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The finite volume effect on the QCD phase diagram is investigated via the two-flavor Polyakov-loop-
modified Nambu-Jona-Lasinio model in the presence of the chiral chemical potential within the mean-field
approximation. Our calculations concentrate on the quark condensate, chiral number density and its
derivative, namely, QCD susceptibilities. We find the chiral number density decreases as the system size
gets smaller. It is also confirmed that the volume of the strongly interacting matter has an influence on the
phase diagram, in particular on the crossover region and the location of a chiral transition line. Therefore,
the critical end point (CEP) also shifts with system size. On this basis it follows that study of the finite
volume effect as well as the chiral chemical potential dedicated to the chiral phase transition and probing
the location of the CEP.
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I. INTRODUCTION

As an essential part of the Standard Model of particle
physics, quantum chromodynamics (QCD) is the fundamen-
tal theory of strong interaction between quarks and gluons
in the Universe. Discussions regarding the phase diagram of
QCD matters have dominated research over decades.
Moreover, the search for the critical end point (CEP) on
the phase diagram has been propelled to the forefront in
recent years from both theories [1–16] [such as lattice QCD,
Dyson-Shwinger Equations (DSEs), Nambu-Jona-Lasinio
model (NJL) and related Polyakov-loop-extended Nambu-
Jona-Lasinio (PNJL) model, etc.] and experiments [17–20]
[e.g., the BNL Relativistic Heavy-Ion Collider (RHIC) and
the CERN Large Hadron Collider (LHC)]. Unfortunately,
vigorous evidence of the existence of the CEP is still absent
from the first principles of QCD since present lattice QCD
calculations at finite chemical potential are plagued with the
so-called “sign problem” [21,22].
The QCD phase diagram is further complicated with the

presence of a chiral chemical potential μ5, which con-
jugates to the chiral charge density. The nonvanishing μ5
mimics the chirality imbalance generated in event-by-event
quark-gluon plasma production. It also has been introduced

to probe the existence and location of the CEP by
Refs. [23–29]. In particular, continuation of the critical
line from the area of chiral chemical potential to that of
quark chemical potential comes into realization, which
predicts that the CEP in the T − μ plane (μ5 ¼ 0 MeV) can
be obtained by continuation of the critical end point (CEP5)
in the T − μ5 plane (μ ¼ 0 MeV) [24–26]. Nevertheless,
lattice QCD simulation [28,30] and DSEs [31,32] demon-
strates that there is no CEP5 in the T − μ5 plane. On the
other hand, the chirality imbalance induces the generation
of electric current along an external magnetic field, which is
named the chiral magnetic effect (CME). Hence, it is
important to consider the effect of the chiral chemical
potential, and it will contribute much to a further insight of
the chiral phase transition.
The QGP fire ball formed in relativistic heavy-ion

collisions apparently has a finite volume whose radii are
estimated to be 2 to 10 fm, depending on the center of mass
energy, the size of the colliding nuclei, and the centrality
of collisions, etc. [33–36]. Therefore, in order to better
understand the results of relativistic heavy ion collision
experiments, we need to study the effect of finite volume
effects on the strong interaction phase diagram. A recent
review of the finite volume effect [37] purports that the
study of the finite volume effect not only attracted great
academic interest but also served as a check on the
algorithm and simulation method. And the survey of the
finite volume effect [38–40] has become more and more
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relevant with the steady promotion of lattice QCD, which
carries out the numerical calculations with finite lattices in
finite and discrete Euclidean space-time, and finite size
scaling analysis can be regarded as a worthy implement
to research the chiral phase transition in QCD [41–45].
Widely accepted, finite volume effects have significantly
influenced investigation of different kinds of physical
systems such as ultracold atoms in optical lattices over
condensed matter systems [46–50], multilayer systems, and
relativistic heavy-ion collisions [51–57].
As mentioned above, research of the effect of the chiral

chemical potential on the chiral phase transition have been
carried out by Refs. [31,32,52,58,59], while Refs. [60–69]
have taken the finite volume effects into consideration to
probe the deviation of QCD phase diagram. On this basis,
to better understand the results of relativistic heavy ion
collision we take account of the chiral chemical potential
and the finite volume effects simultaneously to provide
deep insight into the chiral phase transition. In this paper
we study the susceptibilities χs (chiral susceptibility) and
χT (temperature susceptibility) in the presence of the finite
volume effect and the chiral chemical potential, and depict
the phase diagram in this analysis. As a measure of
fluctuation effects of the physical system, which means
the linear response to external fields, susceptibilities play
significant roles in the depiction of phase transition
phenomenon. Hence, considering the chiral chemical
potential and the finite volume effect simultaneously to
investigate the susceptibilities may lead to a better under-
standing of the chiral phase transition. We will also
investigate the finite volume effects on the chiral charge
density n5, which is relevant for CME. As far as we know,
this is a first investigation for such effect.
The rest of this paper is organized as follows: In Sec. II,

we give a basic description of the two-flavor PNJL model
with chiral chemical potential. In Sec. III we introduce
the PNJL Lagrangian density in a finite volume and
demonstrate the results. In Sec. IV, we give a summary
and conclusion.

II. PNJL MODEL WITH CHIRAL CHEMICAL
POTENTIAL AND PHASE DIAGRAM

The Lagrangian density of the two flavor PNJL model
for equal-mass quark can be written as follows:

L ¼ ψ̄ðγ · =DþmÞψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�
þ UðΦ; Φ̄; TÞ; ð1Þ

where ψ ¼ ðu; dÞ represents the quark field in the funda-
mental representation of the flavor SUð2Þ, and we take
the number of colors Nc ¼ 3, m is the current quark mass,
G is the coupling constant of four-fermion interaction, τ
corresponds to the Pauli matrices in flavor space, and

UðΦ; Φ̄; TÞ is a Polyakov-loop effective potential through-
out this work.
The Polyakov loop is a Wilson loop which is designed

to solve the QCD confinement problem in compactified
Euclidean space-time, and can be given by

LðxÞ ¼ P exp

�
−i

Z
β

0

dx4A4ðx4; x⃗Þ
�
; ð2Þ

where P denotes the path ordering; β ¼ 1=T, namely, the
reciprocal of temperature. Besides, the Polyakov gauge in
which L is diagonal in color space [70] is applied here. And
for simplicity we take the approximation L† ¼ L following
Refs. [25,26]. Then the mean-field effective potential of the
PNJL model can be written in terms of

Φ ¼ 1

Nc
TrcL; ð3Þ

Φ̄ ¼ 1

Nc
TrcL†: ð4Þ

Then Φ ¼ Φ̄ can be easily obtained without any doubt.
The form of the Polyakov-loop effective potential is
provided to reproduce the gluonic lattice data in the
classical background by Ref. [13]:

β4UðΦ̄;Φ;TÞ
¼ β4UðΦ;TÞ

¼
�
−
1

2
aðTÞΦ2 þ bðTÞ ln ð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ

�
;

ð5Þ

in which the model parameters are temperature dependent,

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; bðTÞ ¼ b3

�
T0

T

�
3

;

ð6Þ

with the parameters set as Refs. [4,71],

a0 ¼ 3.51; a1 ¼ −2.47; a2 ¼ 15.2; b3 ¼ −1.75:

ð7Þ

In the PNJL model, the confinement-deconfinement phase
transition is described by Polyakov loop.
The chiral chemical potential μ5, conjugated to the chiral

charge density, n5 ¼ nR − nL, is introduced to emulate
imbalance between right- and left-handed quarks. As a
result, to investigate the effects of μ5 we add the following
term to the PNJL Lagrangian:
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−μ5ψ̄γ0γ5ψ ; ð8Þ

which induces the chiral number density

n5 ¼ hψ̄γ0γ5ψi: ð9Þ

Adopting the mean-field approximation, the thermo-
dynamic effective potential obtained at the one-loop level
is given by Ref. [25],

Ω ¼ ΩðM;Φ;T; μ; μ5Þ

¼ UðΦ;TÞ þ ðM −mÞ2
4G

− 2Nc

X
s¼�1

Z
d3p⃗
ð2πÞ3 ωs

−
2

β

X
s¼�1

Z
d3p⃗
ð2πÞ3 ln ½FþF−�; ð10Þ

whereM is the effective quark mass and relates to the quark
condensate hψ̄ψi as

M ¼ m − 2Ghψ̄ψi; ð11Þ

and the quasiparticle dispersion ωs is

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsjp⃗j − μ5Þ2 þM2

q
; ð12Þ

in which s means the helicity projection. In addition, the
functions F� in Eq. (10), which contribute to the statistical
thermal properties, quark confinement, in the low temper-
ature region is written as

F� ¼ 1þ 3Φ½e−βω�
s þ e−2βω

�
s � þ e−3βω

�
s ; ð13Þ

where the ω�
s ¼ ωs � μ. The chiral number density can be

gotten as the derivative of Ω,

n5 ¼ −
∂Ω
∂μ5 : ð14Þ

The other parameters used in this paper are given by
Ref. [72]: T0 ¼ 190 MeV; m ¼ 5.5 MeV, Λ ¼ 631 MeV,
G ¼ 5.074 × 10−6 MeV−2, which are determined by fitting
the pion mass mπ ¼ 138 MeV; the pion decay constant
fπ ¼ 93.1 MeV. Through

∂Ω
∂M ¼ 0;

∂Ω
∂Φ ¼ 0 ð15Þ

we can get the effective quark mass and the mean-field
effective potential for any given T, μ, and μ5. Afterwards,
the quark condensate can be determined through Eq. (15).
Then two kinds of QCD susceptibilities, the first derivative

of the quark condensate, applied to study of the chiral phase
transition in the analysis are defined as

χs ¼ −
∂hψ̄ψi
∂m ; ð16Þ

χT ¼ ∂hψ̄ψi
∂T : ð17Þ

In the processing, the divergence of the momentum integral
for ωs must be cured by a regularization procedure.
Therefore, a momentum cutoff, viz., Λ, is employed for
the following two terms.

ΩV ¼ 2Nc

X
s¼�1

Z
d3p⃗
ð2πÞ3 ωs;

ΩF ¼ 2

β

X
s¼�1

Z
d3p⃗
ð2πÞ3 ln ½FþF−�: ð18Þ

Reference [59] has given a detailed argument about the
spirit of this choice: the contact interaction can broadly be
reconciled with QCD while the necessary regularization
function is a useful representation of the transition between
nonperturbative infrared dynamics, such as gluon mass
generation [73–76], and the domain of asymptotic freedom,
which indicates that internal consistency requires one to
employ the same cutoff.
Regardless of the chiral limit or nonchiral limit, we need

to point out that in many cases Eq. (15) has three solutions.
One of the solutions yields a global minimum of the
effective potential corresponding to the physical state,
the second gives the local minimum which indicates the
metastable state, and the last one giving a maximum
predicts an unstable state. Just as the declaration in
Refs. [77,78], the last solution is only a mathematical
solution with no physical meaning. Therefore, we will only
study the physical and metastable solutions mentioned
above. At low temperature or low chemical potential, the
physical solution is often referred to as the Nambu solution,
where the chiral symmetry is dynamically broken. The
metastable solution is named the pseudo-Winger solution
by Ref. [78], which reflects that the chiral symmetry is
partially restored as shown in Refs. [77,78]. In the chiral
limit, the pseudo-Winger solution obtained beyond the
chiral limit will degenerate to the well-known Winger
solution. The so-called strong interaction chiral phase
transition is essential to study the evolution of the
Nambu and pseudo-Winger solutions with temperature
and chemical potential, and in particular to study the
competitive relationship between the two solutions at
different temperature and chemical potential. We calculate
the effective quark mass and the susceptibilities for certain
μ, μ5, and T. As shown in Fig. 1, the effective quark mass is
discontinuous at T ¼ 80 MeV and the first-order phase
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transition points for μ5 ¼ 0, 100, 300 MeV are located at
μ ¼ 336; 317; 255 MeV, respectively, which suggests the
decrease of μ associated with the first-order phase transition
as μ5 increase. Besides, the effective quark mass turns to a
crossover for μ5 ¼ 0 and 100 MeV while M is yet discrete
for μ5 ¼ 300 MeV at T ¼ 140 MeV. And the first-order
phase point at μ5 ¼ 300 MeV is μ ¼ 227 MeV. Thereby
the results contend that the temperature of the CEP increase
with μ5, which is consistent with lattice QCD [13,23,28]
and DSEs [32].
Moreover, the chiral susceptibility χs and temperature

susceptibility χT, which are studied as functions of chemi-
cal potential μ for different chiral chemical potential μ5, are
depicted in Fig. 2. We used two values of the temperature T
to exhibit the characteristics of susceptibilities in the first-
order phase transition region and the crossover region,
respectively. The upper panel of Fig. 2 demonstrates two
features. First, the value of μ for the first-order phase
transition decreases with increasing μ5, which has already
been observed from Fig. 1. Another one is that two different
susceptibilities have the same break point at T ¼ 80 MeV
for three different values of μ5, which results from the fact
that both χs and χT are the first derivative of the quark
condensate. At high temperature T ¼ 160 MeV, the two
susceptibilities at T ¼ 160 MeV shift to a continuous
crossover instead of a chiral phase transition, as indicated
in the lower panel of Fig. 2, although the μ of the peak point
of χs differ from χT .

III. THE FINITE VOLUME EFFECTS ON THE
CHIRAL PHASE TRANSITION

As mentioned above, the properties of the hot dense
matter formed in the heavy-ion collisions relate to its finite
volume, which probably sheds light on a distinct QCD
phase structure. Furthermore, the detection of the curious
finite volume effects in QCD vacuum can give us a clear
comprehension of the dynamical chiral symmetry breaking
as well as the partial restoration of chiral symmetry
[41,79–83].
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In recent decades, a variety of diverse techniques,
i.e., renormalization group methods [84–86], chiral pertur-
bation theory [82,87,88], and random matrix theory
[81,89,90], have served as analytical tools to study the
finite volume constraints. To implement the finite volume
constraints, we choose specific boundary conditions: peri-
odic for bosons and antiperiodic for fermions, which lead to
a infinite sum over discrete momentum values pi ¼ πni=R,
where i ¼ x; y; z, and ni represents integers (odd for
fermion and even for boson) and R is the lateral size of
a cubic volume. Such choice can be approximated by
implementing a lower momentum cutoff pmin ¼ λ ¼ π

R
following Refs. [51,60,91]. Thereby, the expression of
the thermodynamic effective potential incorporating the
finite volume effect is

Ω ¼ UðΦ;TÞ þ ðM −mÞ2
4G

− 2Nc

X
s¼�1

Z
Λ

λ

d3p⃗
ð2πÞ3 ωs

−
2

β

X
s¼�1

Z
Λ

λ

d3p⃗
ð2πÞ3 ln ½FþF−�: ð19Þ

Then it follows that Eq. (19) reduces to the infinite volume
case while λ ¼ 0, namely, R ¼ ∞. To carry out the
analysis, we have taken into consideration various system
sizes, viz. R ¼ 3, R ¼ 5, and R ¼ 10 fm, to calculate
the effective quark mass, chiral number density, and
susceptibilities as in the previous section.
As shown in Fig. 3,M as a function of μ is discontinuous

for R ¼ ∞, 10, 5 fm while the discontinuity of M vanishes
for R ¼ 3 fm in the upper panel at T ¼ 80 MeV and
μ5 ¼ 0, 100 MeV. Furthermore, we can find that the
R ¼ ∞ curve almost coincides with that of R ¼ 10 fm
at the range of μ ∈ ½0; 400� MeV, and so does to the first-
order phase transition point. While the system size is
R ¼ 5 fm, the Nambu solutions of M reduce slightly,
meanwhile the pseudo-Winger solutions of M remain the
same. However, the Nambu solutions of M have a promi-
nent reduction and yet the pseudo-Winger solutions still
have no obvious change as R decrease to 3 fm. In the
meantime, the first-order phase transition turns to a cross-
over. The lower panel of Fig. 3 depicts the finite volume
effects on the crossover regime at T ¼ 140 MeV, which
demonstrates almost the same effect on M as in the first-
order phase transition region at T ¼ 80 MeV. As a result, it
is found that the effect of finite size on the Nambu phase is
greater than that of the pseudo-Wigner phase. In the PNJL
model, people often adopt dynamic quark mass M to
describe the chiral symmetry of the thermodynamics
system, and use the Polyakov loop Φ to reflect the
confinement behavior of the system. It should be noted
that there is no rigorous order parameter for the deconfine-
ment transition in the presence of dynamical quarks, but the
Polyakov loop still can serve as a good indicator of a rapid

crossover towards deconfinement. Next we study the effect
of the finite size on Φ.
In the pure-gauge theory Φ ¼ 0 defines the confinement

phase, whereas the deconfinement phase is expressed via
Φ ≠ 0 and Φ ¼ 1 defines the entire deconfinement phase.
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In Fig. 4, we depict variation of the Polyakov loop ΦðμÞ
with decreasing system size for different T and μ5. In the
upper panel of Fig. 4 (T ¼ 80 MeV), it can be found that

ΦðμÞ is discontinuous at R ¼ ∞; 10; 5 fm while the dis-
continuity of Φ vanishes at R ¼ 3 fm for both μ5 ¼ 0;
100 MeV. At μ5 ¼ 0 MeV the corresponding first-order
phase transition (deconfinement transition) points for
R¼∞;10;5 fm are at μ¼336;336;335MeV, respectively,
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while at μ5 ¼ 100 MeV, the corresponding first-order
phase transition points are at μ ¼ 317; 317; 315 MeV.
We also find that the finite system size has greater influence
on the Φ around the phase transition point than in the low
density where ΦðμÞ almost remain unchanged. The smaller
R is, the greater effects it has on Φ. The lower panel of
Fig. 4 at T ¼ 140 MeV exhibits that all ΦðμÞ are conti-
nuous, which indicates the crossover transition. In addition,
the finite size has greater effects on Φ around the crossover
than in other regions where Φ almost stays the same as in
the upper panel. Based on these, we hold that the finite
volume constraint, implemented by the boundary condition
we choose, has significant effects on the confinement
behavior in the vicinity of the transition area. In some
cases, it could even convert the first-order deconfinement
transition into crossover.

We exhibits the variation of χs and χT with different R at
the crossover region (T ¼ 140 MeV). The curve of R ¼
10 fm is still the same as that of R ¼ ∞, as shown in Fig. 5.
The height of the peak of χs and χT is gradually suppressed
while the system size R decreases from 10 to 3 fm for
μ5 ¼ 0, 100 MeV, and the μ of the peak decreases
obviously at the same time. This is in agreement with
the general understanding that the finite volume effect
smears the transition area. Besides, the μ of the peak of χs
differs from that of χT , which would lead to a crossover
band in the T − μ phase diagram which has been argued
by Refs. [92,93].
The chirality imbalance has an impact on the chiral

magnetic effect, thus it is necessary to study the finite
volume effect on the chiral number density n5, which has
been demonstrated in Fig. 6. It can be observed that n5 is
indeed depressed prominently with the decreasing R in the
low μ region while the system size hardly affects n5 in the
high μ region from the upper panel of Fig. 6. The lower
panel of Fig. 6 exhibits variation of the curve for n5 which
is set as a function of μ5 with the reduction of R at
T ¼ Tc ¼ 242 MeV. We observe that as the size of the
system gets smaller, the n5 also gets decreased. This
suggests that in the study of CME, the finite volume effects
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may suppress the chiral charge density, thereby affecting
the induced electric current.
We turn now to the discussion of the phase diagram in

the T − μ plane with different system size in Figs. 7 and
8, where the right side of the vertical dashed lines
represents the first-order phase transition lines and the
left side stands for the crossover region. It can be
observed from the two figures that at μ5 ¼ 0 MeV the
system size almost has no effect on the first-order phase
transition region while it exhibits a relatively obvious
effect on the crossover region for smaller R, especially for
R ¼ 3 fm, which indicates that the small system size is
indeed influential in the crossover region. Consequently,
the location of the CEP also gets affected by the size of
the fireball. And the CEPs for different chiral chemical
potential and volume size are shown in Table I. It is worth
noting that T of CEP decreases with reduction of system
size R while rising with increasing chiral chemical

potential μ5. The μ of CEP is just the opposite. This
agrees with the finding of Refs. [23,32,52,65,66].

IV. SUMMARY AND CONCLUSIONS

We set out to investigate the finite volume effect on the
chiral phase transition through two typical susceptibilities
(χs and χT) with the two-flavor PNJL model at finite
temperature T, chemical potential μ, and chiral chemical
potential μ5 within the mean-field approximation in this
analysis. Our analysis contends that the phase diagram of
finite system size above R ¼ 10 fm almost totally overlaps
with the counterpart of infinite system size at μ5 ¼ 0 MeV,
whereas the smaller R has a deviation in the crossover
region where the chiral symmetry gets partially restored
while the low temperature regions nearly stay still. On the
other hand, the whole phase diagram of extremely small
system size moves to the left at finite μ5. In addition, T of
the CEP reduces for smaller R. As a result, the tiny system
size indeed has an impact on QCD susceptibilities at the
crossover region, and smaller R exerts more evident
influence, so that the volume of the QCD matter should
be given more importance while studying the chiral phase
transition and QCD phase structure. On the other hand, we
find the chiral charge density n5 decreases as system size
gets smaller, suggesting an effect on the electric current
induced by CME. We thereby find the finite volume effect
contributes to various aspects of the heavy ion collision
experiments.
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TABLE I. The CEP for different volume size and chiral
chemical potential.

μ5 ¼ 0 MeV μ5 ¼ 100 MeV μ5 ¼ 300 MeV

CEP (MeV) T μ T μ T μ

R ¼ ∞ fm 100 325 115 298 146 223
R ¼ 10 fm 100 325 115 298 146 223
R ¼ 5 fm 90 331 105 303 146 219
R ¼ 3 fm 71 336 76 308 141 210

LIU, LAI, SHI, and ZONG PHYS. REV. D 102, 014014 (2020)

014014-8



[1] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev.
Lett. 81, 4816 (1998).

[2] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[3] M. Buballa, Phys. Rept. 407, 205 (2005).
[4] S. Roessner, C. Ratti, and W. Weise, Phys. Rev. D 75,

034007 (2007).
[5] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. D

60, 114028 (1999).
[6] Y. Hatta and M. Stephanov, Phys. Rev. Lett. 91, 102003

(2003).
[7] M. A. Stephanov, Phys. Rev. D 73, 094508 (2006).
[8] S. Ejiri, Phys. Rev. D 77, 014508 (2008).
[9] B. Lungwitz and M. Bleicher, Phys. Rev. C 76, 044904

(2007).
[10] A. Ayala, A. Bashir, J. Cobos-Martínez, S. Hernández-Ortiz,

and A. Raya, Nucl. Phys. B897, 77 (2015).
[11] C. S. Fischer, J. Luecker, and C. A. Welzbacher, Phys. Rev.

D 90, 034022 (2014).
[12] G. Eichmann, C. S. Fischer, and C. A. Welzbacher, Phys.

Rev. D 93, 034013 (2016).
[13] V. V. Braguta, E.-M. llgenfritz, A. Y. Kotov, B. Petersson,

and S. A. Skinderev, Phys. Rev. D 93, 034509 (2016).
[14] H. Kohyama, D. Kimura, and T. Inagaki, Nucl. Phys. B896,

682 (2015).
[15] P. Kovács, Z. Szép, and G. Wolf, Phys. Rev. D 93, 114014

(2016).
[16] C. Shi, Y.-L. Wang, Y. Jiang, Z.-F. Cui, and H.-S. Zong,

J. High Energy Phys. 07 (2014) 014.
[17] L. Adamczyk et al., Phys. Rev. Lett. 113, 092301 (2014).
[18] R. Bruce. et al., Phys. Rev. ST Accel. Beams 17, 081004

(2014).
[19] R. A. Lacey, N. Ajitanand, J. Alexander, P. Chung, W.

Holzmann, M. Issah, A. Taranenko, P. Danielewicz, and
H. Stöcker, Phys. Rev. Lett. 98, 092301 (2007).

[20] B. B. Abelev et al., Int. J. Mod. Phys. A 29, 1430044
(2014).

[21] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301 (1990).

[22] S. Chandrasekharan and U.-J. Wiese, Phys. Rev. Lett. 83,
3116 (1999).

[23] A. Yamamoto, Phys. Rev. Lett. 107, 031601 (2011).
[24] M. N. Chernodub and A. S. Nedelin, Phys. Rev. D 83,

105008 (2011).
[25] M. Ruggieri, Phys. Rev. D 84, 014011 (2011).
[26] R. Gatto and M. Ruggieri, Phys. Rev. D 85, 054013 (2012).
[27] D. Ebert, T. Khunjua, K. Klimenko, and V. Zhukovsky,

Phys. Rev. D 93, 105022 (2016).
[28] V. V. Braguta and A. Y. Kotov, Phys. Rev. D 93, 105025

(2016).
[29] K. Fukushima, M. Ruggieri, and R. Gatto, Phys. Rev. D 81,

114031 (2010).
[30] V. V. Braguta, V. A. Goy, E. M. Ilgenfritz, A. Y. Kotov, A. V.

Molochkov, M. Mller-Preussker, and B. Petersson, J. High
Energy Phys. 06 (2015) 094.

[31] B. Wang, Y.-L. Wang, Z.-F. Cui, and H.-S. Zong, Phys. Rev.
D 91, 034017 (2015).

[32] S.-S. Xu, Z.-F. Cui, B. Wang, Y.-M. Shi, Y.-C. Yang, and
H.-S. Zong, Phys. Rev. D 91, 056003 (2015).

[33] G. Gräf, M. Bleicher, and Q. Li, Phys. Rev. C 85, 044901
(2012).

[34] Y. Hirono and E. Shuryak, Phys. Rev. C 91, 054915 (2015).
[35] P. Bożek and W. Broniowski, Phys. Lett. B 720, 250 (2013).
[36] A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan,

Phys. Rev. C 87, 064906 (2013).
[37] B. Klein, Phys. Rep. 707–708, 1 (2017).
[38] Z. Fodor and S. Katz, J. High Energy Phys. 04 (2004) 050.
[39] G. Colangelo, S. Drr, A. Jttner, L. Lellouch, H. Leutwyler, V.

Lubicz, S. Necco, C. T. Sachrajda, S. Simula, A. Vladikas, U.
Wenger, and H. Wittig, Eur. Phys. J. C 71, 1695 (2011).

[40] B. Orth, T. Lippert, and K. Schilling, Phys. Rev. D 72,
014503 (2005).

[41] L. Giusti and S. Necco, J. High Energy Phys. 04 (2007) 090.
[42] J. Engels, S. Holtmann, T. Mendes, and T. Schulze, Phys.

Lett. B 514, 299 (2001).
[43] P. Hernández, K. Jansen, and L. Lellouch, Phys. Lett. B 469,

198 (1999).
[44] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 73, 074512

(2006).
[45] J. Braun and B. Klein, Eur. Phys. J. C 63, 443 (2009).
[46] M. H. Al-Hashimi, A. M. Shalaby, and U.-J. Wiese, Phys.

Rev. D 95, 065007 (2017).
[47] J. Casanova, C. Sabin, J. Leon, I. L. Egusquiza, R.

Gerritsma, C. F. Roos, J. J. Garcia-Ripoll, and E. Solano,
Phys. Rev. X 1, 021018 (2011).

[48] L. Lamata, J. Casanova, and I. L. Egusquiza, and E. Solano,
Phys. Scr. T T147, 014017 (2012).

[49] A. Mezzacapo, J. Casanova, L. Lamata, and E. Solano,
New J. Phys. 15, 033005 (2013).

[50] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith,
and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).

[51] A. Bhattacharyya, R. Ray, and S. Sur, Phys. Rev. D 91,
051501 (2015).

[52] Z. Pan, Z.-F. Cui, C.-H. Chang, and H.-S. Zong, Int. J. Mod.
Phys. A 32, 1750067 (2017).

[53] C. S. Fischer and M. R. Pennington, Phys. Rev. D 73,
034029 (2006).

[54] L. Fister and J. M. Pawlowski, Phys. Rev. D 92, 076009
(2015).

[55] M. Ladrem and A. Ait-El-Djoudi, Eur. Phys. J. C 44, 257
(2005).

[56] J. Luecker, C. S. Fischer, and R. Williams, Phys. Rev. D 81,
094005 (2010).

[57] B.-Q. Ma, Q.-R. Zhang, D. Rischke, and W. Greiner, Phys.
Lett. B 315, 29 (1993).

[58] Y. Lu, Z.-F. Cui, Z. Pan, C.-H. Chang, and H.-S. Zong,
Phys. Rev. D 93, 074037 (2016).

[59] Z.-F. Cui, I. C. Cloët, Y. Lu, C. D. Roberts, S. M. Schmidt,
S.-S. Xu, and H.-S. Zong, Phys. Rev. D 94, 071503 (2016).

[60] A. Bhattacharyya, P. Deb, S. K. Ghosh, R. Ray, and S. Sur,
Phys. Rev. D 87, 054009 (2013).

[61] E. S. Fraga, L. F. Palhares, and P. Sorensen, Phys. Rev. C 84,
011903 (2011).

[62] M. Cristoforetti, T. Hell, B. Klein, and W. Weise, Phys. Rev.
D 81, 114017 (2010).

[63] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G 38,
085101 (2011).

[64] C. Shi, W. Jia, A. Sun, L. Zhang, and H. Zong, Chin. Phys.
C 42, 023101 (2018).

[65] C. Shi, Y. Xia, W. Jia, and H. Zong, Sci. China Phys. Mech.
Astron. 61, 082021 (2018).

FINITE VOLUME EFFECTS ON QCD SUSCEPTIBILITIES … PHYS. REV. D 102, 014014 (2020)

014014-9

https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1103/PhysRevD.75.034007
https://doi.org/10.1103/PhysRevD.75.034007
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1103/PhysRevLett.91.102003
https://doi.org/10.1103/PhysRevLett.91.102003
https://doi.org/10.1103/PhysRevD.73.094508
https://doi.org/10.1103/PhysRevD.77.014508
https://doi.org/10.1103/PhysRevC.76.044904
https://doi.org/10.1103/PhysRevC.76.044904
https://doi.org/10.1016/j.nuclphysb.2015.05.014
https://doi.org/10.1103/PhysRevD.90.034022
https://doi.org/10.1103/PhysRevD.90.034022
https://doi.org/10.1103/PhysRevD.93.034013
https://doi.org/10.1103/PhysRevD.93.034013
https://doi.org/10.1103/PhysRevD.93.034509
https://doi.org/10.1016/j.nuclphysb.2015.05.015
https://doi.org/10.1016/j.nuclphysb.2015.05.015
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1007/JHEP07(2014)014
https://doi.org/10.1103/PhysRevLett.113.092301
https://doi.org/10.1103/PhysRevSTAB.17.081004
https://doi.org/10.1103/PhysRevSTAB.17.081004
https://doi.org/10.1103/PhysRevLett.98.092301
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevLett.83.3116
https://doi.org/10.1103/PhysRevLett.83.3116
https://doi.org/10.1103/PhysRevLett.107.031601
https://doi.org/10.1103/PhysRevD.83.105008
https://doi.org/10.1103/PhysRevD.83.105008
https://doi.org/10.1103/PhysRevD.84.014011
https://doi.org/10.1103/PhysRevD.85.054013
https://doi.org/10.1103/PhysRevD.93.105022
https://doi.org/10.1103/PhysRevD.93.105025
https://doi.org/10.1103/PhysRevD.93.105025
https://doi.org/10.1103/PhysRevD.81.114031
https://doi.org/10.1103/PhysRevD.81.114031
https://doi.org/10.1007/JHEP06(2015)094
https://doi.org/10.1007/JHEP06(2015)094
https://doi.org/10.1103/PhysRevD.91.034017
https://doi.org/10.1103/PhysRevD.91.034017
https://doi.org/10.1103/PhysRevD.91.056003
https://doi.org/10.1103/PhysRevC.85.044901
https://doi.org/10.1103/PhysRevC.85.044901
https://doi.org/10.1103/PhysRevC.91.054915
https://doi.org/10.1016/j.physletb.2013.02.014
https://doi.org/10.1103/PhysRevC.87.064906
https://doi.org/10.1016/j.physrep.2017.09.002
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1140/epjc/s10052-011-1695-1
https://doi.org/10.1103/PhysRevD.72.014503
https://doi.org/10.1103/PhysRevD.72.014503
https://doi.org/10.1088/1126-6708/2007/04/090
https://doi.org/10.1016/S0370-2693(01)00798-5
https://doi.org/10.1016/S0370-2693(01)00798-5
https://doi.org/10.1016/S0370-2693(99)01244-7
https://doi.org/10.1016/S0370-2693(99)01244-7
https://doi.org/10.1103/PhysRevD.73.074512
https://doi.org/10.1103/PhysRevD.73.074512
https://doi.org/10.1140/epjc/s10052-009-1098-8
https://doi.org/10.1103/PhysRevD.95.065007
https://doi.org/10.1103/PhysRevD.95.065007
https://doi.org/10.1103/PhysRevX.1.021018
https://doi.org/10.1088/0031-8949/2012/T147/014017
https://doi.org/10.1088/1367-2630/15/3/033005
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevD.91.051501
https://doi.org/10.1103/PhysRevD.91.051501
https://doi.org/10.1142/S0217751X17500671
https://doi.org/10.1142/S0217751X17500671
https://doi.org/10.1103/PhysRevD.73.034029
https://doi.org/10.1103/PhysRevD.73.034029
https://doi.org/10.1103/PhysRevD.92.076009
https://doi.org/10.1103/PhysRevD.92.076009
https://doi.org/10.1140/epjc/s2005-02357-y
https://doi.org/10.1140/epjc/s2005-02357-y
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1016/0370-2693(93)90153-9
https://doi.org/10.1016/0370-2693(93)90153-9
https://doi.org/10.1103/PhysRevD.93.074037
https://doi.org/10.1103/PhysRevD.94.071503
https://doi.org/10.1103/PhysRevD.87.054009
https://doi.org/10.1103/PhysRevC.84.011903
https://doi.org/10.1103/PhysRevC.84.011903
https://doi.org/10.1103/PhysRevD.81.114017
https://doi.org/10.1103/PhysRevD.81.114017
https://doi.org/10.1088/0954-3899/38/8/085101
https://doi.org/10.1088/0954-3899/38/8/085101
https://doi.org/10.1088/1674-1137/42/2/023101
https://doi.org/10.1088/1674-1137/42/2/023101
https://doi.org/10.1007/s11433-017-9177-4
https://doi.org/10.1007/s11433-017-9177-4


[66] B.-L. Li, Z.-F. Cui, B.-W. Zhou, S. An, L.-P. Zhang, and
H.-S. Zong, Nucl. Phys. B938, 298 (2019).

[67] Q.-W.Wang, Y. Xia, and H.-S. Zong, Mod. Phys. Lett. A 33,
1850232 (2018).

[68] Y.-P. Zhao, R.-R. Zhang, H. Zhang, and H.-S. Zong, Chin.
Phys. C 43, 063101 (2019).

[69] Z. Zhang, C. Shi, and H.-S. Zong, Phys. Rev. D 101,
074036 (2020).

[70] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[71] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys. Rev. D

82, 076003 (2010).
[72] T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).
[73] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[74] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D

78, 025010 (2008).
[75] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J.

Rodríguez-Quintero, Phys. Rev. D 86, 074512 (2012).
[76] D. Binosi, L. Chang, J. Papavassiliou, and C. D. Roberts,

Phys. Lett. B 742, 183 (2015).
[77] S.-S. Xu, Z.-F. Cui, A. Sun, and H.-S. Zong, J. Phys. G 45,

105001 (2018).
[78] Z.-F. Cui, S.-S. Xu, B.-L. Li, A. Sun, J.-B. Zhang, and H.-S.

Zong, Eur. Phys. J. C 78, 770 (2018).
[79] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987).
[80] E. Shuryak and J. Verbaarschot, Nucl. Phys. A560, 306

(1993).

[81] J. Verbaarschot, Phys. Rev. Lett. 72, 2531 (1994).
[82] J. Gasser and H. Leutwyler, Nucl. Phys. B307, 763

(1988).
[83] B. Borasoy and R. Lewis, Phys. Rev. D 71, 014033 (2005).
[84] J. Braun, B. Klein, and H. J. Pirner, Phys. Rev. D 72, 034017

(2005).
[85] J. Braun, B. Klein, and H. J. Pirner, Phys. Rev. D 71, 014032

(2005).
[86] J. Braun, B. Klein, H.-J. Pirner, and A. H. Rezaeian, Phys.

Rev. D 73, 074010 (2006).
[87] G. Colangelo, S. Drr, and C. Haefeli, Nucl. Phys. B721, 136

(2005).
[88] A. A. Khan, T. Bakeyev, M. Gckeler, T. Hemmert, R.

Horsley, A. Irving, B. Joó, D. Pleiter, P. Rakow, G.
Schierholz, and H. Stben, Nucl. Phys. B689, 175 (2004).

[89] J. Verbaarschot and T. Wettig, Annu. Rev. Nucl. Part. Sci.
50, 343 (2000).

[90] T. Kanazawa, T. Wettig, and N. Yamamoto, Phys. Rev. D
81, 081701 (2010).

[91] Y.-P. Zhao, P.-L. Yin, Z.-H. Yu, and H.-S. Zong, Nucl. Phys.
B952, 114919 (2020).

[92] Y.-L. Du, Z.-F. Cui, Y.-H. Xia, and H.-S. Zong, Phys. Rev. D
88, 114019 (2013).

[93] S.-S. Xu, P.-L. Yin, and H.-S. Zong, Eur. Phys. J. C 79, 399
(2019).

LIU, LAI, SHI, and ZONG PHYS. REV. D 102, 014014 (2020)

014014-10

https://doi.org/10.1016/j.nuclphysb.2018.11.015
https://doi.org/10.1142/S0217732318502322
https://doi.org/10.1142/S0217732318502322
https://doi.org/10.1088/1674-1137/43/6/063101
https://doi.org/10.1088/1674-1137/43/6/063101
https://doi.org/10.1103/PhysRevD.101.074036
https://doi.org/10.1103/PhysRevD.101.074036
https://doi.org/10.1016/j.physletb.2004.04.027
https://doi.org/10.1103/PhysRevD.82.076003
https://doi.org/10.1103/PhysRevD.82.076003
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1103/PhysRevD.26.1453
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1016/j.physletb.2015.01.031
https://doi.org/10.1088/1361-6471/aadeb0
https://doi.org/10.1088/1361-6471/aadeb0
https://doi.org/10.1140/epjc/s10052-018-6264-4
https://doi.org/10.1016/0370-2693(87)90492-8
https://doi.org/10.1016/0375-9474(93)90098-I
https://doi.org/10.1016/0375-9474(93)90098-I
https://doi.org/10.1103/PhysRevLett.72.2531
https://doi.org/10.1016/0550-3213(88)90107-1
https://doi.org/10.1016/0550-3213(88)90107-1
https://doi.org/10.1103/PhysRevD.71.014033
https://doi.org/10.1103/PhysRevD.72.034017
https://doi.org/10.1103/PhysRevD.72.034017
https://doi.org/10.1103/PhysRevD.71.014032
https://doi.org/10.1103/PhysRevD.71.014032
https://doi.org/10.1103/PhysRevD.73.074010
https://doi.org/10.1103/PhysRevD.73.074010
https://doi.org/10.1016/j.nuclphysb.2005.05.015
https://doi.org/10.1016/j.nuclphysb.2005.05.015
https://doi.org/10.1016/j.nuclphysb.2004.04.018
https://doi.org/10.1146/annurev.nucl.50.1.343
https://doi.org/10.1146/annurev.nucl.50.1.343
https://doi.org/10.1103/PhysRevD.81.081701
https://doi.org/10.1103/PhysRevD.81.081701
https://doi.org/10.1016/j.nuclphysb.2020.114919
https://doi.org/10.1016/j.nuclphysb.2020.114919
https://doi.org/10.1103/PhysRevD.88.114019
https://doi.org/10.1103/PhysRevD.88.114019
https://doi.org/10.1140/epjc/s10052-019-6915-0
https://doi.org/10.1140/epjc/s10052-019-6915-0

