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We investigate the σ and ρ coupling constants for theDD andD�D� interactions, based on correlated 2π
exchange in the DD and D�D� interactions. Starting from the DD̄ → ππ and D�D̄� → ππ amplitudes
derived in the pseudophysical region (4m2

π ≤ t ≤ 52m2
π) with the S- and P-wave 2π correlations

considered, we obtain the spectral functions for the DD → DD and D�D� → D�D� amplitude with
correlated S- and P-wave 2π exchanges. Using the pole approximation, we estimate the DDσ, DDρ,
D�D�σ, and D�D�ρ coupling constants. We extended phenomenologically the present results to the region
in t ≤ 0 and compare them with those from lattice QCD. The results are also compared with those of other
models. We also present the results of the BBσ, BBρ, B�B�σ, and B�B�ρ coupling constants. We observe
that it is unlikely that the σ and ρ coupling constants for the B and B� mesons are the same as those for theD
and D� mesons. On the contrary, they are quite larger than those for the charmed mesons.

DOI: 10.1103/PhysRevD.102.014026

I. INTRODUCTION

Understanding exotic heavy mesons has been one of the
most important issues in hadronic physics (see, for exam-
ple, recent reviews [1–5]). In 2003, a charmoniumlike state
Xð3872Þ was newly found by the Belle Collaboration [6]
and was subsequently confirmed by other experiments [7–
10]. The mass of the Xð3872Þ turns out to be approximately
few tens of MeV lower than the P-wave charmonium
χc1ð2PÞ predicted by the heavy-quark potential models
[11–16]. The Belle Collaboration [6] also measured the
upper limit on the ratio of the partial decay widths
ΓðXð3872Þ → γχc1Þ=ΓðXð3872Þ → πþπ−J=ψÞ < 0.89,
which was very different from the predictions of Ref. [17]
in which the decays of D-wave missing charmoniums
were considered. Though there was an argument that the
Xð3872Þ is still a 13D2 charmonium state [18], these dis-
crepancies led to various theoretical interpretations on the
Xð3872Þ. It can be regarded as a tetraquark state [19–21] or
as a hybrid exotic state [22]. It is also plausible to consider
it as a molecular state of D and D̄� mesons [23–27], since
its mass is very close to the sum of the masses of the D and
D� mesons (MXð3872Þ −MD�0 −MD0 ¼ 0.01� 0.18 MeV),
which resembles the deuteron consisting of the proton and

the neutron. The quantum number of the Xð3872Þ is now
established as an isosinglet state with JPC ¼ 1þþ [28].
In addition to the Xð3872Þmeson, a number of new heavy

mesons has been experimentally observed over the last
decade (see, for example, glossary of exotic states summa-
rized in Appendix of Ref. [3]). Many of them can be
regarded as molecular states. While the pion exchange is a
main ingredient for the description of those exotic mesons as
molecular states, the σ meson exchange may come into play,
since it provides a strong attraction in medium range of the
interaction so as to make two heavy mesons such as D (D�)
and D̄� (D�) bound. However, the coupling constants for the
DDσ and D�D�σ vertices are not well known both theo-
retically and experimentally, so that these couplings have
been estimated by using either the nonlinear sigma model or
quark models [29–32]. Moreover, the D�D�σ coupling
constant was taken to be the same as the DDσ one in many
theoretical works with the heavy-quark spin symmetry
assumed. On the other hand, the σ exchange in the NN
interaction is known to be a parametrization of the correlated
2π exchange, based on the pole approximation [33–35],
which approximates the broad mass distribution of the σ
meson to a sharp mass. This σ-exchange contribution has
been an essential part of providing the strong attraction in the
intermediate range of the NN potential. In fact, the S-wave
correlated 2π exchange has been employed in predicting the
DD and BB bound states [36] already. Since one π exchange
is not allowed between the pseudoscalar heavy mesons, σ
exchange plays a crucial role in examining the bound states
of theDD and BB system. Similarly, ρ-meson exchange can
be also regarded as a parametrization of the correlated 2π
exchange in the P-wave (vector-isovector) channel [34,35].
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In the present work, we derive the five different coupling
constants: gDDσ, gDDρ, gD�D�σ , gD�D�ρ, and fD�D�ρ, based on
the pseudophysicalDD̄ → ππ andD�D̄� → ππ amplitudes.
TheNNσ coupling constant can be determined by using the
pseudophysical NN̄ → ππ amplitudes in the NN interac-
tion. In Ref. [37], the NN̄ → ππ amplitudes in the pseu-
dophysical region with ππ rescattering was constructed,
from which the NNσ coupling constant with broad width
can be extracted. In this work, we closely follow the
theoretical technique developed in Ref. [37]. In fact, the
same method was adopted in the full Bonn potential for
the NN interaction, σ0 exchange being replaced by the
correlated 2π exchange developed in this way [35]. Later,
this approach was also employed in the Jülich-Bonn
potential for the hyperon-nucleon interaction [38]. Thus,
we will take this well-established method to determine the
σ coupling constants for the D and D�. We will also apply
this to the σ coupling constants for the B and B� mesons.
The schematic diagram for the correlated 2π exchange

in the DD and D�D� interactions is drawn in Fig. 1. To
determine these coupling constants, we first formulate
the off-shell DD̄ → ππ and D�D̄� → ππ amplitudes in the
pseudophysical region (4m2

π ≤ t ≤ 52m2
π), where t is the

total energy squared in the center of momentum (CM)
system, using the effective Lagrangians. We want to
mention that there is one caveat. The kaon and antikaon
(KK̄) channel is open at around 50m2

π . Thus, it is natural to
include the KK̄ channel in a coupled-channel formalism.
However, since there is no information on the relevant
coupling constants, it is inevitable to introduce additional
uncertainties in the present calculation by including theKK̄
channel. Thus, we will consider only the ππ channel. Then,
we combine theDD̄ → ππ amplitudes with the off-shell ππ
amplitudes evaluated within the Jülich ππ model [39,40]
but modified in a covariant way. The model described very
well the phase shifts of ππ scattering in both the scalar-
isoscalar and vector-isovector channels. The ππ amplitudes
with meson-exchange picture is the most consistent and
convenient one for the present approach, because we will

construct the off-shell Born amplitudes for the DD̄ → ππ
and D�D̄� → ππ based on the effective Lagrangians. We
want to mention that the method we adopt in this work is
basically the same as shown in Refs. [35,37]. The two-body
unitarity allows one to construct the spectral functions
for the DD̄ and D�D̄� amplitudes. Having derived these
spectral functions, one can directly compute the coupling
constants listed above by using the dispersion relation. For
completeness, we also present the results of the σ and ρ
coupling constants for the B and B� mesons.
The present work is organized as follows: In Sec. II,

we show how to derive the spectral functions from which
the coupling constants can be determined. In Sec. III, we
discuss the present results in comparison with those of
other works. The last section is devoted to summary and
conclusion.

II. GENERAL FORMALISM

A. DD̄ → ππ and D�D̄� → ππ amplitudes

We start with the effective Lagrangian from HQET
[41–44]

L ¼ igtr½Hb=Abaγ5H̄a�; ð1Þ

where the heavy meson field Hb is given as

Hb ¼
1þ =v
2

½P�μ
b γμ − Pbγ5�; ð2Þ

and the axial-vector field Aμ
ba is expressed as

Aμ
ba ¼

1

2
ðξ†∂μξ − ξ∂μξ†Þ ¼ i

fπ
∂μMba þ � � � ð3Þ

with the pseudoscalar meson field M

M ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCCA: ð4Þ

The pseudo-Nambu-Goldstone (pNG) field or the coset
field ξðxÞ [45], which realizes the emergence of the pNG
field due to the spontaneous breakdown of chiral symmetry,
is defined as

ξðxÞ ¼ exp½iMðxÞ=fπ� ð5Þ

with the pion decay constant fπ ¼ 132 MeV normalized.
Since we need only the single pNG field, we keep the
expansion to linear order with respect to M. The Dirac
conjugate of the heavy meson field H̄a is written as
H̄a ¼ γ0H†γ0. The effective Lagrangians for PP�M and
P�P�M couplings are then

FIG. 1. Schematic diagram for the correlated 2π exchange.
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LPP�M ¼ −
2g
fπ

P�μ∂μMbaP† þ H:c:;

LP�P�M ¼ 2gi
fπ

P�β
b ∂μMbaP

�α†
a εαβμνvν; ð6Þ

where fπ denotes the pion decay constant of which the
value is taken from the experimental one, fπ ¼ 132 MeV.
Note that the parity conservation does not allow the DDπ
vertex.
Using Eqs. (6), we can compute the off-shell Born

amplitudes for the DD̄ → ππ and D�D̄� → ππ processes.
The corresponding Feynman diagrams are given in Fig. 2.
As for theDD̄ → ππ process, we need to consider onlyD�-
meson exchange, whereas we have to consider both D- and
D�-meson exchanges for the D�D̄� → ππ process. As
depicted in Figs. 2 and 3, p1 and p̄2 stand for four-
momenta for the initial D (D�) and D̄ (D̄�) mesons, and k̄1
and k2 denote those for the final pions, respectively. In the
CM frame, they are expressed as

p1 ¼ ðEp; pÞ; p̄2 ¼ ðEp;−pÞ;
k̄1 ¼ ðωk; kÞ; k2 ¼ ðωk;−kÞ; ð7Þ

where

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

DðD�Þ þ p2
q

; ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
q

: ð8Þ

The conservation of the total momentum is given as

p1 þ p̄2 ¼ k̄1 þ k2: ð9Þ

The Mandelstam variables in the t channel are
defined as

s ¼ ðp1 − k̄1Þ2 ¼ ðp̄2 − k2Þ2 ¼ p2
1 þ k̄21 − 2p1 · k̄1;

t ¼ ðp1 þ p̄2Þ2 ¼ ðk̄1 þ k2Þ2 ¼ p2
1 þ p̄2

2 þ 2p1 · p̄2

¼ k̄21 þ k22 þ 2k̄1 · k2;

u ¼ ðp1 − k2Þ2 ¼ ðp̄2 − k̄1Þ2 ¼ p̄2
2 þ k̄21 − 2p̄2 · k̄1; ð10Þ

where t is just the square of the total energy while s
represents the squre of the momentum transfer. Since we
are interested in the pseudophysical region and want to
combine these Born amplitudes with the ππ rescattering
amplitude, we have to consider the off-mass shell pion
states. Thus, we need to take into account the virtual
momenta of the two pions, i.e.,

k̄21 ¼
t
4
− k2; k22 ¼

t
4
− k2; k̄1 · k2 ¼

t
4
þ k2: ð11Þ

Since we will use the DD̄ → ππ (D�D̄� → ππ) amplitudes
to derive the spectral functions of DD̄ → DD̄ (D�D̄� →
D�D̄�) with 2π unitarity, we need to consider the off-
mass shell momenta for pions. The sum of all the
Mandelstam variables are expressed in terms of the masses
of D and π

sþ tþ u ¼ 2ðM2
DðD�Þ þm2

πÞ ð12Þ

with the conservation of the total momentum. Let θ be the
angle between p and k. Then,

s ¼ M2
DðD�Þ þ

t
4
− k2 − 2Epωk þ 2jpjjkj cos θ;

t ¼ 4ω2
k ≥ 4m2

π;

u ¼ 2M2
DðD�Þ þ 2m2

π − s − t: ð13Þ

The invariant amplitudes for the DD̄ → ππ process are
given as

Ms
αβðDD̄ → ππÞ ¼ g2DD�π

k̄1 · k2 −
ðk̄1·qÞðk2·qÞ

M2
D�

s −M2
D�

τατβ;

Mu
αβðDD̄ → ππÞ ¼ −g2DD�π

k̄1 · k2 −
ðk̄1·qÞðk2·qÞ

M2
D�

u −M2
D�

τβτα: ð14Þ

Similarly, those for theD�D̄� → ππ process are obtained as

FIG. 2. Feynman diagrams for DD̄ → ππ. FIG. 3. Feynman diagrams for D�D̄� → ππ.
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Ms
αβðD�D̄� → ππÞ ¼

�
g2DD�π

ðϵðλÞðp1Þ · k̄1Þðϵðλ0Þðp̄2Þ · k2Þ
s −M2

D

þ4g2D�D�πεμ1ν1ρ1σ1εμ2ν2ρ2σ2g
μ1μ2

ϵðλÞν1ðp1Þϵðλ0Þν2ðp2Þpσ1
1 p̄σ2

2 k̄ρ11 k
ρ2
2

s −M2
D�

�
τατβ;

Mu
αβðD�D̄� → ππÞ ¼

�
g2DD�π

ðϵðλÞðp1Þ · k2Þðϵðλ0Þðp̄2Þ · k̄1Þ
u −M2

D

þ4g2D�D�πεμ1ν1ρ1σ1εμ2ν2ρ2σ2g
μ1μ2

ϵðλÞν1ðp1Þϵðλ0Þν2ðp2Þpσ1
1 p̄σ2

2 kρ12 k̄
ρ2
1

u −M2
D�

�
τβτα: ð15Þ

The total amplitude can be generically expressed in terms
of the isosymmetric amplitude MðþÞ and the isoantisym-
metric amplitude Mð−Þ

Mαβ ¼ MðþÞδαβ þMð−Þ 1
2
½τα; τβ�; ð16Þ

where

MðþÞ ¼ Ms þMu; Mð−Þ ¼ Ms −Mu: ð17Þ

Note that the isospin amplitudes for J ¼ 0 and J ¼ 1 are
respectively related toMðþÞ andMð−Þ as in the case of the
NN̄ → ππ amplitudes [35,46]

MðþÞ ¼ −
1ffiffiffi
6

p MT¼0; MðþÞ ¼ −
1

2
MT¼1: ð18Þ

In order to compute the amplitudes given in Eqs. (14)
and (15), we have to introduce the form factors at
each vertex. We employ a Gaussian-type form factor
defined as

FðsÞ ¼ exp

�
s −M2

ex

Λ2
ex

�
; ð19Þ

where Mex represents either the mass of D meson or
that of the D� meson. Λex denotes the cutoff mass
corresponding to the exchange particle. In Ref. [35], the
value of the cutoff mass ΛN (ΛΔ) was taken to be
around 1.5 GeV (1.7 GeV) when the spectral functions
for the NNσ and NNρ coupling constants were inves-
tigated. However, the masses of the D and D� mesons
are approximately two times larger than the nucleon or
the Δ isobar, the values of the cutoff mass for the DDπ
and D�D�π vertices should be taken to be larger than
those for the NNπ and NΔπ ones. Otherwise, the
amplitudes depend too sensitively on the cutoff masses,
because their numerical values are too close to the
masses of the exchanged D or D� mesons. Moreover, a
recent work on the electromagnetic form factors of the
heavy baryons [47] has shown that the heavy baryon is
a much more compact object in comparison with the

proton. It indicates that the cutoff mass of the para-
metrized heavy-baryon electric form factor should be
larger than that of the proton at least by about a factor
1.6, because the cutoff mass is implicitly related to the
corresponding particle. Thus, we will use the values of
the cutoff masses ΛD ¼ 2.5 GeV and ΛD� ¼ 2.8 GeV in
the present work. Moreover, if one uses smaller values
of the cutoff masses, one cannot get stable results for
the form factors corresponding to the coupling constants
in the physical t region (t ≤ 0). At a certain value of −t,
the σ coupling constant even vanishes, which leads to
unphysical results.
As far as an explicit form of the form factors is

concerned, one could utilize the well-known monopole-
or dipole-type form factor. However, we find that such
types of the form factors do not suppress enough the Born
amplitudes as the total energy increases. For example, the
Born amplitudes for the D�D̄� → ππ process given in
Eq. (15) has a strong dependence on t. In particular, the
second terms in the s- and u-channel amplitudes contain
the four momenta in the numerator, which make the
amplitudes too large as t increases. To tame this behavior,
we employ the Gaussian-type form factor at each vertex.

D(D∗) D̄(D̄∗)

ππ

ππ

Tσ,ρ
ππ

FIG. 4. Rescattering equation.
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B. Rescattering equation and spectral functions

Once the off-shell Born amplitudes have been evaluated, the next step is to compute the rescattering equation that
combines the off-shellDD̄ → ππ andD�D̄� → ππ amplitudes with the off-shell ππ amplitudes. As shown in Fig. 4, we need
to incorporate the ππ interaction in the course of the DD̄ → ππ and D�D̄� → ππ processes. This can be achieved by
considering the Blankenbecler-Sugar (BbS) equation [37,48], which was derived by the three-dimensional reduction of the
Bethe-Salpeter equation:

MDD̄ðD�D̄�Þ→ππðp; p0; tÞ ¼ MBorn
DD̄ðD�D̄�Þ→ππ

ðp; p0; tÞ þ 1

ð2πÞ3
Z

d3q
1

ωq

MDD̄ðD�D̄�Þ→ππðp; q; tÞτðq; p0; tÞ
t − 4ω2

q þ iε
: ð20Þ

Since we consider only the scalar-isoscalar (J ¼ 0, T ¼ 0) and vector-isovector channels (J ¼ 1, T ¼ 1), which will
provide the DDðD�D�Þσ- and DDðD�D�Þρ-meson coupling constants respectively, we can make a partial-wave expansion
of the amplitudes so that we get the partial-wave rescattering equation for the partial-wave amplitudes with J and T given:

MDD̄ðD�D̄�Þ→ππ
JT ðtÞ ¼ MDD̄ðD�D̄�Þ→ππ;Born

JT ðtÞ þ 1

2π2

Z
dqq2

MDD̄ðD�D̄�Þ→ππ
JT ðp; q; tÞτππJTðq; p0; tÞ

2ωqðt − 4ω2
q þ iεÞ ; ð21Þ

where τππJT denote the off-shell ππ amplitudes, which were taken from the Jülich ππ scattering model [39,40].1

Next, we consider the unitarity of the S-matrix, i.e.,

SS† ¼ S†S ¼ 1: ð22Þ

Since the S-matrix for two-body processes is expressed in terms of the M-matrix or the Feynman invariant amplitude

Sfi ¼ δfi þ ið2πÞ4δðp3 þ p4 − p1 − p2ÞMfi; ð23Þ

we can get the unitary relation

SfnS
†
ni ¼ δfi þ ið2πÞ4δð4ÞðPf − PiÞðMfi −M†

fiÞ þ ð2πÞ8δð4ÞðPf − PiÞ
X
n

MfnM
†
niδ

ð4ÞðPf − PnÞ ¼ δfi; ð24Þ

which leads to the following relation

2ImMfi ¼ ð2πÞ4
X
n

δð4ÞðPf − PnÞMfnM
†
ni; ð25Þ

where the summation runs over the 2π states, which is often called two-body unitarity. More explicitly, we can write it as

2ImMDD̄ðD�D̄�Þ ¼ ð2πÞ4
X
n

δð4ÞðPf − PnÞMDD̄ðD�D̄�Þ→ππM
†
ππ→DD̄ðD�D̄�Þ: ð26Þ

Since we consider the two-body intermediate states, the unitarity relation can be explicitly written as

2ImMDD̄ðD�D̄�Þ ¼ ð2πÞ4 1

2!

Z
d3q1

ð2πÞ32ω1

d3q2
ð2πÞ32ω2

δð4Þðp1 þ p2 − q1 − q2ÞMDD̄ðD�D̄�Þ→ππM
†
ππ→DD̄ðD�D̄�Þ: ð27Þ

Note that 1=2! is introduced because of the Bose symmetry. Having carried out the integrals, we obtain

ImMDD̄ðD�D̄�Þ ¼
1

128π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − 4m2

π

t

r Z
dΩjMDD̄ðD�D̄�Þ→ππj2: ð28Þ

1One could argue that a modern ππ amplitude would serve better for the present work. While the modern ππ amplitudes developed in
chiral perturbation theory with the Roy-like equations are certainly theoretically more rigorous, the present ππ amplitudes taken from the
meson-exchange picture are consistent and well fitted in the present approach and furthermore provide the full off-mass-shellness that is
essential in solving the rescattering equations.
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Taking into account the isospin factors, we find the
following relation

MDD̄ðD�D̄�Þ ¼ 3MðþÞ
DD̄ðD�D̄�Þ þ 2Mð−Þ

DD̄ðD�D̄�Þτ1 · τ2: ð29Þ

In fact, we need to make a partial-wave expansion in the
unitarity relation, since we want to extract the scalar-
isoscalar (σ) and vector-isovector (ρ) channels from the
DD̄ → DD̄ and DD̄ → ππ amplitudes. Since the particles
involved are all pseudoscalar particles, we can expand the
amplitudes as

MDD̄ ¼
X
J

ð2J þ 1ÞPJðcos θÞMJðt; cos θÞ;

MDD̄→ππ ¼
X
J

ð2J þ 1ÞPJðcos θÞAJðt; cos θÞ: ð30Þ

Thus, we obtain the spectral functions for the DD̄
amplitude

ρð�Þ
JT ðtÞ ¼ ImMDD̄

JT ¼ 1

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − 4m2

π

t

r
jADD̄→ππ

JT j2: ð31Þ

Note that we have to subtract the Born amplitudes from
Eq. (31), i.e., the spectral function is in fact defined as

ρðþÞ
00 ðtÞ ¼ ImMDD̄

00 − ImMDD̄;Born
00 ;

ρð−Þ11 ðtÞ ¼ ImMDD̄
11 − ImMDD̄;Born

11 : ð32Þ

Using the dispersion relation, we find the DD amplitude
with correlated 2π exchange as

MS-wave corr 2π
DD ¼ 1

π

Z
∞

4m2
π

ρðþÞ
00 ðt0Þ
t − t0

dt0;

MP-wave corr 2π
DD ¼ 1

π

Z
∞

4m2
π

ρð−Þ11 ðt0Þ
t − t0

dt0; ð33Þ

as shown in Fig. 1. Here, we have suppressed the spin
structure for the vector-isovector (ρ) channel. Since D� is a
vector meson, the partial-wave expansions of the D�D̄� →
ππ and D�D̄� are more involved because of the spin. Thus,
we present the detailed calculation of deriving the spectral
functions for the D�D̄� amplitudes in the Appendix. The
explicit expressions of the spectral functions for the D�D�
channel are given as follows:

ρðþÞ;1
00 ðtÞ ¼ 3

4M2
D�

½Impþ;J¼0
1 ðtÞ − Impþ;J¼0

1;BornðtÞ�;

ρð−Þ;111 ðtÞ ¼ 2

ð4M2
D� − tÞ ½Imp−;J¼1

1 ðtÞ − Imp−;J¼1
1;BornðtÞ�;

ρð−Þ;211 ðtÞ ¼ 2M2
D�

tð4M2
D� − tÞ ½Imp−;J¼1

2 ðtÞ − Imp−;J¼1
2;BornðtÞ�;

ρð−Þ;311 ðtÞ ¼ 2MD�

4
ffiffi
t

p ð4M2
D� − tÞ ½Imp−;J¼1

3 ðtÞ − Imp−;J¼1
3;BornðtÞ�;

ð34Þ
where the definitions of p�

i can be found in Appendix.
The D�D� amplitudes with correlated 2π exchange can be
obtained by the dispersion relations, which are similar
to Eq. (33).

C. σ and ρ coupling constants

As shown in Eq. (33), we can determine the DD and
D�D� amplitudes with correlated 2π exchange. On the
other hand, it is difficult to extract the σ and ρ coupling
constants without any approximations. The best way to
determine the coupling constants is first to compute theDD
and D�D� amplitudes by using the effective Lagrangians,
and then compare them to those with correlated 2π
exchange. Thus, we will first derive the DD and D�D�
amplitudes based on the following effective Lagrangians:

LDDσ ¼ 2gDDσMDDD†σ;

LDDρ ¼ igDDρðDτ · ρμ∂μD† −D†τ · ρμ∂μDÞ;
LD�D�σ ¼ 2MD�gD�D�σD�μD̄�

μσ;

LD�D�ρ ¼ igD�D�ρðD̄�ντ · ρμ∂μD�
ν −D�

ντ · ρμ∂μD̄�
νÞ

þ 4ifD�D�ρD̄�
μτ · ð∂μρν − ∂νρμÞD�

ν; ð35Þ

where σ and ρμ denote the σ- and ρ-meson fields. We want
to mention that for the DDσ and D�D�σ Lagrangians, we
need to introduce additional dimensionful parameters, i.e.,
the masses of the D and D� mesons, respectively. Here, the
D and D� mesons are not the scaled fields, which are
different from P and P� fields by the scaling factors
ðMDÞ−1=2 and ðMD� Þ−1=2, respectively. As for the D�D�ρ
vertices, we have two different coupling constants, i.e., the
vector coupling constant gD�D�ρ and the tensor coupling
constant fD�D�ρ, which will be also determined in the
present work.
Using the effective Lagrangians in Eq. (35), we obtain

the invariant amplitudes for the DD → DD and D�D� →
D�D� processes as follows:

HEE-JIN KIM and HYUN-CHUL KIM PHYS. REV. D 102, 014026 (2020)

014026-6



Mσ
DDðtÞ ¼ g2DDσ

4M2
D

t −m2
σ
; Mρ

DDðt; sÞ ¼ g2DDρ

s − u
t −m2

ρ
;

Mσ;λ1;λ2;λ3;λ4
D�D� ðt; sÞ ¼ 16ϵμðp; λ1Þϵνð−p; λ2Þϵ�αðp0; λ3Þϵ�βð−p0; λ4Þ

g2D�D�σM
2
D�

t −m2
σ

Aμναβ;

Mρ;λ1;λ2;λ3;λ4
D�D� ðt; sÞ ¼ ϵμðp; λ1Þϵνð−p; λ2Þ

�
4g2D�D�ρ

s − u
t −m2

ρ
Aμναβ þ 32

ffiffiffi
3

p
f2D�D�ρ

t
t −m2

ρ
Bμναβ

þ16gD�D�ρfD�D�ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð4M2

D� − tÞp
t −m2

ρ
Cμναβ

�
ϵ�αðp0; λ3Þϵ�βð−p0; λ4Þ; ð36Þ

where λi stand for the helicities of the corresponding D�

mesons in both the initial and final states. Aμναβ, Bμναβ and
Cμναβ denote the projection operators, which can be also
found in Appendix.
While the spectral functions we have explicitly derived

in the present work as shown in Eqs. (32) and (34) contain
information on the coupling strength for the σ and ρ
mesons, it is rather difficult to extract the exact values
of them. One possible way of extracting the coupling
constants from the spectral functions is to make a pole
approximation that is expressed, for example, by

ρðþÞ
00 ðt0Þ ¼ πg2DDσδðt0 −m2

σÞ;
ρð−Þ11 ðt0Þ ¼ πg2DDρδðt0 −m2

ρÞ; ð37Þ

where gDDσ and gDDρ denote the on-mass-shell coupling
constants for the DDσ and DDρ vertices, respectively.
These on-mass-shell coupling constants are used for the
description of DD or DD̄ reactions. Then we are able to
reproduce all the amplitudes obtained from the effective
Lagrangians such as

1

π

Z
∞

4m2
π

ρðþÞ
00 ðt0Þ
t − t0

dt0 ≈
gDDσ2

t −m2
σ
; t ≤ 0: ð38Þ

We can apply the same pole approximations to the D�D�
case. Thus, the on-mass-shell coupling constants can be
written by

g2DDσ ≈
t −m2

σ

π

Z
∞

4m2
π

ρðþÞ
00 ðt0Þdt0
t − t0

; g2DDρ ≈
t −m2

ρ

π

Z
∞

4m2
π

ρð−Þ11 ðt0Þdt0
t − t0

;

g2D�D�σ ≈
t −m2

σ

π

Z
∞

4m2
π

ρðþÞ;1
00 ðt0Þdt0
t − t0

; g2D�D�ρ ≈
t −m2

ρ

π

Z
∞

4m2
π

ρð−Þ;111 ðt0Þdt0
t − t0

;

f2D�D�ρ ≈
t −m2

ρ

π

Z
∞

4m2
π

ρð−Þ;211 ðt0Þdt0
t − t0

; fD�D�ρgD�D�ρ ≈
t −m2

ρ

π

Z
∞

4m2
π

ρð−Þ;311 ðt0Þdt0
t − t0

; ð39Þ

where t is the square of the momentum transfer in the s
channel, i.e., t ≤ 0. Note that the left-hand sides of the above
expressions contain the t variable. However, the approxi-
mated one-mass-shell coupling constants are almost inde-
pendent of t. Only the numerical result of the D�D�σ
coupling constant exhibits mild dependence on t, which
comes from the broad width of the σ meson as implied in
Eq. (39).
On the other hand, various works including lattice QCD

[49–51] derive the coupling constants for the ρ meson not
on the corresponding mass shell but at t ¼ 0. Actually, the
coupling constant at t ¼ 0 reflects the effect from a form
factor that reduces the coupling strength by approximately
a difference between the square of the cutoff mass and the
mass of the corresponding exchanged meson. When exotic
heavy mesons such as the X, Y, and Z mesons are

investigated in a meson-exchange picture, a monopole-
type form factor is often used [29–32]. The transition
amplitude for σ exchange is expressed as

T σ
DDðtÞ ¼

g2DDσ

t −m2
σ

�
Λ2
σ −m2

σ

Λ2
σ − t

�
2

: ð40Þ

If we take into account Eq. (40) and the pole approximation
given in Eq. (37), we are able to write a phenomenological
expression for the vertex function gDDσðtÞ

g2DDσðtÞ ¼
t −m2

σ

π

Z
∞

4m2
π

ρðþÞ
00 ðt0Þ
t − t0

�
Λ2
σ − t0

Λ2
σ − t

�
2

dt0; t ≤ 0;

ð41Þ
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where we have introduced a t0-dependent form factor

Fðt; t0Þ ¼ Λ2
σ − t0

Λ2
σ − t

: ð42Þ

A similar expression was used in the NN interaction [52].
The other vertex functions for the DDρ, D�D�σ, and
D�D�ρ vertices can be written in a similar way. Using
Eq. (41), we can compare the present results of the off-
mass-shell coupling constants with those from other works
at least phenomenologically.
Since the σ meson has a very broad mass, one has to

examine the dependence of the coupling constants on the
mass of the σ meson. Note that when we perform the
integrals in Eq. (39) we take the upper limit to be 52m2

π ,
which was usually done in the case of the NN interaction.
In fact, it is well known that the contributions from the
spectral functions at higher t0 are rather small, when one
considers the σ and ρ meson channels. As mentioned in the
Introduction, note that we have not included the KK̄
channel. In principle, we can introduce it, utilizing the
coupled channel formalism. However, since we do not
know the coupling constants for the DsD�K, DD�

sK, and
D�D�

sK vertices both experimentally and theoretically, we
have to consider these coupling constants as free param-
eters, which brings about unavoidably additional uncer-
tainties in the present work. Thus, we will take into account
only the ππ channel.

III. RESULTS AND DISCUSSION

To compute first the off-shell DD̄ → ππ amplitudes in
the pseudophysical region, we need to determine the
coupling constants for the DD�π and D�D�π vertices.
we use the value of the gDD�π determined by the CLEO
Collaboration [53,54]. The gDD�π and gD�D�π are related to
the coupling g in the effective Lagrangians in Eq. (6) as
follows:

gDD�π ¼
2g
fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDMD�

p
; gD�D�π ¼

2g
fπ

; ð43Þ

which can be found by using the decay rate of the D�
meson. The strong coupling g is known to be g ¼ 0.59.
We will use in this work the value determined by the
CLEO Collaboration gDD�π ¼ 17.9. If one considers the
mass difference between the D and D� mesons, gDD�π
would become 17.3. As we have already discussed in the
previous section, we take the numerical values of the cutoff
masses as ΛD� ¼ 2.8 GeV and ΛD ¼ 2.5 GeV. The results
depend marginally on the values of the cutoff masses. The
uncertainty, which arises from the cutoff masses, is about
20%. Then we can proceed to compute numerically the
spectral functions for the DD and D�D� amplitudes with
correlated 2π exchange, which are expressed in Eqs. (32)
and (34).
In the left panel of Fig. 5, we draw the result of the

spectral function ρðþÞ
00 , of which the expression is given in

Eq. (32). Its broad shape arises from the resonance of the σ
meson with the large width. We see that the spectral
function falls off after around t ¼ 18m2

π and then becomes
negative from t ¼ 30m2

π , which is similar to the case of the
NN̄ interaction [35]. Since the width of the σ meson is
rather large, one should consider the dependence of the
DDσ coupling constant on the mass of the σ meson, mσ,
which will be explicitly shown later. The right panel of

Fig. 5 shows the result of ρð−Þ11 given in Eq. (32), which

yields the gDDρ coupling constant. We observe that ρð−Þ11

becomes negative from around t ¼ 40m2
π , which is again

similar to the NN̄ case in the ρ channel [35].
In the left panel of Fig. 6, we depict the result of the

spectral function for the D�D̄� case in the σ channel. It
looks different from the corresponding DD̄ case. The
reason is that the Born amplitudes for the D�D̄� → ππ
have rather strong dependence on t. Since we subtract the
modulus squared of the Born amplitudes to avoid any

FIG. 5. The spectral function ρðþÞ
00 (in the right panel) and ρð−Þ11 for the DD̄ channel as a function of t in unit of m−2

π . Note that t denotes
the square of the center-of-mass energy in the t channel. The dashed vertical line in the left panel corresponds to the σ-meson mass
550 MeV, whereas that in the right panel designates the ρ-meson mass 770 MeV.
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double countings that arise from the whole 2π exchange
[see, for example, Eq. (32)], the D�D̄� spectral function

ρðþÞ;1
00 becomes negative already from around 28m2

π . In the

right panel, we draw the result of ρð−Þ;111 , which is defined in
Eq. (34). It will provide the vector coupling constant
gD�D�ρ. In the left and right panels of Fig. 7, we present

the numerical results of the spectral functions ρð−Þ;211 and

ρð−Þ;311 , respectively. They are less affected by the subtraction

of the Born terms, compared to the results of ρð−Þ;111 .
Before we extract the σ and ρ coupling constants, we

first examine the transition amplitudes for DD → DD and
D�D� → D�D� with S- and P-wave correlated 2π exchange
contributions, respectively. As we have mentioned already,
the transition amplitudes for the DD and D�D� processes
with σ and ρ exchanges given explicitly in Eq. (36) are
compatible with those with S- and P-wave correlated 2π
exchanges, which are shown in Eq. (33). We use the values
of the cutoff masses ΛσðρÞ ¼ 1 GeV, which is used in other
works [29–32]. In Fig. 8 we draw the results for theDD and
D�D� transition amplitudes with S- and P-wave correlated
2π exchange contributions in Eq. (41). In the upper left
panel, the present result for the DD amplitude with S-wave

correlated 2π exchange is depicted in the solid curve,
compared with those with σ exchange as given in Eq. (40),
for which the values of the DDσ coupling constant are
taken from Refs. [29–31] and Ref. [32], respectively shown
in the dashed and dotted curves.
The best way to determine the on-mass-shell σ and ρ

coupling constants is to fit the DD and D�D� amplitudes
presented in Fig. 8 by changing these coupling constants.
Dot-dashed curves in Fig. 8 are extracted by fitting the σ
and ρ coupling constants such that the σ- and ρ-exchange
amplitudes reproduce the DD and D�D� amplitudes. As
shown in the upper panels of Fig. 8, we are able to
reproduce very well the DD amplitudes from S- and P-
wave correlated 2π exchanges. The DDσ and DDρ
coupling constants are determined to be gDDσ ¼ 1.50
and gDDρ ¼ 1.65, respectively. The present result lies
between that with gDDσ ¼ 0.76 [29–31] and that with
gDDσ ¼ 3.4 [32]. This implies that the extracted gDDσ
coupling constant from the present work should be found
between these two values. On the other hand, the result for
the DD amplitude with P-wave correlated 2π exchange,
which is drawn in the upper right panel of Fig. 8, is much
weaker than those with the values of gDDρ ¼ 3.71 and 2.6,
taken respectively from Refs. [29–31] and Ref. [32].

FIG. 7. The spectral functions ρð−Þ;211 (left panel) and ρð−Þ;311 (right panel) for the D�D̄� channel as a function of t in unit of m−2
π .

Notations are the same as in Fig. 5.

FIG. 6. The spectral function ρðþÞ;1
00 (left panel) and ρð−Þ;111 (right panel) for theD�D̄� channel as a function of t in unit ofm−2

π . Notations
are the same as in Fig. 5.
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The middle left panel of Fig. 8 shows that the present
result for the D�D� amplitude with S-wave correlated 2π
exchange is greater than the other two results for those with
gD�D�σ ¼ 0.76 and 3.4. The present results for the DD and
D�D� amplitudes already indicate that gDDσ and gD�D�σ
coupling constants are quite different. So far, many
theoretical works on heavy meson interactions set these
two σ coupling constants equal each other. However, if one
considers correlated 2π exchange, there is at least one
reason why gDDσ should be different from gD�D�σ: While

the DD̄ → ππ amplitude contains only D� exchange, the
D�D̄� → 2π amplitude has both D and D� exchange. Thus,
gD�D�σ should be naturally greater than gDDσ within the
present framework. To determine the D�D�σ coupling
constant, we again fit the D�D� amplitude from S-wave
correlated 2π exchange as done in the case of the DDσ
coupling constant. The dot-dashed curve in the middle left
panel of Fig. 8 depicts the numerical result for the D�D�
amplitude with gD�D�σ ¼ 5.21, which describes well that
with S-wave correlated 2π exchange. This result indicates

FIG. 8. The DD andD�D� amplitudes with S- and P-wave correlated 2π exchange contributions, respectively. Solid curves depict the
amplitudes with correlated 2π exchange whereas dashed and dotted ones show the amplitudes produced by using the coupling constants
taken from Refs. [29–31] and Ref. [32], respectively. Dash-dotted curves are obtained by fitting the σ and ρ coupling constants in such a
way that the amplitudes with σ and ρ exchanges reproduce those from S- and P-wave correlated 2π exchange, respectively.
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two important points: First, the present result for theD�D�σ
coupling constant is almost 3.5 times larger than that for
gDDσ. Second, the numerical value of gD�D�σ is also much
larger than those used in the other works [29–32].
In the middle right and lower left panels of Fig. 8

illustrate the present results for the D�D� amplitudes with
vector and tensor P-wave correlated 2π exchange, respec-
tively. The comparisons of the present results to those with
ρ meson exchange indicate that the vector D�D�ρ coupling
constant extracted from this work should be larger than
gD�D�ρ of Refs. [29–32] whereas the value of the tensor
coupling fD�D�ρ from the present work should lie in
between. Indeed, the numerical results for the vector and
tensor D�D�ρ coupling constants are evaluated as follows:
gD�D�ρ ¼ 6.47 and fD�D�ρ ¼ 6.37. The results are summa-
rized in Table I.
We will now discuss the physical implications of the

present results for the σ and ρ coupling constants in
comparison with those used in the other works. Since
there is no information on the DDσ coupling constant, the
nonlinear sigma model has been often employed to
determine gDDσ. Furthermore, the coupling constant
gD�D�σ was naively set equal to gDDσ, the heavy-quark
spin symmetry being assumed. However, it is well known
from the NN interaction that σ exchange arises from a pole
approximation of S-wave (scalar-isoscalar) correlated 2π
exchange [33–35]. Moreover, the σ meson with broad
width cannot be identified as the chiral partner of the pion.

This implies that the σ coupling constant can only be
quantitatively determined by considering the correlated 2π
exchange in the scalar-isoscalar channel. Note that the σ
coupling constants for any hadrons are not just mere
parameters but very dynamical ones. As shown in
Table I and mentioned already previously, we find that
the values of gD�D�σ turn out different from those of gDDσ.
This can be understood by examining Fig. 3. D�D̄� → ππ
amplitudes receive contributions both from D and D�

exchange whereas the DD̄ → ππ amplitudes has only the
contribution from D� exchange, as we have already
discussed previously. So, the magnitude of the D�D̄� →
ππ amplitudes is indeed larger than that of the DD̄ → ππ
amplitudes. This indicates that gD�D�σ should naturally be
larger than gDDσ. The present result is in contrast with those
of Refs. [29–32] and Ref. [32]. Furthermore, there is no
consensus on the values of both gDDσ and gD�D�σ . The
present result for gDDσ is approximately twice smaller than
that of Ref. [32], whereas it is about two times larger than
that used in Ref. [29–31]. On the other hand, it is other way
around for the value of gD�D�σ. The present result is
approximately seven times larger than that of Ref. [29–
31], while it is about 1.5 times larger than that of Ref. [32].
The DDρ and D�D�ρ coupling constants are usually

determined by using the vector-meson dominance [55].
Interestingly, Refs. [29–32] do not agree on the values of
the ρ-meson couplings each other, even though they use the
same vector-meson dominance. In particular, the values of
the tensor coupling constant fD�D�ρ differ by about 2.5 each
other. This indicates that no clear consensus exists in the
values for the ρ-meson coupling constants. They do come
again yet from the P-wave correlated 2π exchange in
the vector-isovector channels. The present result for the
DDρ coupling constant is smaller than the results from
Refs. [29–32]. The present value of the D�D�ρ vector
coupling constant is quite larger than those of Refs. [29–
32]. On the other hand, that of the tensor coupling constant
fD�D�ρ lies between that of Refs. [29–31] and that of
Ref. [32]. In particular, it is approximately two times
smaller than that of Ref. [32].

TABLE I. σ and ρ coupling constant for the D and D� mesons.
In the second column, the present results are listed. The third and
fourth ones list the results from Refs. [29–31] and Ref. [32],
respectively.

Present work [29–31] [32]

gDDσ 1.50 0.76 3.4
gDDρ 1.65 3.71 2.6
gD�D�σ 5.21 0.76 3.4
gD�D�ρ 6.47 3.71 2.6
fD�D�ρ 6.37 4.64 11.7

FIG. 9. DDσ and D�D�σ coupling constants as a function of the σ-meson mass.
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Since the σ-meson has a broad mass distribution, it is
rather difficult to determine its precise mass. Thus, it is of
great importance to see if the σ coupling constants are
sensitive to the value of mσ. The left and right panels of
Fig. 9 draw the dependence of gDDσ and gD�D�σ on the
σ-meson mass, respectively. The dashed vertical line
represents a preferable value for the σ-meson mass, i.e.,
mσ ¼ 0.55 GeV, which was often taken in the NN inter-
actions. The values of gDDσ and gD�D�σ increase mildly as

mσ increases. We will take the σ coupling constants at
mσ ¼ 550 MeV as our final results.
As mentioned previously, the values of the coupling

constants from lattice QCD and other works are often
derived at t ¼ 0, which are off mass-shell. In the present
work, we can only obtain the on-mass-shell coupling
constants. In order to extend the present results to the
off-mass-shell region, t ≤ 0, we need to utilize phenom-
enologically monopole-type form factors, which are often

FIG. 10. Numerical results for the σ and ρ vertex functions with correlated 2π exchange in comparison with those with monopole-type
form factors. The solid curves draw the present results defined in Eq. (41) whereas dashed and dotted ones show the t dependence of the
vertex functions produced by using the coupling constants given in Refs. [29–31] and Ref. [32], respectively. The dot-dashed curves
illustrate the fitted coupling constant by using the monopole-type form factor.
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employed by various works in studying properties of the
exotic heavy mesons in meson-exchange pictures. Thus, we
introduce a form factor given in Eq. (41), which is reduced
to the usual monopole-type form factor with the pole
approximation. Though Eq. (41) is a phenomenological
one, it is still very useful for the comparison of the present
results with those from other works at t ¼ 0. In Fig. 10, we
depict the numerical results for the vertex functions of the σ
and ρ mesons both in the DD and D�D� channels as
functions of the squared momentum transfer −t, comparing
them obtained by using the σ and ρ coupling constants
taken from Refs. [29–32]. In the first panel of Fig. 10, we
draw the present result for gDDσðtÞ in the solid curve, while
the dashed and dotted ones correspond to Refs. [29–31] and
Ref. [32], respectively. The dot-dashed curves illustrate the
vertex functions with the present values of σ and ρ coupling
constants. Note that the off-mass-shell coupling constants
are reduced by approximately 30%. This can be easily
understood by the following value of the monopole-type
form factor

Λ2
σ −m2

σ

Λ2
σ

≈ 0.7: ð44Þ

We have similar conclusions also on the DDρ and D�D�ρ
coupling constants. However, since the mass of the ρmeson
is about 770 MeV, the ρ coupling constants are reduced by
about 60%. Thus, we summarize the present results for the
off-mass-shell σ and ρ coupling constants at t ¼ 0 as
follows:

gDDσð0Þ ¼ 1.07; gD�D�σð0Þ ¼ 3.91; ð45Þ

gDDρð0Þ ¼ 0.69; gD�D�ρð0Þ ¼ 2.77; fD�D�ρð0Þ ¼ 2.78:

ð46Þ

The results for the gDDρ and gD�D�ρ from lattice QCD [49] at
t ¼ 0 are given as

gDDρð0Þ ¼ 4.84ð34Þ; gD�D�ρð0Þ ¼ 5.94ð56Þ;
lattice QCD ½49�: ð47Þ

Comparing the present values with those from other works,
we find that the present results are underestimated. The
results from Refs. [50,51] are larger than the present value
for the DDρ coupling constant:

gDDρð0Þ ¼ 2.9; QCD sum rule ½50�;
gDDρð0Þ ¼ 6.37; Dyson-Schwinger approach ½51�:

ð48Þ

It is straightforward to compute the σ and ρ coupling
constants for the B and B� mesons because of the heavy
quark flavor symmetry. However, there are still subtle

points that arise from the mass difference between the
charm and beauty quarks. Since the B and B� mesons are
much heavier than the D and D� mesons, we need to
introduce larger values of the cutoff masses, i.e.,
Λ ¼ 6.1 GeV, which is about 800 MeV larger than the
B meson mass. The amplitudes remain almost stable when
the cutoff mass is changed. Another input for the results
given in Table II is the BB�π coupling constant, of which
the value is gBB�π ¼ 2g

fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMB�

p ¼ 45. Compared with that
of gDD�π ¼ 17.9, gBB�π is approximately 2.5 times larger.
Due to the heavy quark flavor symmetry, gB�B�π has the
same expression as that of gD�D�π .
In Table II we list the results on the σ and ρ coupling

constants for the B and B� mesons. We observe that
magnitudes of the coupling constants for the B and B�
mesons are much larger than those of D and D� mesons in
Table I. This can be easily understood from the fact that the
value of the BB�π coupling constant is much larger than
that of DD�π. Thus, it is very unlikely that the σ and ρ
coupling constants for the B and B� mesons are set to be the
same as those for the D and D� based on the heavy quark
symmetry. In fact, Refs. [29–32] put them equal to those for
the D and D� mesons. However, the present results show
that these coupling constants are much larger than those for
the D and D� mesons as shown in Table II. Even though
theoretical uncertainties of the present work are considered,
we can draw a clear conclusion that the σ and ρ coupling
constants for B and B� mesons should be taken to be at least
larger than those for the D and D� mesons. It indicates that
these large values of the coupling constants may come into
a significant role in describing the molecular states con-
sisting of BB̄ and BB̄�.

IV. SUMMARY AND CONCLUSION

In the present work, we derived the five coupling con-
stants, i.e., the DDσ, DDρ, D�D�σ, vector and ten-
sor D�D�ρ coupling constants, having constructed the
spectral functions in both the scalar-isoscalar (σ) and
vector-isovector (ρ) channels. Starting from the effective
Lagrangians, we first computed the off-shellDD̄ → ππ and
D�D̄� → ππ amplitudes in the pseudophysical region that
is defined in the range of 4m2

π ≤ t ≤ 52m2
π . Then we

TABLE II. σ and ρ coupling constant for the B and B� mesons.
In the second column, the present results are listed. The third and
fourth ones list the results from Refs. [29–31] and Ref. [32],
respectively.

Present work [29–31] [32]

gBBσ 7.05 0.76 3.4
gBBρ 8.92 3.71 2.6
gB�B�σ 9.47 0.76 3.4
gB�B�ρ 10.1 3.71 2.6
fB�B�ρ 29.8 4.64 11.7
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combined these off-shell Born amplitudes with the off-
shell ππ amplitudes that was evaluated within the frame-
work of the meson-exchange model known as the Jülich
ππ model, making use of the Blankenbecler-Sugar rescat-
tering equation. Imposing the two-body unitarity, we were
able to evaluate the spectral functions of correlated 2π
exchange for the DD̄ and D�D̄� interactions. The DD and
D�D� amplitudes with correlated 2π exchange were
derived by the dispersion relations. We presented the
DD and D�D� amplitudes with S- and P-wave correlated
2π exchange, comparing them with the corresponding
ones with σ and ρ meson exchanges, respectively. By
reproducing the DD and D�D� amplitudes based on S-
and P-wave correlated 2π exchange, we obtained the
numerical results on the on-mass-shell coupling constants
and compared them with those of other works. Having
introduced a monopolelike form factor, we discussed the
coupling constants in the region t ≤ 0. Compared with the
lattice data, the present results are quite smaller than them.
We also examined the dependence of the σ couplings on
the σ-meson mass. We computed the σ and ρ coupling
constants for the B and B� mesons for completeness. We
found that these coupling constants for the beauty mesons
are much larger than those for the D and D� mesons. The
reason comes from the fact that the BB�π coupling
constants are much greater than DD�π ones. It leads to
the conclusion that it is unlikely for the σ and ρ coupling
constants for the B and B� mesons to be the same as those
for the charmed mesons.

The present results can be used in any one-boson
exchange model for the description of the exotic heavy
mesons as weakly bound molecular states such as the
Xð3872Þ exotic mesons. Though the two-boson exchange
may be considered to be small, the effects of the
correlated 2π exchange may play a very important role
in understanding those exotic mesons. In particular,
considering the fact that the σ-meson exchange is the
main source for the attraction between heavy mesons
such as D and D� as in the case of the NN interactions,
the present determination of the σ couplings for heavy
mesons will be rather useful for understanding the exotic
heavy mesons. We can also determine the σ and ρ
couplings for the other processes such as the D1D̄�

and DsD̄� interactions. The corresponding works are
under way.
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APPENDIX: THE DERIVATION OF
THE SPECTRAL FUNCTIONS
FOR THE D�D� CHANNEL

The projection operators for the vector and tensor
coupling constants in the s channel are defined as

Aμναβ ¼ 1

4
gμαgνβ;

Bμναβ ¼ 1

2
ffiffiffi
3

p
t
ðgανkμkβ − gαβkμkν − gμνkαkβ þ gβμkαkνÞ;

Cμναβ ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð4M2

D� − tÞ
p ð−gνβkμPα

2 þ gνβPμ
2k

α − gμαPν
1k

β þ gμαkνPβ
1Þ; ðA1Þ

where

k ¼ p1 − p3 ¼ p4 − p2; P1 ¼ p1 þ p3; P2 ¼ p2 þ p4: ðA2Þ
In the t channel, they can be reexpressed as

Āμναβ ¼ 1

4
gμαgνβ;

B̄μναβ ¼ 1

2
ffiffiffi
3

p
t
ðgανPμPβ − gαβPμPν − gμνPαPβ þ gβμPαPνÞ;

C̄μναβ ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð4M2

D� − tÞ
p ð−gνβPμP̄α

2 þ gνβP̄μ
2P

α − gμαP̄ν
1P

β þ gμαPνP̄β
1Þ; ðA3Þ

where

P ¼ p1 þ p̄3 ¼ p̄2 þ p4; P̄1 ¼ p1 − p̄3; P̄2 ¼ p4 − p̄2: ðA4Þ
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The imaginary parts of the D�D̄� amplitudes are written as

ImMD�D�σ ¼ 16M2
D�ϵμðp; λ1Þϵαð−p; λ3Þϵ�νð−p0; λ2Þϵ�βðp0; λ4ÞĀμναβρðþÞ;1

00 ðtÞ;
¼ Impþ;J¼0

1 ðtÞ ðA5Þ
and

ImMD�D̄�ρ ¼ ϵμðp; λ1Þϵαð−p; λ3Þ½ρð−Þ;111 ðtÞ4ðs − uÞĀμναβ

þρð−Þ;211 ðtÞ32
ffiffiffi
3

p
tB̄μναβ þ ρð−Þ;311 ðtÞ16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð4M2

D� − tÞ
q

C̄μναβ�ϵ�νð−p0; λ2Þϵ�βðp0; λ4Þ;
¼ 2Imp−;J¼1

1 ðtÞd100ðcos θÞ þ 2Imp−;J¼1
2 ðtÞd11;−1ðcos θÞ þ 2Imp−;J¼1

3 ðtÞd10;1ðcos θÞ: ðA6Þ

The p�;J
i are defined as

Impþ;J¼0
1 ≡ 1

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − 4m2

π

t

r
jMðþÞ;J¼0

D�D̄�→ππ
ð1; 1Þj2;

Imp−;J¼1
1 ≡ 1

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − 4m2

π

t

r
jMð−Þ;J¼1

D�D̄�→ππ
ð1; 1Þj2;

Imp−;J¼1
2 ≡ 1

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − 4m2

π

t

r
jMð−Þ;J¼1

D�D̄�→ππ
ð1; 0Þj2;

Imp−;J¼1
3 ≡ 1

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − 4m2

π

t

r
RefMð−Þ;J¼1†

D�D̄�→ππ
ð0; 1ÞMð−Þ;J¼1

D�D̄�→ππ
ð1; 1Þg: ðA7Þ

After subtraction of the Born amplitudes, we find the spectral functions as follows:

ρðþÞ;1
00 ðtÞ ¼ 3

4M2
D�

½Impþ;J¼0
1 ðtÞ − Impþ;J¼0

1;BornðtÞ�;

ρð−Þ;111 ðtÞ ¼ 2

4M2
D� − t

½Imp−;J¼1
1 ðtÞ − Imp−;J¼1

1;BornðtÞ�;

ρð−Þ;211 ðtÞ ¼ 2M2
D�

tð4M2
D� − tÞ ½Imp−;J¼1

2 ðtÞ − Imp−;J¼1
2;BornðtÞ�;

ρð−Þ;311 ðtÞ ¼ 2MD�

4
ffiffi
t

p ð4M2
D� − tÞ ½Imp−;J¼1

3 ðtÞ − Imp−;J¼1
3;BornðtÞ�: ðA8Þ
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