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We study the evolution of the longitudinal expansion of an ideal fluid with finite electrical conductivity,
which is subject to the electromagnetic (EM) fields. In the framework of resistive relativistic
magnetohydrodynamics, we find an exact analytical solution for the EM fields and for the acceleration
of the fluid.
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I. INTRODUCTION

Relativistic heavy ion collisions provide an opportunity
to study the matter produced in a deconfined partons state
during the collisions. This matter is called quark gluon
plasma (QGP) and lives for the lifetime of the order of some
fm’s. The aforementioned matter has been successfully
described within the relativistic hydrodynamic framework
[1–4]. In a simple scenario, the transverse expansion of the
fluid is neglected, and the longitudinal expansion is
considered within the well-known Bjorken model [5].
However, in a more realistic world, the longitudinal
expansion could be affected by acceleration; as a conse-
quence, there are boost noninvariant initial conditions and
there need not to be a rapidity plateau [6–8]. A recent
description based on accelerating hydrodynamics can be
found in Ref. [9].
Recently, it was argued that due to the charged particle

motion in Relativistic Heavy Ion Collisions (RHIC), huge
electromagnetic (EM) fields are produced; in the energy
range of interest in RHIC, the strength of the EM fields are
ejBj=m2

π ≈ 1–3 up to ejBj=m2
π ≈ 10–15 at the LHC (Large

Hadron Collider) energies [10–21]. In general, these fields
decay very fast, but the existence of a QGP fluid with
electrical conductivity leads them to be more steady in time.
Hence, it might be possible to detect the effects of EM fields
on the observables as well as a variety of phenomena like
chiral magnetic effect and chiral magnetic wave [22–25].
Now, the contribution of electromagnetic fields in heavy

ion collisions needs to be considered, e.g., in the context of
relativistic magnetohydrodynamics (RMHD). Several papers

are present in literature, which perform analytical and
numerical calculations within RMHD, by assuming infinite
electrical conductivity (Ideal RMHD) [26–35]. However, it
has been deduced from lattice QCD calculations [36–39] that
the electrical conductivity of the plasma under investigation
corresponds to the ambient temperature and that a finite
value could be more appropriate. Hence, we will consider
here the Resistive Relativistic Magnetohydrodynamic
(RRMHD) framework [40,41].
In this paper, assuming a finite electric conductivity for

the quark gluon plasma, the longitudinal motion of the
plasma embedded into electromagnetic fields is studied. In
this way, the Bjorken flow is generalized, and the solutions
found through RRMHD are not necessarily Lorentz invari-
ant. Moreover, it is assumed that the electromagnetic fields
are oriented in the transverse plane and are perpendicular to
the plasma velocity: this is called “transverse MHD”; also,
we do not take into account any vorticity. Finally, analytical
solutions for the longitudinal fluid evolution as well as for
the electromagnetic fields are presented. In this study, it is
shown that due to the presence of electromagnetic fields the
energy density of the fluid decreases faster with time than
in the Bjorken model and, therefore, it appears that the
energy flows towards high rapidity.
The paper is organized as follows: in Sec. II, we present

the RRMHD framework. Section III is dedicated to the
(1þ 1) longitudinal expansion of RRMHD. Finally, in
Sec. IV, we discuss the results and draw our conclusions.

II. RESISTIVE RELATIVISTIC
MAGNETOHYDRODYNAMIC

In order to describe the interaction of matter and
electromagnetic fields in the quark gluon plasma, we*haddadi@to.infn.it; hadadi_65@yahoo.com
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consider the relativistic magnetohydrodynamics (RMHD)
framework [42,43]. For the sake of simplicity, we assume
an ideal relativistic plasma with massless particles and
finite electrical conductivity (σ). In addition, the fluid is
considered to be ultra relativistic, thus implying that the
rest-mass contributions to the equation of state (EOS) have
been neglected, and the pressure is simply proportional to
the energy density: P ¼ κϵwhere κ is constant. For an ideal
fluid with finite electrical conductivity, which is called
resistive fluid, the equations of RMHD can be written in the
form of the covariant conservation laws:

dμT
μν
matter ¼ −JλFλν; ð1Þ

dμF⋆μν ¼ 0; ð2Þ

dμFμν ¼ −Jν; dμJμ ¼ 0; ð3Þ

where dμ is the covariant derivative and the energy
momentum tensor for the fluid is

Tμν
matter ¼ ðϵþ PÞuμuν þ Pgμν; P ¼ κϵ: ð4Þ

Note that uμ, ϵ, and P are the fluid four velocity, energy
density, and pressure, respectively. The electromagnetic
field tensors and the current density are given by

Fμν ¼ uμeν − uνeμ þ ϵμνλκbλuκ; ð5Þ

F⋆μν ¼ uμbν − uνbμ − ϵμνλκeλuκ; ð6Þ

Jμ ¼ ρuμ þ σeμ; ð7Þ

where ρ is the proper charge density and ϵμνλκ ¼
ð−gÞ−1=2½μνλκ� is the spacetime Levi-Civita tensor density,
(ϵμνλκ ¼ −ð−gÞ1=2½μνλκ�) with g ¼ detfgμνg and ½μνλκ� are
the alternating Levi-Civita symbols.1 Besides

eμ ¼ Fμνuν; bμ ¼ F⋆μνuν; ðeμuμ ¼ bμuμ ¼ 0Þ;
ð8Þ

eμ and bμ are being the electric and magnetic field for
vectors in the comoving frame of the fluid, which is related
to the one measured in the lab frame. Moreover, the fluid
four velocity uμ (uμuμ ¼ −1) is given by

uμ ¼ γð1; v⃗Þ; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p :

In Eqs. (1)–(3) the covariant derivatives are given by

dμAν ¼ ∂μAν þ Γν
μmAm ð9Þ

dpAμν ¼ ∂pAμν þ Γμ
pmAmν þ Γν

pmAmμ; ð10Þ

where Γi
jk are the Christoffel symbols

Γi
jk ¼

1

2
gim

�∂gmj

∂xk þ ∂gmk

∂xj −
∂gjk
∂xm

�
: ð11Þ

Hereafter, instead of the standard Cartesian coordinates it
is preferable to use Milne coordinates for a longitudinal
flow:

ðτ; x; y; ηÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

; x; y;
1

2
ln
tþ z
t − z

�
: ð12Þ

Here, the metric2 is given by

gμν ¼ diagð−1; 1; 1; 1=τ2Þ; gμν ¼ diagð−1; 1; 1; τ2Þ:
ð13Þ

Working in Milne coordinates, one can easily obtain the
Christoffel symbols, the only nonvanishing ones being
Γτ
ηη ¼ τ and Γη

ητ ¼ Γη
τη ¼ 1=τ.

By implementing the projection of dμT
μν
matter ¼ −JλFλν

along the longitudinal and transverse directions with
respect to uμ, one can rewrite the conservation equations as

uνðdμTμν
matter ¼ −JλFλνÞ → Dϵþ ðϵþ PÞΘ ¼ eλJλ; ð14Þ

Δα
νðdμTμν

matter ¼ −JλFλνÞ
→ ðϵþ PÞDuα þ∇αP ¼ gανFνλJλ − uαeλJλ; ð15Þ

where

D ¼ uμdμ; Θ ¼ dμuμ; ∇μ ¼ dμ þ uμD;

Δα
ν ¼ gαν þ uαuν: ð16Þ

III. (1 + 1) LONGITUDINAL EXPANSION
WITH ACCELERATION

Here, we assume during the whole evolution that the
velocity of the fluid is directed in the longitudinal direction,
while the transverse flow is neglected and all the quantities
are constant in the transverse plane. Hence, we can
parameterize the fluid four velocity in (1þ 1D) as follows:

1½μνλκ� is the totally antisymmetric symbol defined as:

½μνλκ� ≔

8>><
>>:

1 for any even permutation of 0; 1; 2; 3;

−1 for odd permutations of 0; 1; 2; 3;

0 for any case with repeated indices

: 2In Cartesian coordinates, the metric tensor gμν of the special-
relativistic spacetime, known as the Minkowski spacetime, is
simply given by gμν ¼ gμν ¼ diagð−1; 1; 1; 1Þ.
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uμ ¼ γð1; 0; 0; vzÞ ¼ ðcoshY; 0; 0; sinhYÞ; ð17Þ
where Y is the fluid rapidity and vz ¼ tanhY. Besides, in
Milne coordinates, one can write

uμ ¼
�
coshðY − ηÞ; 0; 0; 1

τ
sinhðY − ηÞ

�

¼ γ̄

�
1; 0; 0;

1

τ
v̄

�
; ð18Þ

where

γ̄ ¼ coshðY − ηÞ; v̄ ¼ tanhðY − ηÞ: ð19Þ
By using this parameterization, one obtains

D ¼ γ̄

�
∂τ þ

1

τ
v̄∂η

�
ð20Þ

Θ ¼ γ̄

�
v̄∂τY þ 1

τ
∂ηY

�
: ð21Þ

Now, Eq. (14) leads to

ðτ∂τþ v̄∂ηÞϵþðϵþPÞðτv̄∂τYþ∂ηYÞ¼ γ̄ð−1ÞτeλJλ; ð22Þ

and Eq. (15), for α ¼ η, gives

ðϵþ PÞDuη þ∇ηP ¼ FηλJλ − uηðeλJλÞ ð23Þ
with

Duη ¼ 1

τ2
γ̄2ðτ∂τ þ v̄∂ηÞY ð24Þ

∇ηP ¼ 1

τ2
γ̄2ðτv̄∂τ þ ∂ηÞP: ð25Þ

Finally, for the Euler Eq. (15), we get the expression

ðϵþ PÞðτ∂τ þ v̄∂ηÞY þ ðτv̄∂τ þ ∂ηÞP
¼ γ̄ð−2Þτ2½FηλJλ − uηeλJλ�; ð26Þ

In general, the electric and magnetic four vectors are
considered in the transverse plane as follows:

eμ ¼ ð0; ex; ey; 0Þ; ð27Þ
bμ ¼ ð0; bx; by; 0Þ; ð28Þ

where e, b are the magnitudes of the EM fields. Then the
relevant components of the electromagnetic tensor and
induced current are

Fηx ¼ γ̄

τ
ðby þ v̄exÞ; Jx ¼ σex

Fηy ¼ γ̄

τ
ð−bx þ v̄eyÞ; Jy ¼ σey;

where uμeμ ¼ uμbμ ¼ 0 is satisfied. So, Eqs. (22) and (26)
become

ðτ∂τþ v̄∂ηÞϵþðϵþPÞðτv̄∂τYþ∂ηYÞ¼ γ̄ð−1Þτσðe2xþe2yÞ;
ð29Þ

ðϵþPÞðτ∂τþ v̄∂ηÞYþðτv̄∂τþ∂ηÞP¼ γ̄ð−1Þτσðexby−eybxÞ:
ð30Þ

Clearly, due to the EM fields, the boost invariance of the
solutions is broken. However, if the electric and magnetic
fields would be in parallel or antiparallel directions [40,41],
then the rhs of the Euler equation (30) will disappear. By
considering a time dependent evolution for the medium, the
fluid under study will not accelerate and the Bjorken flow is
preserved.
However, noncentral collisions can create an out-of-plane

magnetic field and in-plane electric field. Themagnetic field
in noncentral collisions is dominated by the y component,
which induces a Faraday current in xz plane [44,45]. In
particular, we are interested here in obtaining solutions
representing the RMHD extension of one-dimensional
generalized Bjorken flow (vz ≠ z

t) along the z direction with
velocity uμ ¼ γð1; 0; 0; vzÞ, the Lorentz force being directed
along the x direction. We assume that the electric field is
oriented in x direction and the magnetic field is
perpendicular to the reaction plane pointing along the y
direction in an inviscid fluid with finite electrical conduc-
tivity and the flow expansion being along the z direction.
The homogeneous Maxwell equation dμF�μν ¼ 0 leads

to the following equations:

∂xF�xτ þ ∂yF�yτ þ ∂ηF�ητ ¼ 0; ð31Þ

∂τF�τx þ ∂yF�yx þ ∂ηF�ηx þ 1

τ
F�τx ¼ 0; ð32Þ

∂τF�τy þ ∂xF�xy þ ∂ηF�ηy þ 1

τ
F�τy ¼ 0; ð33Þ

∂τF�τη þ ∂xF�xη þ ∂yF�yη þ 1

τ
F�τη ¼ 0: ð34Þ

In the same way, the inhomogeneous Maxwell equations
dμFμν ¼ −Jν are given by

∂xFxτ þ ∂yFyτ þ ∂ηFητ ¼ −Jτ; ð35Þ

∂τFτx þ ∂yFyx þ ∂ηFηx þ 1

τ
Fτx ¼ −Jx; ð36Þ

∂τFτy þ ∂xFxy þ ∂ηFηy þ 1

τ
Fτy ¼ −Jy; ð37Þ

∂τFτη þ ∂xFxη þ ∂yFyη þ 1

τ
Fτη ¼ −Jη; ð38Þ

Let’s now consider the following setup:
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uμ ¼
�
coshðY − ηÞ; 0; 0; 1

τ
sinhðY − ηÞ

�
;

eμ ¼ ð0; ex; 0; 0Þ; bμ ¼ ð0; 0; by; 0Þ: ð39Þ

After substituting the above setup (39) in Maxwell equa-
tions, we obtain

∂τ

��
uτby þ 1

τ
exuη

��
þ ∂η

��
uηby −

1

τ
exuτ

��

þ 1

τ

��
uτby þ 1

τ
exuη

��
¼ 0; ð40Þ

∂τ

��
uτex þ 1

τ
byuη

��
þ ∂η

��
uηex −

1

τ
byuτ

��

þ 1

τ

��
uτex þ 1

τ
byuη

��
¼ −σex: ð41Þ

We suppose that all quantities are constant in the transverse
plane. Hence, in order to solve the last two equations, we
can write the following Ansatz3:

exðτ; ηÞ ¼ −hðτ; ηÞ sinhðY − ηÞ; ð42Þ

byðτ; ηÞ ¼ hðτ; ηÞ coshðY − ηÞ; ð43Þ
then Eqs. (40) and (41) give

∂τhðτ; ηÞ þ
hðτ; ηÞ

τ
¼ 0; ð44Þ

∂ηhðτ; ηÞ þ στhðτ; ηÞ sinhðη − YÞ ¼ 0; ð45Þ
and the solution of Eq. (44) can be written as

hðτ; ηÞ ¼ cðηÞ
τ

; ð46Þ

where, cðηÞ is an arbitrary function.
Moreover, from Eq. (45) we can find

sinhðY − ηÞ ¼ 1

στ

∂ηcðηÞ
cðηÞ ð47Þ

and

coshðY − ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

σ2τ2

�∂ηcðηÞ
cðηÞ

�
2

s
: ð48Þ

We summarize the solutions for fluid rapidity, four
velocity profile, and EM fields as follows:

Y ¼ ηþ sinh−1
�
1

στ

∂ηcðηÞ
cðηÞ

�
; ð49Þ

uτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

σ2τ2

�∂ηcðηÞ
cðηÞ

�
2

s
; ð50Þ

uη ¼ 1

στ2
∂ηcðηÞ
cðηÞ ; ð51Þ

exðτ; ηÞ ¼ −
1

στ2
∂cðηÞ
∂η ; ð52Þ

byðτ; ηÞ ¼
cðηÞ
τ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

σ2τ2

�∂ηcðηÞ
cðηÞ

�
2

s
: ð53Þ

The time dependence of the above solutions is clear, but the
η dependence profile is not yet known. Indeed, we do not
get a unique solution for the system under investigation
unless we impose other restrictions on the solutions.
Here, we highlight some comments in order to impose

further constraints on the solutions:
(i) We remind that the relation between fluid rapidity

and space-time rapidity is Y ¼ λη, where λ is called
the acceleration parameter [46]. So, we can write

λ ¼ 1þ 1

η
sinh−1

�
1

στ

∂ηcðηÞ
cðηÞ

�
: ð54Þ

If we choose a constant value for cðηÞ ¼ const, then
the flow has no acceleration λ ¼ 1, ðY ≡ η →
v̄ ¼ 0Þ, the electric field ex vanishes, and the
magnetic field is obtained as by ∝ 1

τ, which is
equivalent to the frozen flux theorem; indeed, this
happens in ideal RMHD where the electrical con-
ductivity is infinite (σ → ∞). Then, the flow under
study will not change and the Bjorken model will be
recovered; we will get ϵ ∝ τ−

4
3 if κ ¼ 1

3
.

From the experimental data, it is found that λ > 1,
which means that the fireball expansion is fast and a
large energy density deposits at midrapidity η.

(ii) Besides, according to Refs. [44,45],4 the electric
field ex has opposite directions at positive and
negative rapidity. Also, at midrapidity η ¼ 0, the
electric field is zero, but the magnetic field by
at midrapidity has a nonzero value. So, we can

3By considering this kind of Ansatz, we find that the EM fields
in the lab frame would be as follow: Ei

L ¼ F0i ¼ 0 and
Bi

L ¼ F⋆0i → By
L ¼ hðτ; ηÞ.

4In our study, transverse RMHD, the fluid velocity is
perpendicular to EM fields, and the proper charge density ρ is
zero because in the aforementioned setup, there is no vorticity:
please refer to Appendices in Refs. [34,40]. In this case, the
electric field is contributed from the Faraday law and Lorentz
force. Indeed, based on the Faraday law, the decreasing magnetic
field by with time produces an electric field in the direction x, and
since the fluid has a huge longitudinal velocity, Lorentz force is
oriented in x axes.
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consider the function cðηÞ as an even function in
terms of rapidity but not vanishing at midrapidity.
Moreover, since the function cðηÞ has to be consid-
ered as a small deviation from the case of highly
conductive plasma, one can assume that the dynami-
cal electromagnetic fields in QGP roughly follows
the similar patterns of the external fields created by
charged spectators.

(iii) According to the Ansatz in Eqs. (42) and (43), the
EM fields in the lab frame in the Milne coordinate
could be obtained as follows:

Ẽi
L ¼ F0i ¼ 0; ð55Þ

B̃i
L ¼ F⋆0i: ð56Þ

We use the lower index L for the EM fields in the
laboratory frame and tilde symbol for the Milne
coordinate. We find that in the lab frame Ẽx

L ¼ 0 and

B̃y
L ¼ cðηÞ

τ . Meanwhile, in the Minkowski coordi-
nate,5 the EM field could be obtained as follows:

EL ¼
�
sinhðηÞ cðηÞ

τ
; 0; 0

�
; ð57Þ

BL ¼
�
0; coshðηÞ cðηÞ

τ
; 0

�
: ð58Þ

As we can observe the electric field Ẽ ¼ 0 in the lab
frame of Milne coordinates is zero, in the lab frame
of Minkowski coordinates E ≠ 0 is not zero.
Now, we try to show the self-consistence of our

solutions in the lab frame. From Faraday law

∇ ×EL ¼ −∂tBL; ð59Þ

one can check the self-consistence of Maxwell’s
equations. It is found that with Eqs. (57) and (58) the
∂yEx

L ¼ ∂tB
z
L ¼ 0 and ∂zEx

L ¼ −∂tB
y
L are automati-

cally satisfied. Similarly, ∇ · EL ¼ ρ and ∇ ·BL ¼
0 are satisfied with ρ ¼ 0.
The last Maxwell’s equation is

∇ ×BL ¼ jþ ∂tEL; ð60Þ

j ¼ σγðEL þ v × BLÞ; ð61Þ

where v is the three-vector fluid velocity uμ ¼
γð1; vÞ. It is clear that in our setup ∂xB

y
L ¼ 0 and

−∂zB
y
L ¼ σγðEx

L − vzB
y
LÞ þ ∂tEx

L are satisfied. As
we observed, the relativistic induced current j is
along the x axis.

Finally, taking into account the above considerations, we
can model cðηÞ by taking a simple function as follows:

cðηÞ ¼ c0 coshðαηÞ; ð62Þ

with small values of α. In order to fix the constant c0, we
consider the initial condition for the magnetic field at
midrapidity in the lab frame, which is By

Lðτ0; 0Þ ¼
0.0018 GeV2

e [45], while the coefficient α is selected as
an arbitrary small value in order to parameterize the
acceleration parameter λ. Later, we discuss the effect of
variations in α and σ.
The next step is to solve the conservation equations; the

main idea for solving Eqs. (29) and (30) is to change these
two couple partial differential equations (PDEs) into two
ordinary differential equations (ODEs) with a given initial
condition ϵðτ0; 0Þ ¼ ϵ0 [35]. The combination of the
energy and Euler Eqs. (29) and (30) can be rewritten as
follows:

∂τϵðτ; ηÞ þ
1þ κ

τ
Aðτ; ηÞϵðτ; ηÞ ¼ Bðτ; ηÞ ð63Þ

∂ηϵðτ; ηÞ þHðτ; ηÞϵðτ; ηÞ ¼ Gðτ; ηÞ; ð64Þ

where κ ¼ 1
3
is considered and

Aðτ; ηÞ ¼
�∂ηYðv̄2 − κÞ − ðκ − 1Þτv̄∂τY

κðv̄2 − 1Þ
��

ð65Þ

Bðτ; ηÞ ¼ σðexbyv̄ − κe2xÞ
κγ̄ðv̄2 − 1Þ ð66Þ

Hðτ; ηÞ ¼ 1

κ
ðð1þ κÞðτ∂τY þ v̄∂ηYÞÞ − ð1þ κÞv̄Aðτ; ηÞ

ð67Þ

Gðτ; ηÞ ¼ ðστÞexby
γ̄κ

− τv̄Bðτ; ηÞ: ð68Þ

We can think of solving this coupled system of PDEs on
a grid of points in the ðτ; ηÞ plane. First, we move along the
τ direction and solve Eq. (63) to find out the τ-dependence
of the function ϵ, keeping constant the variable η. In this
step we treat Eq. (63) as an ODEwith respect to τ. Then, we
move along the η direction keeping the solution ϵðηÞ
previously found as the initial condition for solving (as
an ODE) Eq. (64). Finally, we obtain numerically the full
energy density profile.

5The transformation of the EM fields from Minkowski
coordinates to Milne coordinates is as follows: Ẽx ¼ cosh ηEx−
sinh ηBy, Ẽy ¼ cosh ηEy þ sinh ηBx, Ẽη ¼ Ez

τ , B̃
x ¼ cosh ηBxþ

sinh ηEy, B̃y ¼ cosh ηBy − sinh ηEx, B̃η ¼ Bz

τ .
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IV. DISCUSSION AND CONCLUSION

From pure analytical solutions, we found that by con-
sidering a finite electrical conductivity the longitudinal
evolution of the fluid subject to the presence of EM fields
will accelerate. Figure 1 shows the acceleration parameter
λðτ; ηÞ in terms of τ for different values of rapidity. As one
expects, the acceleration parameter decreases with time but
remains larger than 1 up to very late times. In Fig. 2, the
acceleration parameter is depicted in terms of rapidity for
fixed τ. In both forward and backward rapidity, by
increasing the jηj, the acceleration parameter decreases.
Next, we investigated the dynamical evolution of EM

fields. In Figs. 3 and 4, exðτ; ηÞ is displayed at either fixed η
or fixed τ, respectively. From Fig. 3, one finds that
following the time evolution the electric field decays and
at late times is very small. In Fig. 4, one can see that in
central rapidity, after the QGP is formed, the electric field is
zero and no external electric fields are left in average.
However, the electric field is stronger at large rapidities
since it is generated by the close nucleus. As one observes,

the electric field has opposite signs for forward and
backward rapidity, being an odd function of η.
Figures 5 and 6 show byðτ; ηÞ in terms of τ for several

values of rapidity and vice versa, respectively. Similarly to
the electric field, the magnetic field decreases with increas-
ing time at all rapidities and increases at fixed times with
rapidity. However, at variance with the electric field, the
magnetic one has a nonzero value at central rapidity [45].
The ratio of energy density ϵðτ; ηÞ=ϵ0, in terms of τ for

several values of rapidity, is illustrated in Fig. 7. As the
fluid expands, the energy density decays. In this figure, we
compare the accelerated fluid with the Bjorken model. One
can find that the decay rate for the accelerated plasma is
faster than for the Bjorken fluid. In Fig. 8, the ϵðτ; ηÞ=ϵ0 as
a function of rapidity for fixed τ is plotted. Naively, it seems
that at the early time when QGP is formed the η profile for
the ϵðτ; ηÞ=ϵ0 has a Gaussian form, while at the late time it
becomes rather a plateau in agreement with [8]. It is found
that energy density slowly flows toward high rapidity at the
later time.
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FIG. 1. Acceleration parameter λðτ; ηÞ in terms of proper time τ
for different rapidities. The values α ¼ 0.1 and σ ¼ 0.023 fm−1

are chosen.
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FIG. 2. Acceleration parameter λðτ; ηÞ in terms of rapidity η for
different proper times τ0 ¼ 0.5; τ ¼ 1; τ1 ¼ 3 fm. The values
α ¼ 0.1 and σ ¼ 0.023 fm−1 are chosen.
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FIG. 3. Electric field exðτ; ηÞ in terms of proper time τ for
different rapidities. The values α ¼ 0.1 and σ ¼ 0.023 fm−1 are
chosen.
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FIG. 4. Electric field exðτ; ηÞ in terms of rapidity η for different
proper times τ0 ¼ 0.5; τ ¼ 1; τ1 ¼ 3 fm. The values α ¼ 0.1 and
σ ¼ 0.023 fm−1 are chosen.
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In order to discuss the dependence of the model on the
parameters α and σ, we concentrate on the quantity
ϵðτ; ηÞ=ϵ0 and discuss both its time and rapidity evolutions
with different choices of the above mentioned parameters.
Figures 9 and 10 show the time evolution of ϵðτ; ηÞ=ϵ0 in
the midrapidity η ¼ 0 at either fixed σ or fixed α,
respectively. From Fig. 9, the smallest value of α brings
the present model close to the Bjorken model, but for larger
values of α, which imply a highly accelerated fluid, the rate
of decay for ϵðτ; ηÞ=ϵ0 would be faster. Besides, in Fig. 10,
for higher values of σ the ϵðτ; ηÞ=ϵ0 is compatible with the
Bjorken flow, while for small values of the electrical
conductivity the decay rate for the expanding fluid is fast.
Finally, in Figs. 11 and 12, a similar discussion is

presented for the rapidity profile of ϵðτ; ηÞ=ϵ0 at the fixed
proper time τ0 ¼ 0.5 fm. Figure 11, where σ is fixed,
shows that by decreasing α the rapidity profile (at the QGP
formation proper time) evolves toward a plateau. But if
α ≤ 0.06, the ϵðτ0; ηÞ=ϵ0 becomes divergent at high

0

2

3

0.5 1.0 1.5 2.0 2.5 3.0

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

fm c

b
y

,
G

eV
2

e

FIG. 5. Magnetic field byðτ; ηÞ in terms of proper time τ for
different rapidities. The values α ¼ 0.1 and σ ¼ 0.023 fm−1 are
chosen.
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FIG. 6. Magnetic field byðτ; ηÞ in terms of rapidity η for
different proper times τ0 ¼ 0.5; τ ¼ 1; τ1 ¼ 3 fm. The values
α ¼ 0.1 and σ ¼ 0.023 fm−1 are chosen.
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FIG. 7. The ratio of energy density ϵðτ; ηÞ=ϵ0 in terms of proper
time τ for different rapidities and comparison with Bjorken model
(thin continuous line). The values α ¼ 0.1 and σ ¼ 0.023 fm−1

are chosen.
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FIG. 8. The ratio of energy density ϵðτ; ηÞ=ϵ0 in terms of
rapidity η for different proper times τ0 ¼ 0.5; τ ¼ 1; τ1 ¼ 3 fm.
The values α ¼ 0.1 and σ ¼ 0.023 fm−1 are chosen.
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FIG. 9. The ratio of energy density ϵðτ; ηÞ=ϵ0 in terms of proper
time τ at midrapidity η ¼ 0 for different values of α and
comparison with Bjorken model (thin continuous line). The
value σ ¼ 0.023 fm−1 is chosen.

ACCELERATING LONGITUDINAL EXPANSION OF RESISTIVE … PHYS. REV. D 102, 014017 (2020)

014017-7



rapidity. Analogous behavior can be found in Fig. 12 where
α is fixed; indeed, if we increase the value of σ, the rapidity
profile ϵðτ0; ηÞ=ϵ0 tends to a plateau, but for σ > 0.053 fm−1

it will not be flat. As we observe, α has a diverse role with
respect to σ. Also, it appears that in a realistic situation there
is a lower limit for α and an upper limit for σ.
In the RRMHD framework, we found that the Bjorken

flow is generalized and the longitudinal expansion of the
magnetized QGP is accelerated. The acceleration parameter
λ directly depends upon the inverse of the proper time τ and
of the electrical conductivity of the matter. Clearly, when
the system expands the acceleration will decrease. As
expected, we found that when the electrical conductivity
is high then the acceleration of the fluid is negligible, but in
a finite range for σ, acceleration will be present and
sizeable. It is interesting to keep in mind that σ is propor-
tional to the temperature of the QGP matter [36]. Since the
initial temperature increases with larger center-of-mass
energy

ffiffiffiffiffiffiffiffi
SNN

p
, one deduces that the acceleration decreases

with increasing center-of-mass energy. This result is in
agreement with Ref. [9]. These authors conclude that the
acceleration (longitudinal) is the largest in central colli-
sions, and it decreases with increasing center-of-mass
energy. In the present work, we cannot find a direct
connection between the acceleration and the centrality of
the collisions, since the latter implies a transverse width of
the material, while we are only considering the longi-
tudinal flow.
In our solutions, the dynamical evolution of EM fields

decays with time and is proportional to the inverse of σ.
Indeed, in the limit of infinite σ, the electric field ex is zero
and the magnetic field by ∝ 1

τ is consistent with previous
results [26]. The EM fields will be stronger at high rapidity
since it is generated by the close nucleus. Indeed, in our
setup, we do not have any net charge for the ideal fluid so
the origin of the EM fields are the charged spectators flying
away along the beam directions.
The energy density decays with time and is not flat with

η at early times when QGP is formed, although, a kind of
Gaussian form for the initial energy density was proposed
by [6–8]. With decreasing the electrical conductivity, the
decay rate for the energy density increases.
In order to justify the selected model for the even

function cðηÞ, we notice that if cðηÞ ¼ c0 is constant then
the fluid is not accelerated, and Bjorken flow is preserved.
Hence, we deviated from this simple scenario by adding
some polynomial terms to it as perturbation,

cðηÞ ¼ c0

�
1þ α2

2!
η2 þ � � �

�
; ð69Þ

where α must be small. In a rapidity interval −3 ≤ η ≤ 3,
and with an upper bound limit of α ≤ 0.1, then one can
approximate the cðηÞ as follows:
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FIG. 10. The ratio of energy density ϵðτ; ηÞ=ϵ0 in terms of
proper time τ at midrapidity η ¼ 0 for different values of σ and
comparison with Bjorken model (thin continuous line). The value
α ¼ 0.1 is chosen.
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FIG. 11. The ratio of energy density ϵðτ; ηÞ=ϵ0 in terms of
rapidity η at early proper time τ0 ¼ 0.5 fm for different values of
α. The value σ ¼ 0.023 fm−1 is chosen.
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rapidity η at early proper time τ0 ¼ 0.5 fm for different values of
σ. The value α ¼ 0.1 is chosen.
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cðηÞ ¼ c0 coshðαηÞ; ð70Þ

which is the Ansatz used in the present model.
The present work can be used to validate future numeri-

cal work in the context of RRMHD in heavy ion collisions.
The parameter κ (ratio of pressure to energy density) can
also be changed simultaneously with the parameters α and
σ and, in fact, the aforementioned model can be studied
with various equations of state.
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