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We investigate open charm meson production in fixed-target LHCb experiment at /s = 86.6 GeV in
p + *He collisions. Theoretical calculations of charm cross section are done in the framework of the
kp-factorization approach. Its application in the kinematical range never examined before is carefully
discussed. We consider different schemes for the calculations relevant for different unintegrated (transverse
momentum dependent) parton densities in a proton. We include in the analysis both Catani-Ciafaloni-
Fiorani-Marchesini (CCFM)—and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)-based models
of unintegrated parton distributions appropriate for the considered kinematics. Integrated as well as

differential cross sections as a function of D meson rapidity and transverse momentum are shown and
compared with the experimental data. As a reference point, predictions of next-to-leading order collinear
approach are also presented and discussed. A very good agreement between the experimental data and the
kp-factorization predictions was obtained. Both the CCFM and the DGLAP-based frameworks for parton
distributions in a proton are successfully used to explain the LHCb fixed-target open charm cross section.

DOI: 10.1103/PhysRevD.102.014028

I. INTRODUCTION

According to current knowledge and experimental abi-
lities, production of heavy flavor is known as one of the
best testing grounds to investigate foundations of the theory
of hard QCD interactions. Theoretical studies of e.g., charm
cross section in proton-proton collisions provide an unique
precision tool in this context. Phenomenology of charm
particles production at hadron colliders has been shown
many times to be one of the most powerful tools in testing
pQCD techniques.

In the ongoing LHC era the activity in this context
has increased significantly on both experimental and
theoretical sides, since charm particles are copiously
produced at currently available high energies. Various
measurements of open charm meson production have been
accomplished by the ALICE, ATLAS, CMS, and LHCb
experiments in pp, pA, and AA reactions at different
TeV-scale energies (from 2.76 to 13 TeV). During last
years several phenomenological studies of open charm
production at the LHC were performed, including
inclusive D-meson (see e.g., Refs. [1-5]) and A_.-baryon
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[6,7] production, DD meson-antimeson pair production
[3,8,9], double [10,11] and even triple [12,13] charm
production, as well as associated charm production with
jets [14,15] and gauge bosons [16].

Very recently the LHCb collaboration has performed a
first measurement of the charm meson cross section in
fixed-target configuration [17]. Both, production of hidden
(J/w) and open (D°) charm was carefully studied in fixed-
target p + *He and p + “°Ar collisions at V/Svnv = 86.6 and
V/Syv = 110.4 GeV, respectively. The absolute cross sec-
tions (integrated and differential) were reported in the case
of the p + “He interactions only.

Here we wish to make theoretical analysis of the LHCb
fixed-target charm data and to examine the k;-factorization
approach [18] in this context, so far not explored in this
unique kinematical regime. This approach allows very easily
to include higher-order QCD radiative corrections (namely,
part of NLO 4 NNLO + ... terms corresponding to real
initial-state gluon emissions) that can be taken into account
via the so-called unintegrated (transverse momentum de-
pendent) parton distribution functions (uPDFs) in a proton.

The kr-factorization has become a widely exploited tool
and it is of common interest and importance to test it in
many different processes and in various kinematical
regimes. The kinematical configuration of the fixed-target
LHCb experiment corresponds to the region where both the
Catani-Ciafaloni-Fiorani-Marchesini (CCFM) [19] and the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [20]
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evolution equations are legitimated for any pQCD theo-
retical calculations and could in principle be used to
describe the dynamics behind the mechanisms of e.g.,
open charm meson production. The LHCb fixed-target
open charm data brings therefore a new opportunity to test
the CCFM- and the DGLAP-based unintegrated (transverse
momentum dependent) parton distributions (uPDFs) in a
proton. Here, the uPDFs can be probed at rather inter-
mediate (and even large) longitudinal momentum fractions
x where in turn effects related to the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) [21] evolution should not appear.

The BFKL equation resums large logarithmic terms
proportional to (a,Ins)" ~ (a,In1/x)", important at high
energies and small-x. The CCEM equation takes into
account additional terms proportional to (a;In1/(1 — x))"
and is valid at both low and large x. Some methods to
calculate the uPDFs from the conventional DGLAP equa-
tions are also present in the literature. An application of the
different models of uPDFs in phenomenological studies of a
given process is not automated as in the case of the collinear
PDFs. Here a deliberate adjustment of the model calculations
to theoretical concepts contained in the construction of a
chosen uPDF is required.

Very recently a new scheme for a calculation of partonic
cross section in the kp-factorization approach has been
proposed in Ref. [22]. There, a new calculation scenario
where higher-order QCD hard radiative corrections are not
resummed in the uPDF but are taken into account via tree-
level hard matrix elements was used to calculate charm
production at 7 TeV in pp-collisions in the LHCb experi-
ment. Then, the same ideas were also successfully used for
the associated production of electroweak gauge bosons and
heavy quark jets at the LHC [16].

Here we wish to investigate the correspondence between
different scenarios of charm cross section calculation in the
kr-factorization approach relevant for the CCFM uPDFs
[23,24] as well as for the (DGLAP-based) parton-branching
(PB) [25] and Kimber-Martin-Ryskin (KMR) [26-28]
uPDFs. One of the main goals of this paper is to compare
predictions of the different scenarios and to find a similarity
and connection between them.

II. DETAILS OF THE MODEL CALCULATIONS

A. Cross section for charm quark
and meson production

In this subsection we wish to shortly describe two
different schemes of the calculations of the cc-pair pro-
duction cross section within the kp-factorization approach:

(i) the standard model with the leading-order 2 — 2

matrix elements and with extra hard emissions from
the uPDF (see e.g., Ref. [3] and references therein),

(i) the new model with the higher-order 2 — 3 and

2 — 4 matrix elements and without resummation of
extra hard emissions in the uPDF (see Ref. [22]).

The standard model of the calculation can be success-
fully used in phenomenological studies only with the
uPDFs that effectively take into account higher-order
contributions. Technically, it means that the transverse
momentum k? generated in the evolution of the uPDF is
allowed to be larger than the scale u%, which is in principle
the case of the CCFM unintegrated distributions.

On the other hand, when the extra hard emissions from
the uPDF are suppressed due to its theoretical construction
(following e.g., strong-ordering condition in the evolution),
the higher-order radiative corrections has to be taken into
account at the level of hard-matrix elements. This is
especially the case of the DGLAP-based unintegrated
parton distributions which for conclusive phenomenologi-
cal studies needs to be applied within the new scheme of the
kp-factorization calculations.

1. The standard ky-factorization calculations within
the leading-order 2 — 2 mechanism

We remind the standard theoretical formalism for the
calculation of the c¢-pair production in the kr-factorization
approach. In this framework the transverse momenta k,’s
(virtualities) of both partons entering the hard process are
taken into account, both in the matrix elements and in the
parton distribution functions. Emission of the initial state
partons is encoded in the transverse-momentum-dependent
(unintegrated) uPDFs. In the case of charm flavor produc-
tion the parton-level cross section is usually calculated via
the 2 — 2 leading-order g*¢g* — c¢ fusion mechanism of
off-shell initial state gluons that is the dominant process at
high energies (see Fig. 1). Even at lower energies as long as
small transverse momenta and central rapidities are con-
sidered the ¢*g* — c¢¢ mechanism remains subleading.
Then the hadron-level differential cross section for the
cc-pair production, formally at leading-order, reads:

do(pp — ccX)
d)’1dY2J2P1,td2P2,t
_ /Jzkl,zaakz,z 1 off-shell |2

M * ok -
1 1677 (x1x,5)? My e
X éz(kl,t +kyy — ﬁl.t - 1_52.1)
X fg(xl’ k%,t’ﬂ%)fg(xb k%,m“%)v

(2.1)

where F,(x;. k7, uz) and F (x;.k3 . puz) are the gluon
uPDFs for both colliding hadrons and MOfshell i the off-

g’y —ct
shell matrix element for the hard subprocess. The gluon
uPDF depends on gluon longitudinal momentum fraction x,
transverse momentum squared k> of the gluons entering the
hard process, and in general also on a (factorization) scale
of the hard process u%. The extra integration is over
transverse momenta of the initial partons. Here, one keeps
exact kinematics from the very beginning and additional
hard dynamics coming from transverse momenta of
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FIG. 1. A diagramatic representation of the leading-order
mechanism of charm production.
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incident partons. Explicit treatment of the transverse
momenta makes the approach very efficient in studies of
correlation observables. The two-dimensional Dirac delta
function assures momentum conservation. The gluon uPDFs

must be evaluated at longitudinal momentum fractions
m my

X = %epr’l) +7exp(y2), and x; = Zexp(—y;)+
%exp(—yz), where m;, = \/p?, + m? is the quark/anti-

quark transverse mass.

The off-shell matrix elements are known explicitly only
in the LO and only for limited types of QCD 2 — 2
processes (see e.g., heavy quark [29], dijet [30], Drell-Yan
[31] mechanisms). Some first steps to calculate NLO
corrections in the kp-factorization framework have been
tried only very recently for diphoton production [32,33].
There are ongoing intensive works on construction of the
full NLO Monte Carlo generator for off-shell initial state
partons that are expected to be finished in near future [34].
Another method for calculation of higher multiplicity final
states is to supplement the QCD 2 — 2 processes with
parton shower. For the off-shell initial state partons it was
done only with the help of full hadron level Monte Carlo
generator CASCADE [35]. There, dedicated transverse-
momentum dependent initial-state parton showers were
introduced using backward evolution, that are not unique
and needs to be matched to a given model of uPDFs.

Technically, there is a direct relation between a resum-
mation present in uPDFs in the transverse momentum
dependent factorization and a parton shower in the collinear
framework. The popular statement is that actually in the
kr-factorization approach already at leading-order some
part of radiative higher-order corrections can be effectively
included via uPDFs, without any additional showering
procedure. However, it is true only for those uPDF models
in which extra emissions of soft and even hard partons are
encoded, including k? > y2 configurations.' Then, when

'In most uPDF cases the off-shell gluon can be produced either
from gluon or quark, therefore, in the kp-factorization all
channels driven by gg, gg and even by ¢gg initial states are open
already at leading-order (in contrast to the collinear factorization).

calculating the charm production cross section via the
g*g" — c¢ mechanism one could expect to effectively
include contributions related to an additional one or two
(or even more) extra partonic emissions which in some
sense plays a role of the initial state parton shower.

2. A new scheme of the calculations with the
higher-order 2 — 3 and 2 — 4 mechanisms

Now we wish to shortly describe an alternative scheme
of the calculation of the heavy flavor cross sections in the
kr-factorization approach, recently proposed and discussed
in Ref. [22]. The main idea is to include usual leading order
subprocesses properly matched with a number of additional
higher-order radiative corrections at the level of hard matrix
elements. This procedure is devoted in principle to the
calculations for which the DGLAP-based unintegrated
parton densities are applied. Here the extra hard emissions
from the uPDFs are usually strongly suppressed what
leaves a room for higher-order terms.

Due to the lack of the full NLO and/or NNLO framework
of the kp-factorization, within the present methods the
higher-order pQCD calculations can be done only at tree-
level. Within the proposed scheme the 2 — 2, 2 — 3 and
even 2 — 4 contributions to heavy quark-antiquark pair
production are summed up together under special con-
ditions introduced to avoid a possible double-counting
(see a discussion of the double-counting-exclusion cuts
in Ref. [22]).

The numerical calculations for the higher-order contri-
butions are also performed in the framework of the k-
factorization approach within the methods adopted in the
KaTie Monte Carlo generator [36], where the off-shell
matrix elements for higher final state parton multiplicities
at the tree-level are calculated numerically with the help of
methods of numerical BCFW recursion [37]. We include all
the possible 2 — 3 and 2 — 4 channels for the cc-pair
production with off-shell gluons and light quarks in the
initial states. These two classes of higher-order processes
are schematically illustrated in Fig. 2 where Feynmann
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FIG. 2. A diagrammatic representation of an example of the
higher-order mechanisms of charm production.
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diagrams for the g*¢g* — gcc¢ and the g*g* — ggcc mech-
anisms are shown as an example.

In general, the cross section for pp — g(g)ccX reaction
in the kp-factorization approach can be written as

d*ky, d2k2,

doﬂl’"!](!])cE'X:/dxl dx, Fo(x1, k 1z’ HE)

X.F ()CQ, zt,ﬂF)dO'q*q —g(g)ce (22)

Then, the elementary cross section from above can be
written somewhat formally as:

n d3p[ ( n
A6 oot sal(a)ee = 7(2@"5” pr—k — k2>
99—9"9*—~9(9) 111 (2”)32E1 ;
1
m |Mg*g*—>g(g)ci'(kl’ k2)|27 (23)

with n =3 and n =4 for g*¢* — gcc and g*g* — ggcc,
respectively, where E; and p, are energies and momenta of
final state gluon(s) and charm quarks. Above only depend-
ence of the matrix element on four-vectors of incident
partons k; and k, is made explicit. In general, all four-
momenta associated with partonic legs enter. Also in this
case, the matrix element takes into account that both
partons entering the hard process are off-shell with virtual-
ities k7 = —k?, and k5 = —k3,.

Having minijet(s) (soft jets) in the final state at tree-level
requires some technical methods for regularization of the
cross section. Here we follow exactly the method adopted
in Ref. [22] which was originally proposed e.g., in PYTHIA
Monte Carlo generator [38] for the calculations of the
2 — 2 pQCD processes with light quarks and gluons in the
final states. There, a special suppression factor Fy,,(pr) =
3/ (P} + p7)* was introduced with pr being the out-
going minijet transverse momentum and py, being a free
parameter that also enters as an argument of the strong
coupling constant a,(p?, + u%). As a default set in our
calculations here we use prg =1 GeV. This parameter
could, in principle, be fitted to total charm cross section
measured experimentally or calculated in the NLO/NNLO
collinear calculations. The same method was also applied
recently in the context of J/w-meson production in the
color-evaporation model [39].

B. Unintegrated parton distribution functions

1. The CCFM uPDFs

The CCFM evolution equation for gluon, in the limits of
high and low energies (small- and large-x values), is almost
equivalent to the BFKL and very similar to the DGLAP
evolution, respectively [19]. In order to correctly treat
gluon coherence effects it introduces the so-called angular-
ordering which is commonly considered as a great advan-
tage of this framework.

In the leading logarithmic approximation, the CCFM
equation for unintegrated gluon density F,(x, k7, u*) can
be written as

= 7y (. k%,uém
J5]Ee

x P, (z. k2. ¢*)F, (E iy q2> ,

F,q(x’ ktz’ﬂz) ‘(/’l ﬂO)

—2q) (1, 2q)

(2.4)

where u? is the evolution (factorization) scale which is
further defined by the maximum allowed angle for any
gluon emission, k} = (1 —z) + ky and P (z.k?,4?) is
the CCFM splitting function:

P (z. k. q%)

— a1 -2 |+ 5

zZ(1-72)

() E— It ]Ans<z,k%,q2>. 2.5)

The Sudakov and non-Sudakov form factors read:

//4 d/,t /ZM—l—ﬂo/ﬂ a (1 (1 - z2)?)

In Ag(p, po) T

s

(2.6)
In Ay (2. K2, ¢2)
_ Ld7 [ dg?
—— / i / U o412 - 2)6(q? - 2).
0o < q
(2.7)

where a, = 3a,/x.

The first term in the CCFM equation is the initial
unintegrated gluon density multiplied by the Sudakov form
factor. It corresponds to the contribution of nonresolvable
branchings between the starting scale ,u% and scale y°. The
second term describes the details of the QCD evolution
expressed by the convolution of the CCEM gluon splitting
function with the gluon density and the Sudakov form factor.
The theta function introduces the angular ordering condition.
The CCFM equation can be solved numerically using the
uPDFevolv program [40], and the uPDFs for gluon and valence
quarks can be obtained for any x, k7 and p” values.

Within the CCFM approach the parton transverse
momentum is allowed to be larger than the scale u’.
This useful feature translates into the ease of effective
taking into account of higher-order radiative corrections,
that correspond to the initial-state real gluon emissions
which are resummed into the uPDFs. Thus, for any
phenomenological studies in the ky-factorization approach
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the standard scheme with leading-order matrix elements is
recommended as long as the CCFM uPDFs are used.

2. The PB uPDFs

The parton branching (PB) method, introduced in
Refs. [25,41], provides an iterative solution for the evolu-
tion of both collinear and transverse momentum dependent
parton distributions. Within this novel method the splitting
kinematics at each branching vertex stays under full control
during the QCD evolution. Here, soft-gluon emission in the
region 7z — 1 and transverse momentum recoils in the
parton branchings along the QCD cascade are taken into
account simultaneously. Therefore the PB approach allows
for a natural determination of the uPDFs, as the transverse
momentum at every branching vertex is known. It agrees
with the usual methods to solve the DGLAP equations, but
provides in addition a possibility to apply angular ordering
instead of the standard ordering in virtuality.

Within the PB method, a soft-gluon resolution scale
parameter z;, is introduced into the QCD evolution
equations that distinguish between nonresolvable and
resolvable emissions. These two types of emissions are
further treated with the help of the Sudakov form factors

w2 du? [
ANm&@%mGZﬂ QAdM@@@)

b Jug B

(2.8)

and with the help of resolvable splitting probabilities
ng;)(as,z), respectively. Here a, b are flavor indices, a;
is the strong coupling at a scale being a function of y’?, z is
the longitudinal momentum splitting variable, and zj; < 1
is the soft-gluon resolution parameter. Then, by connecting
the evolution variable y in the splitting process b — ac with
the angle ® of the momentum of particle ¢ with respect
to the beam direction, the known angular ordering relation
u =|q,.|/(1 —z) is obtained, that ensures quantum coher-
ence of softly radiated partons.

The PB evolution equations with angular ordering
condition for unintegrated parton densities F,(x, k;, u?)
are given by [41]

Z)ZA ( (X kt?/’lO)
d? q: 2
Z/ﬂqizA Ol

X/wgP“wy>

<2kt (1= ).

fa(kam“

—q)0(q* — uj)

(2.9)

Here, the starting distribution for the uPDF evolution is
taken in the factorized form as a product of collinear PDF

fitted to the precise DIS data and an intrinsic transverse
momentum distribution in a simple gaussian form. Unlike
the CCFM parton distributions, the PB densities have the
strong normalization property:

[ Falekptrat = fueat). (210
The PB uPDFs can be calculated by an iterative Monte-
Carlo method and are characterized by a steep drop of the
parton densities at k7 > 2, agaln in contrast to the CCFM
unintegrated distributions.” Therefore, for phenomeno-
logical studies within this model of unintegrated density, a
higher-order scheme of the calculations is required that
could compensate lack of extra emissions encoded in the
uPDF.

There are two available sets of the parton-branching
uPDFs—PB-NLO-2018-setl and PB-NLO-2018-set2, that
correspond to different choice of the parameters of the
initial distributions [25]. Both of them, including uncer-
tainties are available in TMDLIB [43]. In the following,
the PB-NLO-2018-setl uPDFs were used in numerical
calculations.

3. The KMR/MRW uPDFs

Another DGLAP-based and frequently used in phenom-
enological studies prescription for unintegrated gluon
densities is the Kimber-Martin-Ryskin (KMR) approach
[26-28]. It has been successfully used especially for charm
production at the LHC, including inclusive charm [3],
charm-anticharm pairs [3,9], double and triple charm
[10,13], as well as charm associated with jets [15].
According to this approach the unintegrated gluon distri-
bution is given by the following formula

folx k. p?)
0
dlog k?

T, (K}, 2 Z/dP

[g(x, k?)Tg(k%v #)]

o(34)
(2.11)

This formula makes sense for k, > yu,, where g ~ 1 GeV is
the minimum scale for which DGLAP evolution of the
conventional collinear gluon PDF, g(x, ), is valid.

The virtual (loop) contributions may be resummed to all
orders by the Sudakov form factor

w2 di? ag (K2
T, (k3. u%) = exp (— A k; 52,; Z / dzzPy,(z )

(2.12)

2Very recently, only a first attempt to incorporate CCFM
effects into the PB method has been done [42].
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which gives the probability of evolving from a scale k, to a
scale u without parton emission. The exponent of the gluon
Sudakov form factor can be simplified using the following
identity: P, (1 —2z) = P,4(z). Then the gluon Sudakov
form factor reads

w2 dicf as(x7)
Tg(kzz’ﬂz) _exp(_lf k—IQ o

X (AI_A dzzP,,(z) +nFAI dqug(z)>>,

(2.13)

where ny is the quark—antiquark active number of flavors
into which the gluon may split. Due to the presence of the
Sudakov form factor in the KMR prescription only last
emission generates transverse momentum of the gluons
initiating hard scattering.

In the above equation the variable A introduces a
restriction of the phase space for gluon emission and is
crucial for the final shape and characteristics of the
unintegrated density. In Ref. [26] the cutoff A was set in
accordance with the strong ordering (SO) in transverse
momenta of the real parton emission in the DGLAP
evolution,

A== (2.14)

This corresponds to the orginal KMR prescription where
one always has k? < p? restriction and the Sudakov form-
factor always satisfies the T,(k7,4?) < 1 condition.

The prescription for the cutoff A was further modified in
Refs. [27,28] to account for the angular ordering (AO) in
parton emissions in the spirit of the CCFM evolution,

A= k )
ki +p

(2.15)

This modification leads to a bigger upper limit for k; than in
the DGLAP scheme and opens the k? > u2 region. In this
extra kinematical regime one gets 7,(k7, %) > 1, which
contradicts its interpretation as a probability of no real
emission. Thus, the Sudakov form factor is there usually set
to be equal one. For transparency, here the modified KMR
model will be referred to as the Martin-Ryskin-Watt
(MRW) model [28].

Different definitions of the ordering cutoff lead to
significant differences between the two models. In the
KMR model the k? > u2. region is forbidden while in the
MRW case the k? > u2% contributions are directly allowed
(see e.g., a detailed discussion in Ref. [44]). In the MRW
model both in quark and gluon densities large k,-tails
appear, in contrast to the KMR case. These two models
need to be therefore differently treated in phenomenological

applications. The MRW model shall be used with the
standard k;-factorization scheme at leading-order (as in
the CCFM uPDFs case), while the original KMR model
requires the new procedure with the leading-order mecha-
nisms matched with higher-order contributions (as in the PB
uPDFs case).

In the numerical calculations below we used the CT14lo
collinear PDFs [45] to calculate both, the KMR and the
MRW unintegrated densities.

C. Open charm meson production

The transition of charm quarks to open charm mesons is
done in the framework of the independent parton fragmen-
tation picture (see e.g., Refs. [46,47]). Here we follow the
standard prescription, where the inclusive distributions of
open charm meson are obtained through a convolution
of inclusive distributions of charm quarks/antiquarks and
¢ — D fragmentation functions:

do(pp — DX) ldz do(pp — cX)
— s R S Dep(R)— 5 — ’
dypd Pi.p 0o 2 dy.d Prc Ye=yp
Pte=piD/7
(2.16)

where p,. = p’T'D and z is the fraction of longitudinal

momentum of charm quark ¢ carried by a meson D. In
the numerical calculations we take the Peterson fragmen-
tation function [48] with ¢ = 0.05, often used in the context
of hadronization of heavy flavors. Then, the hadronic cross
section is normalized by the relevant charm fragmentation
fractions for a given type of D meson [49]. In the numerical
calculations below for ¢ — D° meson transition we take the
fragmentation probability P._p = 61%.

III. NUMERICAL RESULTS

In this section we present our numerical results for

D° + DY meson production in fixed-target p +* He colli-
sions at /syy = 86.6 GeV, measured for the first time
very recently by the LHCb collaboration [17]. The mea-

sured cross section for DY + DO final state in the LHCb
acceptance is

orucy = 80.8 £ 2.2(stat) & 6.3(syst) ub/nucleon.  (3.1)
The experimental cross sections are divided by the number
of nucleons and are compared below with the theoretical
results for p p-scattering. Nuclear effects in the case of the
p + “He interactions and for considered kinematical range
are expected to be negligible, which was checked and
explicitly shown in Ref. [17] (see Fig. 4 therein), and
therefore are also neglected here. Below we show in
addition the theory/data ratio.
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in the numerical calculations
scales

As a default set

we take the renormalization/factorization
2

WP =px =pk=>" "t (averaged tranvserse mass of

the given final state) and the charm quark mass

m. = 1.5 GeV. The strong-coupling constant a,(u%) at

leading-order is taken from the CT14 PDF routines.

A. The ky-factorization scheme with the CCFM uPDFs

We start with the results for the ¢*¢g* — ¢¢ mechanism
calculated in the framework of the ky-factorization
approach with off-shell initial state partons and with the
CCFM uPDFs. Before we go to the main results for the D°
meson cross sections and their comparison with the LHCb
fixed-target data we wish to present complementary plots
that will be helpful in qualitative visualization of the
kinematics behind the considered production mechanism.
In Fig. 3 we present double differential parton-level cross

s = 86.6 GeV
JH-2013-set2 uPDF g*g* > cc .
(255 5y,<0b7p, co6ev I '°
05 ;LHCb fixed-target 1
Sk 10
—~ i
x ¥
S 15 1
()] F
Rs} [
2F 107
25 102
Y ST PPN I IEFETIN I I -3
85T s T o 10

FIG. 3.

section for charm quarks as a function of longitudinal
momentum fractions log;o(x;) and log;(x,) (left panel)
and transverse momenta k,; and k, (right panel) of the
incident gluons. Here we impose the cuts relevant for
the LHCD fixed-target mode on one of the quarks from the
cc-pair. We clearly see that within the present phenom-
enological analysis we probe the unintegrated gluon dis-
tributions at large x-values with maximum of the cross
section around 10~!. The transverse momenta of the initial
state gluons are quite small here (< 5 GeV) with maximum
of the cross section between 1 and 2 GeV which is the
region where nonperturbative effects might also play a role
(together with the perturbative ones). This so far unex-
plored kinematical domain is of course very interesting and
could help to constrain gluon uPDFs in these exotic limits.

In Fig. 4 we present differential distributions of D°
meson as a function of c.m.s. rapidity (left panel) and
transverse momentum (right panel) for p + “He collisions

s = 86.6 GeV
JH-2013-set2 uPDF g*g* > cc
O T T2 v T 10°
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[ LHCb fixed-target
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The two-dimensional differential cross sections for c¢-pair production in proton-proton scattering at /s = 86.6 GeV in

microbarns as a function of longitudinal momentum fractions log;(x;) and log;o(x,) (left panel) and transverse momenta k,; and k,,
(right panel) of the incident gluons. Other details are specified in the figure.
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FIG. 4. Rapidity (left) and transverse momentum (right) distributions of D® meson (plus DO antimeson) for p + “He collisions together
with the LHCb data [17]. Here results of the k;-factorization calculations for four different gluon CCFM uPDFs are shown. Other details

are specified in the figure.
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FIG.5. Rapidity (left) and transverse momentum (right) distributions of D meson (plus DO antimeson) for p + “He collisions together
with the LHCb data [17]. Here results of the kp-factorization calculations for the JH-2013-set2 gluon CCFM uPDF are shown together
with corresponding uncertainty bands. The shaded bands represent the renormalization/factorization scale and quark mass uncertainties

summed in quadrature.

together with the LHCb experimental data points [17].
For the numerical predictions presented here we have used
four different sets of the gluon CCFM uPDFs: the most
up-to-date JH-2013-setl and JH-2013-set?2 fits [23], as well
as a bit older Jung-setAO and Jung-setBO [24]. Here, in
the CCFM scheme we use an atypical value for factoriza-
tion scale u% = M2 + P%, where M,; and P; are the
cc-invariant mass (or energy of the scattering subprocess)
and the transverse momentum of cc-pair (or the incoming
off-shell gluon pair). This rather unusual definition has to
be applied as a consequence of the CCFM evolution
algorithm3 [23,50]. From the comparison of our numerical
results with the LHCb data we conclude that the CCFM
scheme of the calculations with the JH-2013—set2 gluon
uPDF leads to a very good description of the experimental
data points. Rest of the used CCFM uPDFs seems to
slightly overestimate the LHCb data. Both, the JH-2013-
setl and JH-2013-set2 gluon densities are determined from
high-precision DIS measurements, including experimental
and theoretical uncertainties. However, the JH-2013-set] is
determined from the fit to inclusive F, data only while the

JH-2013-set2 is determined from the fit to both F gCharm) and
F, data. We see that in our calculations here these two sets
lead to quite different results. The JH-2013-setl gluon
uPDF results in a larger charm cross section and over-
estimates the experimental data. The LHCb fixed-target
open charm data visibly prefers the JH-2013-set2 gluon

3According to the CCFM evolution equation, the emission of
partons during the initial cascade is only allowed in an angular-
ordered region of phase space. The upper scale f of any emission,
coming from the maximal angle obtained in a quark box, can be
written as i> = § + Q7?, where Q, is the transverse momentum of
the quark pair in the box. By definition the evolution scale has an
obvious relation to a particular choice of the factorization scale in
the collinear approach [50].

uPDF. The integrated cross section for D° + DO final state
in the LHCb kinematics obtained with the JH-2013-set2
gluon uPDF is occpy = 102.15 ub.

In Fig. 5 we show in addition uncertainties of the
calculations done for the JH-2013-set2 gluon uPDF.
The shaded bands here correspond to uncertainties of the
calculations related to the renormalization/factorization
scales and with the charm quark mass summed in quad-
rature. The scales y> = u% = u2 are divided or multiplied
by a factor of 2 with respect to the central value
and similarly charm quark mass is varied as follows:
m. = 1.5+ 0.25 GeV. Here we decided to vary both scales
over the central value simultaneously, however, we realize
that more complex treatment of the scales variation might
lead to slightly bigger uncertainties in some regions of
phase space. Taking into account the theoretical uncertain-
ties we get a satisfactory description of the data in the whole
considered kinematical regime. The rapidity spectrum is
well reproduced with the central prediction. The first and
the last bin in transverse momentum distribution can be
described only with the lower and upper limits of the
uncertainty band, respectively. The uncertainties are quite
large at very low transverse momenta of D° meson where
the uncertainty of charm quark mass plays an important
role. The large uncertainty of the first bin in transverse
momentum affects the whole spectrum in meson rapidity.
At larger meson p;’s the overall uncertainty is <2 which is
rather standard in any pQCD calculations.

B. The kp-factorization scheme
with parton-branching uPDF

Above we have exactly shown that the kp-factorization
approach with the CCFM uPDFs works very well for charm
production already at leading-order, when only leading
order g*g* — cc mechanism is taken into account. As was
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FIG. 6. Rapidity (left) and transverse momentum (right) distributions of D meson (plus DO antimeson) for p + “He collisions together
with the LHCb data [17]. Here the kp-factorization results with the PB-NLO-setl uPDF forthe 2 — 2,2 — 3 and 2 — 4 mechanisms are
shown separately. The shaded bands represent the renormalization/factorization scale and quark mass uncertainties summed in

quadrature. Other details are specified in the figure.

already discussed, in this framework, higher-order radiative
corrections (namely, a part of NLO, and even NNLO terms
corresponding to the initial-state real gluon emissions) are
effectively taken into account. Technically, it is driven by
the fact that in the CCFM scheme the incoming gluons
are allowed to have transverse momenta larger than the
factorization scale, i.e., k7 > u®. Ipso facto, having hard
extra emissions from uPDFs one takes into account in an
effective way e.g., flavor excitation and gluon splitting
mechanisms, which are recognized to be of a special
importance in the case of heavy flavor production [51].

As it was already mentioned, in contrast to the CCFM
calculations, in the PB scheme which is based on full-flavor
DGLAP evolution one has to include the usual leading
order ¢*¢* — c¢¢ mechanism properly matched with a
number of additional higher-order terms. Here, no extra
hard emissions from uPDFs are allowed and they must be
taken into account at the level of hard matrix elements. In
our calculations here we take into account all gluon and
quark-induced off-shell subprocesses of the 2 — 3 and the
2 - 4 type at tree-level, corresponding to associated
production of charm with one and two (mini)jets, respec-
tively. To avoid a possible double-counting, the 2 — 2,
2 — 3, and 2 — 4 contributions are added together accord-
ing to the matching procedure proposed very recently in
Ref. [22] for the case of similar studies of charm production
but at higher energy /s =7 TeV.

In Fig. 6 we present results of the PB scheme of the
calculations based on the kp-factorization approach. We
use the PB-NLO-setl quark and gluon uPDFs to calculate
again the differential distributions of D° meson as a
function of c.m.s. rapidity (left panel) and transverse
momentum (right panel). The dashed, dash-dotted, and
dotted histograms correspond to the 2 — 2, 2 — 3, and
2 — 4 mechanisms, respectively. The solid histogram

presents their sum denoted as 2 — 2 + 3 + 4. The shaded
bands again correspond to the charm quark mass and scale
uncertainties summed in quadrature. The uncertainties are
calculated for each of the constituent components sepa-
rately. We see that in the PB scheme, as one could expect,
the leading-order 2 — 2 mechanism is completely insuffi-
cient and significantly underestimates the LHCb data
points. Within the PB scheme a reasonable description
of the data, taking into account theoretical uncertainties,
can be achieved only when the leading-order 2 — 2
mechanism is supplemented by the higher-order 2 — 3
and 2 — 4 contributions. The central prediction of the
2 — 243 4 4 result stays in a very good agreement with
the measured rapidity distributions. The transverse momen-
tum distribution is also well described by the central
prediction at small transverse momenta, however, at larger
pr’s some small missing strength with respect to the data
appears. This region can be somewhere about described
only with the upper limit of the predicted uncertainty band.
The integrated cross section (central value) for D° + D°
final state in the LHCb kinematics obtained with the
PB-NLO-setl gluon uPDF is opg = 78.19 ub.

Comparing the final result of the PB scheme with the
PB-NLO-setl uPDF and the result of the CCFM scheme
with the JH2013-set2 uPDF we conclude that both pre-
scriptions lead to a very similar and consistent results (up to
factor 2) and provides a good quality description of the
LHCb fixed-target charm data, taking into account the
typical theoretical uncertainties.

C. The ky-factorization scheme
with the KMR/MRW uPDF

The difference between the KMR and the MRW model is
similar to the case of the CCFM and the PB unintegrated
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densities discussed above. Thus, in the calculations with the
MRW uPDF only the leading-order g*¢* — ¢¢ mechanism
has to be taken into account. On the other hand, when
applying the KMR uPDF one has to follow the calculation
scheme with the 2 -2, 2 >3 and 2 — 4 tree-level
subprocesses taken into account at the level of hard-matrix
elements. It was shown in Ref. [22] that both schemes of
the calculation are convergent and lead to very similar
results in the case of charm production at /s =7 TeV
collision energy.

The kp-factorization scheme of the calculation with the
MRW uPDF was supported and justified by various open
charm (and not only) LHC data sets. However, some
criticism of the MRW model was expressed very recently
e.g., in Ref. [52]. It is also commonly questioned, whether
the MRW model could be successfully used to describe
DIS high-precision data [53]. Fortunately, the recently
proposed model of kp-factorization calculations with the
higher-order corrections at tree-level [22] brings an useful
alternative for the standard calculations and seems to be a
good way to avoid the mentioned problems.

Here, we wish to compare the results of the calculation
with the MRW uPDF and the results of the calculation with
the new 2 — 2+ 3 +4 scheme relevant for the KMR
uPDF. Such a comparison at /s = 86.6 GeV may help
to judge whether the agreement between the /s = 7 TeV
LHC open charm data and the kz-factorization predictions
with the MRW uPDFs (previously obtained by different
authors) is kind of accidental or not. In Fig. 7 we show
again the rapidity (left) and the transverse momentum
(right) differential distributions of D’ meson at /s =
86.6 GeV. The solid histograms correspond to the results
obtained with the KMR uPDFs while the dashed ones are
for the calculations with the MRW uPDFs. For the latter we
show in addition the uncertainty bands that represent the
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renormalization/factorization scale and quark mass uncer-
tainties summed in quadrature. Comparing central values of
these predictions we observe a large difference between the
two results—unlike the case of the /s =7 TeV studies
(see Fig. 15 in Ref. [22]). The results obtained with the
2 — 2 4 3 4 4 scheme and the KMR uPDF lie much closer
the data points. The quality of the data description is very
similar as in the case of the central prediction obtained with
the JH-2013-set2 CCFM uPDEF. On the other hand, the
results of the standard calculations with the MRW uPDF
significantly underestimates the LHCb data here, even
taking into account plotted uncertainties. The central
prediction of the 2 — 2 43 + 4 scheme with the KMR
uPDF seems to be rather consistent only with the upper
limit of the results obtained with the MRW uPDF. The

integrated cross sections (central values) for D° + D° final
state in the LHCb kinematics obtained with the MRW
and the KMR gluon uPDF are oyrw = 32.14 ub and
oxMr = 38.85 ub, respectively. It is therefore justified to
conclude that the new 2 — 2+ 3 + 4 scheme with the
KMR uPDF is more preferred by the low energy charm
data, at least it leads to a better energy dependence of the
charm cross section and it can be recommended as a better
choice than usage of the MRW uPDF in any future studies.

D. Next-to-leading order collinear approach

Having definite conclusions about the theoretical results
obtained within the kp-factorization, in the last step of the
present analysis we move beyond this framework and apply
the NLO collinear approximation. The corresponding results
of the collinear approach may give another interesting point
of reference and will make this study more complete.

In Fig. 8 we show rapidity (left) and transverse momen-
tum (right) distributions of D° meson measured in the

10°E T T
E'LHCb: pHe'— (D" + D) X Sy = 86.6 GeVd
10? 3
KMR: 2 — 2 + 3 + 4 (solid) 3
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FIG.7. Rapidity (left) and transverse momentum (right) distributions of D° meson (plus DO antimeson) for p + “He collisions together
with the LHCDb data [17]. Here the kp-factorization results with the KMR-CT14lo (solid) and with the MRW-CT14lo (dotted) uPDFs are
compared. The shaded bands represent the renormalization/factorization scale and quark mass uncertainties summed in quadrature.

Other details are specified in the figure.
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the figure.

LHCb fixed-target experiment together with the predictions
of the FONLL [54,55] (dashed lines) and the GM-VFNS
[56,57] (solid lines) frameworks. The FONLL -central
prediction significantly underestimates the data points in
the region of meson transverse momenta p; > 1 GeV.
Visibly, some missing strength is found with respect to
both the experimental data set and to the kp-factorization
results presented in previous subsections. The GM-VFNS
prediction is slightly closer to the data, however, it is
received for m, = 1.3 GeV while the FONLL result is for
m.=1.5 GeV.* For the GM-VENS framework we plot in
addition uncertainty bands related to the choice of the
renormalization scale in the numerical calculations. In this
model the factorization scale is always set by the GM-
VENS method to combine the fixed flavor number scheme
with the zero mass scheme. That choice is not unique and
the scale uncertainty given above underestimates the real
uncertainty [58]. Even within the uncertainty bands and
within the smaller charm quark mass in the GM-VFNS
calculations the missing strength at larger p;’s is also
obtained. Potentially, the NNLO collinear predictions could
change the slope at larger meson p;’s and improve the
situation but the NNLO calculation of differential cross
sections for charm quarks is not yet available. In fact, the
FONLL and the GM-VENS include effects of the resum-
mation of logarithms of (2Z) at next-to-leading logarithmic
(NLL) accuracy, so their formal accuracy is not only NLO,
but NLO + NLL. These approaches can produce D-meson
transverse momentum and rapidity distributions that have
already accuracy beyond fixed-order NLO. However, the

“The reason why m. = 1.3 GeV is chosen for the GM-VENS
predictions is because it is consistent with the CT14nlo PDF fit
used.

framework of the kp-factorization as discussed in the
present paper is the only available method to effectively
study charm differential cross sections beyond the next-to-
leading order, having NNLO corrections in the matrix-
elements of the hard-scattering.

IV. CONCLUSIONS

We have considered production of neutral open charm
mesons at /s = 86.6 GeV for the LHCb fixed-target
experiment. The numerical predictions have been done
in the kp-factorization approach. Two different schemes
of the calculations have been discussed depending on the
model of unintegrated parton densities in a proton used
in the analysis. A very good agreement with the LHCb
fixed-target open charm data has been obtained for both
of them. The JH-2013-set2 CCFM unintegrated parton
density describes the data very well already at leading-
order with ¢“¢g* — c¢ off-shell mechanism only.
Predictions based on the PB-NLO-setl uPDFs needs to
be applied within the higher-order perturbative calcula-
tions in order to describe the experimental data at similar
level of quality as in the CCFM case. Similar conclusions
are drawn for the case of the MRW and the KMR uPDFs,
respectively. We have explicitly shown that the new 2 —
2 4 3 + 4 scheme with the KMR uPDF is more preferred
by the low energy charm data than the standard calcu-
lation with the MRW uPDF, frequently and successfully
used at larger LHC energies.

We have demonstrated differences between the usage of
the CCFM- and the DGLAP-based unintegrated parton
distribution functions in phenomenological studies per-
formed in the kp-factorization. Both approaches provide
a reasonable agreement between the theory and experi-
mental results. Application of both, the CCFM and the
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DGLAP-based frameworks in the large-x limit explored in
the LHCb fixed-target experiment seems to be supported
by the data on charm production. We also have compared
the kp-factorization predictions to the NLO collinear
calculations.

The theoretical analysis of the low energy LHCb open
charm data presented here could be useful to constrain
further theoretical studies of v, neutrino and 7, antineu-
trino production in future fixed-target experiment SHiP
(see e.g., Ref. [59]) which is now in a comprehensive
design phase.
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