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We discuss the thermoelectric effect of hot and dense hadron gas within the framework of the hadron
resonance gas model. Using the relativistic Boltzmann equation within the relaxation time approximation
we estimate the Seebeck coefficient of the hot and dense hadronic medium with a gradient in temperature
and baryon chemical potential. The hadronic medium in this calculation is modeled by the hadron
resonance gas (HRG) model with hadrons and their resonances up to a mass cutoff Λ ∼ 2.6 GeV. We also
extend the formalism of the thermoelectric effect for a nonvanishing magnetic field. The presence of
magnetic field also leads to a Hall type thermoelectric coefficient (Nernst coefficient) for the hot and dense
hadronic matter apart from a magneto-Seebeck coefficient. We find that generically in the presence of a
magnetic field the Seebeck coefficient decreases while the Nernst coefficient increases with the magnetic
field. At higher temperature and/or baryon chemical potential these coefficients approach to their values at
vanishing magnetic field.
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I. INTRODUCTION

Transport coefficients are important characteristics of
thermodynamic systems that determine the evolution of the
system toward equilibrium starting from an initial out of
equilibrium state. A new state of strongly interacting matter
has been reported in the relativistic heavy-ion collision
experiments, e.g., at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC). This
strongly interacting matter so produced is also expected
to achieve local thermal equilibrium within a few Fermi
timescale after the collision, which is supported by the fact
that relativistic hydrodynamical modeling of the strongly
interacting medium successfully explains the particle spec-
tra coming out of the medium after hadronization. Similar
to other thermodynamic systems transport coefficients of
the strongly interacting plasma are of utmost importance
for a comprehensive understanding of quantum chromo-
dynamics (QCD) in the nonperturbative regime. In the
dissipative relativistic hydrodynamical model as well as in

the transport simulations of the hot and dense medium these
transport coefficients, e.g., shear and bulk viscosity, etc.
play important roles. It has been argued that the strongly
interacting medium produced at RHIC is the most perfect
fluid in nature having the smallest value of shear viscosity
to entropy ratio (η=s) known to us [1–3]. Apart from the
shear viscosity another important transport coefficient
which play an important role in the hydrodynamical
evolution of non conformal field theories is the bulk
viscosity ζ [4–12]. Although at asymptotically high tem-
perature relative to ΛQCD strongly interacting plasma can
be approximated with the conformal equation of state
ðE ¼ 3PÞ, lattice QCD simulations shows a nonmonotonic
behavior of both η=s and ζ=s near the critical temperature
Tc. [6–12]. It is important to note that the bulk viscosity
encodes the conformal measure, ðE − 3PÞ=T4 of the system
and nonvanishing bulk viscous coefficient indicates
deviation from conformality of the strongly interacting
matter. A new dimension has been added to the study of the
strongly interacting plasma is the prediction of the gen-
eration of a strong magnetic field in the noncentral heavy-
ion collisions. Conservative estimates indicate that the
magnitude of the magnetic field can be as large as of
several m2

π , at least in the initial stage at RHIC energies
[13–16]. The strength of the magnetic field in the initial
stage can be large with respect to ΛQCD, but in the absence
of any thermalized conducting medium, this large magnetic
field will quickly vanish. If the thermalization time of the
strongly interacting medium is small then it can be argued
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that due to finite electrical conductivity some fraction of the
initial large magnetic field may sustain in the conducting
plasma [17–35]. Certainly, it is not known what is the exact
amount of magnetic field that can be sustained in the
medium, but taking an optimistic approach many inves-
tigations are going on to understand novel effects of
magnetic field on QCD plasma. One of such effect is
the CP-violating effects, e.g., chiral magnetic effect and
chiral vortical effect [36]. The success of hydrodynamical
modeling of the QCD plasma inspires a deeper under-
standing of hydrodynamical behavior in the presence of a
magnetic field. In this context, magnetohydrodynamic
simulations have been used to study the flow coefficient
of the strongly interacting matter produced in heavy-ion
collisions [17,18]. This apart various approaches like
perturbative QCD (pQCD), and different QCD inspired
effective models, etc. have been used to estimate various
transport coefficients for the QCD matter both in the
absence and in the presence of magnetic field [37–71].
Another transport coefficient which becomes important
in the presence of temperature gradient at finite baryon
density is the thermal conductivity [72,73]. The effect of
the magnetic field on thermal conductivity of hot and dense
hadron gas has been discussed in the literature [68].
In the present article, we investigate thermoelectric

behavior in the presence of the magnetic field, specifically
the magneto-Seebeck coefficient and Nernst coefficient of
the hadronic medium produced in the subsequent evolution
of the partonic medium formed in heavy-ion collisions.
Due to nonvanishing thermoelectric coefficients, a temper-
ature gradient in a conducting medium gets converted into
an electrical current and vice versa. The Seebeck coefficient
is a measure of the electric field produced in a conducting
medium due to a temperature gradient and it is formally
defined by the “open circuit” condition, i.e., when the
electric current is set to zero [74,75]. In condensed matter
systems Seebeck effect has been investigated extensively,
e.g., in superconductors [76,77], graphene-superconductor
junction [78], Majorana bound state coupled to a quantum
dots [79], high temperature cuprates [80], superconductor-
ferromagnetic tunnel junctions [81], low dimensional
organic metals [82] etc. Following the formalism developed
in condensed matter systems as given in Refs. [83,84],
earlier some of us had studied the Seebeck coefficient in the
absence of a magnetic field for the hot and dense hadronic
matter within the framework of the hadron resonance gas
model [66]. The present investigation differs from our
earlier work in the following ways: in Ref. [66] we had
investigated thermoelectric effect for a system that has a
temperature gradient but we had considered spatially uni-
form chemical potential. Here we consider a temperature
gradient as well as a gradient in the baryon chemical
potential to estimate the thermoelectric coefficients. Due to
Gibbs-Duhem relation, one can relate the temperature
gradient with the gradient in the baryon chemical potential

in the QCD medium [4]. It is important to note that,
contrary to a nonrelativistic system where heat current is
defined with respect to Fermi surface, in a relativistic
system thermal current can only be defined in the presence
of conserved number current, e.g., for strongly interacting
matter one generally defines heat current with respect to the
baryon current due to the fact that baryon number is
conserved in QCD. This is an important difference with
respect to the definition of heat current in the nonrelativistic
systems. These differences between the two formalisms are
very important and due to these differences, the nature of
estimated thermoelectric coefficients will be very different
which we will show later in the formalism as well as in the
result section. Further, we have extended the formalism of
the thermoelectric effect for the nonvanishing magnetic
field and estimate the magneto-Seebeck coefficient and the
Nernst coefficient. Unlike the Seebeck coefficient, the
Nernst coefficient is a Hall-type thermoelectric coefficient
having nonvanishing value only for a finite magnetic field.
If a conducting medium is subjected to a magnetic field in
the presence of temperature gradient perpendicular to the
magnetic field then the Nernst coefficient is the manifes-
tation of electric current normal to both magnetic field and
temperature gradient.
In the condensed matter systems in the absence of a

magnetic field nonvanishing Seebeck coefficient is ensured
by the presence of temperature gradient only as because in
these systems only one type of charge carriers are available
e.g., either electrons or holes. Also for the electron-ion
plasma where the different mobility of electrons and ions
can give rise to a nonvanishing value of the Seebeck
coefficient. On the other hand for an electron-positron
plasma just having a temperature gradient does not guar-
anty any thermoelectric current in the absence of a
magnetic field due to the cancellation of electric current
due to particles and antiparticles. For strongly interacting
plasma since heat current can only be defined with
reference to the net baryon current, the Seebeck coefficient
is only meaningful at finite baryon chemical potential. It is
important to note that although the Seebeck coefficient is
associated with electric current due to temperature gradient,
due to Onsager relations thermoelectric coefficients asso-
ciated with electrical current and the thermoelectric coef-
ficients associated with the heat current are related, e.g.,
Peltier coefficient and Seebeck coefficient are not inde-
pendent [85]. At finite baryon chemical potential, the
number of baryons and antibaryons are different and a
net thermoelectric current driven by the temperature gra-
dient can be produced. For heavy-ion collision experiments
at RHIC and LHC the medium produced is expected to
have very small net baryon number density, however, the
heavy-ion collisions at Facility for Antiproton and Ion
Research (FAIR) at Darmstadt [86] and in Nuclotron-based
Ion Collider fAcility (NICA) at Dubna [87] one expects a
baryon-rich medium. In these low energy experiments, the
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thermalization of the strongly interacting medium is
expected with finite baryon density. All the conditions
for a nonvanishing thermoelectric effect, e.g., temperature
gradient, nonvanishing baryon number, etc., allows us to
study thermoelectric effects in these low energy heavy-ion
collision experiments. Description of thermoelectric coef-
ficients becomes more complicated in the presence of a
magnetic field and in this investigation we have discussed
in detail the effect of the magnetic field on the Seebeck
coefficient and the Nernst coefficient. We have found that
generically in the presence of magnetic field Seebeck
coefficient of hot and dense hadron gas decreases. On
the other hand, the Nernst coefficient increases with the
magnetic field. Here we have assumed that in the hadronic
system the strength of the magnetic field is small and it is
not a dominant scale. In the present approach, therefore, we
attempted to estimate the transport coefficients where the
phase space and the single-particle energies are not affected
by the magnetic field through Landau quantization as in
Refs. [67–69,71]. On the other hand, the effect of the
magnetic field enters through the cyclotron frequency of
the individual hadrons.
In the context of heavy ion collision, the hadronic phase

of the QCD plasma can be successfully described by the
hadron resonance gas (HRG) model, at chemical freeze-out
[88–90]. In the simplest approximation the strange and
nonstrange particles freeze out in the same manner and in
this simple case HRG model can be described by only two
parameters i.e., temperature (T) and baryon chemical
potential (μB). It has been argued that thermodynamics
of strongly interacting hadronic systems can be approxi-
mated by a system of noninteracting hadrons and its
resonances, where the interactions between different
hadrons are encoded as the resonances [91,92]. HRG
model has been explored regarding thermodynamics of
hadronic medium [93,94], conserved charge fluctuations
[95–100] as well as transport coefficients for hadronic
matter[20,38–41,43–49,51–58,61,62]. Subsequently, the
ideal HRG model has been improved upon, e.g., consid-
ering excluded volume due to the finite size of the hadrons
[62,101]. We would like to mention here that, although
some of us studied the Seebeck coefficient for the hadronic
medium using the formalism originally developed for
condensed matter system, here we study the magneto-
Seebeck coefficient and Nernst coefficient for the hadronic
system using the formalism of thermoelectric effect com-
patible with relativistic systems.
This paper is organized as follows, in Sec. II we

introduce the formalism to estimate Seebeck coefficient
in the absence of a magnetic field for a relativistic system
which will be followed by the formalism of magneto-
Seebeck coefficient and Nernst effect in Sec. III. In Sec. IV
we present and discuss the results for the magneto-Seebeck
coefficient and the Nernst coefficient. Finally, we summa-
rize our work with an outlook in the conclusion section.

II. BOLTZMANN EQUATION IN RELAXATION
TIME APPROXIMATION AND
THERMOELECTRIC EFFECT

We first discuss here the thermoelectric effect in the
absence of a magnetic field. We consider here the linearized
Boltzmann equation in relaxation time approximation.
The thermal equilibrium is achieved locally due to strong
interaction and the external electromagnetic field acts as
perturbation which takes the system slightly away from
equilibrium. Under this approximation in the Boltzmann
equation the distribution function can be expanded around
the equilibrium distribution function and one can keep
terms up to linear order in the deviation from the equilib-
rium distribution function. Spatial dependence of the
distribution functions appears due to spatial dependence
of temperature (T) and baryon chemical potential (μB),
in local thermodynamic equilibrium. The relativistic
Boltzmann transport equation (RBTE) in the presence of
an electromagnetic field for a single hadron species can be
expressed as [71,83,84,102,103],

pμ
a
∂fa
∂xμ þ qaFμνpa;ν

∂fa
∂pμ

a
¼ C½fa�; ð1Þ

here Fμν is the electromagnetic field strength tensor which
in general contains the electric field ðE⃗Þ and the magnetic
field ðB⃗Þ, qa is the electric charge of the particle species “a”
and C½fa� is the collision integral. Here fa denotes the off
equilibrium distribution function. The equilibrium distri-

bution function will be denoted by fð0Þa and is given by

fð0Þa ðr⃗; p⃗Þ ¼ ½expfðpν
auν − baμBðr⃗ÞÞ=Tðr⃗Þg � 1Þ�−1. Here

� are for fermions and bosons respectively and ba denotes
the baryon number. In the relaxation time approximation
(RTA) the collision integral can be written as [67,69,71],

C½fa� ≃ −
pμ
auμ
τa

ðfa − fð0Þa Þ≡ −
pμ
auμ
τa

δfa: ð2Þ

In Eq. (2), uμ is the fluid four velocity. In the local rest
frame the four velocity takes the form ð1; 0⃗Þ. Here δfa
denotes the deviation from equilibrium and τa denotes the
relaxation time of the particle species “a”. Using Eq. (2), in
the local rest frame, the relativistic Boltzmann equation as
given in Eq. (1) in the absence of a magnetic field can be
expressed as [4,71,102,103],

∂fa
∂t þ v⃗a:∇⃗fa þ qaE⃗:

∂fa
∂p⃗a

¼ −
δfa
τa

: ð3Þ

In a static case, one can assume that both fa and f
ð0Þ
a do not

depend on time explicitly [71]. Therefore, for the static
case and in the linear order in the deviation from the
equilibrium distribution, the relativistic Boltzmann equa-
tion get reduced to,
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v⃗a:∇⃗fð0Þa þ qaE⃗:
∂fð0Þa

∂p⃗a
¼ −

faðr⃗; p⃗Þ − fð0Þa ðr⃗; p⃗Þ
τaðp⃗Þ

≡ −
δfaðr⃗; p⃗Þ
τaðp⃗Þ

: ð4Þ

The equilibrium distribution function satisfies,

∂fð0Þa

∂p⃗a
¼ v⃗a

∂fð0Þa

∂ϵa ;
∂fð0Þa

∂ϵa ¼ −
fð0Þa

T

�
1 ∓ fð0Þa

�
;

fð0Þa ¼ 1

eðϵa−baμBÞ=T � 1
; ð5Þ

here the single particle energy is denoted as ϵaðpaÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
a þm2

a

p
, μB is the baryon chemical potential, ba denotes

the baryon number of particle “a,” e.g., for baryons
bbaryon ¼ 1, for antibaryons bantibaryon ¼ −1 and for mesons
bmeson ¼ 0. v⃗a ¼ p⃗a=ϵa is the velocity of the particle. � in
the equilibrium distribution function is for fermion and
boson respectively. The gradient of the equilibrium dis-

tribution function ∇⃗fð0Þa can be expressed as,

∇⃗fð0Þa ¼ T
∂fð0Þa

∂ϵa
�
ϵa∇⃗

�
1

T

�
− ba∇⃗

�
μB
T

��
: ð6Þ

The spatial gradients of temperature and chemical
potential can be related using momentum conservation
in the system and Gibbs Duhem relation. Momentum
conservation leads to ∂iP ¼ 0. Using Gibbs Duhem rela-
tion we then have,

∂iP ¼ ω

T
∂iT þ TnB∂iðμB=TÞ ¼ 0: ð7Þ

Here ω ¼ E þ P is the enthalpy of the system, E is the
energy density and P is the pressure of the system. The
above equation relates the spatial gradient of temperature to
the spatial gradient in chemical potential as,

∂iμB ¼
�
μB −

ω

nB

� ∂iT
T

: ð8Þ

Using Eqs. (8) and (6), we have

∇⃗fð0Þa ¼ −
∂fð0Þa

∂ϵa
�
ϵa − ba

ω

nB

� ∇⃗T
T

: ð9Þ

Using Eq. (9) in Eq. (4) we can write the deviation of the
equilibrium distribution function as,

δfa ¼ −τa
∂fð0Þa

∂ϵa
�
qaðE⃗:v⃗aÞ −

�
ϵa − ba

ω

nB

�
v⃗a:∇⃗ lnT

�
:

ð10Þ

Here we have written, ∇⃗ lnT ¼ ∇⃗T
T . Using the deviation

from the equilibrium distribution function as given in
Eq. (10), the electric current ðj⃗Þ of the system can be
defined as,

j⃗¼
X
a

ga

Z
d3pa

ð2πÞ3qav⃗aδfa

¼
X
a

ga
3

Z
d3pa

ð2πÞ3 τaq
2
av2a

�
−
∂fð0Þa

∂ϵa
�
E⃗

−
X
a

ga
3

Z
d3pa

ð2πÞ3 τaqav
2
a

�
ϵa−ba

ω

nB

��
−
∂fð0Þa

∂ϵa
�
∇⃗ lnT:

ð11Þ

In Eq. (11), ga is the degeneracy of the particle species “a.”
In the second line of Eq. (11) the integrand depends only on
the magnitude of p⃗a ≡ v⃗a=ϵa apart from the factor viav

j
a.

Therefore one can effectively make the replacement
viav

j
a → 1

3
v2aδij for a spherically symmetric system.

Further, the sum is over all the baryons and mesons
including their antiparticles. For a relativistic system
thermal current or the heat current arises corresponding
to a conserved particle number. Thermal conduction is
defined with reference to the conserved baryon current.
Thermal conduction arises when energy flows relative to
the baryonic enthalpy. Hence in the presence of conserved
baryon current, the heat current of hadron resonance gas
can be defined as [4],

I i ¼
X
a

T0i
a −

ω

nB

X
a

bajiBa
: ð12Þ

In Eq. (12) T0i is the “0i-th” component of the energy
momentum tensor Tμν. Conserved baryon current is
denoted as jμB and nB represents the net baryon number
density. Using the definition of energy momentum tensor
(Tμν) and baryon current (jμB), heat current I

i as given in
Eq. (12) can be recasted as [4],

I i ¼
X
a

ga

Z
d3pa

ð2πÞ3 p
i
afa −

ω

nB

X
a

baga

Z
d3pa

ð2πÞ3 v
i
afa

¼
X
a

ga

Z
d3pa

ð2πÞ3
pi
a

ϵa

�
ϵa − ba

ω

nB

�
δfa: ð13Þ

In Eq. (13) equilibrium distribution function does not
contributes because the equilibrium distribution function
is a even function of momentum. Using the expression of
δfa as given in Eq. (10) in Eq. (13) we get for the heat
current,
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I i ¼
X
a

ga

Z
d3pa

ð2πÞ3
pi
a

ϵa

�
ϵa−ba

ω

nB

�
δfa

¼
X
a

ga
3

Z
d3pa

ð2πÞ3 τaqav
2
a

�
ϵa −ba

ω

nB

��
−
∂fð0Þa

∂ϵa
�
E⃗

−
X
a

ga
3

Z
d3pa

ð2πÞ3 τav
2
a

�
ϵa −ba

ω

nB

�
2
�
−
∂fð0Þa

∂ϵa
�
∇⃗ lnT:

ð14Þ

The Seebeck coefficient S can be determined using Eq. (11)
by setting j⃗ ¼ 0, so that the electric field becomes propor-
tional to the temperature gradient and the proportionality
factor is nothing but the Seebeck coefficient [83,84]. Hence
from Eq. (11) we get,

E⃗ ¼ S∇⃗T; ð15Þ

here the Seebeck coefficient in the Boltzmann approxima-
tion can be identified as,

S ¼
P

a
ga
3

R d3pa
ð2πÞ3 τaqav

2
a

�
ϵa − ba

ω
nB

��
− ∂fð0Þa∂ϵa

�

T
P

a
ga
3

R d3pa

ð2πÞ3 τaq
2
av2a

�
− ∂fð0Þa∂ϵa

�

¼
P

a
ga
3T

R d3pa
ð2πÞ3 τaqa

�
p⃗a
ϵa

�
2
�
ϵa − ba

ω
nB

�
fð0Þa

T
P

a
ga
3T

R d3pa
ð2πÞ3 τaq

2
a

�
p⃗a
ϵa

�
2
fð0Þa

≡ I31=T2

σel=T
:

ð16Þ

Let us note that at small temperature and large enough
baryon chemical potential for which Ts ≪ μBnB,
ðϵa − ba

ω
nB
Þ ≃ ðϵa − baμBÞ and in this limit the Seebeck

coefficient reduces to the expression for the same given in
Ref. [66]. However it may be noted for the system of
hadron resonance gas the contribution of pions to entropy
can be large and it should not be ignored. We will discuss it
more in Sec. IV. The electrical conductivity σel can be
identified from Eq. (11) as,

σel ¼
X
a

ga
3T

Z
d3pa

ð2πÞ3 τaq
2
a

�
p⃗a

ϵa

�
2

fð0Þa ; ð17Þ

and the integral I31 in Eq. (16) is,

I31¼
X
a

ga
3T

Z
d3pa

ð2πÞ3 τaqa
�
p⃗a

ϵa

�
2
�
ϵa−ba

ω

nB

�
fð0Þa : ð18Þ

We would like to make two comments regarding the
expression for the Seebeck coefficient as given in
Eq. (16). First, the Seebeck coefficient can be positive
and negative as the numerator depends linearly on electric
charge while the integrand itself is not manifestly positive

definite. Second, in the numerator only the baryons will
contribute as the mesonic contribution will cancel out. In
terms of σel and S the electric current can be expressed as,

j⃗ ¼ σelE⃗ − σelS∇⃗T: ð19Þ

In a similar way, the heat current as given in Eq. (14) can be
expressed as,

I⃗ ¼ TσelSE⃗ − k0∇⃗T; ð20Þ

where k0 is the thermal conductivity and is expressed as [4],

k0 ¼
X
a

ga
3T2

Z
d3pa

ð2πÞ3 τa
�
p⃗a

ϵa

�
2
�
ϵa − ba

ω

nB

�
2

fð0Þa : ð21Þ

Using Eqs. (19) and (20), we can express the heat current I⃗
in terms of electric current j⃗ in the following way,

I⃗ ¼ TSj⃗ − ðk0 − TσelS2Þ∇⃗T: ð22Þ

From Eq. (22) we can identify the Peltier coefficient (Π)
and thermal conductivity (k) in the presence of nonvanish-
ing Seebeck coefficient as,

Π ¼ TS; ð23Þ

k ¼ k0 − TσelS2: ð24Þ

Note that the Peltier coefficient (Π) in terms of the
Seebeck coefficient (S) as given in Eq. (23) can be
considered as the consistency relation which can also be
obtained using the Onsager relation [85]. Also, note that
from Eq. (24) the thermal conductivity in the absence of
any thermoelectric effect matches the expression of the
thermal conductivity as given in Ref. [4]. Here some
comments on the formalism as given earlier in Ref. [66]
is in order. The basic difference between the expression of
the total Seebeck coefficient as given in Eq. (16) for a
multicomponent system and the same as given in Ref. [66],
is the presence of the factor ω=nB. In Ref. [66] instead of
the factor ω=nB, baryon chemical potential μB enters into
the expression of the Seebeck coefficient. This is because in
Ref. [66] the spatial dependence of μB was ignored and the
heat current is defined with respect to the baryon chemical
potential rather that the conserved baryon current. However
similar to Ref. [66], here also the mesonic contributions
to the total Seebeck coefficient cancel out in the numerator
of the Eq. (16) due to the equal and opposite contribution of
the particles and antiparticles. Only baryonic contribution
becomes relevant in the numerator at finite μB. Mesons only
contribute to the total enthalpy of the system and also in the
total electrical conductivity of the system which enters the
denominator of the Eq. (16). This simple picture becomes
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more complicated in the presence of a magnetic field which
we discuss in the next section.

III. MAGNETO-SEEBECK COEFFICIENT AND
NERNST COEFFICIENT

To investigate the effect of a magnetic field on the
thermoelectric effect we start with the relativistic
Boltzmann transport equation (RBTE) to estimate the
deviation from equilibrium δfa in the presence of a
magnetic field. Under the relaxation time approximation
(RTA) using Eq. (1), in the local rest frame the RBTE
in the presence of an electric field (E⃗) and a magnetic
field (B⃗) for a single hadron species can be expressed
as [71,102,103],

∂fa
∂t þ v⃗a:

∂fa
∂r⃗ þ qaðE⃗þ v⃗a × B⃗Þ: ∂fa∂p⃗a

¼ −
δfa
τa

: ð25Þ

In a static case where both fa and fð0Þa does not depend
on time explicitly, the relativistic Boltzmann equation get
reduced to [71],

v⃗a:
∂fa
∂r⃗ þ qaðE⃗þ v⃗a × B⃗Þ: ∂fa∂p⃗a

¼ −
δfa
τa

; ð26Þ

In global thermal equilibrium Eq. (26) is trivially satisfied
as both the left-hand side (lhs) and right-hand side (rhs) in
Eq. (26) vanishes. Hence, we can express the Boltzmann
kinetic equation as given in Eq. (26) as an equation for
the deviation from equilibrium distribution function,

δfa ¼ fa − fð0Þa . Note that equilibrium distribution func-

tion fð0Þa does not contribute to the Lorentz force as because
∂fð0Þa∂p⃗a

∝ v⃗a, hence ðv⃗a × B⃗Þ: ∂fð0Þa∂p⃗a
¼ 0. Only δfa contributes

to the Lorentz force. Therefore the RBTE in the relaxation
time approximation get reduced to,

v⃗a:
∂fð0Þa

∂r⃗ þ qaE⃗:
∂fð0Þa

∂p⃗a
þ qaðv⃗a × B⃗Þ: ∂ðδfaÞ∂p⃗a

¼ −
δfa
τa

;

ð27Þ

Some comments on the relaxation time approximation in
the presence of a magnetic field are in order here. In the
relaxation time approximation, the system is not far away
from equilibrium due to external perturbation and then it
relaxes back toward equilibrium with the characteristics
time scale given as the relaxation time. Hence external
perturbation is not the dominant scale. For the strongly
interacting medium, the strong interaction is responsible
for equilibration of the system and the magnetic field is a
perturbation with respect to the strong interaction. In the
heavy-ion collision, a large magnetic field can be produced
at the initial stages. Conservative estimates predict the
strength of the magnetic field is of the order of a few

m2
π ∼ 0.02 GeV2 at RHIC energies and even less in the

low energy collisions. To affect the evolution of the
strongly interacting medium the magnetic field should
survive for at least several Fermi proper time. Earlier it
was thought that the magnetic field is strong for a very
short time ∼0.2 fm at RHIC energies. This time scale is
essentially the passing time of the Lorentz contracted
nuclei. Subsequently the magnetic field rapidly decays
[13,104]. However it was pointed out by Tuchin in
Ref. [19] that due to induced currents, the magnetic field
does not decay very rapidly in a conducting medium,
rather the magnetic field satisfies a diffusion equation with
the diffusion constant equal to 1=ðσelμ̃Þ [18]. Here μ̃ is the
magnetic permeability, not to be confused with the baryon
chemical potential, and σel is the electrical conductivity
[105,106]. Assuming μ̃ to be ∼Oð1Þ and considering the
lattice QCD estimates of the electrical conductivity
(σel ∼ 0.04T), it has been argued in Ref. [18] that over
a length scale of ∼10 fm the magnetic field remains
reasonably strong for a timescale of the order of 1 fm.
With a larger value of the electrical conductivity, the
magnetic field can sustain for a longer time scale in the
medium. On the other hand, the hadronization time scale
and the freezeout time scale (typical time scale is of the
order of ≳10 fm) can be large with respect to the time
scale of 1 fm. Also in the hadronic phase, the value of
electrical conductivity can be smaller than the partonic
phase [67,68]. Interestingly with the magnetic field, the
electrical conductivity itself decreases[67,71]. Hence it is
expected that at the time of chemical freezeout the
strength of the magnetic field may be small in comparison
to the initial magnetic field. In the low energy collision,
the strength of the initial magnetic field can be even
smaller. Using the microscopic transport model (UrQMD)
magnetic field created in the noncentral heavy-ion colli-
sions has been estimated in the Ref. [14], for SPS to LHC
energies. It has been reported in Ref. [14] that at peak SPS
energies the peak strength of the magnetic field can be an
order of eB ∼ 0.1m2

π . On the other hand for the RHIC
energy scale, the strength of the magnetic field can be
eB ∼m2

π and for the LHC energy scale eB ∼ 15m2
π .

However, it is important to note that with an increase
in the collision energy the initial magnetic field decays
even faster with time [14]. Here we should also mention
that in Refs. [15,16] electromagnetic fields have been
estimated for the RHIC energy scale, taking into account a
finite electrical conductivity as well as chiral magnetic
conductivity. These estimates also indicate that a
conservative value of the initial magnetic field at RHIC
energy scale is eB ∼m2

π . These calculations also show
that although in vacuum the initial magnetic field decays
very rapidly but due to the presence of a finite electrical
conductivity and chiral magnetic conductivity, decay of
the initial magnetic field with time is relatively slower in
medium. Therefore some part of the initial magnetic field
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can survive in the hadronic phase and it is natural to expect
that for the hadronic phase evolution modeled by the HRG
model the magnetic field will be small.
Further, if one considers the Bjorken flow solution in

transverse relativistic magnetohydrodynamics then the
proper time evolution of the magnetic field can be
expressed as eB ¼ eB0ðτ0=τÞa [107]. In the ideal magneto-
hydrodynamic (MHD) limit a ¼ 1 and for dissipative case
a > 1 [107]. If we consider a conservative estimate of the
thermalization time τ0 ¼ 1 fm with eB0 ∼m2

π, then at
10 fm time scale eB ∼ 0.1m2

π ∼ 0.002 GeV2 in the ideal
MHD limit. Note that in ideal MHD limit the value of the
electrical conductivity is σel → ∞. Hence in the ideal MHD
limit, the decay of the magnetic field is very slow. On the
other hand for a realistic value of the electrical conductivity
σel the decay of the magnetic field can be even faster, e.g.,
in Ref. [14] the effect of the conducting medium, i.e., effect
of the electrical conductivity has not been taken into
consideration for the estimation and the evolution of the
magnetic field. In that case, the magnetic field decays very
rapidly and becomes very small within the timescale of the
order of few Fermi. With an increase in the center of mass-
energy, the decay of the magnetic field is even faster [14].
The assumption we make here is that for finite electrical
conductivity the magnetic field in the hadronic phase is
small enough and it does not affect the relaxation time.
However, we should keep in mind that this is a result from
an analysis of Ref. [107] arising from one dimensional
relativistic MHD. A precise value for the strength of the
magnetic field on the other hand will require 3þ 1 dimen-
sional viscous MHD evolution which is still missing. For
some important recent developments in the context of novel
analytical and numerical solutions of the relativistic mag-
netohydrodynamics, e.g., self-similar rotating solutions of
non-ideal transverse MHD, 3þ 1 dimensional self-similar
and Gubser flow solution in ideal relativistic MHD see
Refs. [108,109] and also the references therein. In these
references boost-invariant as well as nonboost-invariant
evolution of the magnetic field has been discussed. Another
novel approach using Wigner functions to determine the
proper time evolution of various thermodynamic quantities
for different parametrizations of the magnetic field evolu-
tion, in a uniformly expanding hot magnetized plasma has
been attempted in Ref. [110].

Therefore we assume that a small fraction of the initial
magnetic field can survive in the hadronic phase and the
magnetic field is the subdominant scale. Here we have
ignored the effect of the magnetic field in the collision
integral as well as in thermodynamics. But if the magnetic
field is dominant then one has to carefully consider the
effect of the magnetic field in the collision integral as well
as in thermodynamics of the system. To solve the RBTE as
given in Eq. (27) we take an ansatz to express the deviation
of the distribution function from the equilibrium in the
following way,

δfa ¼ ðp⃗a:Ξ⃗Þ
∂fð0Þa

∂ϵa ; ð28Þ

with Ξ⃗ being related to temperature gradient, electric field,
the magnetic field and in general can be written as,

Ξ⃗ ¼ αe⃗þ βh⃗þ γðe⃗ × h⃗Þ þ ρ∇⃗T
þ bð∇⃗T × h⃗Þ þ fð∇⃗T × e⃗Þ: ð29Þ

In Eq. (29), h⃗ ¼ B⃗
jBj and e⃗ ¼ E⃗

jEj, is the direction of the
magnetic field and electric field respectively. In the absence
of a temperature gradient such an ansatz had been taken
earlier in Refs. [67–69,71] which we have generalized to
include a temperature gradient. Using Eqs. (28) and (9),
RBTE as given in Eq. (27) can be expressed as,

v⃗a:

�
−
∂fð0Þa

∂ϵa
�
ϵa − ba

ω

nB

� ∇⃗T
T

�
þ qaðE⃗:v⃗aÞ

∂fð0Þa

∂ϵa
− qaBv⃗a:ðΞ⃗ × h⃗Þ ∂f

ð0Þ
a

∂ϵa ¼ −
ϵa
τa

ðv⃗a:Ξ⃗Þ
∂fð0Þa

∂ϵa : ð30Þ

One should note that in the presence of a magnetic field first
law of thermodynamics as well as Gibbs-Duhem relation
gets modified. However this modification involves non
vanishing magnetization of the system. In this present
investigation we are not considering spin-magnetic field
interaction and magnetization of the system, hence we are
considering Eq. (9) even for a nonvanishing magnetic field.
Using the representation of Ξ⃗ as given in Eq. (29), RBTE as
given in Eq. (30), can be expressed as,

qaðE⃗:v⃗aÞ − αqaBv⃗a:ðe⃗ × h⃗Þ − γqaBðe⃗:h⃗Þðv⃗a:h⃗Þ þ γqaBðv⃗a:e⃗Þ − ρqaBv⃗a:ð∇⃗T × h⃗Þ − bqaBð∇⃗T:h⃗Þðv⃗a:h⃗Þ

þ bqaBðv⃗a:∇⃗TÞ − fqaBð∇⃗T:h⃗Þðv⃗a:e⃗Þ þ fqaBðe⃗:h⃗Þðv⃗a:∇⃗TÞ −
�
ϵa − ba

ω

nB

�
ðv⃗a:∇⃗ lnTÞ

¼ −
ϵa
τa

½αðv⃗a:e⃗Þ þ βðv⃗a:h⃗Þ þ γv⃗a:ðe⃗ × h⃗Þ þ ρðv⃗a:∇⃗TÞ þ bv⃗a:ð∇⃗T × h⃗Þ þ fv⃗a:ð∇⃗T × e⃗Þ�: ð31Þ
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Comparing the coefficients of different tensor structures on
both sides of Eq. (31) we get,

f ¼ 0; ð32Þ

qaEþ γqaB ¼ −
ϵa
τa

α; ð33Þ

γ ¼ ατaωca ; ð34Þ
β ¼ γτaωcaðe⃗:h⃗Þ þ bτaωcað∇⃗T:h⃗Þ; ð35Þ

b ¼ ωcaτaρ; ð36Þ

ρ ¼ τa
ϵa

1

T

�
ϵa − ba

ω

nB

�
− bτaωca : ð37Þ

Here ωca ¼ qaB
ϵa

represents the cyclotron frequency of the
particle with electric charge qa. Using Eqs. (33)–(37) it can
be shown that,

α ¼ −
ðqaEÞðτa=ϵaÞ
1þ ðωcaτaÞ2

; ð38Þ

ρ ¼ τa
ϵa

ðϵa − ba
ω
nB
Þ

T
1

1þ ðωcaτaÞ2
: ð39Þ

α and ρ as given in Eqs. (38) and (39) allows us to write the
deviation from the equilibrium distribution function as,

δfa ¼
τa

1þ ðωcaτaÞ2
�
qafðv⃗a:E⃗Þ þ ðωcaτaÞv⃗a:ðE⃗ × h⃗Þ þ ðωcaτaÞ2ðE⃗:h⃗Þðv⃗a:h⃗Þg

−
ðϵa − ba ω

nB
Þ

T
fðv⃗a:∇⃗TÞ þ ðωcaτaÞv⃗a:ð ⃗∇T × hÞ þ ðωcaτaÞ2ð∇⃗T:h⃗Þðv⃗a:h⃗Þg

�
ð−Þ ∂f0a∂ϵa : ð40Þ

Using δfa as given in Eq. (40) we can express the electrical current ðj⃗Þ and the heat current ðI⃗Þ as,

jl ¼
X
a

ga

Z
d3pa

ð2πÞ3 qav
l
aδfa

¼
X
a

gaqa
3

Z
d3pa

ð2πÞ3
v2aτa

1þ ðωcaτaÞ2
�
qaδljEj þ qaðωcaτaÞϵljkhkEj þ qaðωcaτaÞ2hlhjEj

−
�
ϵa − ba

ω

nB

�	
δlj

∂ lnT
∂xj þ ðωcaτaÞϵljkhk

∂ lnT
∂xj þ ðωcaτaÞ2hlhj

∂ lnT
∂xj


�
ð−Þ ∂f

ð0Þ
a

∂ϵa ; ð41Þ

and,

I l ¼
X
a

ga

Z
d3pa

ð2πÞ3 v
l
a

�
ϵa − ba

ω

nB

�
δfa

¼
X
a

ga
3

Z
d3pa

ð2πÞ3
v2aτa

1þ ðωcaτaÞ2
�
ϵa − ba

ω

nB

��
qaδljEj þ qaðωcaτaÞϵljkhkEj þ qaðωcaτaÞ2hlhjEj

−
�
ϵa − ba

ω

nB

�	
δlj

∂ lnT
∂xj þ ðωcaτaÞϵljkhk

∂ lnT
∂xj þ ðωcaτaÞ2hlhj

∂ lnT
∂xj


�
ð−Þ ∂f

ð0Þ
a

∂ϵa : ð42Þ

Electric current (j⃗) and the heat current (I⃗) as given in Eqs. (41) and (42) respectively are quite general. However it is
difficult to identify the thermoelectric coefficients from Eqs. (41) and (42). To simplify further calculation, without the loss
of generality, we can choose the magnetic field along the z direction and take the electric field (E⃗), and the temperature

gradient (∇⃗T) perpendicular to it, i.e., in the x–y plane. Under these conditions the components of the electric current in the
x–y plane are given as,

jx ¼
X
a

gaqa
3

Z
d3pa

ð2πÞ3
v2aqaτa

1þ ðωcaτaÞ2
½Ex þ ðωcaτaÞEy�ð−Þ

∂fð0Þa

∂ϵa
−
X
a

gaqa
3T

Z
d3pa

ð2πÞ3
v2aτaðϵa − ba ω

nB
Þ

1þ ðωcaτÞ2
�
dT
dx

þ ðωcaτaÞ
dT
dy

�
ð−Þ ∂f

ð0Þ
a

∂ϵa ; ð43Þ
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and,

jy ¼
X
a

gaqa
3

Z
d3pa

ð2πÞ3
v2aqaτa

1þ ðωcaτaÞ2
½Ey − ðωcaτaÞEx�ð−Þ

∂fð0Þa

∂ϵa
−
X
a

gaqa
3T

Z
d3pa

ð2πÞ3
v2aτaðϵa − ba ω

nB
Þ

1þ ðωcaτÞ2
�
dT
dy

− ðωcaτaÞ
dT
dx

�
ð−Þ ∂f

ð0Þ
a

∂ϵa : ð44Þ

Equation (43) and (44) can be written in a compact form by introducing the following integrals,

L1a
¼ ga

3

Z
d3pa

ð2πÞ3
τa

1þ ðωcaτaÞ2
�
p⃗2
a

ϵ2a

�
ð−Þ ∂f

ð0Þ
a

∂ϵa ; ð45Þ

L2a
¼ ga

3

Z
d3pa

ð2πÞ3
τaðωcaτaÞ

1þ ðωcaτaÞ2
�
p⃗2
a

ϵ2a

�
ð−Þ ∂f

ð0Þ
a

∂ϵa ; ð46Þ

L3a
¼ ga

3

Z
d3pa

ð2πÞ3
τaϵa

1þ ðωcaτaÞ2
�
p⃗2
a

ϵ2a

�
ð−Þ ∂f

ð0Þ
a

∂ϵa ; ð47Þ

L4a
¼ ga

3

Z
d3pa

ð2πÞ3
τaϵaðωcaτaÞ
1þ ðωcaτaÞ2

�
p⃗2
a

ϵ2a

�
ð−Þ ∂f

ð0Þ
a

∂ϵa : ð48Þ

The integrals as given in Eq. (45)–(48) allow us to write Eqs. (43) and (44), respectively, as

jx ¼
X
a

q2aL1a
Ex þ

X
a

q2aL2a
Ey −

X
a

qa

�
L3a

− ba
ω

nB
L1a

�
d lnT
dx

−
X
a

qa

�
L4a

− ba
ω

nB
L2a

�
d lnT
dy

; ð49Þ

and,

jy ¼
X
a

q2aL1a
Ey −

X
a

q2aL2a
Ex −

X
a

qa

�
L3a

− ba
ω

nB
L1a

�
d lnT
dy

þ
X
a

qa

�
L4a

− ba
ω

nB
L2a

�
d lnT
dx

: ð50Þ

Seebeck coefficient in the presence of magnetic field or the magneto-Seebeck coefficient (SB) in this case can be determined
by setting jx ¼ 0 and jy ¼ 0, so that the electric field becomes proportional to the temperature gradient. For jx ¼ 0 and
jy ¼ 0 we can solve Eqs. (49) and (50) to get Ex and Ey in terms of temperature gradients dT

dx and
dT
dy in the following way,

Ex ¼
P

aq
2
aL1a

P
aqaðL3a

− ba
ω
nB
L1a

Þ þP
aq

2
aL2a

P
aqaðL4a

− ba
ω
nB
L2a

Þ
T½ðPaq

2
aL1a

Þ2 þ ðPaq
2
aL2a

Þ2�
dT
dx

þ
P

aq
2
aL1a

P
aqaðL4a

− ba ω
nB
L2a

Þ −P
aq

2
aL2a

P
aqaðL3a

− ba ω
nB
L1a

Þ
T½ðPaq

2
aL1a

Þ2 þ ðPaq
2
aL2a

Þ2�
dT
dy

; ð51Þ

and,

Ey ¼
P

aq
2
aL2a

P
aqaðL3a

− ba
ω
nB
L1a

Þ −P
aq

2
aL1a

P
aqaðL4a

− ba
ω
nB
L2a

Þ
T½ðPaq

2
aL1a

Þ2 þ ðPaq
2
aL2a

Þ2�
dT
dx

þ
P

aq
2
aL1a

P
aqaðL3a

− ba ω
nB
L1a

Þ þP
aq

2
aL2a

P
aqaðL4a

− ba ω
nB
L2a

Þ
T½ðPaq

2
aL1a

Þ2 þ ðPaq
2
aL2a

Þ2�
dT
dy

: ð52Þ

Equation (51) and (52) can be written in a compact form in the following way,
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�
Ex

Ey

�
¼

�
SB NB

−NB SB

�� dT
dx
dT
dy

�
; ð53Þ

here one can identify the magneto-Seebeck coefficient (SB) as,

SB ¼
P

aq
2
aL1a

P
aqaðL3a

− ba
ω
nB
L1a

Þ þP
aq

2
aL2a

P
aqaðL4a

− ba
ω
nB
L2a

Þ
T½ðPaq

2
aL1a

Þ2 þ ðPaq
2
aL2a

Þ2�

¼ ðσel=TÞðIB
31=T

2Þ þ ðσH=TÞðIB
42=T

2Þ
ðσel=TÞ2 þ ðσH=TÞ2

; ð54Þ

and the dimensionless Nernst coefficient [Nernst coefficient (N) times the magnitude of the magnetic field (B)] is given as,

NB ¼
P

aq
2
aL1a

P
aqaðL4a

− ba
ω
nB
L2a

Þ −P
aq

2
aL2a

P
aqaðL3a

− ba
ω
nB
L1a

Þ
T½ðPaq

2
aL1a

Þ2 þ ðPaq
2
aL2a

Þ2�

¼ ðσel=TÞðIB
42=T

2Þ − ðσH=TÞðIB
31=T

2Þ
ðσel=TÞ2 þ ðσH=TÞ2

: ð55Þ

Here we have identified the electrical conductivity in the
presence of a magnetic field and the Hall conductivity as,
σel ¼

P
a q

2
aL1a

and σH ¼ P
a q

2
aL2a

respectively [67].
The integrals IB

31 and IB
42 in Eqs. (54) and (55) are

defined as IB
31 ¼

P
a qaðL3a

− ba
ω
nB
L1a

Þ and IB
42 ≡P

a qaðL4a
− ba ω

nB
L2a

Þ. Note that in the absence of a
magnetic field integrals L2a

and L4a
are identically zero.

Hence normalized Nernst coefficient (NB) vanishes in the
absence of magnetic field and the magneto-Seebeck co-
efficient (SB) boils down to the Seebeck coefficient (S) in
the absence of magnetic field as given in Eq. (16). However
it is important to note that unlike Eq. (16), in Eq. (54)
mesonic contributions do not cancel out in the numerator.
In the numerator of Eq. (54) mesonic contributions cancel
out in the term IB

31 due to opposite contributions of
particles and antiparticles. But in the term IB

42 mesonic
contributions do not cancel out because mesons and its
antiparticles contribute equally. Similarly the particles and
antiparticles contribute in a constructive way in the Nernst
coefficient. For a single baryon species the magneto-
Seebeck coefficient and the normalized Nernst coefficient
can be expressed as,

SBa
¼ 1

qaT

�
L1a

L3a
þ L2a

L4a

L2
1a
þ L2

2a

− ba
ω

nB

�
; ð56Þ

and,

NaB ¼ 1

qaT

�
L1a

L4a
− L2a

L3a

L2
1a
þ L2

2a

�
; ð57Þ

respectively. Note that the magneto-Seebeck coefficient
and the normalized Nernst coefficient for a single baryon

species as given in Eqs. (56) and (57) are very similar to the
magneto-Seebeck coefficient and the Nernst coefficient for
condensed matter systems [111], apart from the fact that in
the condensed matter system ω=nB factor does not appear
rather chemical potential appears in the expression of
magneto-Seebeck coefficient. One can also define Peltier
coefficient and thermal conductivity in the presence of
thermoelectric effect for nonvanishing magnetic field. But
due to the presence of magnetic field these expressions
become more complicated and we have not discussed it
further. Using Eqs. (54) and (55) we can estimate magneto-
Seebeck coefficient and normalized Nernst coefficient for
hadron resonance gas model by evaluating the integrals
L1a

, L2a
, L3a

, and L4a
as given in Eqs. (45)–(48) respec-

tively. Note that to evaluate these integrals in the HRG
model we use the Boltzmann approximation. In the
Boltzmann approximation we get,

L1a
¼ ga

3T

Z
d3pa

ð2πÞ3
τa

1þ ðωcaτaÞ2
�
p⃗2
a

ϵ2a

�
fð0Þa ; ð58Þ

L2a
¼ ga

3T

Z
d3pa

ð2πÞ3
τaðωcaτaÞ

1þ ðωcaτaÞ2
�
p⃗2
a

ϵ2a

�
fð0Þa ; ð59Þ

L3a
¼ ga

3T

Z
d3pa

ð2πÞ3
τaϵa

1þ ðωcaτaÞ2
�
p⃗2
a

ϵ2a

�
fð0Þa ; ð60Þ

L4a
¼ ga

3T

Z
d3pa

ð2πÞ3
τaϵaðωcaτaÞ
1þ ðωcaτaÞ2

�
p⃗2
a

ϵ2a

�
fð0Þa : ð61Þ

The only unknown quantity in the Eqs. (58)–(61) is the
relaxation time. In general relaxation time depends on the
energy and the momentum of the particles. However for
simplicity one takes thermal averaged relaxation time by
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integrating energy dependent relaxation time over equilib-
rium distribution functions. The thermal averaged relaxa-
tion time ðτaÞ of the hadron species “a” in terms of the
scattering cross section can be expressed in the following
manner [62],

τ−1a ¼
X
b

nbhσabvabi; ð62Þ

here nb is the number density of particle “b” and hσabvabi
represents thermal averaged cross section. The sum in
Eq. (62) is over all the hadrons and its resonances. In this
case the thermal averaged scattering cross section can be
expressed as [62],

hσabvabi ¼
σ

8Tm2
am2

bK2ðma=TÞK2ðmb=TÞ

×
Z

∞

ðmaþmbÞ2
ds ×

½s − ðma −mbÞ2�ffiffiffi
s

p

× ½s − ðma þmbÞ2�K1ð
ffiffiffi
s

p
=TÞ; ð63Þ

here σ ¼ 4πr2h is the total scattering cross section for the
hard spheres. K1 and K2 are the modified Bessel function
of first and second order respectively. Using Eqs. (63) and
(62) one can calculate the thermal averaged relaxation time.
It is important to mention that while the hard sphere
scattering cross section σ is independent of both temper-
ature and baryon chemical potential, thermal averaged
cross section hσvi can depend on temperature (T) and
chemical potential (μB). This temperature (T) and chemical
potential (μB) dependence arise due to the temperature (T)
and chemical potential (μB) dependence of the distribution
functions. However in Boltzmann approximation hσvi is
independent of μB [112]. After evaluating the thermal
averaged relaxation time using Eq. (62) for each hadrons
we can estimate the magneto-Seebeck coefficient and
Nernst coefficient using Eqs. (54) and (55) respectively.

IV. RESULTS AND DISCUSSIONS

As we have mentioned earlier, for the hadron resonance
gas model with a discrete particle spectrum, we consider
here all the hadrons and their resonances up to a mass cutoff
Λ ¼ 2.6 GeV as is listed in Ref. [113]. A detailed list of
particles has been given in Appendix A of Ref. [114]. This
apart relaxation time also enters into the calculation of
thermoelectric coefficients. For the estimation of relaxation
timewithin the approximation of hard-sphere scattering, we
consider a uniform radius of rh ¼ 0.3 fm for all the mesons
and baryons [62,115]. For these parameters, we estimate
the magneto-Seebeck coefficient and the Nernst coefficient
using Eqs. (54) and (55) as a function of temperature (T)
and baryon chemical potential (μB) for nonvanishing values
of the magnetic field.

A. Behavior of Seebeck coefficient
with vanishing magnetic field

In Fig. 1 we show the variation of Seebeck coefficient (S)
for vanishing magnetic field with temperature (T) and
baryon chemical potential (μB). From Fig. 1 it is clear that
for the range of temperature and baryon chemical potential
considered in this investigation Seebeck coefficient (S)
of the hot and dense hadron resonance gas is negative for
vanishing magnetic field. This result is in contrast with our
previous work [66]. In Ref. [66] Seebeck coefficient for
vanishing magnetic field was found to be positive. The
reason behind this discrepancy between the results obtained
here and with the results in Ref. [66] is that the formalism
adopted in this investigation is different from that of
Ref. [66]. For vanishing magnetic field the Seebeck
coefficient as given in Eq. (16) is different with respect
to the expression of the Seebeck coefficient as obtained in
Ref. [66]. In Eq. (16) we have a factor of ðϵa − baω=nBÞ,
which is different in Ref. [66] and was ðϵa − baμBÞ. For
relativistic systems, heat flow can only be defined relative
to a conserved current, for strongly interacting plasma, the
heat current is defined with respect to the net baryon
current. Let us note that ω=nB ¼ Ts=nB þ μB. For HRG
model the entropy arising for pions is large making
Ts=nB ≫ μB and in fact overwhelms single particle energy
ϵa. This makes (ϵ − ω=nB) negative for baryons in the HRG
model. Baryons have dominant contributions in the
Seebeck coefficient for vanishing magnetic field. Hence
for the HRG model the factor ðϵ − ðω=nBÞÞ makes the total

FIG. 1. Variation of Seebeck coefficient (S) for vanishing
magnetic field with temperature (T) and baryon chemical
potential (μB). With increasing baryon chemical potential (μB),
Seebeck coefficient (S) increases. On the other hand with
increasing temperature Seebeck coefficient decreases for values
of μB (≲300 MeV), but for higher values of baryon chemical
potential Seebeck coefficient increases with temperature.
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Seebeck coefficient (S) negative. At this point, it is perhaps
relevant to note that the other transport coefficient thermal
conductivity (k0) in the absence of any thermoelectric effect
as defined in Eq. (21) also has the term ðϵ − ðω=nBÞÞ.
However, in the expression of thermal conductivity
ðϵ − ðω=nBÞÞ always comes as a square, hence in the
absence of thermoelectric effect, the positivity of thermal
conductivity is ensured which can be seen in Eq. (21). It
may be noted that both positive and negative values of the
Seebeck coefficient can be found in condensed matter
systems, e.g., if for the holes the Seebeck coefficient is
positive then for electrons the Seebeck coefficient is
negative.
In Fig. 1 it may be observed that with an increase in

temperature (T) the Seebeck coefficient (S) decreases for
μB ≲ 300 MeV and it increases with temperature for
higher values of μB. On the other hand with the baryon
chemical potential (μB) the Seebeck coefficient (S) always
increases. Let us recall that S ¼ ðI31=T2Þ=ðσel=TÞ there-
fore variation of the Seebeck coefficient with temperature
and baryon chemical potential for vanishing magnetic field
can be understood by looking into the behavior of I31=T2

and σel=T with T and μB as shown in Fig. 2. Variation of
σel=T in the absence of magnetic field has been extensively
discussed in Ref. [67]. From the left plot in Fig. 2 we can
observe that for vanishing magnetic field normalized
electrical conductivity (σel=T) decrease with temperature
and baryon chemical potential. Among all the hadrons
mesonic contribution to σel=T is dominant relative to the
baryonic contribution. With increasing temperature and
baryon chemical potential mesonic contribution to
σel=T decreases. This decrease of normalized electrical

conductivity with temperature and baryon chemical poten-
tial is predominantly due to the decrease of relaxation time
of mesons with T and μB (for a detailed discussion see
Ref. [67]). Further from the right plot in Fig. 2 we can see
that I31=T2 increases with temperature and baryon chemi-
cal potential. This increase of I31=T2 is due to the
increasing behavior of ð−ω=nBÞ and the equilibrium
distribution function with T and μB (for a detailed
discussion on the variation of ω=nB see Ref. [68]). For
smaller chemical potentials μB ≲ 300 MeV the decrease of
σel=T is faster compared to the increase of I31=T2 which
leads to an increase in magnitude of the ratio that is
magnitude of S. For higher chemical potentials the
increase of I31=T2 due to contributions of baryons
becomes faster compared to the decrease of σel=T leading
to the decrease in the magnitude of the Seebeck coefficient.
For μB ∼ 300 MeV and higher, the increase in I31=T2 with
increasing temperature and the decrease in normalized
electrical conductivity conspire to give rise to an increase
of the Seebeck coefficient with the temperature at high
values of baryon chemical potential. Let us recall that in
the expression of I31 as given in Eq. (18) mesons do not
contribute in the summation. This is because of the
opposite electrical charge, the contributions of mesons
and its antiparticles cancel exactly in I31. On the other
hand in σel mesonic contribution is nonvanishing. At finite
baryon chemical potential baryon contributions are larger
compared to the antibaryon contributions due to the
equilibrium distribution function. Among all the baryons
contribution of proton to I31=T2 is dominant due to its less
mass with respect to the other baryons. We can also see
from Fig. 1 that with increasing baryon chemical potential

FIG. 2. Left plot: variation of normalised electrical conductivity (σel=T) with temperature (T) and baryon chemical potential (μB) for
vanishing magnetic field. With increasing T and μB normalized electrical conductivity decreases. Right plot: variation of I31=T2 with
temperature and baryon chemical potential for vanishing magnetic field. With increasing T and μB, I31=T2 increases.
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Seebeck coefficient increases. With increasing baryon
chemical potential σel=T decreases. Among various μB
dependent factors in σel=T, distribution function increases
with μB and the relaxation time decreases with μB due to
large number density of the scatters. It turns out that in
HRG model pions are the dominant contributors in the
σel=T. Although the number density of pion does not
depend on the baryon chemical potential, due to pion-
nucleon scattering pion relaxation time decreases with μB,
due to which σel=T decreases with μB. On the other hand,
I31=T2 increases with μB as can be seen in Fig. 2. For the
range of temperature and baryon chemical potential
considered here this variation of I31=T2 and σel=T with
μB results in an increasing behavior of the Seebeck
coefficient (S) with μB.

B. Results for magneto-Seebeck coefficient
and Nernst coefficient

Now let us discuss the behavior of Seebeck coefficient
in the presence of a nonvanishing magnetic field with
temperature and baryon chemical potential. In Fig. 3 we
show the variation of the magneto-Seebeck coefficient (SB)
with temperature (T) and baryon chemical potential (μB).
Magneto-Seebeck coefficient (SB) as shown in Fig. 3
shows a nonmonotonic behavior with temperature for
μB ≲ 300 MeV. On the other hand for higher values of
μB, magneto-Seebeck coefficient (SB) increases with
temperature. We can also observe that with μB magneto-
Seebeck coefficient always increases. The expression of

the magneto-Seebeck coefficient as given in Eq. (54) is
more complicated than its zero magnetic field counterpart.
From Eq. (54) we can see that in terms IB

31=T
2 and σH=T,

mesonic contribution exactly cancels due to the exact and
opposite contribution coming from particles and its anti-
particles. But in terms IB

42=T
2 and σel=T mesonic con-

tributions do not cancel out. In fact in IB
42=T

2 and σel=T
mesons are the dominant contributors relative to the
baryons. The variation of SB with temperature and baryon
chemical potential crucially depend upon the variation
of σel=T, σH=T, IB

31=T
2 and IB

42=T
2 with T and μB.

We discuss the variation of these four quantities in what
follows.
In the presence of magnetic field the variations of

normalized electrical conductivity ðσel=TÞ and the Hall
conductivity (σH=T) has been extensively discussed in
Ref. [67], but for relatively large values of magnetic field
compared to this investigation. For completeness in Fig. 4
we show the variation of σel=T and σH=T. For nonvanish-
ing magnetic field normalized electrical conductivity and
the Hall conductivity shows nonmonotonic variation with
temperature, basically due to the factors of ωcτ in the
expressions of L1a

and L2a
, as has been discussed in details

in Ref. [67]. From the left plot in Fig. 4 we can see that for
low temperature range (below T ∼ 90 MeV), normalized
electrical conductivity increases with μB, but at higher
temperature range it decreases with μB. In the normalized
electrical conductivity there are two contributions, one is
due to the mesons and other one is due to the baryons.
Mesonic contribution to σel=T decreases with μB on the
other hand baryonic contribution increases with μB. In the
low temperature range when the relaxation time is large
magnetic field affects the mesonic contribution signifi-
cantly due to the large value of ωcτ. But with increasing μB
the baryonic contribution compensates the decrease in the
mesonic contribution and eventually for large μB, normal-
ized electrical conductivity increases with μB. However, in
the high temperature range the decrease in the mesonic
contribution cannot be compensated by the baryonic
contribution. Thus in the high temperature range normal-
ised electrical conductivity decreases with μB. This apart
normalised Hall conductivity generically increases with
baryon chemical potential as has been discussed in details
in Ref. [67]. This increase in the Hall conductivity with μB
is due to the increasing net baryonic contribution with μB.
Next we discuss the T; μB dependence of the other two

quantities IB
31=T

2 and IB
42=T

2 on which SB depends. In
Fig. 5 it is observed that generically, IB

31=T
2 as well as

IB
42=T

2 are monotonic functions of temperature and baryon
chemical potential at nonvanishing magnetic field. It is
clear from the expression of IB

31=T
2 is that only baryons

contribute to IB
31=T

2 and for baryonic contribution ω=nB is
very large with respect to single particle energy. With
increasing temperature and baryon chemical potential the

FIG. 3. Variation of the magneto-Seebeck coefficient (SB) with
temperature (T) for different values of baryon chemical potential
(μB). With increasing baryon chemical potential (μB) the mag-
neto-Seebeck coefficient (SB) increases. On the other hand with
increasing temperature the magneto-Seebeck coefficient shows
nonmonotonic behavior for μB ≲ 300 MeV and for higher values
of μB the magneto-Seebeck coefficient increases.
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factor (−ω=nB) increases along with the increasing dis-
tribution function giving rise to increasing behavior of
IB
31=T

2 with temperature and baryon chemical potential.
On the other hand in IB

42=T
2 mesonic contributions

becomes dominant with respect to the baryonic contribu-
tion. For mesonic contributions, increase in the distribution
function with temperature is compensated by the decrease

in relaxation time with increasing temperature. Thus with
temperature IB

42=T
2 decreases. Further with increasing

baryon chemical potential mesonic contribution decreases
because of decrease in the relaxation time. It is important to
note that the nonmonotonic nature of the magneto-Seebeck
coefficient with temperature has its origin in the non-
monotonic variation of σel=T and σH=T with temperature.

FIG. 5. Left plot: variation of IB
31=T

2 with temperature for different values of baryon chemical potential for nonvanishing magnetic
field. With temperature as well as with baryon chemical potential IB

31=T
2 increase. Right plot: variation of IB

42=T
2 with temperature for

different values of baryon chemical potential for nonvanishing magnetic field. With increasing temperature as well as with μB, IB
42=T

2

decreases. In IB
31=T

2 mesonic contributions vanishes due to exact and opposite contributions of the particles and the antiparticles. On the
other hand in IB

42=T
2 mesonic contributions are dominant relative to the baryonic contributions.

FIG. 4. Left plot: variation of normalized electrical conductivity σel=T with temperature for different values of baryon chemical
potential for nonvanishing magnetic field. For low temperature range σel=T increases with μB, otherwise it decreases with baryon
chemical potential. With temperature σel=T shows nonmonotonic variation with a peak structure. Right plot: variation of normalized
Hall conductivity σH=T with temperature for different values of baryon chemical potential.
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Further we can observe from Fig. 4 that σel=T ≫ σH=T and
the order of magnitude values of IB

31=T
2 and IB

42=T
2 are of

the same order. Therefore the variation of magneto-Seebeck
coefficient SB can be approximately expressed as,
SB ∼ ðIB

31=T
2Þ=ðσel=TÞ. Thus for small value of baryon

chemical potential the maximum in Fig. 3 corresponds to
the maximum of σel=T as shown in Fig. 4 and at high
temperature decreasing behavior of SB is due to the
decrease of σel=T with temperature.
Next in Fig. 6 we show the variation of magneto-Seebeck

coefficient (SB) with temperature and baryon chemical
potential for different values of the magnetic field. In the
relativistic heavy ion collision at the chemical freezeout,
in the hadronic phase the center of mass energy (

ffiffiffi
s

p
)

dependence of the baryon chemical potential (μB) and
temperature can be parametrized as [116],

μBð
ffiffiffi
s

p Þ ¼ d̃
1þ ẽ

ffiffiffi
s

p ; TðμBÞ ¼ ã − b̃μ2B − c̃μ4B: ð64Þ

here
ffiffiffi
s

p
in the center of mass-energy, ã ¼ 0.166�

0.002 GeV; b̃ ¼ 0.139� 0.016 GeV−1, c̃ ¼ 0.053�
0.021 GeV−3, d̃ ¼ 1.308 � 0.028 GeV and ẽ ¼
0.273� 0.008 GeV−1. We assume that in the presence
of a weak magnetic field the above parametrization of the
baryon chemical potential and temperature still holds.
It can be shown that for peak RHIC energy scales
(

ffiffiffi
s

p ¼ 200 AGeV) the chemical potential at freezeout is
μB ∼ 30 MeV and the corresponding temperature is
T ∼ 178 MeV. Further if we consider AGS energy scale
(

ffiffiffi
s

p ¼ 4.86 AGeV) then the chemical potential turns out

to be μB ∼ 580 MeV and the corresponding temperature is
T ∼ 120 MeV. In our investigation, we have considered the
range of temperature and baryon chemical potential of the
hadronic phase which covers a wide range of collision
energies. Also, we have considered the range of magnetic
field which covers a wide range of heavy-ion collisions,
from AGS to RHIC energies, e.g., for the RHIC energy
scale as we have mentioned above the magnetic field in
the hadronic phase can be some fraction of the initial
magnetic field. As obtained in the Ref. [14] the peak value
magnetic field is of the order of m2

π or 0.02 GeV2. Hence
eB ∼ 0.005 GeV2 can be a reasonable value of the mag-
netic field in the hadronic phase.
From Fig. 6 we can observe that with increasing

magnetic field the magneto-Seebeck coefficient decreases
in the low temperature range (T ≲ 120 MeV). However in
the high temperature range magnetic field does not affect
significantly the Seebeck coefficient. Further with baryon
chemical potential SB increases for the range of temperature
and magnetic field considered in this investigation. The
variation of SB with magnetic field can be understood from
Eq. (54). In this context we have shown the variation of
σel=T and σH=T with magnetic field in Fig. 7. From the left
plot in Fig. 7 we can see that with increasing magnetic field,
σel=T decreases. However in the high temperature range the
effect of magnetic field on σel=T is less significant. The
variation of σel=T with magnetic field has been discussed in
great length in Ref. [67]. Basically in the low temperature
range magnetic field affect the normalized electrical con-
ductivity because in the low temperature range due to large
value of the relaxation time ωcτ term in the expression of
σel becomes significant. With increasing magnetic field this

FIG. 6. Left plot: variation of magneto-Seebeck coefficient (SB) with temperature for different values of magnetic field. With
increasing magnetic field SB decreases, however in the high temperature range the effect of magnetic field on SB is less significant. Right
plot: variation of magneto-Seebeck coefficient SB with baryon chemical potential for different values of magnetic field. From this plot it
is clear that with increasing μB magneto-Seebeck coefficient (SB) increases.
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factor of ωcτ is responsible for the decrease in σel. On the
other hand in the high temperature range due to very small
value of the relaxation time ωcτ term remains ineffective.
Contrary to σel=T, the normalized Hall conductivity
(σH=T) generically increases with magnetic field. For a

detailed discussion on the behavior of σH=T with magnetic
field, see Ref. [67].
Further in Fig. 8 we have shown the variation of IB

31=T
2

and IB
42=T

2 with magnetic field. With magnetic field
IB
31=T

2 increases. Also in the low temperature range the

FIG. 7. Left plot: variation of normalized electrical conductivity, σel=T ≡P
a q

2
aL1a

=T with temperature for nonvanishing value of the
magnetic field and baryon chemical potential. With magnetic field electrical conductivity generically decrease and with temperature
σel=T shows nonmonotonic behavior. In the high temperature range the effect of magnetic field is less significant on σel=T. Right plot:
variation of normalized Hall conductivity σH=T ≡P

a q
2
aL2a

=T with temperature for nonvanishing magnetic field. With increasing
magnetic field generically Hall conductivity increases for the range of magnetic field considered here.

FIG. 8. Left plot: variation of IB
31=T

2 with temperature at finite baryon chemical potential for nonvanishing values of magnetic field.
With increasing magnetic field IB

31=T
2 increase with respect to its value for vanishing magnetic field. Right plot: variation of IB

42=T
2

with temperature at finite baryon chemical potential for nonvanishing values of magnetic field. With magnetic field IB
42=T

2 first
increases, then it decreases for higher values of magnetic field. Also for higher values of magnetic field it shows a nonmonotonic
variation with temperature for the range of temperature considered here.
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effect of magnetic field on IB
31=T

2 is significant and on the
high temperature end due to small value of the relaxation
time magnetic field does not affect IB

31=T
2 significantly.

From the right plot in Fig. 8 we observe that with magnetic
field first IB

42=T
2 increases and then with increasing

magnetic field it decreases. From Fig. 7 it is clear that
σel=T is order of magnitude larger than σH=T. On the other
hand the absolute values of IB

31=T
2 and IB

42=T
2 does not

differ much, which can be observed in Fig. 8. Thus for the
situation when σel=T is larger than σH=T the variation of SB
with temperature, chemical potential and magnetic field is
predominantly determined by the factors, σel=T, IB

31=T
2

and under this condition SB ∼ ðIB
31=T

2Þ=ðσel=TÞ. Hence
the variation of IB

31=T
2 and σel=T with magnetic field

effectively give rise to the variation of SB with magnetic
field as has been shown in the left plot in Fig. 6.
Finally we discuss the variation of normalized Nernst

coefficient ðNBÞ with temperature and baryon chemical
potential for finite magnetic field. In Fig. 9 we show
the variation of normalized Nernst coefficient ðNBÞ with
temperature and baryon chemical. From Fig. 9 we can
observe that with increasing temperature Nernst coefficient
ðNBÞ decreases. Due to the order of magnitude difference
in the values of σel=T and σH=T the variation of normalized
Nernst coefficient is predominantly determined by σel=T
and IB

42=T
2. Although IB

42=T
2 shows a nonmonotonic

variation with magnetic field but the normalized Nernst
coefficient does not show any nonmonotonic variation
with magnetic field, probably because of the fact that with
magnetic field σel=T decrease. This decrease in σel=T with
magnetic field overwhelms the nonmonotonic variation of

IB
42=T

2. Similarly with baryon chemical potential both
IB
42=T

2 and σel=T decreases as has been shown in Figs. 4
and (5). But the rapid decrease of IB

42=T
2 relative to σel=T

possibly give rise to the decreasing behavior of the
normalized Nernst coefficient with baryon chemical
potential.

V. CONCLUSIONS

In heavy-ion collision there is a gradient of temperature
from central to peripheral region. This can to lead to a
electric field and the relevant Seebeck coefficient as in the
condensed matter systems. We had estimated this coeffi-
cient within HRG model in Ref. [66]. In that investigation,
however, the chemical potential was taken to be uniform. In
the present work we have also included the gradient of the
baryon chemical potential apart from a spatial gradient in
temperature in the estimation of the thermoelectric coef-
ficients. Conservation of momentum of the system along
with the Gibbs-Duhem relation are used to relate to the
gradient of baryon chemical potential to gradient in
temperature. This leads to a modification of the expression
for the Seebeck coefficient involving the enthalpy of the
system compared to Ref. [66]. Although because of the
opposite charges of the mesons, mesonic Seebeck coef-
ficient vanish, nonetheless mesons affect the Seebeck
coefficient of the system significantly. This is because
the mesonic contribution to the enthalpy of the system is
dominant. This leads to a negative Seebeck coefficient of
the hadronic system, unlike as in Ref. [66] where the spatial
gradient of the chemical potential was not taken into
account leading to a positive Seebeck coefficient.

FIG. 9. Left plot: variation of normalised Nernst coefficient (NB) with temperature and magnetic field. With temperature NB decrease
and NB increases with increasing magnetic field. However in the high temperature range the effect of magnetic field on NB is less
significant. Right plot: Variation of NB with baryon chemical potential μB for nonvanishing magnetic field. With baryon chemical
potential NB decreases.

MAGNETO-SEEBECK COEFFICIENT AND NERNST … PHYS. REV. D 102, 014030 (2020)

014030-17



We have also considered the effects of magnetic field on
the thermoelectric properties. Magnetic field leads to a Hall
type current due to the Lorentz force. It is observed that the
resulting magneto-Seebeck coefficient generically decrease
with magnetic field for a given temperature and baryon
chemical potential. However at higher temperature and/or
chemical potential the magneto-Seebeck coefficient goes
over to the Seebeck coefficient at vanishing magnetic field.
The induced current perpendicular to the electric field is
decided by the Nernst coefficient. It is also observed that
the Nernst coefficient for the hadronic matter increases with
magnetic field. However at high temperature or baryon
chemical potential this approaches the vanishing value for
the same at vanishing magnetic field.
In the presence of the thermoelectric coefficient the

electrical current (j⃗) as well as the heat current (I⃗) gets
modified. For a nonvanishing value of the Seebeck coef-

ficient the electrical current j⃗ ¼ σelE⃗ − σelS∇⃗T, has a
contribution coming from the Seebeck coefficient (S).
Physically the Seebeck coefficient (S) represents the
efficiency of any system to convert a temperature gradient
to an electrical current. Note that the electrical conductivity
σel is always positive which can be shown using the second
law of thermodynamics demanding that in the presence of
electromagnetic field T∂μsμ ≥ 0, here sμ is the entropy
current [117]. Therefore for a negative Seebeck coefficient,
the electric current enhances for a positive temperature
gradient. Further if the electric current due to the external
electric field and the electric current due to the thermo-
electric effect contributes constructively then the net
electric current increases. On the other hand the thermal
conductivity in the presence of thermoelectric effect,
k ¼ k0 − TσelS2, indicates that for nonvanishing value of
the Seebeck coefficient thermal conductivity decreases.
Positivity of the thermal conductivity is required for
the theory to be consistent with the second law of

thermodynamics, i.e., T∂μsμ ≥ 0 [4]. In various literature
the positivity of the electrical conductivity and the thermal
conductivity has been shown using the formalism of
viscous hydrodynamics and viscous magnetohydrodynam-
ics respectively, but the contributions coming from the
thermoelectric effects are not considered in these inves-
tigations. Therefore it will be interesting to study the effects
of thermoelectric coefficients in the entropy production
in the context of the viscous hydrodynamics and the
magnetohydrodynamics. Phenomenological implication
of nonvanishing thermoelectric effect still needs to be
explored.
In the present investigation we have focused our atten-

tion for hadronic matter. It will definitely be interesting to
investigate thermoelectric coefficients for the partonic
matter as has been recently attempted in Ref. [118]. In
particular it will be interesting and important to investigate
the effects of mean field and medium dependent masses on
the thermoelectric properties of partonic matter.
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