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We investigate open charm meson production in fixed-target LHCb experiment at
ffiffiffi
s

p ¼ 86.6 GeV in
pþ 4He collisions. Theoretical calculations of charm cross section are done in the framework of the
kT -factorization approach. Its application in the kinematical range never examined before is carefully
discussed. We consider different schemes for the calculations relevant for different unintegrated (transverse
momentum dependent) parton densities in a proton. We include in the analysis both Catani-Ciafaloni-
Fiorani-Marchesini (CCFM)—and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)-based models
of unintegrated parton distributions appropriate for the considered kinematics. Integrated as well as
differential cross sections as a function of D0 meson rapidity and transverse momentum are shown and
compared with the experimental data. As a reference point, predictions of next-to-leading order collinear
approach are also presented and discussed. A very good agreement between the experimental data and the
kT -factorization predictions was obtained. Both the CCFM and the DGLAP-based frameworks for parton
distributions in a proton are successfully used to explain the LHCb fixed-target open charm cross section.

DOI: 10.1103/PhysRevD.102.014028

I. INTRODUCTION

According to current knowledge and experimental abi-
lities, production of heavy flavor is known as one of the
best testing grounds to investigate foundations of the theory
of hard QCD interactions. Theoretical studies of e.g., charm
cross section in proton-proton collisions provide an unique
precision tool in this context. Phenomenology of charm
particles production at hadron colliders has been shown
many times to be one of the most powerful tools in testing
pQCD techniques.
In the ongoing LHC era the activity in this context

has increased significantly on both experimental and
theoretical sides, since charm particles are copiously
produced at currently available high energies. Various
measurements of open charm meson production have been
accomplished by the ALICE, ATLAS, CMS, and LHCb
experiments in pp, pA, and AA reactions at different
TeV-scale energies (from 2.76 to 13 TeV). During last
years several phenomenological studies of open charm
production at the LHC were performed, including
inclusive D-meson (see e.g., Refs. [1–5]) and Λc-baryon

[6,7] production, DD̄ meson-antimeson pair production
[3,8,9], double [10,11] and even triple [12,13] charm
production, as well as associated charm production with
jets [14,15] and gauge bosons [16].
Very recently the LHCb collaboration has performed a

first measurement of the charm meson cross section in
fixed-target configuration [17]. Both, production of hidden
(J=ψ) and open (D0) charm was carefully studied in fixed-
target pþ 4He and pþ 40Ar collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 86.6 andffiffiffiffiffiffiffiffi
sNN

p ¼ 110.4 GeV, respectively. The absolute cross sec-
tions (integrated and differential) were reported in the case
of the pþ 4He interactions only.
Here we wish to make theoretical analysis of the LHCb

fixed-target charm data and to examine the kT-factorization
approach [18] in this context, so far not explored in this
unique kinematical regime. This approach allows very easily
to include higher-order QCD radiative corrections (namely,
part of NLOþ NNLOþ… terms corresponding to real
initial-state gluon emissions) that can be taken into account
via the so-called unintegrated (transverse momentum de-
pendent) parton distribution functions (uPDFs) in a proton.
The kT-factorization has become a widely exploited tool

and it is of common interest and importance to test it in
many different processes and in various kinematical
regimes. The kinematical configuration of the fixed-target
LHCb experiment corresponds to the region where both the
Catani-Ciafaloni-Fiorani-Marchesini (CCFM) [19] and the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [20]
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evolution equations are legitimated for any pQCD theo-
retical calculations and could in principle be used to
describe the dynamics behind the mechanisms of e.g.,
open charm meson production. The LHCb fixed-target
open charm data brings therefore a new opportunity to test
the CCFM- and the DGLAP-based unintegrated (transverse
momentum dependent) parton distributions (uPDFs) in a
proton. Here, the uPDFs can be probed at rather inter-
mediate (and even large) longitudinal momentum fractions
x where in turn effects related to the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) [21] evolution should not appear.
The BFKL equation resums large logarithmic terms

proportional to ðαs ln sÞn ∼ ðαs ln 1=xÞn, important at high
energies and small-x. The CCFM equation takes into
account additional terms proportional to ðαs ln 1=ð1 − xÞÞn
and is valid at both low and large x. Some methods to
calculate the uPDFs from the conventional DGLAP equa-
tions are also present in the literature. An application of the
different models of uPDFs in phenomenological studies of a
given process is not automated as in the case of the collinear
PDFs. Here a deliberate adjustment of the model calculations
to theoretical concepts contained in the construction of a
chosen uPDF is required.
Very recently a new scheme for a calculation of partonic

cross section in the kT-factorization approach has been
proposed in Ref. [22]. There, a new calculation scenario
where higher-order QCD hard radiative corrections are not
resummed in the uPDF but are taken into account via tree-
level hard matrix elements was used to calculate charm
production at 7 TeV in pp-collisions in the LHCb experi-
ment. Then, the same ideas were also successfully used for
the associated production of electroweak gauge bosons and
heavy quark jets at the LHC [16].
Here we wish to investigate the correspondence between

different scenarios of charm cross section calculation in the
kT-factorization approach relevant for the CCFM uPDFs
[23,24] as well as for the (DGLAP-based) parton-branching
(PB) [25] and Kimber-Martin-Ryskin (KMR) [26–28]
uPDFs. One of the main goals of this paper is to compare
predictions of the different scenarios and to find a similarity
and connection between them.

II. DETAILS OF THE MODEL CALCULATIONS

A. Cross section for charm quark
and meson production

In this subsection we wish to shortly describe two
different schemes of the calculations of the cc̄-pair pro-
duction cross section within the kT-factorization approach:

(i) the standard model with the leading-order 2 → 2
matrix elements and with extra hard emissions from
the uPDF (see e.g., Ref. [3] and references therein),

(ii) the new model with the higher-order 2 → 3 and
2 → 4 matrix elements and without resummation of
extra hard emissions in the uPDF (see Ref. [22]).

The standard model of the calculation can be success-
fully used in phenomenological studies only with the
uPDFs that effectively take into account higher-order
contributions. Technically, it means that the transverse
momentum k2t generated in the evolution of the uPDF is
allowed to be larger than the scale μ2F, which is in principle
the case of the CCFM unintegrated distributions.
On the other hand, when the extra hard emissions from

the uPDF are suppressed due to its theoretical construction
(following e.g., strong-ordering condition in the evolution),
the higher-order radiative corrections has to be taken into
account at the level of hard-matrix elements. This is
especially the case of the DGLAP-based unintegrated
parton distributions which for conclusive phenomenologi-
cal studies needs to be applied within the new scheme of the
kT-factorization calculations.

1. The standard kT-factorization calculations within
the leading-order 2 → 2 mechanism

We remind the standard theoretical formalism for the
calculation of the cc̄-pair production in the kT-factorization
approach. In this framework the transverse momenta kt’s
(virtualities) of both partons entering the hard process are
taken into account, both in the matrix elements and in the
parton distribution functions. Emission of the initial state
partons is encoded in the transverse-momentum-dependent
(unintegrated) uPDFs. In the case of charm flavor produc-
tion the parton-level cross section is usually calculated via
the 2 → 2 leading-order g�g� → cc̄ fusion mechanism of
off-shell initial state gluons that is the dominant process at
high energies (see Fig. 1). Even at lower energies as long as
small transverse momenta and central rapidities are con-
sidered the q�q̄� → cc̄ mechanism remains subleading.
Then the hadron-level differential cross section for the
cc̄-pair production, formally at leading-order, reads:

dσðpp → cc̄XÞ
dy1dy2d2p1;td2p2;t

¼
Z

d2k1;t
π

d2k2;t
π

1

16π2ðx1x2sÞ2
jMoff-shell

g�g�→cc̄j2

× δ2ðk⃗1;t þ k⃗2;t − p⃗1;t − p⃗2;tÞ
× F gðx1; k21;t; μ2FÞF gðx2; k22;t; μ2FÞ; ð2:1Þ

where F gðx1; k21;t; μ2FÞ and F gðx2; k22;t; μ2FÞ are the gluon
uPDFs for both colliding hadrons and Moff-shell

g�g�→cc̄ is the off-
shell matrix element for the hard subprocess. The gluon
uPDF depends on gluon longitudinal momentum fraction x,
transverse momentum squared k2t of the gluons entering the
hard process, and in general also on a (factorization) scale
of the hard process μ2F. The extra integration is over
transverse momenta of the initial partons. Here, one keeps
exact kinematics from the very beginning and additional
hard dynamics coming from transverse momenta of

RAFAŁ MACIUŁA PHYS. REV. D 102, 014028 (2020)

014028-2



incident partons. Explicit treatment of the transverse
momenta makes the approach very efficient in studies of
correlation observables. The two-dimensional Dirac delta
function assures momentum conservation. The gluon uPDFs
must be evaluated at longitudinal momentum fractions
x1 ¼ m1;tffiffi

s
p expðy1Þ þ m2;tffiffi

s
p expðy2Þ, and x2 ¼ m1;tffiffi

s
p expð−y1Þþ

m2;tffiffi
s

p expð−y2Þ, where mi;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i;t þm2

c

q
is the quark/anti-

quark transverse mass.
The off-shell matrix elements are known explicitly only

in the LO and only for limited types of QCD 2 → 2
processes (see e.g., heavy quark [29], dijet [30], Drell-Yan
[31] mechanisms). Some first steps to calculate NLO
corrections in the kT-factorization framework have been
tried only very recently for diphoton production [32,33].
There are ongoing intensive works on construction of the
full NLO Monte Carlo generator for off-shell initial state
partons that are expected to be finished in near future [34].
Another method for calculation of higher multiplicity final
states is to supplement the QCD 2 → 2 processes with
parton shower. For the off-shell initial state partons it was
done only with the help of full hadron level Monte Carlo
generator CASCADE [35]. There, dedicated transverse-
momentum dependent initial-state parton showers were
introduced using backward evolution, that are not unique
and needs to be matched to a given model of uPDFs.
Technically, there is a direct relation between a resum-

mation present in uPDFs in the transverse momentum
dependent factorization and a parton shower in the collinear
framework. The popular statement is that actually in the
kT-factorization approach already at leading-order some
part of radiative higher-order corrections can be effectively
included via uPDFs, without any additional showering
procedure. However, it is true only for those uPDF models
in which extra emissions of soft and even hard partons are
encoded, including k2t > μ2F configurations.1 Then, when

calculating the charm production cross section via the
g�g� → cc̄ mechanism one could expect to effectively
include contributions related to an additional one or two
(or even more) extra partonic emissions which in some
sense plays a role of the initial state parton shower.

2. A new scheme of the calculations with the
higher-order 2 → 3 and 2 → 4 mechanisms

Now we wish to shortly describe an alternative scheme
of the calculation of the heavy flavor cross sections in the
kT-factorization approach, recently proposed and discussed
in Ref. [22]. The main idea is to include usual leading order
subprocesses properly matched with a number of additional
higher-order radiative corrections at the level of hard matrix
elements. This procedure is devoted in principle to the
calculations for which the DGLAP-based unintegrated
parton densities are applied. Here the extra hard emissions
from the uPDFs are usually strongly suppressed what
leaves a room for higher-order terms.
Due to the lack of the full NLO and/or NNLO framework

of the kT-factorization, within the present methods the
higher-order pQCD calculations can be done only at tree-
level. Within the proposed scheme the 2 → 2, 2 → 3 and
even 2 → 4 contributions to heavy quark-antiquark pair
production are summed up together under special con-
ditions introduced to avoid a possible double-counting
(see a discussion of the double-counting-exclusion cuts
in Ref. [22]).
The numerical calculations for the higher-order contri-

butions are also performed in the framework of the kT-
factorization approach within the methods adopted in the
KaTie Monte Carlo generator [36], where the off-shell
matrix elements for higher final state parton multiplicities
at the tree-level are calculated numerically with the help of
methods of numerical BCFW recursion [37]. We include all
the possible 2 → 3 and 2 → 4 channels for the cc̄-pair
production with off-shell gluons and light quarks in the
initial states. These two classes of higher-order processes
are schematically illustrated in Fig. 2 where Feynmann

FIG. 1. A diagramatic representation of the leading-order
mechanism of charm production.

FIG. 2. A diagrammatic representation of an example of the
higher-order mechanisms of charm production.

1In most uPDF cases the off-shell gluon can be produced either
from gluon or quark, therefore, in the kT-factorization all
channels driven by gg, qq̄ and even by qg initial states are open
already at leading-order (in contrast to the collinear factorization).
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diagrams for the g�g� → gcc̄ and the g�g� → ggcc̄ mech-
anisms are shown as an example.
In general, the cross section for pp → gðgÞcc̄X reaction

in the kT-factorization approach can be written as

dσpp→gðgÞcc̄X ¼
Z

dx1
d2k1t
π

dx2
d2k2t
π

F gðx1; k21t; μ2FÞ

× F gðx2; k22t; μ2FÞdσ̂g�g�→gðgÞcc̄: ð2:2Þ

Then, the elementary cross section from above can be
written somewhat formally as:

dσ̂gg→g�g�→gðgÞcc̄ ¼
Yn
l¼1

d3pl

ð2πÞ32El
ð2πÞnδn

�Xn
l¼1

pl − k1 − k2

�

×
1

flux
jMg�g�→gðgÞcc̄ðk1; k2Þj2; ð2:3Þ

with n ¼ 3 and n ¼ 4 for g�g� → gcc̄ and g�g� → ggcc̄,
respectively, where El and pl are energies and momenta of
final state gluon(s) and charm quarks. Above only depend-
ence of the matrix element on four-vectors of incident
partons k1 and k2 is made explicit. In general, all four-
momenta associated with partonic legs enter. Also in this
case, the matrix element takes into account that both
partons entering the hard process are off-shell with virtual-
ities k21 ¼ −k21t and k22 ¼ −k22t.
Having minijet(s) (soft jets) in the final state at tree-level

requires some technical methods for regularization of the
cross section. Here we follow exactly the method adopted
in Ref. [22] which was originally proposed e.g., in PYTHIA

Monte Carlo generator [38] for the calculations of the
2 → 2 pQCD processes with light quarks and gluons in the
final states. There, a special suppression factor FsupðpTÞ ¼
p4
T=ðp2

T0 þ p2
TÞ2 was introduced with pT being the out-

going minijet transverse momentum and pT0 being a free
parameter that also enters as an argument of the strong
coupling constant αsðp2

T0 þ μ2RÞ. As a default set in our
calculations here we use pT0 ¼ 1 GeV. This parameter
could, in principle, be fitted to total charm cross section
measured experimentally or calculated in the NLO/NNLO
collinear calculations. The same method was also applied
recently in the context of J=ψ-meson production in the
color-evaporation model [39].

B. Unintegrated parton distribution functions

1. The CCFM uPDFs

The CCFM evolution equation for gluon, in the limits of
high and low energies (small- and large-x values), is almost
equivalent to the BFKL and very similar to the DGLAP
evolution, respectively [19]. In order to correctly treat
gluon coherence effects it introduces the so-called angular-
ordering which is commonly considered as a great advan-
tage of this framework.

In the leading logarithmic approximation, the CCFM
equation for unintegrated gluon density F gðx; k2t ; μ2Þ can
be written as

F gðx; k2t ; μ2Þ ¼ F ð0Þ
g ðx; k2t ; μ20ÞΔsðμ; μ0Þ

þ
Z

dz
z

Z
dq2

q2
Θðμ − zqÞΔsðμ; zqÞ

× P̃ggðz; k2t ; q2ÞF g

�
x
z
; k02t ; q2

�
; ð2:4Þ

where μ2 is the evolution (factorization) scale which is
further defined by the maximum allowed angle for any
gluon emission, k0t ¼ qð1 − zÞ þ kT and P̃ggðz; k2t ; q2Þ is
the CCFM splitting function:

P̃ggðz; k2t ; q2Þ

¼ ᾱsðq2ð1 − zÞ2Þ
�

1

1 − z
þ zð1 − zÞ

2

�

þ ᾱsðk2t Þ
�
1

z
− 1þ zð1 − zÞ

2

�
Δnsðz; k2t ; q2Þ: ð2:5Þ

The Sudakov and non-Sudakov form factors read:

lnΔsðμ; μ0Þ ¼ −
Z

μ2

μ2
0

dμ02

μ02

Z
zM¼1−μ0=μ0

0

dz
ᾱsðμ02ð1 − zÞ2Þ

1 − z
;

ð2:6Þ

lnΔnsðz; k2t ; q2t Þ

¼ −ᾱsðk2t Þ
Z

1

0

dz0

z0

Z
dq2

q2
Θðk2t − q2ÞΘðq2 − z02q2t Þ;

ð2:7Þ

where ᾱs ¼ 3αs=π.
The first term in the CCFM equation is the initial

unintegrated gluon density multiplied by the Sudakov form
factor. It corresponds to the contribution of nonresolvable
branchings between the starting scale μ20 and scale μ2. The
second term describes the details of the QCD evolution
expressed by the convolution of the CCFM gluon splitting
function with the gluon density and the Sudakov form factor.
The theta function introduces the angular ordering condition.
The CCFM equation can be solved numerically using the
uPDFevolv program [40], and the uPDFs for gluon and valence
quarks can be obtained for any x, k2t and μ2 values.
Within the CCFM approach the parton transverse

momentum is allowed to be larger than the scale μ2.
This useful feature translates into the ease of effective
taking into account of higher-order radiative corrections,
that correspond to the initial-state real gluon emissions
which are resummed into the uPDFs. Thus, for any
phenomenological studies in the kT-factorization approach
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the standard scheme with leading-order matrix elements is
recommended as long as the CCFM uPDFs are used.

2. The PB uPDFs

The parton branching (PB) method, introduced in
Refs. [25,41], provides an iterative solution for the evolu-
tion of both collinear and transverse momentum dependent
parton distributions. Within this novel method the splitting
kinematics at each branching vertex stays under full control
during the QCD evolution. Here, soft-gluon emission in the
region z → 1 and transverse momentum recoils in the
parton branchings along the QCD cascade are taken into
account simultaneously. Therefore the PB approach allows
for a natural determination of the uPDFs, as the transverse
momentum at every branching vertex is known. It agrees
with the usual methods to solve the DGLAP equations, but
provides in addition a possibility to apply angular ordering
instead of the standard ordering in virtuality.
Within the PB method, a soft-gluon resolution scale

parameter zM is introduced into the QCD evolution
equations that distinguish between nonresolvable and
resolvable emissions. These two types of emissions are
further treated with the help of the Sudakov form factors

ΔaðzM;μ2;μ20Þ¼ exp

�
−
X
b

Z
μ2

μ2
0

dμ02

μ02

Z
zM

0

dzzPðRÞ
ba ðαs;zÞ

�
;

ð2:8Þ

and with the help of resolvable splitting probabilities

PðRÞ
ba ðαs; zÞ, respectively. Here a, b are flavor indices, αs

is the strong coupling at a scale being a function of μ02, z is
the longitudinal momentum splitting variable, and zM < 1
is the soft-gluon resolution parameter. Then, by connecting
the evolution variable μ in the splitting process b → acwith
the angle Θ of the momentum of particle c with respect
to the beam direction, the known angular ordering relation
μ ¼ jqt;cj=ð1 − zÞ is obtained, that ensures quantum coher-
ence of softly radiated partons.
The PB evolution equations with angular ordering

condition for unintegrated parton densities F aðx; kt; μ2Þ
are given by [41]

F aðx;kt;μ2Þ ¼Δaðμ2ÞF aðx;kt;μ20Þ

þ
X
b

Z
d2q0t
πq02t

Δaðμ2Þ
Δaðq02t Þ

Θðμ2 −q02t ÞΘðq02t −μ20Þ

×
Z

zM

x

dz
z
PðRÞ
ab ðαs; zÞ

×F b

�
x
z
;ktþð1− zÞq0t;q02t

�
: ð2:9Þ

Here, the starting distribution for the uPDF evolution is
taken in the factorized form as a product of collinear PDF

fitted to the precise DIS data and an intrinsic transverse
momentum distribution in a simple gaussian form. Unlike
the CCFM parton distributions, the PB densities have the
strong normalization property:Z

F aðx; kt; μ2Þdkt ¼ faðx; μ2Þ: ð2:10Þ

The PB uPDFs can be calculated by an iterative Monte-
Carlo method and are characterized by a steep drop of the
parton densities at k2t > μ2, again in contrast to the CCFM
unintegrated distributions.2 Therefore, for phenomeno-
logical studies within this model of unintegrated density, a
higher-order scheme of the calculations is required that
could compensate lack of extra emissions encoded in the
uPDF.
There are two available sets of the parton-branching

uPDFs—PB-NLO-2018-set1 and PB-NLO-2018-set2, that
correspond to different choice of the parameters of the
initial distributions [25]. Both of them, including uncer-
tainties are available in TMDLIB [43]. In the following,
the PB-NLO-2018-set1 uPDFs were used in numerical
calculations.

3. The KMR/MRW uPDFs

Another DGLAP-based and frequently used in phenom-
enological studies prescription for unintegrated gluon
densities is the Kimber-Martin-Ryskin (KMR) approach
[26–28]. It has been successfully used especially for charm
production at the LHC, including inclusive charm [3],
charm-anticharm pairs [3,9], double and triple charm
[10,13], as well as charm associated with jets [15].
According to this approach the unintegrated gluon distri-
bution is given by the following formula

fgðx; k2t ; μ2Þ

≡ ∂
∂ log k2t ½gðx; k

2
t ÞTgðk2t ; μ2Þ�

¼ Tgðk2t ; μ2Þ
αSðk2t Þ
2π

X
b

Z
1

x
dzPgbðzÞb

�
x
z
; k2t

�
:

ð2:11Þ
This formula makes sense for kt > μ0, where μ0 ∼ 1 GeV is
the minimum scale for which DGLAP evolution of the
conventional collinear gluon PDF, gðx; μ2Þ, is valid.
The virtual (loop) contributions may be resummed to all

orders by the Sudakov form factor

Tgðk2t ; μ2Þ≡ exp

�
−
Z

μ2

k2t

dκ2t
k2t

αSðκ2t Þ
2π

X
b

Z
1

0

dzzPbgðzÞ
�
;

ð2:12Þ

2Very recently, only a first attempt to incorporate CCFM
effects into the PB method has been done [42].
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which gives the probability of evolving from a scale kt to a
scale μwithout parton emission. The exponent of the gluon
Sudakov form factor can be simplified using the following
identity: Pqgð1 − zÞ ¼ PqgðzÞ. Then the gluon Sudakov
form factor reads

Tgðk2t ; μ2Þ ¼ exp

�
−
Z

μ2

k2t

dκ2t
k2t

αSðκ2t Þ
2π

×

�Z
1−Δ

0

dzzPggðzÞ þ nF

Z
1

0

dzPqgðzÞ
��

;

ð2:13Þ

where nF is the quark–antiquark active number of flavors
into which the gluon may split. Due to the presence of the
Sudakov form factor in the KMR prescription only last
emission generates transverse momentum of the gluons
initiating hard scattering.
In the above equation the variable Δ introduces a

restriction of the phase space for gluon emission and is
crucial for the final shape and characteristics of the
unintegrated density. In Ref. [26] the cutoff Δ was set in
accordance with the strong ordering (SO) in transverse
momenta of the real parton emission in the DGLAP
evolution,

Δ ¼ kt
μ
: ð2:14Þ

This corresponds to the orginal KMR prescription where
one always has k2t < μ2F restriction and the Sudakov form-
factor always satisfies the Tgðk2t ; μ2Þ < 1 condition.
The prescription for the cutoff Δ was further modified in

Refs. [27,28] to account for the angular ordering (AO) in
parton emissions in the spirit of the CCFM evolution,

Δ ¼ kt
kt þ μ

: ð2:15Þ

This modification leads to a bigger upper limit for kt than in
the DGLAP scheme and opens the k2t > μ2F region. In this
extra kinematical regime one gets Tgðk2t ; μ2Þ > 1, which
contradicts its interpretation as a probability of no real
emission. Thus, the Sudakov form factor is there usually set
to be equal one. For transparency, here the modified KMR
model will be referred to as the Martin-Ryskin-Watt
(MRW) model [28].
Different definitions of the ordering cutoff lead to

significant differences between the two models. In the
KMR model the k2t > μ2F region is forbidden while in the
MRW case the k2t > μ2F contributions are directly allowed
(see e.g., a detailed discussion in Ref. [44]). In the MRW
model both in quark and gluon densities large kt-tails
appear, in contrast to the KMR case. These two models
need to be therefore differently treated in phenomenological

applications. The MRW model shall be used with the
standard kT-factorization scheme at leading-order (as in
the CCFM uPDFs case), while the original KMR model
requires the new procedure with the leading-order mecha-
nisms matched with higher-order contributions (as in the PB
uPDFs case).
In the numerical calculations below we used the CT14lo

collinear PDFs [45] to calculate both, the KMR and the
MRW unintegrated densities.

C. Open charm meson production

The transition of charm quarks to open charm mesons is
done in the framework of the independent parton fragmen-
tation picture (see e.g., Refs. [46,47]). Here we follow the
standard prescription, where the inclusive distributions of
open charm meson are obtained through a convolution
of inclusive distributions of charm quarks/antiquarks and
c → D fragmentation functions:

dσðpp → DXÞ
dyDd2pt;D

≈
Z

1

0

dz
z2

Dc→DðzÞ
dσðpp → cXÞ
dycd2pt;c

�����
yc¼yD

pt;c¼pt;D=z

;

ð2:16Þ

where pt;c ¼ pt;D

z and z is the fraction of longitudinal
momentum of charm quark c carried by a meson D. In
the numerical calculations we take the Peterson fragmen-
tation function [48] with ε ¼ 0.05, often used in the context
of hadronization of heavy flavors. Then, the hadronic cross
section is normalized by the relevant charm fragmentation
fractions for a given type ofDmeson [49]. In the numerical
calculations below for c → D0 meson transition we take the
fragmentation probability Pc→D ¼ 61%.

III. NUMERICAL RESULTS

In this section we present our numerical results for

D0 þD0 meson production in fixed-target pþ4 He colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 86.6 GeV, measured for the first time
very recently by the LHCb collaboration [17]. The mea-

sured cross section for D0 þD0 final state in the LHCb
acceptance is

σLHCb ¼ 80.8� 2.2ðstatÞ � 6.3ðsystÞ μb=nucleon: ð3:1Þ

The experimental cross sections are divided by the number
of nucleons and are compared below with the theoretical
results for pp-scattering. Nuclear effects in the case of the
pþ 4He interactions and for considered kinematical range
are expected to be negligible, which was checked and
explicitly shown in Ref. [17] (see Fig. 4 therein), and
therefore are also neglected here. Below we show in
addition the theory/data ratio.

RAFAŁ MACIUŁA PHYS. REV. D 102, 014028 (2020)

014028-6



As a default set in the numerical calculations
we take the renormalization/factorization scales

μ2 ¼ μ2R ¼ μ2F ¼ P
n
i¼1

m2
it
n (averaged tranvserse mass of

the given final state) and the charm quark mass
mc ¼ 1.5 GeV. The strong-coupling constant αsðμ2RÞ at
leading-order is taken from the CT14 PDF routines.

A. The kT-factorization scheme with the CCFM uPDFs

We start with the results for the g�g� → cc̄ mechanism
calculated in the framework of the kT-factorization
approach with off-shell initial state partons and with the
CCFM uPDFs. Before we go to the main results for the D0

meson cross sections and their comparison with the LHCb
fixed-target data we wish to present complementary plots
that will be helpful in qualitative visualization of the
kinematics behind the considered production mechanism.
In Fig. 3 we present double differential parton-level cross

section for charm quarks as a function of longitudinal
momentum fractions log10ðx1Þ and log10ðx2Þ (left panel)
and transverse momenta kt1 and kt2 (right panel) of the
incident gluons. Here we impose the cuts relevant for
the LHCb fixed-target mode on one of the quarks from the
cc̄-pair. We clearly see that within the present phenom-
enological analysis we probe the unintegrated gluon dis-
tributions at large x-values with maximum of the cross
section around 10−1. The transverse momenta of the initial
state gluons are quite small here (< 5 GeV) with maximum
of the cross section between 1 and 2 GeV which is the
region where nonperturbative effects might also play a role
(together with the perturbative ones). This so far unex-
plored kinematical domain is of course very interesting and
could help to constrain gluon uPDFs in these exotic limits.
In Fig. 4 we present differential distributions of D0

meson as a function of c.m.s. rapidity (left panel) and
transverse momentum (right panel) for pþ 4He collisions
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FIG. 3. The two-dimensional differential cross sections for cc̄-pair production in proton-proton scattering at
ffiffiffi
s

p ¼ 86.6 GeV in
microbarns as a function of longitudinal momentum fractions log10ðx1Þ and log10ðx2Þ (left panel) and transverse momenta kt1 and kt2
(right panel) of the incident gluons. Other details are specified in the figure.
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FIG. 4. Rapidity (left) and transverse momentum (right) distributions ofD0 meson (plusD0 antimeson) for pþ 4He collisions together
with the LHCb data [17]. Here results of the kT-factorization calculations for four different gluon CCFM uPDFs are shown. Other details
are specified in the figure.
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together with the LHCb experimental data points [17].
For the numerical predictions presented here we have used
four different sets of the gluon CCFM uPDFs: the most
up-to-date JH-2013-set1 and JH-2013-set2 fits [23], as well
as a bit older Jung-setA0 and Jung-setB0 [24]. Here, in
the CCFM scheme we use an atypical value for factoriza-
tion scale μ2F ¼ M2

cc̄ þ P2
T , where Mcc̄ and PT are the

cc̄-invariant mass (or energy of the scattering subprocess)
and the transverse momentum of cc̄-pair (or the incoming
off-shell gluon pair). This rather unusual definition has to
be applied as a consequence of the CCFM evolution
algorithm3 [23,50]. From the comparison of our numerical
results with the LHCb data we conclude that the CCFM
scheme of the calculations with the JH-2013–set2 gluon
uPDF leads to a very good description of the experimental
data points. Rest of the used CCFM uPDFs seems to
slightly overestimate the LHCb data. Both, the JH-2013-
set1 and JH-2013-set2 gluon densities are determined from
high-precision DIS measurements, including experimental
and theoretical uncertainties. However, the JH-2013-set1 is
determined from the fit to inclusive F2 data only while the

JH-2013-set2 is determined from the fit to both FðcharmÞ
2 and

F2 data. We see that in our calculations here these two sets
lead to quite different results. The JH-2013-set1 gluon
uPDF results in a larger charm cross section and over-
estimates the experimental data. The LHCb fixed-target
open charm data visibly prefers the JH-2013-set2 gluon

uPDF. The integrated cross section for D0 þD0 final state
in the LHCb kinematics obtained with the JH-2013-set2
gluon uPDF is σCCFM ¼ 102.15 μb.
In Fig. 5 we show in addition uncertainties of the

calculations done for the JH-2013-set2 gluon uPDF.
The shaded bands here correspond to uncertainties of the
calculations related to the renormalization/factorization
scales and with the charm quark mass summed in quad-
rature. The scales μ2 ¼ μ2R ¼ μ2F are divided or multiplied
by a factor of 2 with respect to the central value
and similarly charm quark mass is varied as follows:
mc ¼ 1.5� 0.25 GeV. Here we decided to vary both scales
over the central value simultaneously, however, we realize
that more complex treatment of the scales variation might
lead to slightly bigger uncertainties in some regions of
phase space. Taking into account the theoretical uncertain-
ties we get a satisfactory description of the data in the whole
considered kinematical regime. The rapidity spectrum is
well reproduced with the central prediction. The first and
the last bin in transverse momentum distribution can be
described only with the lower and upper limits of the
uncertainty band, respectively. The uncertainties are quite
large at very low transverse momenta of D0 meson where
the uncertainty of charm quark mass plays an important
role. The large uncertainty of the first bin in transverse
momentum affects the whole spectrum in meson rapidity.
At larger meson pT’s the overall uncertainty is ≲2 which is
rather standard in any pQCD calculations.

B. The kT-factorization scheme
with parton-branching uPDF

Above we have exactly shown that the kT-factorization
approach with the CCFM uPDFs works very well for charm
production already at leading-order, when only leading
order g�g� → cc̄ mechanism is taken into account. As was
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FIG. 5. Rapidity (left) and transverse momentum (right) distributions ofD0 meson (plusD0 antimeson) for pþ 4He collisions together
with the LHCb data [17]. Here results of the kT-factorization calculations for the JH-2013-set2 gluon CCFM uPDF are shown together
with corresponding uncertainty bands. The shaded bands represent the renormalization/factorization scale and quark mass uncertainties
summed in quadrature.

3According to the CCFM evolution equation, the emission of
partons during the initial cascade is only allowed in an angular-
ordered region of phase space. The upper scale μ̄ of any emission,
coming from the maximal angle obtained in a quark box, can be
written as μ̄2 ¼ ŝþQ2

t , where Qt is the transverse momentum of
the quark pair in the box. By definition the evolution scale has an
obvious relation to a particular choice of the factorization scale in
the collinear approach [50].
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already discussed, in this framework, higher-order radiative
corrections (namely, a part of NLO, and even NNLO terms
corresponding to the initial-state real gluon emissions) are
effectively taken into account. Technically, it is driven by
the fact that in the CCFM scheme the incoming gluons
are allowed to have transverse momenta larger than the
factorization scale, i.e., k2t > μ2. Ipso facto, having hard
extra emissions from uPDFs one takes into account in an
effective way e.g., flavor excitation and gluon splitting
mechanisms, which are recognized to be of a special
importance in the case of heavy flavor production [51].
As it was already mentioned, in contrast to the CCFM

calculations, in the PB schemewhich is based on full-flavor
DGLAP evolution one has to include the usual leading
order g�g� → cc̄ mechanism properly matched with a
number of additional higher-order terms. Here, no extra
hard emissions from uPDFs are allowed and they must be
taken into account at the level of hard matrix elements. In
our calculations here we take into account all gluon and
quark-induced off-shell subprocesses of the 2 → 3 and the
2 → 4 type at tree-level, corresponding to associated
production of charm with one and two (mini)jets, respec-
tively. To avoid a possible double-counting, the 2 → 2,
2 → 3, and 2 → 4 contributions are added together accord-
ing to the matching procedure proposed very recently in
Ref. [22] for the case of similar studies of charm production
but at higher energy

ffiffiffi
s

p ¼ 7 TeV.
In Fig. 6 we present results of the PB scheme of the

calculations based on the kT-factorization approach. We
use the PB-NLO-set1 quark and gluon uPDFs to calculate
again the differential distributions of D0 meson as a
function of c.m.s. rapidity (left panel) and transverse
momentum (right panel). The dashed, dash-dotted, and
dotted histograms correspond to the 2 → 2, 2 → 3, and
2 → 4 mechanisms, respectively. The solid histogram

presents their sum denoted as 2 → 2þ 3þ 4. The shaded
bands again correspond to the charm quark mass and scale
uncertainties summed in quadrature. The uncertainties are
calculated for each of the constituent components sepa-
rately. We see that in the PB scheme, as one could expect,
the leading-order 2 → 2 mechanism is completely insuffi-
cient and significantly underestimates the LHCb data
points. Within the PB scheme a reasonable description
of the data, taking into account theoretical uncertainties,
can be achieved only when the leading-order 2 → 2
mechanism is supplemented by the higher-order 2 → 3
and 2 → 4 contributions. The central prediction of the
2 → 2þ 3þ 4 result stays in a very good agreement with
the measured rapidity distributions. The transverse momen-
tum distribution is also well described by the central
prediction at small transverse momenta, however, at larger
pT’s some small missing strength with respect to the data
appears. This region can be somewhere about described
only with the upper limit of the predicted uncertainty band.

The integrated cross section (central value) for D0 þD0

final state in the LHCb kinematics obtained with the
PB-NLO-set1 gluon uPDF is σPB ¼ 78.19 μb.
Comparing the final result of the PB scheme with the

PB-NLO-set1 uPDF and the result of the CCFM scheme
with the JH2013-set2 uPDF we conclude that both pre-
scriptions lead to a very similar and consistent results (up to
factor 2) and provides a good quality description of the
LHCb fixed-target charm data, taking into account the
typical theoretical uncertainties.

C. The kT-factorization scheme
with the KMR/MRW uPDF

The difference between the KMR and the MRWmodel is
similar to the case of the CCFM and the PB unintegrated

2.5− 2− 1.5− 1− 0.5− 0

b/
nu

cl
eo

n]
μ

/d
y 

 [
σ d

1

10

210

) X0D + 0 (D→ VeG 6.68 =  eHp :bCHL NNs
 D→Peterson FF: c 

-scaling
T

y-const., p

 2 (dashed)→2 

 3 (dash-dotted)→2 

 4 (dotted)→2 
 2 + 3 + 4→2 -factorization + PB-NLO-set1 uPDFTk

y*
2.5− 2− 1.5− 1− 0.5− 0

D
at

a
T

he
or

y

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

b/
nu

cl
eo

n/
G

eV
]

μ
/d

y 
 [

σd

2−10

1−10

1

10

210

310
) X0D + 0 (D→ VeG 6.68 =  eHp :bCHL NNs

PB-NLO-set1 uPDF:

 2 (dashed)→2 

 3 (dash-dotted)→2 

 4 (dotted)→2 

 2 + 3 + 4→2 scale + mass
uncertainty

 D→Peterson FF: c 

-scaling
T

y-const., p

-factorizationTk

     [GeV]
T

p
0 1 2 3 4 5 6 7 8

D
at

a
T

he
or

y

0

0.5

1

1.5

FIG. 6. Rapidity (left) and transverse momentum (right) distributions ofD0 meson (plusD0 antimeson) for pþ 4He collisions together
with the LHCb data [17]. Here the kT-factorization results with the PB-NLO-set1 uPDF for the 2 → 2, 2 → 3 and 2 → 4mechanisms are
shown separately. The shaded bands represent the renormalization/factorization scale and quark mass uncertainties summed in
quadrature. Other details are specified in the figure.
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densities discussed above. Thus, in the calculations with the
MRW uPDF only the leading-order g�g� → cc̄ mechanism
has to be taken into account. On the other hand, when
applying the KMR uPDF one has to follow the calculation
scheme with the 2 → 2, 2 → 3 and 2 → 4 tree-level
subprocesses taken into account at the level of hard-matrix
elements. It was shown in Ref. [22] that both schemes of
the calculation are convergent and lead to very similar
results in the case of charm production at

ffiffiffi
s

p ¼ 7 TeV
collision energy.
The kT-factorization scheme of the calculation with the

MRW uPDF was supported and justified by various open
charm (and not only) LHC data sets. However, some
criticism of the MRW model was expressed very recently
e.g., in Ref. [52]. It is also commonly questioned, whether
the MRW model could be successfully used to describe
DIS high-precision data [53]. Fortunately, the recently
proposed model of kT-factorization calculations with the
higher-order corrections at tree-level [22] brings an useful
alternative for the standard calculations and seems to be a
good way to avoid the mentioned problems.
Here, we wish to compare the results of the calculation

with the MRWuPDF and the results of the calculation with
the new 2 → 2þ 3þ 4 scheme relevant for the KMR
uPDF. Such a comparison at

ffiffiffi
s

p ¼ 86.6 GeV may help
to judge whether the agreement between the

ffiffiffi
s

p ¼ 7 TeV
LHC open charm data and the kT-factorization predictions
with the MRW uPDFs (previously obtained by different
authors) is kind of accidental or not. In Fig. 7 we show
again the rapidity (left) and the transverse momentum
(right) differential distributions of D0 meson at

ffiffiffi
s

p ¼
86.6 GeV. The solid histograms correspond to the results
obtained with the KMR uPDFs while the dashed ones are
for the calculations with the MRWuPDFs. For the latter we
show in addition the uncertainty bands that represent the

renormalization/factorization scale and quark mass uncer-
tainties summed in quadrature. Comparing central values of
these predictions we observe a large difference between the
two results—unlike the case of the

ffiffiffi
s

p ¼ 7 TeV studies
(see Fig. 15 in Ref. [22]). The results obtained with the
2 → 2þ 3þ 4 scheme and the KMR uPDF lie much closer
the data points. The quality of the data description is very
similar as in the case of the central prediction obtained with
the JH-2013-set2 CCFM uPDF. On the other hand, the
results of the standard calculations with the MRW uPDF
significantly underestimates the LHCb data here, even
taking into account plotted uncertainties. The central
prediction of the 2 → 2þ 3þ 4 scheme with the KMR
uPDF seems to be rather consistent only with the upper
limit of the results obtained with the MRW uPDF. The

integrated cross sections (central values) for D0 þD0 final
state in the LHCb kinematics obtained with the MRW
and the KMR gluon uPDF are σMRW ¼ 32.14 μb and
σKMR ¼ 58.85 μb, respectively. It is therefore justified to
conclude that the new 2 → 2þ 3þ 4 scheme with the
KMR uPDF is more preferred by the low energy charm
data, at least it leads to a better energy dependence of the
charm cross section and it can be recommended as a better
choice than usage of the MRW uPDF in any future studies.

D. Next-to-leading order collinear approach

Having definite conclusions about the theoretical results
obtained within the kT-factorization, in the last step of the
present analysis we move beyond this framework and apply
the NLO collinear approximation. The corresponding results
of the collinear approach may give another interesting point
of reference and will make this study more complete.
In Fig. 8 we show rapidity (left) and transverse momen-

tum (right) distributions of D0 meson measured in the
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FIG. 7. Rapidity (left) and transverse momentum (right) distributions ofD0 meson (plusD0 antimeson) for pþ 4He collisions together
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compared. The shaded bands represent the renormalization/factorization scale and quark mass uncertainties summed in quadrature.
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LHCb fixed-target experiment together with the predictions
of the FONLL [54,55] (dashed lines) and the GM-VFNS
[56,57] (solid lines) frameworks. The FONLL central
prediction significantly underestimates the data points in
the region of meson transverse momenta pT > 1 GeV.
Visibly, some missing strength is found with respect to
both the experimental data set and to the kT-factorization
results presented in previous subsections. The GM-VFNS
prediction is slightly closer to the data, however, it is
received for mc ¼ 1.3 GeV while the FONLL result is for
mc ¼ 1.5 GeV.4 For the GM-VFNS framework we plot in
addition uncertainty bands related to the choice of the
renormalization scale in the numerical calculations. In this
model the factorization scale is always set by the GM-
VFNS method to combine the fixed flavor number scheme
with the zero mass scheme. That choice is not unique and
the scale uncertainty given above underestimates the real
uncertainty [58]. Even within the uncertainty bands and
within the smaller charm quark mass in the GM-VFNS
calculations the missing strength at larger pT’s is also
obtained. Potentially, the NNLO collinear predictions could
change the slope at larger meson pT’s and improve the
situation but the NNLO calculation of differential cross
sections for charm quarks is not yet available. In fact, the
FONLL and the GM-VFNS include effects of the resum-
mation of logarithms of (pT

m ) at next-to-leading logarithmic
(NLL) accuracy, so their formal accuracy is not only NLO,
but NLOþ NLL. These approaches can produce D-meson
transverse momentum and rapidity distributions that have
already accuracy beyond fixed-order NLO. However, the

framework of the kT-factorization as discussed in the
present paper is the only available method to effectively
study charm differential cross sections beyond the next-to-
leading order, having NNLO corrections in the matrix-
elements of the hard-scattering.

IV. CONCLUSIONS

We have considered production of neutral open charm
mesons at

ffiffiffi
s

p ¼ 86.6 GeV for the LHCb fixed-target
experiment. The numerical predictions have been done
in the kT-factorization approach. Two different schemes
of the calculations have been discussed depending on the
model of unintegrated parton densities in a proton used
in the analysis. A very good agreement with the LHCb
fixed-target open charm data has been obtained for both
of them. The JH-2013-set2 CCFM unintegrated parton
density describes the data very well already at leading-
order with g�g� → cc̄ off-shell mechanism only.
Predictions based on the PB-NLO-set1 uPDFs needs to
be applied within the higher-order perturbative calcula-
tions in order to describe the experimental data at similar
level of quality as in the CCFM case. Similar conclusions
are drawn for the case of the MRW and the KMR uPDFs,
respectively. We have explicitly shown that the new 2 →
2þ 3þ 4 scheme with the KMR uPDF is more preferred
by the low energy charm data than the standard calcu-
lation with the MRW uPDF, frequently and successfully
used at larger LHC energies.
We have demonstrated differences between the usage of

the CCFM- and the DGLAP-based unintegrated parton
distribution functions in phenomenological studies per-
formed in the kT-factorization. Both approaches provide
a reasonable agreement between the theory and experi-
mental results. Application of both, the CCFM and the
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FIG. 8. Rapidity (left) and transverse momentum (right) distributions of D0 meson (plus D0 antimeson) for pþ 4He collisions
together with the LHCb data [17]. Here the NLO collinear results for the FONLL (dashed) and GM-VFNS (solid) frameworks are
shown. For the latter the uncertainty bands related to the choice of the renormalization scale are also shown. Other details are specified in
the figure.

4The reason why mc ¼ 1.3 GeV is chosen for the GM-VFNS
predictions is because it is consistent with the CT14nlo PDF fit
used.

QCD PREDICTIONS FOR OPEN CHARM MESON PRODUCTION … PHYS. REV. D 102, 014028 (2020)

014028-11



DGLAP-based frameworks in the large-x limit explored in
the LHCb fixed-target experiment seems to be supported
by the data on charm production. We also have compared
the kT-factorization predictions to the NLO collinear
calculations.
The theoretical analysis of the low energy LHCb open

charm data presented here could be useful to constrain
further theoretical studies of ντ neutrino and ν̄τ antineu-
trino production in future fixed-target experiment SHiP
(see e.g., Ref. [59]) which is now in a comprehensive
design phase.
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