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We calculate the single transverse spin asymmetry in polarized proton-proton (p↑ þ p) and polarized
proton-nucleus (p↑ þ A) collisions (AN) generated by a partonic lensing mechanism. The polarized proton
is considered in the quark-diquark model while its interaction with the unpolarized target is calculated
using the small-x/saturation approach, which includes multiple rescatterings and small-x evolution. The
phase required for the asymmetry is caused by a final-state gluon exchange between the quark and diquark,
as is standard in the lensing mechanism of Brodsky, Hwang, and Schmidt [Phys. Lett. B 530, 99 (2002)].
Our calculation combines the lensing mechanism with small-x physics in the saturation framework. The
expression we obtain for the asymmetry AN of the produced quarks has the following properties: (i) The
asymmetry is generated by the dominant elastic scattering contribution and the 1=N2

c suppressed inelastic
contribution (with Nc the number of quark colors). (ii) The asymmetry grows or oscillates with the
produced quark’s transverse momentum pT until the momentum reaches the saturation scale Qs, and then
only falls off as 1=pT for larger momenta. (iii) The asymmetry decreases with increasing atomic number A
of the target for pT below or near Qs, but is independent of A for pT significantly above Qs. We discuss
how these properties may be qualitatively consistent with the data on AN published by the PHENIX
Collaboration [Phys. Rev. Lett. 123, 122001 (2019)] and with the preliminary data on AN reported by the
STAR Collaboration [Proc. Sci., DIS2016 (2016) 212 [arXiv:1805.08875] ].
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I. INTRODUCTION

The recent decade and a half saw a surge of research
activity at the intersection of small-x and spin physics in
quantum chromodynamics (QCD) [1–17]. Topics receiving
attention include both the longitudinal [10,11,15,18–23]
and transverse [7,24–30] spin physics of the proton. Of
particular interest in the transverse spin category is the
single transverse spin asymmetry (STSA) AN . It is mea-
sured in polarized proton-proton (p↑ þ p) and polarized
proton-nucleus (p↑ þ A) collisions, where a transversely
polarized proton scatters on an unpolarized proton or
nucleus. The asymmetry is defined as

ANðpT; yÞ ¼
dσ↑

d2pTdy
− dσ↓

d2pTdy

dσ↑

d2pTdy
þ dσ↓

d2pTdy

; ð1Þ

where pT and y are the produced hadron’s transverse
momentum and rapidity, respectively, and the arrows
indicate the polarization of the (projectile) proton. As
follows from its definition (1), the asymmetry measures
the correlation between the transverse spin of the proton
and the transverse momentum of the produced hadron. It is
proportional to p⃗ · ðS⃗ × P⃗Þ, where P⃗ is the 3-momentum of
the incoming polarized proton with spin S⃗.
The single transverse spin asymmetry in p↑ þ p colli-

sions has a rich history of experimental and theoretical
study, beginning with the observations by the E581 and
E704 Collaborations at Fermilab [31,32] and continuing
with the more recent measurements by the PHENIX and
STAR Collaborations at RHIC [33,34]. At Fermilab, AN
was observed to be much larger in magnitude than the
original theoretical prediction in [35] and was reported to
grow with increasing Feynman x and with increasing pT .
RHIC measurements have confirmed the earlier Fermilab
findings. In addition, after extending the measured pT
range for AN, the STAR Collaboration found that the
growth of AN flattened at higher pT [36,37], but did not
observe any significant falloff of AN with pT which one
may expect theoretically. The asymmetry has other puz-
zling properties which have been observed experimentally.
For one, AN in p↑ þ p collisions was shown in [39] to be
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larger in processes where fewer photons were produced,
thus suggesting that the asymmetry grows with increasing
elasticity of the scattering. Another curious feature is that in
p↑ þ A collisions the asymmetry either appears to be
suppressed for larger nuclear atomic numbers A or remains
unaffected by such an increase in A depending on the
kinematic regime in which it is studied [38,39].
Several mechanisms have been proposed as theoretical

explanations of STSA (for a review see [40]). Since the
transverse spin dependence enters a scattering amplitude
with an imaginary factor i, for the corresponding contri-
bution to the cross section to be nonzero one needs to
generate a phase difference between the amplitude and the
complex conjugate amplitude. Without such a phase differ-
ence the transverse spin dependence would simply cancel
between the amplitude and the complex conjugate ampli-
tude. The phase difference can be generated in several
ways. In the Sivers effect the phase is a result of partonic
final state interactions between the produced parton and the
remnants of the projectile proton [41,42]. The Sivers effect
is often realized in theoretical calculations via the partonic
lensing mechanism [43,44] and leads to the well-known
sign-reversal prediction between the asymmetry in semi-
inclusive deep inelastic scattering (SIDIS) and in the
Drell-Yan process (DY) [45–47]. Another mechanism,
the Collins effect, generates the asymmetry through similar
partonic interactions occurring during hadronization of a
transversely polarized quark, with the phase-producing
interaction being contained in the Collins fragmentation
function [48]. In the framework of collinear factorization
the phase difference and, hence, the asymmetry is gen-
erated using the higher-twist Efremov-Teryaev-Qiu-
Sterman (ETQS) function [49–52] or by employing the
higher-twist fragmentation functions [53,54].
Since the STSA is measured at RHIC in high-energy

p↑ þ p and p↑ þ A collisions, it is natural to wonder
whether the small-x effects in the wave function of the
unpolarized proton or nucleus (henceforth referred sum-
marily as the target) may affect the asymmetry. While
indeed AN is large mainly in the forward direction
corresponding to probing large-x partons in the polarized
proton wave function, the forward direction also probes
small-x gluons (and quarks) in the unpolarized target. At
small x in the target one expects strong gluon fields leading
to the phenomenon of gluon saturation (see [55–60] for
reviews). These strong gluon fields are likely to affect
the pT-distribution of the partons they knock out of the
polarized proton wave function, therefore affecting AN . For
some of the previous efforts to incorporate small-x effects
in the AN calculations see [24,27,28,61–63].
In [24] the asymmetry was studied in the context of

perturbative scattering using the small-x/saturation frame-
work [55–60] to account for the interactions with the target.
Unlike any of the mechanisms outlined above, the phase
needed to generate STSA came from the inclusion of an

odderon exchange in the interaction with the target [64,65].
One can think of this STSA-generating mechanism as
being similar to lensing, but with the phase-generating
rescattering happening on the unpolarized target instead of
the polarized projectile. The resulting STSA grows with
momentum pT for low momenta, pT ≪ Qs with Qs the
saturation scale, but falls off quickly, ANðpTÞ ∼ p−5

T for
pT ≫ Qs. This mechanism also gave an asymmetry which
was significantly suppressed for large nuclear targets,
scaling as AN ∼ A−7

6 with the atomic number A.
In the quasiclassical power counting of the McLerran-

Venugopalan (MV) model [66–68], the interactions with
the unpolarized target resum powers of α2sA1=3 [69,70]
with αs the strong coupling constant. The usual saturation
power counting assumes that α2sA1=3 ∼ 1 such that all these
exchanges are order one. In this power counting, the STSA-
generating quark production cross section calculated in [24]
is of the order α2s, with one power of αs needed to emit the
quark to bemeasured, and another power of αs arising due to
the phase-generating odderon exchange [64,65]. Inclusion
of small-x evolution corrections [71–80] in the rapidity
interval between the produced quark and the target would
resum powers of αs lnð1=xÞ ∼ 1, leaving the above para-
metric estimate the same. However, in a completely pertur-
bative framework, the lensingmechanism of [43] comes into
the quark production cross section also at orderα2s : again one
power of αs is due to quark production, while another αs is
due to the lensing rescattering on the breakup products of the
polarized proton, if it ismodeled by a single gluon exchange.
Hence, to complete the STSA calculation in p↑ þ p and
p↑ þ A collisions started in [24] at the same order in
αs one needs to include the lensing mechanism into the
saturation picture of high energy scattering. This is the goal
of this work.
To include the lensing mechanism [43,44] into the

saturation framework, we will utilize the same quark-
diquark model of the polarized proton as employed in
[43]. The incoming proton splits into a quark-diquark pair,
which then scatters on the eikonal gluon field of the
unpolarized target. To generate the STSA these interactions
are followed by a final-state rescattering between the quark
and diquark, taken for simplicity to be a single gluon
exchange. The STSA is generated by the interference of the
process we have just described with the same process but
without the final-state quark-diquark rescattering, by direct
analogy to [43].
Below we calculate the lensing contribution to the quark

production cross section in the saturation framework. The
main result is given in Eq. (14). While proper phenom-
enological applications of our approach are left for future
work, we try to analyze the qualitative properties of the
result and compare them with the trends in the data. We find
that, for a dilute unpolarized target and in the large-Nc
limit, the lensing mechanism gives an STSA generated
solely by elastic scattering on the target. In real life this
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implies dominance of elastic events in generating AN , in
qualitative agreement with the preliminary findings by the
STAR Collaboration [39]. While our ANðpTÞ is not flat in
pT at high pT , as the preliminary STAR data appear to
indicate [36,37], our quark asymmetry grows or oscillates
with pT for pT ≪ Qs and then falls off rather mildly as
ANðpTÞ ∼ 1=pT for pT ≫ NcQs. (This high-pT falloff is
due to theN2

c-suppressed inelastic contribution to AN which
becomes important for pT ≫ NcQs.) Indeed, the fragmen-
tation effects not included in our calculation may further
affect the pT dependence of ANðpTÞ. Finally, the A
dependence of our AN is complicated: for pT ≲Qs the
asymmetry decreases with increasing atomic number A,
while for pT ≫ NcQs the asymmetry is approximately A
independent. The results of our calculation and the quali-
tative analysis appear to suggest that a more detailed
phenomenology based on the predictions of the lensing
mechanism combined with small-x dynamics may be able
to successfully describe the emerging AN data at RHIC.
The structure of the paper is as follows: In Sec. II we

calculate the asymmetry-generating quark production
cross section in the quark-diquark model of the polarized
proton, using the saturation formalism to describe the
interaction with the unpolarized target. In Sec. III we
study the properties of the obtained STSA: we demonstrate
dominance of the elastic contribution to AN in Sec. III A,
evaluate the asymmetry coming from the large-Nc (elastic)
term in the cross section using the quasiclassical Glauber-
Mueller approximation [81] for the target in Sec. III B
while also comparing the qualitative trends in our results to
experimental observations, and evaluate the contribution
of the subleading-Nc (inelastic) term to AN at high trans-
verse momentum in Sec. III C, also comparing our
conclusions to the trends found in the data. In Sec. IV
we summarize our results and consider directions for
future study.

II. SINGLE TRANSVERSE SPIN ASYMMETRY
IN p↑ + p AND p↑ +A COLLISIONS FROM

THE LENSING MECHANISM

A. Quark production at leading order

We begin by studying quark production in pþ p
and pþ A collisions using the saturation framework.
The relevant diagrams are shown in Fig. 1. The projectile
proton is considered in the quark-diquark model with the
Yukawa-type interaction between the quark (ψq), proton
(ψP), and diquark (φ) fields, Lint ¼ Gφ�iψ̄ i

qψP þ c:c:,
where i is the quark and diquark fundamental color index
and the asterisk denotes complex conjugation. The proton
is depicted by the thick solid line in Fig. 1, the quark is
shown by the thin solid line, and the scalar diquark is
shown by the dashed line. The thin vertical line denotes the
final-state cut, and the produced quark is labeled by the
cross. For simplicity we will take the quarks to be massless,
m ¼ 0, and put the masses of the proton (Mp) and the
diquark (M) equal to each other, M ¼ MP.
Interaction with the unpolarized proton or nuclear

target is denoted by the shaded rectangles representing
the shock wave in Fig. 1. The saturation framework allows
us to treat the interaction with the shock wave perturba-
tively. We will work in light cone perturbation theory
(LCPT) [82,83] with the metric ds2 ¼ dxþdx− − dx2⊥. In
this notation the light-cone coordinates are x� ¼ t� z and
transverse vectors are denoted by v ¼ ðvx; vyÞ ¼ ðv1; v2Þ
with their magnitude vT ¼ jvj. We take the polarized
projectile proton to be moving in the xþ direction
with large momentum Pþ, having transverse spin
S parallel to the x axis with transverse polarization χ.
The unpolarized target proton or nucleus (the shock wave)
is moving in the x− direction with large momentum P−

target.
Throughout the paper we will be working in Aþ ¼ 0 light-
cone gauge.

FIG. 1. Quark production in pþ p and pþ A collisions in the saturation framework. Shaded rectangles represent the target
shock wave.
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Using the standard way of calculating particle production in the saturation framework (see e.g. [24,60,84,85]), we write
the expression for the quark production in the process depicted in Fig. 1,

dσ
d2kTdy

¼ 1

2ð2πÞ3
1

1 − γ

Z
d2x⊥d2y⊥d2z⊥e−ik·ðz−yÞd2u⊥d2w⊥

×
X
χ0
ψχχ0 ðx; z; u; γÞψ�

χχ0 ðx; y; w; γÞhtr½ðV†
xVz − 1ÞðV†

yVx − 1Þ�i
y
: ð2Þ

Transverse positions and polarizations employed in Eq. (2) are shown in the upper left panel of Fig. 1 along with
γ ¼ kþ=Pþ. [Note that the produced quark rapidity y is related to γ via y ¼ lnðγPþ=kTÞ.] The light-cone wave function
[82,83] for the proton → quarkþ diquark splitting is denoted by ψχχ0 ðx; z; u; γÞ in the transverse coordinate space. It is
calculated in the Appendix A and is given by

ψχχ0 ðx; z; u; αÞ ¼
Gm̃α

ffiffiffi
α

p ð1 − αÞ
2π

δð2Þðx − uþ αz − αxÞ

×

�
δχ;χ0K0ðm̃αjz − xjÞ − iχðzi⊥ − xi⊥Þ

jz − xj K1ðm̃αjz − xjÞðiδχ;χ0δi2 − δχ;−χ0δ
i1Þ
�

ð3Þ

with

m̃α ≡ αMP: ð4Þ
Let us point out again that the proton’s transverse spin S is quantized along the x axis.
The interactions of the quark and diquark with the target are eikonal in Eq. (2), described by the fundamental-

representation Wilson lines [71] and their Hermitian conjugates. For a quark with transverse position x the target interaction
is then

Vx ¼ P exp

�
ig
2

Z
∞

−∞
dxþtaA−aðxþ; x− ¼ 0; xÞ

�
ð5Þ

with ta the fundamental generators of SU(Nc), where Nc is the number of quark colors. The gluon field A−a is generated by
the target shock wave. The angle brackets h� � �iy denote the averaging in the target state with the rapidity interval y between
the particles represented by Wilson lines and the target [55–60]. Expectation values of Wilson lines include both the
multiple Glauber-Mueller scatterings in the target nucleus [81] along with the nonlinear small-x evolution [71–80].
Defining the dipole S-matrix expectation value for the scattering on the target

SxyðYÞ≡
�

1

Nc
tr½V†

yVx�
�

Y
; ð6Þ

we rewrite Eq. (2) as

dσ
d2kTdy

¼ 1

2ð2πÞ3
Nc

1 − γ

Z
d2x⊥d2y⊥d2z⊥e−ik·ðz−yÞd2u⊥d2w⊥

×
X
χ0
ψχχ0 ðx; z; u; γÞψ�

χχ0 ðx; y; w; γÞð1þ Sz y − Sxy − Sz xÞ; ð7Þ

where we suppressed rapidity dependence in the arguments of the S matrices for simplicity. Substituting the wave
function (3) into Eq. (7), integrating out u and w, and summing over χ0 yields

dσ
d2kTdy

¼ G2Ncγ
3ð1 − γÞM2

P

2ð2πÞ5
Z

d2x⊥d2y⊥d2z⊥e−ik·ðz−yÞð1þ Sz y − Sxy − Sz xÞ

×

�
K0ðm̃γjz − xjÞK0ðm̃γjy − xjÞ þ ðz − xÞ · ðy − xÞ

jz − xjjy − xj K1ðm̃γjz − xjÞK1ðm̃γjy − xjÞ

þ χ

�
y2⊥ − x2⊥
jy − xj K0ðm̃γjz − xjÞK1ðm̃γjy − xjÞ þ z2⊥ − x2⊥

jz − xj K1ðm̃γjz − xjÞK0ðm̃γjy − xjÞ
��

: ð8Þ
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The incoming proton’s polarization χ dependence only
appears in the last line of Eq. (8). Due to the y2⊥ − x2⊥ and
z2⊥ − x2⊥ structures multiplying this χ-dependent term, we
expect that the resulting contribution to the cross section
coming from this term would be proportional to Ŝ × k ¼ ky

(where Ŝ is a unit 3-vector in the direction of the proton
spin, Ŝ ¼ x̂, and the cross product is defined by
u × v ¼ uxvy − uyvx). This means that the term should
be odd under k → −k. At the same time, if we perform the
k → −k replacement in Eq. (8), simultaneously swapping
z ↔ y, the expression in the square brackets would remain
invariant. Further, if we assume that Sxy ¼ Syx, then the

whole integrand of Eq. (8) would be invariant under

k → −k and z ↔ y. Since the χ-dependent term in
Eq. (8) has to change sign under k → −k, this means that
it gives zero contribution to the cross section. In other
words, the only way the χ-dependent term in Eq. (8) can
give a nonzero contribution to the cross section and,
therefore, generate the STSA is if Sxy ≠ Syx [24]. The

difference Sxy − Syx is nonzero due to the QCD odderon

interaction with the target [64,65]: hence, the STSA in [24]
was generated via such an odderon exchange.
Our goal here is to find the contribution to AN due to the

lensing mechanism [43]. We, therefore, neglect the odderon
contribution by assuming that Sxy ¼ Syx. Equation (8) then

simplifies to

dσ
d2kTdy

¼ G2Ncγ
3ð1 − γÞM2

P

2ð2πÞ5
Z

d2x⊥d2y⊥d2z⊥e−ik·ðz−yÞð1þ Sz y − Sxy − Sz xÞ

×
�
K0ðm̃γjz − xjÞK0ðm̃γjy − xjÞ þ ðz − xÞ · ðy − xÞ

jz − xjjy − xj K1ðm̃γjz − xjÞK1ðm̃γjy − xjÞ
�

ð9Þ

and becomes independent of the proton polarization χ. This
is the unpolarized quark production cross section in pþ p
and pþ A collisions. It does not generate a nonzero STSA.

B. Quark production with lensing

It is clear from the above calculation that we need further
interactions in order to generate STSA. The option we want
to pursue here is the lensing mechanism [43]. In SIDIS it is
realized via a final-state interaction between the outgoing
quark and diquark. By analogy to that, we augment the
quark production process in Fig. 1 with such a quark-
diquark final-state interaction, which, following [43], we
model by a gluon exchange. The resulting diagrams are
depicted in Fig. 2, where one also has to add the complex

conjugate diagrams to the ones shown to calculate the full
contribution to the cross section.
The additional gluon-exchange interaction between the

quark and diquark in Fig. 2, as compared to the diagrams in
Fig. 1, needs to generate a phase difference between the
amplitude and the complex conjugate amplitude in order to
give a nonzero STSA. The interactions of the quark-
diquark system with the unpolarized target in Fig. 2 will
give us correlators of Wilson lines, which will be real if we
again neglect the odderon exchange contribution which
was already included in [24]. Therefore, the only remaining
source of the phase difference is due to an additional
gluon interaction in the quark-diquark system. Using the
α2sA1=3 ∼ 1 power counting described above, we see that a

FIG. 2. Quark production in pþ p and pþ A collisions in the saturation framework, now with the lensing exchange of a final-state
gluon. Complex conjugates of all the diagrams need to be added in the calculation, but are not shown explicitly in this figure.
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single-gluon correction to the diagrams in Fig. 1 involving
the quark and/or diquark contributes at the same order in αs
as the odderon exchange (order αsG2 in the diquark model
at hand). If this gluon emission and/or absorption occurs
inside of the shock wave, then the process would be
suppressed by a factor of 1=s with s the center-of-mass
energy squared for the scattering process at hand.
Physically this is due to the high scattering energy leading
to the xþ width of the shock wave being rather short,
making gluon emission and absorption by the quark and the
diquark inside the shock wave very unlikely. Hence we
need to consider the gluon emission and absorption by the
quark and the diquark happening before and after the shock
wave, and see which ones give the phase difference
between the amplitude and the complex conjugate ampli-
tude required for STSA.
An analysis of all the possible single-gluon corrections to

the diagrams in Fig. 1 (outside the shock wave) shows
that the only other remaining source of the phase difference
is the imaginary part of the amplitude with the additional
final-state gluon exchange (the diagrams left of the main
final-state cut in Fig. 2). According to Cutkosky rules, such
an imaginary part can be denoted by placing an additional
cut through the amplitude, as shown by a somewhat shorter
cut in Fig. 2. This technique has already been employed in
[47] where it was helpful in understanding the diagrammatic
origin of STSA in SIDIS and DY processes. In Fig. 3 we
illustrate this technique to show some of the one-gluon
correction diagrams which do not contribute to STSA. Note
that the additional cut cannot be placed to the left of the
shockwave, since this would lead to proton decay diagrams,
which are prohibited in QCD (see the left two graphs in
Fig. 3 along with the middle graph in the top row). This
additional cut can only be placed after (to the right of) the
shock wave, as shown in Fig. 2, where it generates a 2 → 2
on-shell scattering subprocess (the cut going through the

shock wave can only generate the STSA phase due to the
odderon contribution considered earlier in [24]). Only the
gluon exchange diagrams shown in Fig. 2 can give a
nonzero contribution to the additional cut. As shown by
the lower-row middle graph and the right two graphs of
Fig. 3, diagrams with the gluon emitted before the shock
wave and absorbed after, along with the diagrams where the
extra gluon is emitted and absorbed by the quark (diquark)
to the right of the shock wave, cannot give a nontrivial
contribution to the second cut and, hence, to STSA. The
second cut, when applied to those diagrams, generates either
2 → 1 or 1 → 1 on-shell scattering subprocesses (as can be
seen in Fig. 3), which are zero. Thus, the STSA-generating
phase can arise only from the diagrams with the final-state
gluon exchange between the quark and diquark via an
additional cut placed after the shock wave, as depicted in
Fig. 2. The amplitude left of the final-state cut in the upper
left panel of Fig. 2 is redrawn in more detail in Fig. 4 for
illustration purposes. The additional cut separates the
amplitude left of the main final-state cut in the graphs of
Fig. 2 into the same amplitude left-of-cut as we had in the
diagrams of Fig. 1 and the gluon-exchange 2 → 2 scattering
amplitude between the quark and diquark pictured below in
Fig. 5. This latter amplitude will be denoted MFSI since it
contains the final-state interaction. Note that MFSI is real,
since one cannot cut the diagram in Fig. 5.
In calculating the diagrams in Figs. 2 or 4 using LCPT

rules [82,83] we encounter an additional intermediate
quark-diquark state which we cut: this means we need to
keep only the imaginary part of the light-cone energy
denominator corresponding to this intermediate state. (The
real part of the energy denominator contributes an order-αs
correction to the diagrams in Fig. 1, but does not generate
STSA and is, hence, discarded.) This means that when
calculating the diagrams in Fig. 2 we need to replace the
energy denominator by

FIG. 3. Examples of one-gluon corrections to the quark production in pþ p and pþ A collisions from Fig. 1 which do not contribute
to STSA. These diagrams do not generate a phase needed for STSA, since the contributions of the cuts (shown by solid vertical lines)
are zero.
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1

p−
out − p−

intermediate þ iϵ
→ i Im

�
1

p−
out − p−

intermediate þ iϵ

�
¼ −iπδðp−

out − p−
intermediateÞ ð10Þ

with p−
out and p−

intermediate denoting the light-cone energy of the outgoing and intermediate quark-diquark states. Below we
will include the factor in Eq. (10) into our definition of the final-state rescattering amplitudeMFSI, thus making it imaginary.
Similar to Eq. (2) we write

dσχ
d2kTdy

¼ 1

2ð2πÞ3
1

1 − γ

Z
1

0

dα
4π

Z
d2x⊥d2x0⊥d2y⊥d2z⊥d2z0⊥e

−ik·ðz0−yÞd2u⊥d2w⊥

×
X
χ0;χ00

ψχχ0 ðx; z; u; αÞψ�
χχ00 ðx0; y; w; γÞhtr½taðV†

xVz − 1ÞtaðV†
yVx0 − 1Þ�i

y
ð−Mχ0χ00

FSI ðx0; z0; x; z; α; γÞÞ þ c:c: ð11Þ

Here α is the fraction of the proton’s plus momentum carried by the quark before the gluon exchangewith diquark, as shown in
Figs. 2 and 4. The wave function ψχχ0 is the same as given above in Eq. (3) while theWilson lines V are also defined above in
Eq. (5). The subscript χ in σχ indicates that we are only interested in the polarization-dependent part of the cross section, and
thus, as wewill see, only the χ dependent part of thewave function product ψχχ0ψ

�
χχ00 contributes in Eq. (11). Theminus sign in

front of Mχ0χ00
FSI in Eq. (11) is due to the fact that the standard LCPT rules [82,83] give a negative of the scattering amplitude.

The only ingredient in Eq. (11) that we have not yet found is the final-state rescattering amplitudeMχ0χ00
FSI . It is depicted in

Fig. 5. Since all the external lines of this amplitude are on the mass shell, we can calculate it using the covariant Feynman
perturbation theory. Absorbing the ð−iπÞ and the light-cone energy delta function from Eq. (10) into MFSI we get the
amplitude in the mixed representation (in the longitudinal momentum space and transverse coordinate space)

iMχ0χ00
FSI ðx0; z0; x; z; α; γÞ ¼

Z
d2p⊥
ð2πÞ2

d2k⊥
ð2πÞ2

d2r⊥
ð2πÞ2 e

iðp−k−rÞ·x0−iðp−kÞ·xþiðkþrÞ·z0−ik·z pþ

kþðp − kÞþ
−πg2

rþr− − r2⊥ þ iϵ

× ūχ00 ðkþ rÞ½2ðp − =kÞ − =r �uχ0 ðkÞδððp − k − rÞ− þ ðkþ rÞ− − ðp − kÞ− − k−Þ; ð12Þ

where the color factor has been removed fromMχ0χ00
FSI since it

was already incorporated into Eq. (11). Equation (12)
involves transverse spinors which are defined in terms
of the Brodsky-Lepage helicity basis spinors as uχ ¼
1ffiffi
2

p ½uz þ χu−z� [24]. The minus components of momenta

in the argument of the delta function should be understood
as k− ¼ k2⊥=kþ, as is standard in LCPT. Note that
pþ ¼ Pþ, which is the large momentum component of
the incoming proton. In terms of the momentum labels in
Fig. 5 the longitudinal momentum fractions are α ¼ kþ=Pþ

and γ ¼ ðkþ rÞþ=Pþ.
In arriving at Eq. (12) we assumed that the diquark-gluon

interactions result from the “scalar QCD” Lagrangian

FIG. 4. A more detailed depiction of the diagram contributing
to the amplitude to the left of the final-state cut in the upper-left
panel of Fig. 2. The transverse positions and polarizations of all
lines are labeled explicitly: the proton at transverse position u⊥
splits into the quark and diquark with positions z⊥ and x⊥,
respectively. The interaction of the quark and diquark with the
target shock wave is shown by multiple gluon exchanges: it does
not alter the transverse positions of the quark and diquark. After
this interaction, the final state gluon exchange happens between
the quark and the diquark resulting in an outgoing quark and
diquark with transverse positions z0⊥ and x0⊥, respectively. The
final state cut and the secondary cut generating STSA are shown
by vertical solid lines. FIG. 5. The diagram for MFSI (see text).

LENSING MECHANISM MEETS SMALL-X PHYSICS: SINGLE … PHYS. REV. D 102, 014022 (2020)

014022-7



Lscalar QCD ¼ ðDμϕÞ† ·Dμϕ −M2ϕ† · ϕ with the covariant
derivative Dμ ¼ ∂μ − ið−gÞAμ and the gluon field
Aμ ¼

P
a t

aAa
μ. Note that the diquark has the color

quantum numbers of an antiquark, which generates
an extra minus sign in the diquark-gluon coupling.
Finally, the amplitude Mχ0χ00

FSI is indeed gauge invariant,

so the gauge choice for the gluon propagator is not
important.
Evaluating the spinor products in Eq. (12) and Fourier

transforming the result into transverse coordinate space is
rather involved. The main steps of the calculation are
outlined in Appendix B. In the end one obtains

iMχ0χ00
FSI ðx0; z0; x; z; α; γÞ ¼

g2

2π

1

α
ffiffiffiffiffi
αγ

p jz0 − zj2 δ
ð2Þ½ð1 − γÞx0 − ð1 − αÞxþ γz0 − αz�

× δ

�ðx0 − z0Þ2
αð1 − αÞ −

ðx − zÞ2
γð1 − γÞ

�
½δχ0;χ00 ðx − zÞ · ðx − z0Þ − iδχ0;−χ00 ðx − zÞ × ðx − z0Þ�: ð13Þ

In arriving at Eq. (13) we have put the quark mass to zero,m ¼ 0, and expanded the result to the lowest order in the diquark
massM, which turned out to beM0: higher powers ofM bring no spin-dependent contributions and can be discarded if we
assume that kT ≫ M. This is the assumption we will make from this point on. Note that discarding the quark mass terms
makes MFSI spin independent, so we indeed only need the χ-dependent part of the wave function product ψχχ0ψ

�
χχ00 in σχ .

Finally, substituting Mχ0χ00
FSI from Eq. (13) into Eq. (11) and using the wave functions (3) in the latter, while keeping only

the χ-dependent term in ψχχ0ψ
�
χχ00 , we arrive at

dσχ
d2kTdy

¼ χ
iαsG2M2

pγ

ð2πÞ6
Z

1

0

dαð1− αÞ
Z

d2x⊥d2x0⊥d2y⊥d2z⊥d2z0⊥
e−ik·ðz

0−yÞ

jz0 − zj2 δð2Þ½ð1− γÞx0 − ð1− αÞxþ γz0 − αz�

× δ

�ðx0 − z0Þ2
αð1− αÞ −

ðx− zÞ2
γð1− γÞ

��
1

2
tr½V†

xVz − 1�tr½V†
yVx0 − 1�− 1

2Nc
tr½ðV†

xVz − 1ÞðV†
yVx0 − 1Þ�

�
y

×
	
ðx− zÞ · ðx− z0Þ

�
Ŝ× ðy− x0Þ
jy− x0j K0ðm̃αjz− xjÞK1ðm̃γjy− x0jÞ þ Ŝ× ðz− xÞ

jz− xj K1ðm̃αjz− xjÞK0ðm̃γjy− x0jÞ
�

− ðx− zÞ× ðx− z0Þ
�
Ŝ · ðy− x0Þ
jy− x0j K0ðm̃αjz− xjÞK1ðm̃γjy− x0jÞ− Ŝ · ðz− xÞ

jz− xj K1ðm̃αjz− xjÞK0ðm̃γjy− x0jÞ
�


; ð14Þ

where we have also used the Fierz identity to simplify the
color traces and doubled the expression to account for the
complex conjugate term in Eq. (11).
Equation (14) is the main general result of our calcu-

lation for the STSA-generating quark production cross
section for p↑ þ p and p↑ þ A collisions. It can be used to
construct the numerator of AN in Eq. (1), while Eq. (9),
along with its gluon production counterpart would con-
tribute to the denominator of AN . Below we will study

the properties of AN resulting from the cross section
in Eq. (14).

III. PROPERTIES OF THE OBTAINED AN

A. Elastic dominance

One property of our main result (14) can be seen without
doing complicated calculations. For p↑ þ A collisions with
a large nucleus, A ≫ 1, and in the large-Nc limit, the
interaction with the target in Eq. (14) simplifies to [73]

�
1

2
tr½V†

xVz − 1�tr½V†
yVx0 − 1�− 1

2Nc
tr½ðV†

xVz − 1ÞðV†
yVx0 − 1Þ�

�
y
≈
1

2
htr½V†

xVz − 1�i
y
htr½V†

yVx0 − 1�i
y
¼ N2

c

2
Nz;xðyÞNx0;yðyÞ;

ð15Þ

where the quark dipole forward scattering amplitude is defined by [73]

Nx;yðYÞ ¼ 1 − Sx;yðYÞ: ð16Þ
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We see that the interaction with the target factorizes into an
elastic interaction to the left of the final-state cut (Nz;x) and
another elastic interaction to the right of the cut (Nx0;y) [86].

We conclude that the p↑ þ A spin-dependent quark pro-
duction cross section (14) and, therefore, AN from Eq. (1)
are given by elastic interaction for scattering on a large
nucleus and in the large-Nc limit.
In real life Nc ¼ 3: hence, the accuracy of the approxi-

mation in Eq. (15) is up to corrections of the relative order
1=N2

c ≈ 11%, though for some matrix elements of Wilson
lines the precision of the large-Nc approximationwas shown
to be much higher [87]. Therefore, our calculation embed-
ding the lensing mechanism into the saturation framework
predicts the dominance of elastic interactions in p↑ þ A
collisions contributing to AN at least by a ratio of N2

c∶1.
The applicability of the approximation (15) to p↑ þ p

collisions depends on whether the unpolarized proton target
can be treated as a large nucleus; that is, it depends on the
extent towhich the proton can be thought of as an assembly of
uncorrelated color charges.While this is a rather complicated
question to address, let us simply point out that the Balitsky-
Kovchegov (BK) equation, which was originally derived for
deep inelastic scattering (DIS) on a nucleus (eþ A) [71–74],
has been successfully applied to the data for DIS on a proton
(eþ p); see e.g., [88,89]. It is, therefore, possible that our
prediction of elastic dominance in AN does, in fact, apply to
p↑ þ p collisions by analogy to the unpolarized DIS on the
proton.We thenmay be able to conclude that our observation
of elastic dominance is qualitatively consistent with the
preliminary STAR Collaboration data [39].

B. Estimates of the asymmetry: Leading Nc

Let us continue evaluating the cross section (14) in the
large-Nc and large-A approximation, following what we
have already started in Sec. III A. We replace the interaction
with the target in Eq. (14) by ðN2

c=2ÞNz;xNx0;y, according to

the result of Eq. (15). Next we make a variable change

z̃ ¼ z0 − x0; ð17aÞ

ỹ ¼ y − x0; ð17bÞ

ξ ¼ z − x; ð17cÞ

r ¼ x0 − x; ð17dÞ

b ¼ x: ð17eÞ

Simultaneously we rewrite

Nz;xðyÞ ¼ N

�
z − x;

zþ x
2

; y

�
≈ NðξT; bT; yÞ; ð18Þ

where the first step is simply a change in notation, while the
second step is a simplification, employing the fact that for a
large nucleus target one usually has bT ≫ ξT and that the
leading high-energy behavior of N is independent of the
angles of the dipole separation ξ and the impact parameter
b. Similarly we approximate Nx0;yðyÞ ≈ NðỹT ; bT; yÞ. The
resulting transverse polarization-dependent cross section is

dσχ
d2kTdy

¼ χ
iαsG2N2

cM2
pγ

2ð2πÞ6
Z

1

0

dαð1 − αÞ
Z

d2b⊥d2ξ⊥d2ỹ⊥d2z̃⊥
e−ik·ðz̃−ỹÞ

jð1 − αÞξ − ð1 − γÞz̃j2

× δ

�
z̃2T

αð1 − αÞ −
ξ2T

γð1 − γÞ
�
NðξT; bT; yÞNðỹT ; bT; yÞ

×

	
ξ · ðαξþ ð1 − γÞz̃Þ

�
Ŝ × ỹ

ỹT
K0ðm̃αξTÞK1ðm̃γỹTÞ þ

Ŝ × ξ

ξT
K1ðm̃αξTÞK0ðm̃γ ỹTÞ

�

− ð1 − γÞξ × z̃

�
Ŝ · ỹ

ỹT
K0ðm̃αξTÞK1ðm̃γ ỹTÞ −

Ŝ · ξ

ξT
K1ðm̃αξTÞK0ðm̃γ ỹTÞ

�

; ð19Þ

where we have integrated out the newly defined variable r using the two-dimensional delta function.
Performing the integrals over the angles of ξ in Eq. (19) with the help of the angular integrals listed in Eqs. (C2) of

Appendix C, integrating out z̃, and integrating over the angles of ỹ we arrive at

dσχ
d2kTdy

¼ χ
αsG2N2

cM2
pγ

4ð2πÞ3 Ŝ × k̂
Z

d2b⊥
Z

1

0

dα
αð1 − αÞ
jγ − αj

×

(
−minfα; γgf11ðkT; m̃γ; bT; yÞf00

 
kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1 − αÞ
γð1 − γÞ

s
; m̃α; bT; y

!

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αγ

ð1 − αÞð1 − γÞ
r

ð1 −maxfα; γgÞf00ðkT; m̃γ; bT; yÞf11
 
kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1 − αÞ
γð1 − γÞ

s
; m̃α; bT; y

!)
; ð20Þ
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where k̂ ¼ k=kT and we have defined

fijðkT;m̃;bT;yÞ¼
Z

∞

0

dξTξTJiðkTξTÞKjðm̃ξTÞNðξT;bT;yÞ

ð21Þ
for i, j ¼ 0, 1.
For perturbatively small distances ξT ∼ 1=kT ≪ 1=m̃ we

can expand the modified Bessel function obtaining

f00ðkT; m̃; bT; yÞ ≈
Z

∞

0

dξTξT J0ðkTξTÞ

× ln

�
1

m̃ξT

�
NðξT; bT; yÞ; ð22aÞ

f11ðkT;m̃;bT;yÞ≈
1

m̃

Z
∞

0

dξT J1ðkTξTÞNðξT;bT;yÞ: ð22bÞ

Equation (20) is a fairly general simplification of our
main Eq. (14), valid in the leading high-energy approxi-
mation (that is, for sufficiently large rapidity intervals
between the produced quark and the unpolarized target).
It can be used for most practical applications instead of
Eq. (14). Next we will evaluate Eq. (20) in the quasiclass-
ical MV/Glauber-Mueller (GM) [66–68,81] approximation
to study its properties and, separately, explore the large-kT
region. But first, an aside.

1. An aside

As an aside let us note that in the regime where N is
linearized (that is, expanded to the lowest nontrivial
order in the interaction with the target), f11 and f00 can
be related to the Weizsäcker-Williams (ϕWW) and dipole
(ϕdip) unintegrated gluon distributions (also known as the
unpolarized gluon transverse momentum-dependent parton
distributions, gluon TMD PDFs or simply gluon TMDs)
[84,90–94] correspondingly. Indeed, recall the definitions
of the Weizsäcker-Williams and dipole unintegrated gluon
distributions [84,90–94],

ϕWWðx;k2TÞ

¼ CF

αs2π
3

Z
d2b⊥

d2r⊥
r2T

eik·r NGðr;b;y¼ lnð1=xÞÞ; ð23aÞ

ϕdipðx; k2TÞ

¼ −
CF

αsð2πÞ3
k2T

Z
d2b⊥d2r⊥eik·r NGðr; b; y ¼ lnð1=xÞÞ;

ð23bÞ

where NG is the gluon (adjoint) dipole scattering amplitude
on the unpolarized target. At large Nc it is related to the
quark dipole amplitude in Eq. (16) by NG ¼ 2N − N2.
Outside the saturation region we can drop the quadratic
term and write NG ≈ 2N. Employing this approximation,

and further assuming that Nðr; b; yÞ does not depend on the
direction of r, we can integrate in Eqs. (23) over the angles
of r, obtaining the following approximate relations:

f11ðkT; m̃; bT; y ¼ lnð1=xÞÞ

≈ −
αsπ

2

2m̃CF

∂
∂kT

dϕWWðx; k2T; bÞ
d2b⊥

; ð24aÞ

f00ðkT; m̃; bT; y ¼ lnð1=xÞÞ

≈ −
αs2π

2

k2TCF
ln

�
minfkT;Qsg

m̃

�
dϕdipðx; k2T; bÞ

d2b⊥

�
; ð24bÞ

where we have extended the definitions (23) to the differ-
ential fixed-impact parameter form, dϕ=d2b⊥ (cf. [95]).
With the help of Eqs. (24), we see that Eq. (20) can be
rewritten in terms of two ∼ϕWWϕdip terms. Note, however,
that both ϕWW and ϕdip are distributions in the unpolarized
target, one to the left and one to the right of the final-state
cut. Hence, rewriting Eq. (20) in terms of ∼ϕWWϕdip terms
does not constitute factorization between the projectile and
the target, and is more akin to expressing a diffractive
scattering cross section as proportional to the square of the
target gluon PDF.

2. Asymmetry estimate in the
quasiclassical approximation

In the quasiclassical MV/GM [66–68,81] approximation
the quark dipole amplitude is

NðrT; bT; yÞ ¼ 1 − e−
1
4
r2TQ

2
s ln

1
rTΛ; ð25Þ

where Qs ¼ QsðbÞ is the (energy-independent) quasiclass-
ical quark saturation scale of the target while Λ is an
infrared (IR) cutoff. For brevity, we will not show the b
dependence of QsðbÞ explicitly below. For kT ∼ 1=rT not
much larger than Qs, that is, for rT ≲ 1=Qs & rT ≫ 1=Qs,
we can approximate Eq. (25) by replacing the logarithm in
the exponent by an order-one constant, that is [84],

NðrT; bT; yÞ ≈ 1 − e−
1
4
r2TQ

2
s : ð26Þ

This is also known as the Golec-Biernat–Wusthoff (GBW)
[96,97] approximation.
Substituting Eq. (26) into Eqs. (22) and integrating over

ξT we arrive at

f11ðkT; m̃; bT; yÞ ≈
e
−

k2
T

Q2
s

m̃kT
; ð27aÞ

f00ðkT; m̃; bT; yÞ ≈
1

k2T
−
e
−

k2
T

Q2
s

Q2
s

�
Ei

�
k2T
Q2

s

�
− ln

�
4m̃2k2T
Q4

s

��
:

ð27bÞ
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Here again we assume that kT;Qs ≫ MP. The function Ei(x) is the exponential integral.
Employing Eqs. (27) in Eq. (20) yields

dσχ
d2kTdy

¼ χ
αsG2N2

cMp

4ð2πÞ3kT
Ŝ × k̂

Z
d2b⊥

Z
1

0

dα
αð1 − αÞ
jγ − αj

×

	
−minfα; γge−

k2
T

Q2
s

�
γð1 − γÞ

k2Tαð1 − αÞ −
e
−

k2
T

Q2
s

αð1−αÞ
γð1−γÞ

Q2
s

�
Ei

�
k2T
Q2

s

αð1 − αÞ
γð1 − γÞ

�
− ln

�
4m̃2

αk2T
Q4

s

αð1 − αÞ
γð1 − γÞ

���

þ γ2ð1 −maxfα; γgÞ
αð1 − αÞ e

−
k2
T

Q2
s

αð1−αÞ
γð1−γÞ
�
1

k2T
−
e
−

k2
T

Q2
s

Q2
s

�
Ei

�
k2T
Q2

s

�
− ln

�
4m̃2

γk2T
Q4

s

���

: ð28Þ

Once again, this result is valid in the quasiclassical
approximation for kT;Qs ≫ MP and in the kT ≳Qs &
kT ≪ Qs transverse momentum ranges.
To study the STSA we need to substitute Eq. (28) into

Eq. (1) for AN, which we rewrite as

ANðkT; yÞ ¼
dσχ¼þ
d2kTdy

− dσχ¼−
d2kTdy

2
dσunp
d2kTdy

; ð29Þ

where σunp is the unpolarized hadron production cross
section. Our goal here is not to do proper phenomenology,
but to understand the main characteristics of our result. To
that end, we will not include fragmentation functions to
study the hadronic AN . Instead, we will study the net
partonic AN due to quark production in the numerator of
Eq. (29). It is tempting to also keep only quark production
in the denominator of Eq. (29): however, for central
rapidities y gluon production dominates over quark pro-
duction in σunp, since the latter is a decreasing function of γ,
while the former is not. While the proper thing to do would
be to add both quark and gluon unpolarized production

cross sections convoluted with their respective fragmenta-
tion functions, instead we will simply add the two partonic
cross sections together in the denominator of Eq. (29) and
thus evaluate (cf. [24])

ANðkT; yÞ ¼
dσχ¼þ
d2kTdy

− dσχ¼−
d2kTdy

2
h

dσqunp
d2kTdy

þ dσGunp
d2kTdy

i ; ð30Þ

where the superscripts q and G denote the quark and gluon
production cross sections correspondingly. Again, Eq. (30)
should be considered as an estimate of the partonic AN and
is not a real calculation of the hadronic STSA.
Having obtained the numerator for AN in Eq. (28), we

now need to find the cross sections in the denominator of
Eq. (30). The unpolarized quark production cross section in
the quark-diquark model for the proton was already
analyzed above, resulting in Eq. (9). We need to further
evaluate this expression in the quasiclassical approximation
with kT;Qs ≫ MP and kT not much larger than Qs.
Starting with the expression (9), we employ Eq. (26) while
remembering that S ¼ 1 − N to obtain

dσqunp
d2kTdy

≈
G2Ncγ

3ð1− γÞM2
P

2ð2πÞ5
Z

d2x⊥d2ỹ⊥d2z̃⊥e−ik·ðz̃−ỹÞð1þ e−ðz̃−ỹÞ
2Q

2
s
4 − e−z̃

2
T
Q2
s
4 − e−ỹ

2
T
Q2
s
4 Þ
�
lnðm̃γ z̃TÞ lnðm̃γỹTÞ þ

1

m̃2
γ

z̃ · ỹ

z̃2Tỹ
2
T

�
;

ð31Þ

where z̃ and ỹ are defined in Eq. (17) as before, and we have expanded the modified Bessel functions K0ðm̃γ z̃TÞ ≈
ln 1=ðm̃γ z̃TÞ andK1ðm̃γ z̃TÞ ≈ 1=ðm̃γ z̃TÞ due to the kT;Qs ≫ MP assumption. Integration over z̃ and ỹ is straightforward, but
a little tedious. It yields

dσqunp
d2kTdy

≈
NcG2γð1 − γÞ

2ð2πÞ3
Z

d2b⊥
�
γ2M2

P

�
k2T −Q2

s

Q6
s

e
−

k2
T

Q2
s

�
Ei
�
k2T
Q2

s

�
− ln

�
4m̃2

γk2T
Q4

s

��

þ 2e
−

k2
T

Q2
s

Q4
s

−
1

Q4
s
þ 1

k2T

�
1

k2T
− 2

e
−

k2
T

Q2
s

Q2
s

�
Ei

�
k2T
Q2

s

�
− ln

�
4m̃2

γk2T
Q4

s

����

þ e
−

k2
T

Q2
s

Q2
s

�
Ei

�
k2T
Q2

s

�
þ 1 − ln

�
4m̃2

γk2T
Q4

s

��
−

1

k2T

�
1 − 2e

−
k2
T

Q2
s

��
; ð32Þ
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where b ¼ x, also as before. Let us also remind the reader
that m̃γ ¼ γMP for massless quarks and for the diquark
having the same mass as the proton, M ¼ MP.
The contribution in Eq. (32) falls off ∝γ for small γ, as

expected for “valence” quark production at small x, which is
suppressed at central rapidity [98,99]. As mentioned above,
this justifies the need to include a gluon production cross
section in Eq. (30) to get a complete picture of AN . Since, as
we will see below, the numerator of AN given by Eq. (28)
falls off as ∝ γ for small γ (at low kT), including gluon
production this way would ensure that the asymmetry
vanishes as γ → 0, in qualitative agreement with the exper-
imental data. As gluon production cannot occur in the quark-
diquark model at the leading order, we take the approximate
unpolarized cross section for soft gluonproduction from [93]
(see also [57,84]) derived for the quark projectile,

dσGunp
d2kTdy

≈
αsNc

2π2

Z
d2b⊥

�
−

1

k2T
þ 2e

−
k2
T

Q2
s

k2T

þ e
−

k2
T

Q2
s

Q2
s

�
Ei
�
k2T
Q2

s

�
− ln

�
4Λ2k2T
Q4

s

���
; ð33Þ

withΛ an IR cutoff, and add it to the quark production cross
section (32) to get an estimate of the transverse single-spin
asymmetry in our model employing Eq. (30).

3. Plots of the asymmetry

We substitute Eqs. (28), (32), and (33) into Eq. (30) and
plot the resulting AN in Figs. 6, 7, 8, and 9. In Eq. (28) we
replace

Ŝ × k̂ → −1 ð34Þ

in order to adhere to the standard convention for AN where
a positive asymmetry is given by the particles produced left
of the polarized beam.
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0.01

0.02

FIG. 7. Plot of the leading-Nc terms in AN as a function of kT
for various values of γ with Qs ¼ 3 GeV. For very large or very
small γ the asymmetry is negative at small kT , and then changes
sign at higher kT before falling off for kT ≫ Qs.

FIG. 8. Plot of AN as a function of kT and Qs for γ ¼ 0.3. The
asymmetry falls off with increasingQs ∼ A1=6 for lower values of
kT , but appears to grow with Qs at higher kT.

FIG. 9. Plot of AN as a function of kT and γ for Qs ¼ 3 GeV.
The low-kT regime has an elaborate structure, with a distinct
maximum at moderate γ and sign-changing minima at high and
low γ which disappear as γ nears 0 or 1.
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FIG. 6. Plot of the leading-Nc contribution to AN as a function
of kT for various values ofQs and γ ¼ 0.3. The asymmetry grows
with kT at low momentum then turns over as it approaches the
saturation scale, falling off quickly for kT ≫ Qs.
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We concentrate on the dependence of AN on kT , Qs, and
γ. For simplicity we assume that Qs is a b-independent
constant inside the nucleus, and is zero outside, such that
the b⊥ integrals in Eqs. (28), (32), and (33) give a factor of
transverse area of the nucleus each; these factors cancel in
AN . SinceQ2

s ∼ A1=3, theQs dependence of AN probes how
AN changes as the unpolarized target varies between the
proton and various-size nuclei. (AN dependence onQs may
also be interpreted as centrality dependence for scattering
on the same nucleus at different centrality bins.) Finally,
our γ has the meaning of the Bjorken x variable in the
polarized projectile proton. Since y ¼ lnðγPþ=kTÞ, the
dependence of AN on γ corresponds to the rapidity or
Bjorken-x dependence.
We plot the asymmetry in Figs. 6, 7, 8, and 9 while

taking αs ¼ 0.3, MP ¼ 1 GeV, G ¼ 20, and Λ ¼ m̃γ. The
latter choice, Λ ¼ m̃γ , is done for consistency of the
approach. Indeed, as follows from the wave function in
Eq. (3), the typical transverse size of the quark-diquark
dipole is 1=m̃α ∼ 1=m̃γ , making m̃γ the effective IR cutoff
in the wave function. For consistency, we impose the same
IR cutoff on other parts of the calculation by replacing
Λ → m̃γ ¼ γMP. One should worry that for small α ∼ γ
such an IR cutoff may become small, resulting in quark–
diquark dipoles becoming much larger than 1 fm. While
indeed, to avoid this issue, it would be appropriate to
replace m̃α and m̃γ by something proportional to the QCD
confinement scale ΛQCD for small α and γ, respectively, let
us note that, as wewill shortly see, at small γ the asymmetry
AN is also small, such that such a replacement, while
justified, makes little numerical difference. Note that our
Yukawa coupling in the quark-diquark model is very large,
G ¼ 20: this coupling was chosen to get the values of AN in
the same order of magnitude as the data. Our artificially
high coupling G presumably mimics the nonperturbative
dynamics within the proton. One can also think of this large
value of G as simply adjusting the relative normalization
between the quark (32) and gluon (33) contributions in the
denominator of AN in Eq. (30): since the two terms were
found in different models, their relative normalization is not
fixed by our calculation, and quark dominance at large γ
has to be imposed by adjusting the value of G.
In Fig. 6 we plot AN as a function of kT for various values

ofQs with fixed γ ¼ 0.3. We see that AN starts out growing
with kT , and then turns over at about kT ∼Qs and falls off
rapidly for kT ≫ Qs. In addition, the magnitude of AN in
the lower kT region decreases with increasing Qs, corre-
sponding to the increasing atomic number A of the target
nucleus. At the same time, the magnitude of AN at higher kT
appears to grow with A. Thus, in this mechanism the low-
transverse momentum asymmetry AN in p↑ þ A is smaller
for larger nuclei, while the higher-momentum AN is larger
for higher A.
Similar conclusions about the kT dependence of AN can

be reached from studying Fig. 7, where we plot AN versus

kT for three different values of γ and for fixedQs ¼ 3 GeV.
While the magnitude of AN still grows with kT at kT ≪ Qs,
we also see that the growth is not monotonic and nodes in
AN appear at certain values of γ and kT .
The conclusions we draw from Figs. 6 and 7 are further

illustrated by the three-dimensional (3D) plots in Figs. 8
and 9. In Fig. 8 we plot AN as a function of kT and
Qs ∼ A1=6. Again we see growth with kT at low momenta,
followed by a falloff. The low-kT asymmetry seems to
decay with increasing Qs (and, hence, A), while at high kT
it seems to grow with A.
The 3D plot in Fig. 9 shows AN versus kT and γ for

Qs ¼ 3 GeV. At low kT we see the oscillations resulting in
nodes in AN we have already seen in Fig. 7. Again we
observe a rapid falloff at high kT . Finally, while the
behavior of AN at finite γ is not monotonic in kT and γ,
the asymmetry goes to zero as γ → 0, as expected from
Eq. (28) and in qualitative agreement with the experiment.
We note that the gluon production cross section (33) we are
using in the denominator of Eq. (30) is γ independent, so
the γ dependence of AN at small γ (for γ < 0.1) where gluon
production dominates in the denominator of (30) is purely
determined by the polarized quark production cross sec-
tion (28). For larger values of γ (1 > γ > 0.1), quark
production dominates in the denominator of (30), and
the gluon production cross section is not important.
To conclude the discussion of the plots of AN , let us note

that while our plots here are done at the partonic level, and
as such cannot be directly compared with experiment, we
could still try to compare the qualitative trends in our results
with those in experiment. We see that the growth with A of
our AN at moderately high kT appears not to be consistent
with most published experiment measurements, with the
exception of perhaps [100]. (However, the measurement in
[100] is performed at low kT : it appears unclear at this point
whether the results of [100] can be accounted for by the
growth of AN with A for moderately high kT we saw in
Fig. 6 even at the qualitative level.) The above-observed
suppression of the asymmetry with increasing A at low kT
(see Figs. 6 and 8) seems to agree with the data reported
by PHENIX [38]. Furthermore, our plots do not seem to
exhibit flatness at high kT , as observed in [36,37]. As we
will see below, at high-kT the asymmetry in our approach is
dominated by the subleading-Nc contribution we have not
yet evaluated. So a comparison of the transverse momen-
tum and A dependence of our AN with the data is premature
at this point.

4. High- and low-kT STSA at large Nc

Let us support our conclusions obtained from the figures
by analytical estimates of AN at high and low kT.
We can find the large kT asymptotics by expanding

Eq. (28) for kT ≫ Qs ≫ MP. While Eq. (28) does not
strictly speaking apply for kT ≫ Qs due to us neglecting
the logarithms in the exponent of Eq. (25) when
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approximating it by Eq. (26), in this case the discrepancy is
logarithmic in kT , and expanding Eq. (28) for kT ≫ Qs
should give us the powers of kT and of other relevant
quantities correctly. When kT ≫ Qs we can neglect all
Gaussians of kT in Eq. (28), unless they are multiplied by
an exponential integral of the same argument or if they
contain the αð1 − αÞ factor, which is not suppressed in the
kT ≫ Qs regime only for αð1 − αÞ ≪ 1. We get

dσχ
d2kTdy

����
kT≫Qs

≈ −χ
αsG2N2

cMP

4ð2πÞ3 Ŝ × k̂

×
Z

d2b⊥
Q2

s

k5T

Z
1

0

dα
γ2ð1 −maxfα; γgÞ

jα − γj

× e
−

k2
T

Q2
s

αð1−αÞ
γð1−γÞ : ð35Þ

For kT ≫ Qs the integral is dominated by the small-α
region where the exponential suppression is weak, since the
α → 1 region is further suppressed by the 1 −maxfα; γg ≈
1 − α factor in the numerator of Eq. (35). We can
approximate Eq. (35) by taking α ≪ 1 and integrating
over α from zero to infinity, obtaining

dσχ
d2kTdy

����
kT≫Qs

≈ −χ
αsG2N2

cMPγð1 − γÞ
4ð2πÞ3 Ŝ × k̂

×
Z

d2b⊥
Q2

s

k5T

Z
∞

0

dαe
−

k2
T

Q2
s

α
γð1−γÞ

¼ −χ
αsG2N2

cMPγ
2ð1 − γÞ2

4ð2πÞ3 Ŝ × k̂

×
Z

d2b⊥
Q4

s

k7T
∝ S⊥MP

Q4
s

k7T
; ð36Þ

where S⊥ is the transverse area of the unpolarized target.
Taking kT ≫Qs≫MP we can expand Eqs. (32) and (33)

to derive their high-kT asymptotics

dσqunp
d2kTdy

����
kT≫Qs

≈
NcG2γð1 − γÞ

2ð2πÞ3 S⊥
Q2

s

k4T
;

dσGunp
d2kTdy

����
kT≫Qs

≈
αsNc

2π2
S⊥

Q2
s

k4T
; ð37Þ

and see that the unpolarized production cross sections scale
as Q2

s=k4T .
We conclude that at high-kT the STSA scales as

ANðkT; yÞjkT≫Qs
∼
Q2

sMP

k3T
: ð38Þ

It falls off with kT and grows with the atomic number A of
the target nucleus since Q2

s ∝ A1=3, in agreement with the
plot in Fig. 6. Unfortunately, the rapid falloff with kT in

Eq. (38) appears to contradict the data [36,37]: we will
return to this question in the next subsection. Note also that
the high-kT asymmetry falls off rapidly with decreasing γ,
as one can see from Eq. (36), in agreement with the curves
in Fig. 7.
At low kT we perform a similar expansion for cross

sections in Eqs. (28), (32), and (33), now assuming that
kT ≪ Qs while, at the same time, kT ≫ MP. For the
polarization-dependent cross section we arrive at

dσχ
d2kTdy

����
MP≪kT≪Qs

≈ χ
αsG2N2

cMP

4ð2πÞ3 Ŝ× k̂

× S⊥
γð3þ γð14γ − 15ÞÞ

3kTQ2
s

ln
Qs

Mp
; ð39Þ

where we have also employed the Qs ≫ Mp condition to
drop the γ-dependent “constant” under the logarithm. For
the unpolarized cross sections we similarly obtain

dσqunp
d2kTdy

����
MP≪kT≪Qs

≈
NcG2γð1− γÞ

2ð2πÞ3
S⊥
k2T

;

dσGunp
d2kTdy

����
MP≪kT≪Qs

≈
αsNc

2π2
S⊥
k2T

; ð40Þ

where we have also employed the kT ≫ MP condition to
drop the ∼M2

P=k
4
T term in the quark production cross

section.
Combining Eqs. (39) and (40) we arrive at the following

scaling of the STSA:

ANðkT; yÞjMP≪kT≪Qs
∼
kTMP

Q2
s

ln
Qs

Mp
: ð41Þ

We see that indeed AN → 0 for kT → 0. (The apparent
deviations from the linear scaling AN ∼ kT at very low kT in
Figs. 6, 7, and 8 above can be attributed to the fact that our
kT ≫ MP assumption used in deriving Eq. (41) is violated
for the lowest kT values in those figures.) We also see
that the low-kT AN in Eq. (41) is a decreasing function
of the atomic number A, in agreement with the plots in
Figs. 6 and 8.

C. Estimates of the asymmetry: Subleading Nc

Let us revisit the question of high-kT asymptotics of AN .
As we saw in Eq. (36), the large-Nc (double-trace) term in
the polarization-dependent cross section (14) falls off rather
fast with kT ,

dσdouble traceχ

d2kTdy

����
kT≫Qs

∝ S⊥MPN2
c
Q4

s

k7T
; ð42Þ

resulting in a fast falloff of AN ∼ 1=k3T at large kT in
Eq. (38). The origin of this steep falloff is easy to
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understand using our main result for the polarization-
dependent cross section in Eq. (14): there, one observes
that the double-trace term is given by a 4-gluon exchange
with the target at the lowest nontrivial order, which results
in an additional factor of Q2

s=k2T suppression. At the same
time, the single-trace term in Eq. (14) starts out with a
2-gluon exchange at the lowest nontrivial order: hence one
would expect that at high kT the contribution of this term to
the polarization-dependent cross section in Eq. (14) scales
as 1=k5T , that is,

dσsingle traceχ

d2kTdy

����
kT≫Qs

∝ S⊥MP
Q2

s

k5T
: ð43Þ

Comparing Eqs. (42) and (43) we see that for kT ≫ NcQs
the subleading-Nc contribution (43) dominates. Hence the
large-kT asymptotics of AN is given by the subleading-Nc
single-trace term in Eq. (14). To estimate this large-kT limit,

to study its properties, and to verify the above argument,
let us evaluate the contribution of the single-trace term in
Eq. (14) at kT ≫ NcQs.
The interaction with the target due to the single-trace

term in Eq. (14) is

−
1

2Nc
htr½ðV†

xVz − 1ÞðV†
yVx0 − 1Þ�i

y

¼ 1

2
½Sz;xðyÞ þ Sx0;yðyÞ − 1 −Qz;x;x0;yðyÞ�; ð44Þ

where we have introduced the color-quadrupole amplitude

Qz;x;x0;yðyÞ≡
�

1

Nc
tr½V†

xVzV
†
yVx0 �

�
y
; ð45Þ

which was found in the MV/GM approximation to be [101]

Qz;x;x0;y ¼ e
−1
4
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s ln
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4
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1
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s ln
1
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4
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s ln
1
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�
: ð46Þ

The lowest-order interaction with the target is obtained by expanding Eq. (44) to the lowest nontrivial order in Q2
s .

Employing the GBW approximation for the MV model again, which implies replacing all the logarithms in Eq. (46) by 1,
we obtain

1

2
½Sz;xðyÞ þ Sx0;yðyÞ − 1 −Qz;x;x0;yðyÞ� ≈ −

Q2
s

4
ξ · ỹ; ð47Þ

where we employed the transverse vectors defined in Eqs. (17). Substituting Eqs. (47) and (44) into Eq. (14), performing the
substitution (17), and integrating out r with the help of the delta function yields [cf. Eq. (19)]

dσsingle traceχ
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: ð48Þ

Further simplification of Eq. (48) consists of integrating out ỹ, integrating over the angles of the vector ξ using the
integrals listed in Eqs. (C3) of Appendix C, integrating out the angles of z̃, and integrating out the magnitude z̃T with the
help of the delta function in Eq. (48). Finally, integrating out ξT and α and again assuming that kT ≫ Qs ≫ MP we arrive at

dσsingle traceχ

d2kTdy

����
kT≫Qs

≈ −χ
αsG2MPγ

2 lnðγÞ
4ð2πÞ3k5T

Ŝ × k̂
Z

d2b⊥Q2
s ¼ −χ

αsG2MPγ
2 lnðγÞ

4ð2πÞ3k5T
Ŝ × k̂ S⊥Q2

s : ð49Þ
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We observe that the scaling of Eq. (43) is indeed confirmed
by our calculation.
Substituting Eq. (49) into Eq. (30) [while employing the

substitution (34) to observe that AN > 0], and employing
Eqs. (37) we see that

ANðkT; yÞjkT≫NcQs
∼
MP

kT
: ð50Þ

We see that now AN ∼ 1=kT, such that the falloff with kT is
very mild, in a potentially better agreement with the STAR
Collaboration data [36,37]. Indeed, we are employing a
simple quark-diquark model, so one should not expect our
model to be in good quantitative agreement with the data.
Parton fragmentation functions need to be included as well
to do proper comparison with the data.
Another important feature of Eq. (50) is that AN in it is

independent of the target’s atomic number A (cf. [102]).
This is in qualitative agreement with the preliminary results
reported by STAR [39], but seems to disagree with the
PHENIX data [38] which are more in line with our low-kT
result (41).

IV. CONCLUSIONS

In this paper we have calculated the STSA for quark
production in p↑ þ p and p↑ þ A collisions resulting from
the lensing mechanism embedded in the small-x/saturation
framework, with the corresponding transverse spin-
dependent cross section given by Eq. (14). This mechanism
leads to several key features of AN . First of all, the inelastic
contribution is suppressed by a power of 1=N2

c, arising from
a single-color-trace interaction as opposed to the elastic,
leading-order double-color-trace interaction. This leads to
an AN generated primarily in elastic collisions. Second, the
asymmetry grows or oscillates with transverse momentum
at kT ≲Qs, turning over as the momentum nears the
saturation scale Qs and falling off as 1=kT for very high
momenta. The 1=kT falloff is driven by the inelastic 1=N2

c-
suppressed single-trace term, which becomes dominant for
kT ≫ NcQs: thus, at very high kT the asymmetry is
dominated by inelastic interaction and falls off rather
slowly with kT . Finally, AN decreases as the target atomic
number A increases for kT below or near Qs, while it is
independent of A for kT ≫ NcQs. At large Nc there is an
intermediate region Qs ≪ kT ≪ NcQs where AN increases
with increasing A, though phenomenological relevance of
this region is not clear.
The dominance of the elastic contributions in AN is

qualitatively in agreement with the observations reported in
[39]. In our calculation it arises directly from the color
structure of the target interaction, where the leading-Nc part
of the final-state gluon exchange between the quark and
diquark preferentially selects the color-singlet quark and
diquark state. We believe this conclusion would remain
valid even for multiple gluon exchanges between the quark

and diquark in the final state, since planar large-Nc
diagrams would always require the quark and diquark to
be in the color-singlet state. Therefore, it appears that our
conclusion of the elastic dominance of the interaction is not
specific for the quark-diquark model we considered here.
The kT dependence of AN far above Qs gives a plausible

explanation for the slow falloff of the asymmetry with
transverse momentum which has been observed in
[32,33,36,38,39], though indeed a more realistic model
than we have considered in this work, augmented by the
proper fragmentation functions, would be needed for a
detailed comparison with the data. As for the dependence
on the target’s atomic number A, at kT far above Qs our
mechanism’s prediction of A independence of AN is in line
with the experimental observations in [39] and with other
theoretical results [102], while for lower kT we get AN
suppressed for larger A as observed in [38].
Our preliminary estimates, not shown in this work,

indicate that inclusion of small-x evolution effects in the
interaction with the target along the lines of [93,101,
103–105] is not likely to qualitatively modify our main
conclusions summarized above concerning the kT and A
dependence of AN . Mild modifications of the powers of Qs
and kT in Eqs. (38) and (41) will take place due to the
anomalous dimension of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) [106,107] evolution. We expect the power
of kT in Eq. (50) to be unaffected by the small-x evolution.
We should note some of the limitations of our calculation

coming from the simplicity of the quark-diquark model.
This model has an uncertainty in the magnitude of the
asymmetry, as the Yukawa couplingG is not fixed to match
any underlying QCD dynamics and does not drop out of the
ratio (30) in the small-x regime where gluons are dominant.
If the gluon production in the denominator of Eq. (30) was
calculated in the same quark-diquark model, as a higher-
order correction, then G would cancel in the ratio.
However, it is not clear that this simple quark-diquark
model warrants such a sophisticated calculation of a higher-
order correction. Indeed, the unpolarized gluon production
contribution alters the γ dependence of AN from Eq. (30)
plotted in Figs. 6, 7, 8, and 9 only for γ < 0.1. The inclusion
of gluon production in the denominator of Eq. (30)
essentially serves to remove the nonphysical behavior from
the unpolarized cross section, which would vanish as γ → 0
(e.g., near midrapidity) if one only includes quark pro-
duction. While unpolarized gluon production is important
at small γ, there are many other improvements that need to
be done in order to attempt to describe the data using our
calculation.
For future phenomenological applications, it will per-

haps be more important to make our calculation less
dependent on the specific quark-diquark model we have
used here, possibly attempting to rewrite our main result
(14) in terms of some more universal parton distributions.
At the moment it is not clear how to do this. In the
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denominator of Eq. (30) one should also find the quark and
gluon production cross sections by more conventional
model-independent calculations performed in the same
approach, using either collinear factorization or the
small-x framework, eliminating the ambiguity introduced
by our use of two different models for the two cross
sections.
Further limitations on this calculation can be seen from

the behavior of AN at the ends of the γ range. We cannot
trust our model for γ → 1, since that is where the quark
counting rules should dictate the γ dependence. For small γ
the low-x evolution between the projectile and the pro-
duced quark needs to be included. This is similar (though,
perhaps, not equivalent) to determining the small-x asymp-
totics of the Sivers TMD: first steps in that direction were
made recently in [9,108]. This small-x evolution on the
projectile side is likely to alter both the kT and Qs
dependence of the asymmetry. Investigation of this regime,
perhaps along the lines of [30], are left for future work.
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APPENDIX A: Light-cone Wave Function for the
Proton → Quark+Diquark Splitting

In this Appendix we calculate the wave function for the
splitting of the proton into a quark-diquark pair given in
Eq. (3). The light cone wave function for the proton
splitting into a quark-diquark pair is given by the diagram
in Fig. 10. Applying the LCPT rules [82,83] we get

ψχχ0 ðP; k; αÞ ¼
−Gūχ0 ðkÞuχðPÞ

Pþ½P− − k− − ðP − kÞ−� ; ðA1Þ

with transverse spinors which are given in terms of helicity-
basis Brodsky-Lepage spinors as uχ ¼ 1ffiffi

2
p ½uz þ χu−z�.

(Note that our definition of the light-cone wave function
is the boost-invariant definition from [60].) The proton has
polarization χ, while the quark has polarization χ0.
Evaluating the spinor products and simplifying the

energy denominator, while assuming that the quark is
massless, m ¼ 0, yields

ψχχ0 ðP; k; αÞ ¼
G
ffiffiffi
α

p ð1 − αÞ½δχ;χ0 ðαMP − iχðk2⊥ − αP2⊥ÞÞ þ δχ;−χ0χðk1⊥ − αP1⊥Þ�
ðk − αPÞ2 þ αM2 − αð1 − αÞM2

P
; ðA2Þ

where MP is the proton mass, M is the diquark mass, and α ¼ kþ=Pþ.
We want to obtain a mixed representation of the wave function with the transverse momentum components Fourier

transformed to transverse coordinate space: to do so, we perform a two-dimensional Fourier transform over k⊥ and P⊥,
obtaining

ψχχ0 ðx; z; u; αÞ≡
Z

d2k⊥d2P⊥
ð2πÞ4 eik·ðz−xÞþiP·ðx−uÞψχχ0 ðP; k; αÞ

¼ Gm̃α
ffiffiffi
α

p ð1 − αÞ
2π

δð2Þðx − uþ αz − αxÞ

×

�
δχ;χ0K0ðm̃αjz − xjÞ − iχðzi⊥ − xi⊥Þ

jz − xj K1ðm̃αjz − xjÞðiδχ;χ0δi2 − δχ;−χ0δ
i1Þ
�
; ðA3Þ

where m̃2
α ¼ αM2 − αð1 − αÞM2

P ¼ α2M2
P for M ¼ MP

(cf. e.g., [109]). Equation (A3) is exactly Eq. (3) in the
main text.

APPENDIX B: CALCULATION OF THE
FINAL-STATE EXCHANGE AMPLITUDE

In this Appendix we derive the final state interaction
contribution to the cross section given in Eq. (13) in the
main text by starting from Eq. (12). First let us define the
momentum-space amplitude by

FIG. 10. Light-cone wave function for proton splitting into a
quark-diquark pair. Arrows denote the particle number flow.
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iMχ0χ00
FSI ðp; k; r; α; βÞ ¼

pþ

kþðp − kÞþ
−πg2

rþr− − r2⊥ þ iϵ

× ūχ00 ðkþ rÞ½2ðp − =kÞ − =r�uχ0 ðkÞδððp − k − rÞ− þ ðkþ rÞ− − ðp − kÞ− − k−Þ; ðB1Þ

where β ¼ rþ=Pþ ¼ rþ=pþ.
Next we evaluate the spinor products in Eq. (12) using Brodsky-Lepage spinors [82,83]. After some significant algebra

we get (for massless quarks, m ¼ 0)

ūχ00 ðkþ rÞ½2ðp − =kÞ − =r�uχ0 ðkÞ

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðαþ βÞp ×

�
δχ0χ00

1 − α
ðk − αpÞ · ½ðk − αpÞ þ ðr − βpÞ þ ðβk − αrÞ� þ iδχ0;−χ00 ðr − βpÞ × ðk − αpÞ

�
: ðB2Þ

Substituting this result back into Eq. (B1), rewriting all the minus momentum components in the argument of the delta
function in Eq. (B1) in terms of transverse and plus momentum components [e.g., k− ¼ k2⊥=kþ ¼ k2⊥=ðαPþÞ], and, finally,
noticing that in the gluon propagator denominator we can write r− ¼ ðkþ rÞ− − k− with the momenta ðkþ rÞ− and k− also
rewritten in terms of their transverse and plus components, we arrive at

iMχ0χ00
FSI ðp; k; r; α; βÞ ¼ 2πg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðαþ βÞp
αð1 − αÞ

1

ðβk − αrÞ2 δ
�ððk − αpÞ þ ðr − βpÞÞ2

ð1 − α − βÞðαþ βÞ −
ðk − αpÞ2
αð1 − αÞ

�

×

�
δχ0χ00

1 − α
ðk − αpÞ · ½ðk − αpÞ þ ðr − βpÞ þ ðβk − αrÞ� þ iδχ0;−χ00 ðr − βpÞ × ðk − αpÞ

�
: ðB3Þ

To perform the transverse Fourier transform

iMχ0χ00
FSI ðx0; z0; x; z; α; γÞ ¼

Z
d2p⊥
ð2πÞ2

d2k⊥
ð2πÞ2

d2r⊥
ð2πÞ2 e

iðp−k−rÞ·x0−iðp−kÞ·xþiðkþrÞ·z0−ik·z iMχ0χ00
FSI ðp; k; r; α; βÞ; ðB4Þ

where γ ¼ αþ β ¼ ðkþ þ rþÞ=Pþ, it is convenient to change the variables

	
k̃ ¼ k − αp;

r̃ ¼ r − βp;
ðB5Þ

which makes the amplitude independent of p,

iMχ0χ00
FSI ðp; k̃; r̃; α; γÞ ¼

2πg2
ffiffiffiffiffi
αγ

p
αð1 − αÞðαr̃ − ðγ − αÞk̃Þ2 δ

�ðk̃þ r̃Þ2
γð1 − γÞ −

k̃2

αð1 − αÞ
�

×

�
δχ0χ00

1 − α
k̃ · ðk̃ð1þ γ − αÞ þ r̃ð1 − αÞÞ þ iδχ0;−χ00 r̃ × k̃

�
: ðB6Þ

Substituting Eq. (B6) into Eq. (B4) and integrating over p, k, and r, we arrive at Eq. (13) in the main text. The following
relation may be useful in performing the Fourier transforms:

Z
d2k⊥
ð2πÞ2

d2q⊥
ð2πÞ2 e

ik·xþiq·z δ

�
k2⊥

αð1 − αÞ −
q2⊥

γð1 − γÞ
�
¼ 1

ð2πÞ2 δ
�

z2⊥
αð1 − αÞ −

x2⊥
γð1 − γÞ

�
: ðB7Þ
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APPENDIX C: SOME USEFUL
ANGULAR INTEGRALS

Here is a list of useful angular integrals used in the main
text. This set of integrals is done under the constraint

z̃2T
αð1 − αÞ ¼

ξ2T
γð1 − γÞ ðC1Þ

resulting from the delta function in Eq. (19). Below θξ is the
angle of the vector ξ with respect to, say, z̃. In addition, we

introduced unit vectors ξ̂ ¼ ξ=ξT and ˆ̃z ¼ z̃=z̃T :

I1 ≡
Z

2π

0

dθξ
ξ · ðαξþ ð1 − γÞz̃Þ

jð1 − αÞξ − ð1 − γÞz̃j2

¼ 2πminfα; γg
ð1 − αÞjα − γj ; ðC2aÞ

I2 ≡
Z

2π

0

dθξ
ξ · ðαξþ ð1 − γÞz̃Þ

jð1 − αÞξ − ð1 − γÞz̃j2 ξ̂

¼ π
ðαþ γÞðminfα; γg − αγÞ

ð1 − αÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αγð1 − γÞp jα − γj

ˆ̃z; ðC2bÞ

I3 ≡
Z

2π

0

dθξ
ξ × z̃

jð1 − αÞξ − ð1 − γÞz̃j2 ¼ 0; ðC2cÞ

I4 ≡
Z

2π

0

dθξ
ξ × z̃

jð1 − αÞξ − ð1 − γÞz̃j2 Ŝ · ξ̂

¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αγ

ð1 − αÞð1 − γÞ
r

minfα; γg − αγ

αγð1 − αÞð1 − γÞ Ŝ × ˆ̃z: ðC2dÞ

In the next set of integrals i, j ¼ 1, 2 and ϵij is the two-
dimensional Levi-Civita symbol with ϵ12 ¼ þ1:

Ĩ1 ≡
Z

2π

0

dθξ
ξ · ðαξþ ð1 − γÞz̃Þ

jð1 − αÞξ − ð1 − γÞz̃j2 ξ̂

¼ πðαþ γÞ½minfα; γg − αγ�
ð1 − αÞ3=2jα − γj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αγð1 − γÞp ˆ̃z; ðC3aÞ

Ĩ2 ≡
Z

2π

0

dθξ
ξ · ðαξþ ð1 − γÞz̃Þ

jð1 − αÞξ − ð1 − γÞz̃j2 ξ̂
iξ̂j

¼ 2πminfα; γg
ð1 − αÞjα − γj

ˆ̃zi ˆ̃zj

þ ½ϵik ˆ̃zkϵjm ˆ̃zm − ˆ̃zi ˆ̃zj� π
4

γ2 þ α2 − 2α2γ2 − jα2 − γ2j
αγð1 − αÞ2ð1 − γÞ ;

ðC3bÞ

Ĩ3 ≡
Z

2π

0

dθξ
ξ × z̃

jð1 − αÞξ − ð1 − γÞz̃j2 ξ̂
i

¼ π½minfα; γg − αγ�
ð1 − αÞ3=2ð1 − γÞ3=2 ffiffiffiffiffi

αγ
p ϵij ˆ̃zj; ðC3cÞ

Ĩ4 ≡
Z

2π

0

dθξ
ξ × z̃

jð1 − αÞξ − ð1 − γÞz̃j2 ξ̂
iξ̂j

¼ −½ ˆ̃zi ˆ̃zj þ ϵik ˆ̃zkϵjm ˆ̃zm� π
2

αγ

½maxfα; γg − αγ�2 : ðC3dÞ
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