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We identify a property of renormalizable SU(N)/U(1) gauge theories, intrinsic conformality (iCF), which
underlies the scale invariance of physical observables and leads to a remarkably efficient method to solve
the conventional renormalization scale ambiguity at every order in perturbative QCD (pQCD): the PMC∞.
This new method reflects the underlying conformal properties displayed by pQCD at next-to-next-to-
leading order, eliminates the scheme dependence of pQCD predictions, and is consistent with the general
properties of the principle of maximum conformality (PMC). We introduce a new method to identify
conformal and β-terms which can be applied from either a numerical or an analytical calculations. We
illustrate the PMC∞ for the thrust and C-parameter distributions in eþe− annihilation and then show how to
apply this new method to general observables in QCD. We point out how the implementation of the PMC∞
can significantly improve the precision of pQCD predictions; its implementation in a multiloop analysis
also simplifies the calculation of higher order corrections in a general renormalizable gauge theory.
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I. INTRODUCTION

A key issue in making precise predictions in QCD is the
uncertainty in setting the renormalization scale μR in order
to determine the correct running coupling αsðμ2RÞ in the
perturbative expansion of a scale-invariant quantity. The
conventional practice of simply guessing the scale μR of the
order of a typical momentum transfer Q in the process, and
then varying the scale over a range Q=2 and 2Q, gives
predictions which depend on the renormalization scheme,
retains dependence on the initial scale choice, leads to a
nonconformal series which diverges as ∼αnsβn0n!, and is
even invalid for QED [1]. In fact, a physical process will
depend on many invariants and thus have multiple renorm-
alization scales which depend on the dynamics of the
process. Other proposals for renormalization scale settings
such as PMS [2] or FAC [3] not only have the same

difficulties, but they also lead to incorrect and unphysical
results [4]. It has been shown recently how all the
theoretical constraints can be satisfied at once, leading to
accurate results by using the principle of maximum con-
formality (PMC) [5–7]. The primary purpose of the PMC
method is to solve the scale-setting ambiguity; it has been
extended to all orders [8,9], and it determines the correct
running coupling and the correct momentum flow, accord-
ingly, to the RGE invariance [10,11]. This leads to results
that are invariant with respect to the initial renormalization
scale, in agreement with the requirement of scale invariance
of an observable in pQCD [12].
We show here how the implementation at all orders of the

PMC simplifies in many cases by identifying only the β0-
terms at each order of accuracy due to the presence of a new
property of the perturbative corrections. First we recall that
there is no ambiguity in setting the renormalization scale in
QED. The standard Gell-Mann-Low scheme determines the
correct renormalization scale by setting the scale to the
virtuality of the exchanged photon [13]. For example, in
electron-muon elastic scattering, the renormalization scale is
the virtuality of the exchanged photon, i.e., the spacelike
momentum transfer squared μ2R ¼ q2 ¼ t. Thus,

αðtÞ ¼ αðt0Þ
1 − Πðt; t0Þ

ð1Þ
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where

Πðt; t0Þ ¼
ΠðtÞ − Πðt0Þ
1 − Πðt0Þ

:

From Eq. (1) it follows that the renormalization scale μR ¼ t
can be determined by the β0-term at the lowest order. This
scale is sufficient to sum all the vacuum polarization
contributions into the dressed photon propagator, both
proper and improper at all orders. Again in QED, consid-
ering the case of two-photon exchange, a new, different scale
is introduced in order to absorb all the β-terms related to the
new subset or subprocess into the scale. Also in this case the
scale can be determined by identifying the lowest order β0-
term alone. This term identifies the virtuality of the
exchanged momenta causing the running of the scale in
that subprocess. This scale again would sum all the con-
tributions related to the β-function into the renormalization
scale, and no further corrections need to be introduced to the
scale at higher orders. Given that the pQCD and pQED
predictions match analytically in the NC → 0 limit where
CFαQCD → αQED (see Ref. [14]), we extend the same
procedure to pQCD. In fact, in many cases in QCD, the
β0 terms alone can determine the pQCD renormalization
scale at all orders [15], eliminating the renormalon contri-
butions αnsβ

n
0n!. Though in non-Abelian theories other

diagrams related to the three- and four-gluon vertices arise,
these terms do not necessarily spoil this procedure. In fact, in
QCD, the β0 terms arising from the renormalization of the
three-gluon or four-gluon vertices as well as from gluon
wave-function renormalization determine the renormaliza-
tion scales of the respective diagrams, and no further
corrections to the scales need to be introduced at higher
orders. In conclusion, if we focus on a particular class of
diagrams,wecanfixthePMCscalebydeterminingtheβ0-term
alone, and we show this to be connected to the general scale
invarianceofanobservable inagauge theory. In this article,we
introduce a parametrization of the observables which stems
directly from the analysis of the perturbativeQCDcorrections
and which reveals interesting properties like scale invariance
independently of the process or the kinematics. We point out
that this parametrizationcanbean intrinsicgeneral propertyof
gauge theories, and we define this property as intrinsic
conformality (iCF1). We also show how this property directly
indicates what the correct renormalization scale μR is at each
orderofcalculation, andwedefine thisnewmethodasPMC∞:
infinite-order scale-setting using the principle of maximum
conformality.We discuss the iCF property and the PMC∞ for
thecaseof the thrust andC-parameter distributions ineþe− →
3 jets, and we show the results.
In general, a normalized IR-safe single-variable observ-

able, such as the thrust distribution for the eþe− → 3 jets
[16,17], is the sum of pQCD contributions calculated up to
next-to-next-to-leading order (NNLO) at the initial renorm-
alization scale μ0:

1

σ0

Odσðμ0Þ
dO

¼
�
αsðμ0Þ
2π

OdAOðμ0Þ
dO

þ
�
αsðμ0Þ
2π

�
2OdBOðμ0Þ

dO

þ
�
αsðμ0Þ
2π

�
3OdCOðμ0Þ

dO
þOðα4sÞ

�
; ð2Þ

where is the σ0 is tree-level hadronic cross section; the AO,
BO, and CO are, respectively, the LO, NLO, and NNLO
coefficients; and O is the selected nonintegrated variable.
For the sake of simplicity, we will refer to the differential
coefficients as to implicit coefficients, and we drop the
derivative symbol, i.e.,

AOðμ0Þ≡OdAOðμ0Þ
dO

; BOðμ0Þ≡OdBOðμ0Þ
dO

;

COðμ0Þ≡OdCOðμ0Þ
dO

: ð3Þ

We define here the intrinsic conformality as the pro-
perty of a renormalizable SU(N)/U(1) gauge theory, like
QCD, which yields to a particular structure of the per-
turbative corrections that can be made explicit by repre-
senting the perturbative coefficients using the following
parametrization2:

AOðμ0Þ ¼ AConf ;

BOðμ0Þ ¼ BConf þ
1

2
β0 ln

�
μ20
μ2I

�
AConf ;

COðμ0Þ ¼ CConf þ β0 ln

�
μ20
μ2II

�
BConf

þ 1

4

�
β1 þ β20 ln

�
μ20
μ2I

��
ln

�
μ20
μ2I

�
AConf ; ð4Þ

where AConf , BConf , and CConf are the scale-invariant
conformal coefficients (i.e., the coefficients of each per-
turbative order not depending on the scale μ0) while we
define μN as intrinsic conformal scales and β0, β1 are the
first two coefficients of the β-function. We note that the
implicit coefficients are defined at the scale μ0 and that they
change according to the standard RG equations under a
change of the renormalization scale according to

AOðμRÞ ¼ AOðμ0Þ;

BOðμRÞ ¼ BOðμ0Þ þ
1

2
β0 ln

�
μ2R
μ20

�
AOðμ0Þ;

COðμRÞ ¼ COðμ0Þ þ β0 ln

�
μ2R
μ20

�
BOðμ0Þ

þ 1

4

�
β1 þ β20 ln

�
μ2R
μ20

��
ln

�
μ2R
μ20

�
AOðμ0Þ: ð5Þ

1Here, the conformality is intended as RG invariance only.

2We neglect other running parameters here such as the mass
terms.
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It can be shown that the form of Eq. (4) is scale invariant,
and it is preserved under a change of the renormalization
scale from μ0 to μR by standard RG equations (5), i.e.,

AOðμRÞ ¼ AConf ;

BOðμRÞ ¼ BConf þ
1

2
β0 ln

�
μ2R
μ2I

�
AConf ;

COðμRÞ ¼ CConf þ β0 ln

�
μ2R
μ2II

�
BConf

þ 1

4

�
β1 þ β20 ln

�
μ2R
μ2I

��
ln

�
μ2R
μ2I

�
AConf : ð6Þ

We notice that the form of Eq. (4) is invariant and that the
initial scale dependence is exactly removed by μR.
Extending this parametrization to all orders, we achieve
a scale-invariant quantity: The iCF parametrization is a
sufficient condition in order to obtain a scale-invariant
observable.
In order to show this property, we collect the terms

identified by the same conformal coefficient, we call each
set a conformal subset, and we extend the property to the
order n:

σI ¼
��

αsðμ0Þ
2π

�
þ 1

2
β0 ln

�
μ20
μ2I

��
αsðμ0Þ
2π

�
2

þ 1

4

�
β1þ β20 ln

�
μ20
μ2I

��
ln

�
μ20
μ2I

��
αsðμ0Þ
2π

�
3

þ…

�
AConf

σII ¼
��

αsðμ0Þ
2π

�
2

þ β0 ln

�
μ20
μ2II

��
αsðμ0Þ
2π

�
3

þ…

�
BConf

σIII ¼
��

αsðμ0Þ
2π

�
3

þ…

�
CConf ;

..

.
::
:

σn ¼
��

αsðμ0Þ
2π

�
n
�
LnConf : ð7Þ

In each subset we have only one intrinsic scale and only one
conformal coefficient, and the subsets are disjoint; then no
mixing terms among the scales or the coefficients are
introduced in this parametrization. The structure of the
subsets remains invariant under a global change of the
renormalization scale as shown from Eq. (6). The structure
of each conformal set σI; σII; σIII;… and, consequently, the
iCF are also preserved if we fix a different renormalization
scale for each conformal subset, i.e.,

�
μ2

∂
∂μ2 þ βðαsÞ

∂
∂αs

�
σn ¼ 0: ð8Þ

We define here the property of Eq. (7) of separating an
observable in the union of ordered scale-invariant disjoint
subsets σI; σII; σIII;… as ordered scale invariance.

In order to extend the iCF to all orders, we first define a
partial limit J=n → ∞ as the limit obtained by including
the higher order corrections relative only to those
β0; β1; β2;…; βn−2 terms that have been determined already
at order n for each subset. Then we perform the comple-
mentary n̄ limit which consists in including all the
remaining terms. For the J=n limit we have

lim
J=n→∞

σI →

�
αsðμIÞjn−2

2π

�
AConf

lim
J=n→∞

σII →

�
αsðμIIÞjn−3

2π

�
2

BConf

lim
J=n→∞

σIII →

�
αsðμIIIÞjn−4

2π

�
3

CConf

..

. ..
.

lim
J=n→∞

σn ≡
�
αsðμ0Þ
2π

�
n
LnConf ð9Þ

where αsðμIÞjn−2 is the coupling calculated up to βn−2 at the
intrinsic scale μI . Given the particular ordering of the
powers of the coupling, in each conformal subset we have
the coefficients of the β0;…; βn−k−1 terms, where k is the
order of the conformal subset and n is the order of the
highest subset with no β-terms. We notice that the limit of
each conformal subset is finite and scale invariant up to
σn−1. The remaining scale dependence is confined in the
coupling of the nth term. Any combination of the
σI;…; σn−1 subsets is finite and scale invariant. We can
now extend the iCF to all orders by performing the n̄ limit.
In this limit we include all the remaining higher order
corrections. For the calculated conformal subsets this leads
to defining the coupling at the same scales but including all
the missing β terms. Thus, each conformal subset remains
scale invariant. We point out that we are not making any
assumption on the convergence of the series for this limit.
Then we have

lim
n̄→∞

σI →

�
αsðμIÞ
2π

�
AConf

lim
n̄→∞

σII →

�
αsðμIIÞ
2π

�
2

BConf

lim
n̄→∞

σIII →

�
αsðμIIIÞ
2π

�
3

CConf

..

. ..
.

lim
n̄→∞

σn ≡ lim
n→∞

�
αsðμ0Þ
2π

�
n
LnConf → Conformal Limit

ð10Þ
where αsðμIÞ is the complete coupling determined at the
same scale μI . Equation (10) shows that the whole
renormalization scale dependence has been completely
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removed. In fact, neither the intrinsic scales μN nor the
conformal coefficients AConf ; BConf ; CConf ;…;LnConf ;…
depend on the particular choice of the initial scale. The
only term with a residual μ0 dependence is the n-term, but
this dependence cancels in the limit n → ∞. The scale
dependence is totally confined in the couplingαsðμ0Þ, and its
behavior does not depend on the particular choice of any
scale μ0 in the perturbative region, i.e., limn→∞ αsðμ0Þn ∼ an

with a < 1. Hence the limit of limn→∞ σn depends only on
the properties of the theory and not on the scale of the
coupling in the perturbative regime. The proof given here
shows that the iCF is sufficient to have a scale-invariant
observable, and it does not depend on the particular con-
vergence of the series. In order to show the necessary
condition, we separate the two cases of a convergent series
and an asymptotic expansion. For the first case the necessary
condition stems directly from the uniqueness of the iCF form
since, given a finite limit and the scale invariance, any other
parametrization can be reduced to the iCF by means of
appropriate transformations in agreement with the RG
equations. For the second case, an asymptotic expansion,
though not convergent, can be truncated at a certain order n,
which is the case of Eq. (7). Given the particular structure of
the iCF, we can perform the first partial limit J=n, and we
would achieve a finite and scale-invariant prediction,
σN−1 ¼ Σn−1

i¼1σi, for a truncated asymptotic expansion, as
shown in Eq. (9). Given the truncation of the series in the
region of maximum convergence, the nth term would be
reduced to the lowest value, so the scale dependence of the
observable would reach its minimum. Given the finite and
scale-invariant limit σN−1, we conclude that the iCF is unique
and then necessary for an ordered scale-invariant truncated
asymptotic expansion up to the nth order. We point out that,
in general, the iCF form is the most general and irreducible
parametrization which leads to the scale invariance. Other
parametrizations are forbidden since if we introduce more
scales3 in the logarithms of one subset, we would spoil the
invariance under the RG transformation, and we could not
achieve Eq. (6); on the other hand, no scale dependence can
be introduced in the intrinsic scales since it would remain in
the observable already in the first partial limit J=n and it could
not be eliminated. The conformal coefficients are conformal
quantities by definition at each order; thus, they do not
depend on the renormalization scale, and they do not have a
perturbative expansion. Hence, the iCF is a necessary and
sufficient condition for scale invariance.

II. ICF AND ORDERED SCALE INVARIANCE

The iCF parametrization can stem from either an
inner property of the theory, the iCF, or from direct

parametrization of the scale-invariant observable. In both
cases the iCF parametrization makes the scale dependence
of the observable explicit, and it exactly preserves the scale
invariance. Once we have defined an observable in the iCF
form, we not only have the scale invariance of the entire
observable but also the ordered scale invariance (i.e., the
scale invariance of each subset σn or σN−1). The latter
property is crucial in order to obtain scale-invariant obser-
vables independently from the particular kinematical region
and independently from the starting order of the observable
or the order of the truncation of the series. Since, in general,
a theory is blind with respect to the particular observable/
process that we investigate, the theory should preserve the
ordered scale invariance in order to always define scale-
invariant observables. Hence, if the iCF is an inner property
of the theory, it leads to implicit coefficients that are neither
independent nor conformal. This is made explicit in Eq. (4),
but it is hidden in the perturbative calculations in the case of
the implicit coefficients. For instance, the presence of the
iCF clearly reveals when a particular kinematical region is
approached and the AO becomes null. This would cause a
break of the scale invariance since a residual initial scale
dependence would remain in the observable in the higher
order coefficients. The presence of the iCF solves this issue
by leading to the correct redefinition of all the coefficients
at each order, preserving the correct scale invariance
exactly. Thus, in the case of a scale-invariant observable
O defined, according to the implicit form [Eq. (2)], by the
coefficients fAO; BO; CO;…; OO;…g, it cannot simply
undergo the change → f0; BO; CO;…; OO;…g since this
would break the scale invariance. In order to preserve the
scale invariance, we must redefine the coefficients fÃO ¼
0; B̃O; C̃O;…; ÕO;…g canceling out all the initial scale
dependence originating from the LO coefficient AO at all
orders. This is equivalent to subtracting out a whole
invariant conformal subset σI related to the coefficient
AConf from the scale-invariant observable O. This mecha-
nism is clear in the case of the explicit form of the iCF,
Eq. (4), where if AConf ¼ 0 then the whole conformal subset
is null and the scale invariance is preserved. We underline
that the conformal coefficients can acquire all the possible
values without breaking the scale invariance; they contain
the essential information on the physics of the process,
while all the correlation factors can be reabsorbed in the
renormalization scales as shown by the PMCmethod [5–9].
Hence, if a theory has the property of the ordered scale
invariance, it exactly preserves the scale invariance of
observables independently from the process, the kinemat-
ics, and the starting order of the observable. We suggest that
if a theory has intrinsic conformality, all the renormalized
quantities, such as cross sections, can be parametrized with
the iCF form. This property should be preserved by the
renormalization scheme or by the definition of IR-safe
quantities, and it should also be preserved in observables
defined in effective theories.

3Here we refer to the form of Eq. (4). In principle, it is possible
to write other parametrizations preserving the scale invariance,
but these can be reduced to the iCF by means of appropriate
transformations in agreement with the RG equations.
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III. THE PMC∞

We introduce here a new method to eliminate the scale-
setting ambiguity in single-variable scale-invariant distri-
butions called PMC∞. This method is based on the original
PMC principle [5–9] and agrees with all the different
formulations for the PMC scales at the lowest order.
Essentially, the core of the PMC∞ is the same as all the
BLM-PMC prescriptions [18]; i.e., the correct running
coupling value, and hence its renormalization scale at the
lowest order, is identified by the β0-term at each order or,
equivalently, by the intrinsic conformal scale μN . The
PMC∞ preserves the iCF, and then the scale invariance
by absorbing an infinite set of β-terms at all orders. This
method differs from the other PMC prescriptions since, due
to the presence of the intrinsic conformality, no perturbative
correction in αs needs to be introduced at higher orders in
the PMC scales. Given that all the β-terms of a single
conformal subset are included in the renormalization scale
already with the definition at lowest order, no initial scale or
scheme dependence is left due to the unknown β-terms in
each subset. The PMC∞ scale of each subset can be
unambiguously determined by the β0-term of each order,
we underline that all logarithms of each subset have the
same argument, and all the differences arising at higher
orders have to be included only in the conformal coef-
ficients. Reabsorbing all the β-terms into the scale, the βn0n!
terms (related to the renormalons [19]) are also eliminated;
thus, the precision is improved, and the perturbative QCD
predictions can be extended to a wider range of values. The
initial scale dependence is totally confined in the unknown
PMC∞ scale of the last order of accuracy [i.e., up to the
NNLO case in αsðμ0Þ3]. Thus, if we fix the renormalization
scale independently to the proper intrinsic scale for each
subset μN , we end up with a perturbative sum of totally
conformal contributions up to the order of accuracy:

1

σ0

OdσðμI; μII; μIIIÞ
dO

¼
nαsðμIÞ

2π

OdAConf

dO
þ
�αsðμIIÞ

2π

	2OdBConf

dO

þ
�αsðμIIIÞ

2π

	3OdCConf

dO

o
þOðα4sÞ; ð11Þ

where, at this order, μIII ¼ μ0.

IV. ICF COEFFICIENTS AND SCALES

We describe here how all the coefficients of Eq. (4) can
be identified from either a numerical or an analytical
perturbative calculation. We will use as a template
the NNLO thrust distribution results calculated in
Refs. [20,21]. Since the leading order is already (AConf)
void of β-terms, we start with NLO coefficients. A general
numerical or theoretical calculation keeps track of all the
color factors and the respective coefficients:

BOðNfÞ ¼ CF½CAB
Nc
O þ CFB

CF
O þ TFNfB

Nf

O � ð12Þ

where CF ¼ ðN2
c−1Þ
2Nc

, CA ¼ Nc and TF ¼ 1=2. The depend-
ence on Nf is made explicit here for the sake of clarity. We
can determine the conformal coefficient BConf of the NLO
order straightforwardly; by fixing the number of flavors Nf

in order to kill the β0 term,

BConf ¼ BO

�
Nf ≡ 33

2

�
;

Bβ0 ≡ log
μ20
μ2I

¼ 2
BO − BConf

β0AConf
; ð13Þ

we would achieve the same results in the usual PMC way,
i.e., identifying the Nf coefficient with the β0 term and then
determining the conformal coefficient. Both methods are
consistent, and results for the intrinsic scales and the
coefficients are in perfect agreement. At the NNLO a
general coefficient is made from the contribution of six
different color factors:

COðNfÞ ¼
CF

4

�
N2

cC
N2

c
O þ CN0

c
O þ 1

N2
c
C

1

N2
c

O þ NfNc · C
NfNc

O

þ Nf

Nc
C
Nf=Nc

O þ N2
fC

N2
f

O

�
: ð14Þ

In order to identify all the terms of Eq. (4), we notice first that
the coefficients of the termsβ20 andβ1 are alreadygivenby the
NLOcoefficientBβ0 ; then,we need to determine only the β0-
terms and the conformal CConf-terms. In order to determine
the latter coefficients, we use the sameprocedurewe used for
the NLO; i.e., we set the number of flavors Nf ≡ 33=2 in
order to drop all the β0 terms. We then have

CConf ¼ CO

�
Nf ≡ 33

2

�
−
1

4
β̄1Bβ0AConf ;

Cβ0 ≡ log

�
μ20
μ2II

�
¼ 1

β0BConf

�
CO − CConf

−
1

4
β20B

2
β0
AConf −

1

4
β1Bβ0AConf

�
; ð15Þ

with β̄1 ≡ β1ðNf ¼ 33=2Þ ¼ −107. This procedure can be
extended at every order, and one may decide whether to
cancel β0, β1, or β2 by fixing the appropriate number of
flavors. The results can be compared, leading to an exact
determination of all the coefficients. We point out that by
extending the intrinsic conformality to all orders, we can
predict, at this stage, the coefficients of all the color factors of
the higher orders related to the β-terms, except those related
to the higher order conformal coefficients and β0-terms (e.g.,
at NNNLO, theDConf andDβ0). The β-terms are coefficients
that stem from UV-divergent diagrams connected with the
running of the coupling constant and not from UV-finite
diagrams. UV-finite NF terms may arise but would not
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contribute to the β-terms. On the contrary,Nf terms coming
fromUV-divergent diagrams, depending dynamically on the
virtuality of the underlying quark and gluon subprocesses,
have to be considered as β-terms, and they would determine
the intrinsic conformal scales. In general, each μN is an
independent function of

ffiffiffi
s

p
and of the selected variable O,

and it varieswith the number of colorsNc mainly due to ggg-
and gggg-vertices. The latter terms arise at higher orders only
in non-Abelian theory, but theydonot spoil the iCF form.We
underline that the iCF applies to scale-invariant single-
variable distributions; in case one is interested in the
renormalization of a particular diagram, e.g., the ggg-vertex,
contributions from different β-terms should be singled out in
order to identify the respective intrinsic conformal scale
consistently with the renormalization of the non-Abelian
ggg-vertex, as shown in [22].

V. PMC∞ SCALES AT LO AND NLO

According to the PMC∞ prescription, we fix the
renormalization scale to μN at each order, absorbing all
the β terms into the coupling. We notice a small mismatch
between the zeroes of the conformal coefficient BConf and
those of the numerator in Eq. (15). Due to our limited
knowledge of the strong coupling at low energies, in order
to avoid singularities in the NLO scale μII, we introduce a
regularization which leads to a finite scale μ̃II. These
singularities stem from a rather logarithmic behavior of
the conformal coefficients when low values of the variable
1 − T are approached. Large logarithms arise from the IR
divergence cancellation procedure, and they can be
resummed in order to restore a predictive perturbative
regime [23–28]. We point out that IR cancellation should
not spoil the iCF property, and an IR cancellation
Monte Carlo technique consistent with the iCF would be
required. Whether this is an actual deviation from the iCF
form has to be further investigated. However, since the
discrepancies between the coefficients are rather small, we
introduce a regularization method based on redefinition of
the norm of the coefficient BConf in order to cancel out these
singularities in the μII scale. This regularization is con-
sistent with the PMC principle, and up to the accuracy of
the calculation, it does not introduce any bias effect in the
results or ambiguity in the NLO-PMC∞ scale. All the
differences introduced by the regularization would start at
the NNNLO of accuracy, and they can be absorbed later in
the higher order PMC∞ scales. Thus, the first two PMC∞
scales result in

μI ¼
ffiffiffi
s

p
· e−

1
2
Bβ0 ; ð1 − TÞ < 0.33; ð16Þ

μ̃II ¼

8><
>:

ffiffiffi
s

p
· e−

1
2
Cβ0

·
BConf

BConfþη·AtotAConf ð1 − TÞ < 0.33

ffiffiffi
s

p
· e

−1
2
ð C1
11B1−

2
3
B0
Þ ð1 − TÞ > 0.33;

ð17Þ

where
ffiffiffi
s

p ¼ MZ0
, and the value of η ¼ 3.51 has been fixed

by matching the zeroes of the numerator and the denom-
inator of Cβ0 . We have to point out that in the region
ð1 − TÞ > 0.33, we have a clear example of iCF, where the
kinematical constraints set AConf ¼ 0. According to Eq. (6),
by setting AConf ¼ 0 the whole conformal subset σI
becomes null. In this case all the β terms at NLO and
NNLO disappear except the β0-term at NNLO which
determines the μII scale. The surviving Nf terms at NLO
or the N2

f at NNLO are related to the finiteNF-term at NLO
and to the mixed Nf · NF term arising from BO · β0 at
NNLO. Using the following parametrization,

AO ¼ 0;

BO ¼ B0 þ B1 · Nf;

CO ¼ C0 þ C1 · Nf þ C2 · N2
f; ð18Þ

we can determine μ̃II for the region ð1 − TÞ > 0.33 as
shown in Eq. (17),

μ̃II ¼
ffiffiffi
s

p
e
−1
2
ð C1
11B1−

2
3
B0
Þ
; ð19Þ

by identifying the β0-term at NNLO. The LO and NLO
PMC∞ scales are shown in Fig. 1. We notice that the
two PMC∞ scales have similar behaviors in the range
ð1 − TÞ < 0.33 and the LO-PMC∞ scale agrees with the
PMC scale used in [29]. This method totally eliminates
both the ambiguity in the choice of the renormalization
scale and the scheme dependence at all orders in QCD.

VI. NNLO THRUST DISTRIBUTION RESULTS

Here we use the results of Refs. [20,21], and for the
running coupling αsðQÞ we use the RunDec program [30].
In order to consistently normalize the thrust distribution, we
expand the denominator in α0 ≡ αsðμ0Þ, while the cou-
plings in the numerator are renormalized at different PMC∞

0.0 0.1 0.2 0.3 0.4
0
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40

60

80

FIG. 1. The LO-PMC∞ (solid red) and the NLO-PMC∞
(dashed black) scales for thrust.

DI GIUSTINO, BRODSKY, WANG, and WU PHYS. REV. D 102, 014015 (2020)

014015-6



scales: αI ≡ αsðμIÞ, αII ≡ αsðμ̃IIÞ. We point out here that
the proper normalization would be given by the integration
of the total cross section after renormalization with the
PMC∞ scales; nonetheless, since the PMC∞ prescription
involves only absorption of higher order terms into the
scales, the difference would be within the accuracy of the
calculations, i.e., ∼Oðα4sðμ0ÞÞ. The experimentally mea-
sured thrust distribution is normalized to the total hadronic
cross section σtot as follows:

1

σtot

OdσðμI; μII; μ0Þ
dO

¼ fσ̄I þ σ̄II þ σ̄III þOðα4sÞg; ð20Þ

where

σtot ¼ σ0

�
1þ αsðμ0Þ

2π
Atot þ

�
αsðμ0Þ
2π

�
2

Btot þOðα3sÞ
�

is the total integrated cross section and Atot; Btot are

Atot ¼
3

2
CF; ð21Þ

Btot ¼
CF

4
Nc þ

3

4
CF

β0
2
ð11 − 8ζð3ÞÞ − 3

8
C2
F: ð22Þ

The normalized subsets in the region ð1 − TÞ < 0.33 are
then

σ̄I ¼ AConf
αI
2π

;

σ̄II ¼ ðBConf þ ηAtotAConfÞ
�
αII
2π

�
2

− ηAtotAConf

�
α0
2π

�
2

− AtotAConf
α0
2π

αI
2π

;

σ̄III ¼ ðCConf − AtotBConf − ðBtot − A2
totÞAConfÞ

�
α0
2π

�
3

:

ð23Þ
Normalized subsets for the region ð1 − TÞ > 0.33 can be

achieved simply by setting AConf ≡ 0 in Eq. (23). Within
the numerical precision of these calculations, there is no
evidence of the presence of spurious terms, such as UV-
finite Nf terms up to NNLO [31]. These terms must be
rather small or comparable with numerical fluctuations. In
addition, we notice a small, rather constant difference
between the iCF-predicted and the calculated coefficient
for the N2

f-color factor of Ref. [20], which might be due to
an N2

f UV-finite coefficient or possibly to statistics. This
small difference must be included in the conformal coef-
ficient, and it has a complete negligible impact on the total
thrust distribution. In Fig. 2 we show the thrust distribution
at NLO and at NNLO using the PMC∞ method. Theoretical
errors for the thrust distribution at NLO and at NNLO are

also shown (the shaded area). Conformal quantities are not
affected by a change of renormalization scale. Thus, the
errors shown give an evaluation of the level of conformality
achieved up to the order of accuracy, and they have been
calculated using standard criteria, i.e., varying the remain-
ing initial scale value in the range

ffiffiffi
s

p
=2 ≤ μ0 ≤ 2

ffiffiffi
s

p
.

Using the same definition of the parameter δ̄ as in
Ref. [32], we have in the interval 0. < ð1 − TÞ < 0.33
average errors of δ̄ ≃ 3.54% and 1.77% for the thrust at
NLO and at NNLO, respectively. A larger improvement has
been calculated in the range 0. < ð1 − TÞ < 0.42 from δ̄ ≃
7.36% to 1.95% from NLO to the NNLO accuracy with
the PMC∞.
In Fig. 3 a direct comparison of the PMC∞ with the

conventional scale setting results (obtained in [20] and
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FIG. 2. The thrust distribution under the PMC∞ at NLO (dot-
dashed blue) and at NNLO (solid red). The experimental data
points are taken from the ALEPH, DELPHI, OPAL, L3, and SLD
experiments [33–37]. The shaded area shows theoretical errors
for the PMC∞ predictions at NLO and at NNLO.
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FIG. 3. The thrust distribution at NNLO under the conventional
(dashed black), the PMCðμLOÞ (dot-dashed blue), and the PMC∞
(solid red). The experimental data points are taken from the
ALEPH, DELPHI, OPAL, L3, and SLD experiments [33–37].
The shaded areas show theoretical error predictions at NNLO,
and they have been calculated by varying the remaining initial
scale value in the range
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s

p
=2 ≤ μ0 ≤ 2

ffiffiffi
s

p
.
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[32,38]) is shown. In addition, we have also shown the
results of the first PMC approach used in [29], which we
indicate as PMCðμLOÞ extended to the NNLO accuracy. In
this approach the last unknown PMC scale μNLO of the
NLO has been set to the last known PMC scale μLO of the
LO, while the NNLO scale μNNLO ≡ μ0 has been left unset
and varied in the range

ffiffiffi
s

p
=2 ≤ μ0 ≤ 2

ffiffiffi
s

p
. This analysis

has been performed in order to show that the procedure of
setting the last unknown scale to the last known one leads to
stable and precise results and is consistent with the proper
PMC method in a wide range of values of the (1 − T)
variable.
Average errors calculated in different regions of the

spectrum are reported in Table I. From the comparison with
the conventional scale setting, we notice that the PMC∞
prescription significantly improves the theoretical predic-
tions. In addition, results are in remarkable agreement
with the experimental data in a wider range of values
(0.015 ≤ 1 − T ≤ 0.33), and they show an improvement of
the PMCðμLOÞ results when the two-jet and multijet regions
are approached, i.e., the region of the peak and the region
ð1 − TÞ > 0.33, respectively. The use of the PMC∞
approach on perturbative thrust QCD calculations restores
the correct behavior of the thrust distribution in the region
ð1 − TÞ > 0.33, and this is a clear effect of the iCF
property. Comparison with the experimental data has been
improved all over the spectrum, and the introduction of the
N3LO correction would improve this comparison, espe-
cially in the multijet 1 − T > 0.33 region. In the PMC∞
method theoretical errors are given by the unknown
intrinsic conformal scale of the last order of accuracy.
We expect that this scale will not be significantly different
from that of the previous orders. In this particular case, as
shown in Eq. (23), we also have a dependence on the initial
scale αsðμ0Þ left due to the normalization and to the
regularization terms. These errors represent 12.5% and
1.5%, respectively, of all of the theoretical errors in the
range 0 < ð1 − TÞ < 0.42, and they could be improved by
means of a correct normalization.

VII. NNLO C-PARAMETER
DISTRIBUTION RESULTS

The same analysis applies straightforwardly to the
C-parameter distribution, including the regularizing η

parameter which has been set to the same value of 3.51.
The same scales of Eqs. (16) and (17) apply to the
C-parameter distribution in the region 0 < C < 0.75 and
in the region 0.75 < C < 1. In fact, due to kinematical

TABLE I. Average error δ̄, for NNLO thrust distribution under
conventional, PMCðμLOÞ, and PMC∞ scale settings calculated in
different ranges of values of the (1 − T) variable.

δ̄½%� Conventional PMCðμLOÞ PMC∞

0.10 < ð1 − TÞ < 0.33 6.03 1.41 1.31
0.21 < ð1 − TÞ < 0.33 6.97 2.19 0.98
0.33 < ð1 − TÞ < 0.42 8.46 2.61
0.00 < ð1 − TÞ < 0.33 5.34 1.33 1.77
0.00 < ð1 − TÞ < 0.42 6.00 1.95
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FIG. 4. The LO-PMC∞ (solid red) and the NLO-PMC∞
(dashed black) scales for the C-parameter.
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FIG. 5. The C-parameter distribution under the PMC∞ at NLO
(dot-dashed blue) and at NNLO (dashed red). Blue points
indicate the NNLO-PMC∞ thrust distribution obtained with
μIII ¼ μ0 ¼ MZ0

. The experimental data points (green) are taken
from the ALEPH experiment [33]. Dashed lines of the NNLO
distribution show fits of the theoretical calculations with inter-
polating functions for the values of the remaining initial scale
μ0 ¼ 2MZ0

and MZ0
=2. The shaded area shows theoretical errors

for the PMC∞ predictions at NLO and at NNLO calculated
by varying the remaining initial scale value in the rangeffiffiffi
s

p
=2 ≤ μ0 ≤ 2

ffiffiffi
s

p
.

TABLE II. Average error δ̄ for NNLO C-parameter distribution
under conventional, PMCðμLOÞ, and PMC∞ scale settings calcu-
lated in different ranges of values of the (C) variable.

δ̄½%� Conventional PMCðμLOÞ PMC∞

0.00 < ðCÞ < 0.75 4.77 0.85 2.43
0.75 < ðCÞ < 1.00 11.51 3.68 2.42
0.00 < ðCÞ < 1.00 6.47 1.55 2.43
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constraints that set AConf ¼ 0, we also have the same iCF
effect for the C-parameter. Results for the C-parameter
scales and distributions are shown in Figs. 4 and 5,
respectively.
Theoretical errors have been calculated, as in the

previous case, using standard criteria, and results indicate
an average error over the whole spectrum 0 < ðCÞ < 1 of
the C-parameter distribution at NLO and at NNLO of δ̄ ≃
7.26% and 2.43%, respectively.
A comparison of average errors according to the different

methods is shown in Table II. Results show that the PMC∞
improves the NNLO QCD predictions for the C-parameter
distribution over the whole spectrum.
A comparison of the distributions calculated with the

conventional scale setting, the PMCðμLOÞ [39] and the
PMC∞ is shown in Fig. 6. Results for the PMC∞ show a
remarkable agreement with the experimental data away
from the regions C < 0.05 and C ≃ 0.75. The errors due to
the normalization and to the regularization terms [Eq. (23)]
are, respectively, 8.8% and 0.7% of all of the theoretical
errors. The perturbative calculations could be further
improved using a correct normalization and also by
introducing the large logarithms resummation technique
in order to extend the perturbative regime.

VIII. COMMENT ON THE LAST PMC∞ SCALE

In this article we have shown a property of the pertur-
bative QCD corrections which is consistent with the MC
results of single-variable distributions for eþe− → 3 jets.
This property leads to the PMC∞: an infinite-order scale
setting based on the principle of maximum conformality
method. The PMC∞ method preserves the iCF form and is
void of ambiguities. The absence of ambiguities in PMC∞

is clearly shown here by simply noticing that the new scale
at each order is fixed by considering the β0-term, i.e., Nf-
term, and no other term is needed, in agreement with the
iCF parametrization. Thus, the PMC∞ scale fixing pro-
cedure is constrained by the iCF form, and the choice of the
scales is totally free of any ambiguity. The only unknown
scale which remains unfixed, apparently, is the one given
by the last order of accuracy. In this article this scale has
been fixed to μIII ¼ μ0 ¼ MZ0

for the sake of a consistent
comparison with the conventional method. We remark that
the last “unknown” PMC scale can be fixed to the last
known one. In fact, as we have also shown in this article, in
general, the differences between two consecutive scales are
rather small, and the use of the method PMCðμLOÞ leads to
precise and consistent results in a wide range of the
perturbative region, as reported in Tables I and II of the
previous sections. In the case of the thrust and C-parameter
distributions calculated at NNLO with the PMC∞, the
differences between the μIII ¼ MZ0

and μIII ¼ μ̃II are also
negligible, and these differences are totally confined within
the errors shown for the distributions in the perturbative
region. Given the conformal limit of Eq. (10), the last term
in the iCF determines the level of conformality reached by
the expansion, and the entire scale dependence is confined
in the coupling. As previously shown, this term is the main
source of the uncertainties (as also reported in Ref. [40]),
and a further investigation regarding the regularization
method applied here would be necessary in order to extend
the procedure to all orders.

IX. CONCLUSIONS

We have introduced here the iCF, a parametrization
which exactly preserves the scale invariance of an observ-
able. We have shown a new method to solve the conven-
tional renormalization scale ambiguity in QCD, called
PMC∞, which preserves the iCF and leads to conformal
renormalization scales. This method agrees with the PMC
at LO, and it applies to observables, especially in cases of a
clearly manifested iCF, for example, in the case of the event
shape variables distributions. We have presented a new
procedure to identify the iCF=PMC∞ coefficients at all
orders, which can be applied to either numerical or
analytical calculations. The PMC∞ has been applied to
the NNLO thrust and C-parameter distributions, and the
results show perfect agreement with the experimental data.
The evaluation of theoretical errors using standard criteria
shows that the PMC∞ significantly improves the theoretical
predictions in all of the spectra of the shape variables. The
PMC∞ method eliminates the renormalon growth αnsβ

n
0n!,

the scheme dependence, and all the uncertainties related to
the scale ambiguity up to the order of accuracy. The
iCF=PMC∞ scales are identified by the lowest order
logarithm related to the β0-term at each order, and all
the physics of the process is contained in the conformal
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FIG. 6. The NNLO C-parameter distribution under the conven-
tional scale setting (dashed black), the PMCðμLOÞ (dot-dashed
blue) and the PMC∞ (solid red). The experimental data points
(black) are taken from the ALEPH experiment [33]. The shaded
area shows theoretical error predictions at NNLO calculated
by varying the remaining initial scale value in the rangeffiffiffi
s

p
=2 ≤ μ0 ≤ 2

ffiffiffi
s

p
.
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coefficients. This is in complete agreement with QED and
with the Gell-Mann and Low scheme [13,14]. We have
discussed why iCF should be considered as a strict require-
ment for a theory in order to preserve the scale invariance of
the observables, and we have shown that iCF is consistent
with the single-variable thrust and C-parameter distribu-
tions. We point out that other conformal aspects of QCD
resulting from different sectors such as commensurate scale
relations (CSR) [41] or dual theories such as AdS=CFT
[42] might also be related to the intrinsic conformality. We
emphasize that the iCF property in a theory would have two
main remarkable consequences: First, it shows what the
correct coupling constant is at each order as a function of
the conformal intrinsic scale μN , and second, since only the
conformal and the β0 coefficients need to be identified in

the observables at each order, by means of the PMC∞
method, the iCF would reveal its predictive feature for the
coefficients of the higher order color factors. We point out
that in many cases the implementation of the iCF in a
multiloop calculation procedure would lead to a significant
reduction of the color factor coefficients, and it would
speed up the calculations for higher order corrections.
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