12320-8
https://doi.org/10.1007/JHEP08(2019)036
https://doi.org/10.1007/JHEP08(2019)036
https://doi.org/10.1016/0370-2693(89)90405-X
https://doi.org/10.1103/PhysRevD.70.116013
https://doi.org/10.1103/PhysRevD.71.116002
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/PhysRevC.79.035807
https://doi.org/10.1103/PhysRevC.79.035807
https://doi.org/10.1103/PhysRevC.80.065805
https://doi.org/10.1103/PhysRevC.83.065805
https://doi.org/10.1103/PhysRevC.83.065805
https://doi.org/10.1103/PhysRevD.98.016007
https://doi.org/10.1103/PhysRevD.98.016007
https://doi.org/10.1016/j.physletb.2006.01.008
https://doi.org/10.1016/j.physletb.2006.01.008
https://doi.org/10.1016/j.aop.2006.08.004
https://doi.org/10.1140/epja/i2013-13014-y
https://doi.org/10.1140/epja/i2013-13014-y
https://doi.org/10.1103/PhysRevD.88.054032
https://doi.org/10.1103/PhysRevD.88.054032
https://doi.org/10.1103/PhysRevD.81.116005
https://doi.org/10.1103/PhysRevD.81.116005
https://doi.org/10.1103/PhysRevD.101.054025
https://doi.org/10.1103/PhysRevD.101.054025
https://arXiv.org/abs/2003.12829
https://doi.org/10.1103/PhysRevC.81.065205
https://doi.org/10.1103/PhysRevC.81.065205
https://doi.org/10.1103/PhysRevD.91.065017
https://doi.org/10.1016/j.physletb.2004.04.027
https://doi.org/10.1103/PhysRevD.69.116003
https://doi.org/10.1103/PhysRevD.69.116003
https://doi.org/10.1103/PhysRevD.74.065005
https://doi.org/10.1103/PhysRevD.74.065005
https://doi.org/10.1103/PhysRevD.75.034007
https://doi.org/10.1103/PhysRevD.75.034007
https://doi.org/10.1103/PhysRevD.77.094024
https://doi.org/10.1103/PhysRevD.77.014006
https://doi.org/10.1103/PhysRevD.77.014006
https://doi.org/10.1103/PhysRevD.79.116003
https://doi.org/10.1103/PhysRevD.77.114028
https://doi.org/10.1103/PhysRevD.82.014021
https://doi.org/10.1103/PhysRevD.82.014021
https://doi.org/10.1142/S0217751X12500601
https://doi.org/10.1142/S0217751X12500601
https://doi.org/10.1103/PhysRevD.93.094014
https://doi.org/10.1103/PhysRevD.93.094014
https://doi.org/10.1103/PhysRevD.95.054005

