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We propose an effective field theory to describe hadrons with two heavy quarks without any assumption
on the typical distance between the heavy quarks with respect to the typical hadronic scale. The
construction is based on nonrelativistic QCD and inspired in the strong coupling regime of potential
nonrelativistic QCD. We construct the effective theory at leading and next-to-leading order in the inverse
heavy quark mass expansion for arbitrary quantum numbers of the light degrees of freedom. Hence our
results hold for hybrids, tetraquarks, double heavy baryons and pentaquarks, for which we also present the
corresponding operators at a nonrelativistic level. At leading order, the effective theory enjoys heavy quark
spin symmetry and corresponds to the Born-Oppenheimer approximation. At next-to-leading order, spin
and velocity-dependent terms arise, which produce splittings in the heavy quark spin symmetry multiplets.
A concrete application to double heavy baryons is presented in an accompanying paper.
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I. INTRODUCTION

Exotic hadrons, which may be defined as hadrons that
are neither mesons (quark-antiquark states) nor baryons
(three quark states), were already foreseen in the early days
of QCD [1]. Whereas mesons and baryons are well-defined
objects in the nonrelativistic quark model, they are not so in
the context of QCD. This is because the light quark masses
are much smaller than the typical hadronic scale ΛQCD, and
hence light quark-antiquark pairs can be easily created both
in mesons and baryons turning them into tetraquark or
pentaquark states, or even into states with a higher number
of quarks and antiquarks. The situation changes dramati-
cally in the case of hadrons containing heavy quarks, such
as the charm and bottom. Since their masses are much
larger than ΛQCD, the creation of heavy quark-antiquark
pairs in hadrons is highly suppressed. Therefore, the
number of heavy quarks in a heavy hadron is closely
related to its mass, and the quantum numbers such as
isospin and baryon number indicate the light quark content.
For the last two decades numerous experimental collab-

orations have discovered and measured the properties of

many unexpected hadrons, which have been generically
named as XYZ. The first of these states discovered was the
Xð3872Þ [2], which turns out to be extremely close to the
D0-D0� meson threshold, and hence a molecular interpre-
tation is tempting. Later on, another charmoniumlike state
was found, the Yð4260Þ [3], whose weak production in
eþe− annihilation signals it as an exotic. In the following
years charged states in the charmonium and bottomonium
spectrum where discovered [4–6] which can be unambig-
uously identified as tetraquarks. More recently, at the
LHCb experiment, two isospin 1=2 baryons where found
with masses close to the charmonium states [7] which have
been interpreted as a pentaquark formed by a charm-
anticharm pair and three light quarks. More data from
experiments is expected in the near future due to the
ongoing experimental efforts at facilities such as BESIII,
Belle II, LHC and in the future at FAIR, which stresses the
need for a comprehensive theoretical framework based on
QCD to describe these states.
Heavy quarkonium, namely heavy quark-antiquark sys-

tems, have also been studied since the early days of QCD,
and in fact they played an important role in the consoli-
dation of this theory [8,9]. Since the heavy quark masses
mQ are much larger than ΛQCD, it was soon realized that
heavy quarks move slowly and hence they could be
described by standard nonrelativistic quantum mechanics
once the interaction potential was obtained from QCD, and
this could be done in terms of the expectation value of the
Wilson loop [10]. Corrections to the leading-order mass-
independent potential were also considered and expressed
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again in terms of expectation values of operator insertions
in the Wilson loop [11–14]. All these developments were
later on recast in the framework of nonrelativistic effective
field theories [15,16] (see Ref. [17] for a review), which
allowed one to incorporate the so-called hard corrections
[18,19], and provided a complete result for the potential at
order 1=m2

Q [20,21]. The different terms in the potential
have been evaluated in lattice QCD [22–24].
It is the aim of this paper to put forward a general

effective field theory (EFT) framework, analogous to the
one described above for heavy quarkonium, for any heavy
hadron, containing a heavy quark-antiquark or two heavy
quarks, and a gluon and light quark state with arbitrary
quantum numbers. We shall refer to the gluon and light
quarks collectively as light degrees of freedom (LDF). We
will call heavy exotic hadron to any such state with LDF
quantum numbers different from 0þþ, this case correspond-
ing to heavy quarkonium. Note that, for convenience, we
include double heavy baryons in this definition of heavy
exotic hadron.1 Heavy exotic hadrons are then composed of
two distinct components: the heavy quarks and the LDF.
The former form a nonrelativistic bound state with an
interaction potential depending on the LDF state. Such
bound states are characterized by three well-separated
scales: the heavy quark mass, mQ, the relative momentum
mQv, with v ≪ 1 the relative velocity, and the binding
energy mQv2. The LDF states are characterized by the
typical hadronic scale ΛQCD. The EFT that we present in
this paper is built from QCD using two energy gaps
between these characteristic scales. The first one is the
aforementioned fact that mQ ≫ ΛQCD, which is imple-
mented in an EFT framework in nonrelativistic QCD
(NRQCD) [15,26]. The second one is ΛQCD ≫ mQv2,
which is nothing else than the observation that one can
perform an adiabatic expansion between the dynamics of
the heavy degrees of freedom, the heavy quarks, and
the LDF, the gluons and light quarks. Furthermore, in
the short-distance regime,mQv ∼ 1=r ≫ ΛQCD, the relative
momentum scale can be integrated out perturbatively.
This is the so-called weak-coupling regime of potential
NRQCD (pNRQCD) [16,27] developed originally for
quark-antiquark systems to study standard quarkonium
and later on adapted to quark-quark systems to study
double heavy baryons [28,29].
The leading order in the adiabatic expansion is the

celebrated Born-Oppenheimer approximation, which has
been applied to heavy hybrids for quite some time in
Refs. [25,30–34] and put into a nonrelativistic EFT

framework in Refs. [35–37]. The Born-Oppenheimer
approximation has also been used for heavy tetraquarks
in Refs. [32,38–41]. The EFT for heavy hybrids has been
extended beyond leading order to include spin-dependent
operators up to 1=mQ [42] and up to 1=m2

Q [43,44]. In
Refs. [35,43,44] the dependence of the potentials in the
interquark distance, r, was obtained in the short-distance
regime, that is, assuming that the typical size of the system
r is much smaller than the typical hadronic size 1=ΛQCD. In
the case of the static potential, which can be obtained from
the lattice QCD calculations, the results from Ref. [35]
show that the short-distance regime is a reasonable
approximation only for the lowest lying state in the
charmonium sector and for a few low-lying states in the
bottomonium one. This can be understood from a general
standpoint from the fact that the hybrid static potential has a
classical minimum at r ∼ 1=ΛQCD as was pointed out in
Refs. [37,42]. It is not likely that the weak-coupling
assumption is fulfilled in most cases for exotic hadrons
for the actual values of the charm and bottom masses.
We shall then avoid any assumption on the relative size

of r and 1=ΛQCD here, and proceed in an analogous way to
the strong coupling regime of pNRQCD [20,21], as it was
advocated in Ref. [45] and has already been initiated in the
particular case of heavy hybrids [37,42]. The leading-order
Lagrangian for the EFT for heavy exotic hadrons consists
of wave function fields interacting with a mass-independent
and heavy quark spin-independent potential, and coincides
with the Born-Oppenheimer approximation. We consider
here the complete 1=mQ corrections containing the heavy
quark spin or orbital angular momentum for an wide
class of heavy exotic hadrons, including hybrids, tetra-
quarks and pentaquarks. We provide formulas for the
potentials associated with the different operators in
terms of expectation values of operator insertions in the
Wilson loop, which are suitable to be calculated in
lattice QCD.
The paper is organized as follows. In Sec. II, we describe

the EFTand write down the most general leading-order and
next-to-leading order (1=mQ) Lagrangian for arbitrary total
angular momentum of LDF. In Sec. III, we describe the
matching to NRQCD and provide formulas for the different
terms in the potential that can be evaluated in lattice QCD.
In Sec. IV, we list the sets of LDF operators that are suitable
to create hybrids, tetraquarks and pentaquarks. We close
with Sec. V devoted to discussion and conclusions. A
concrete application of the general results in this paper to
double heavy baryons is presented in an accompanying
paper [46]. Some technical details are relegated to the
Appendixes A and B.

II. EFT FOR HEAVY EXOTIC HADRONS

The EFT describing heavy exotic hadrons can be
generically written as

1Note also that we exclude 0þþ excitations of the LDF, which
indeed exist in the spectrum [25]. In that case, the formulas for the
1=mQ corrections are analogous to the ones for the heavy
quarkonium case [20,21]. In particular, no spin- and velocity-
dependent corrections appear at order 1=mQ. This is also true in
the more general case of 0� LDF.
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L ¼
X
κp

Ψ†
κp ½i∂t − hκp �Ψκp ; ð1Þ

where the sum over κp refers to the sum over the LDF states
with spin κ and parity p corresponding to the spectrum of
static energies relevant for a given particular case. The LDF
may have additional quantum numbers such as charge
conjugation, isospin, strangeness or baryon number that
we will not write explicitly. The Ψ fields are understood as
depending on t, r,R, where r¼x1−x2 andR ¼ ðx1 þ x2Þ=2
are the relative and center-of-mass coordinates of a heavy
quark pair. TheΨ fields live both in theLDFand heavy quark
spin spaces. The fieldΨα

κp corresponds to a spin-κ LDF state
and has α ¼ −κ;…; 0;…κ components. In the Lagrangian
in Eq. (1) we have chosen to leave the spin indices implicit.
The Hamiltonian densities hκp have the following

expansion up to 1=mQ:

hκp ¼
p2

mQ
þ P2

4mQ
þ Vð0Þ

κp ðrÞ þ
1

mQ
Vð1Þ
κp ðr; pÞ; ð2Þ

with p ¼ −i∇r and P ¼ −i∇R. The kinetic terms in Eq. (2)
are diagonal in spin space while the potentials are not. The
static potentials, Vð0Þ, are diagonal in the heavy quark spin
space, due to heavy quark spin symmetry, while the LDF
spin structure is determined by the representations of D∞h
that the κp quantum numbers can be associated with. D∞h
is a cylindrical symmetry group that characterizes any
hadron composed of two heavy quarks. Its representations
are labeled by Λ, the absolute value of the projection of the
LDF state angular momentum on the axis joining the two
heavy quarks, r̂.2 Therefore 0 ≤ Λ ≤ jκj. The static poten-
tial is expanded into D∞h representations.

Vð0Þ
κp ðrÞ ¼

X
Λ
Vð0Þ
κpΛðrÞPκΛ; ð3Þ

with PκΛ the projectors into representations of D∞h in the
spin-κ space. These are ð2κ þ 1Þ × ð2κ þ 1Þmatrices in the
light quark spin space and fulfill the usual projector
properties: they are idempotent P2

κΛ ¼ PκΛ, orthogonal
to each other PκΛPκΛ0 ¼ δΛΛ0, and add up to the identity in
the spin-κ space

P
Λ PκΛ ¼ 12κþ1.

The subleading potentials Vð1Þ can be split into terms that
depend on the total heavy quark spin, SQQ, or angular
momentum, LQQ, and the terms independent of these two
operators. The latter have the same structure as (3), whereas
the former take the form

Vð1Þ
κpSDðrÞ ¼

X
ΛΛ0

PκΛ½Vsa
κpΛΛ0 ðrÞSQQ · ðPc:r:

10 · SκÞ

þ Vsb
κpΛΛ0 ðrÞSQQ · ðPc:r:

11 · SκÞ
þ Vl

κpΛΛ0 ðrÞðLQQ · SκÞ�PκΛ0 : ð4Þ

The total heavy quark spin is defined as 2SQQ ¼ σQQ ¼
σQ1

12Q2
þ 12Q1

σQ2
where the 12 are identity matrices in the

heavy quark spin space for the heavy quark labeled in the
subindex. The heavy quark angular momentum is defined
as LQQ ¼ r × p. The superscript c.r. in the projectors
indicates the use of the Cartesian basis representation of
the spin-1 matrices, i.e., ðSi1Þjk ¼ −iϵijk. The heavy quark

spin component of the Ψ fields is given by χQ1
s χQ2

r with χs
the usual spin-1=2 two-component spinors. The LDF spin
component, χκα, is a (2κ þ 1)-component spinor.
Let us summarize how to obtain the projectors PκΛ in

any given spin-κ space. First let us introduce the projection
vectors Pκλ defined as the eigenvectors given by

ðr̂ · SκÞPκλ ¼ λPκλ: ð5Þ

These projection vectors for κ ¼ 1 were used in
Refs. [35,36,43,44,47] in the construction of EFT for hybrid
quarkonium. The spin operator projected into the heavy
quark pair axis can be expanded in these projector vectors

ðr̂ · SκÞ ¼
X
λ

λPκλP
†
κλ: ð6Þ

The projector into D∞h representations in the spin-κ space
can then be defined as

PκΛ ¼
X
λ¼�Λ

PκλP
†
κλ: ð7Þ

If we combine Eqs. (6) and (7) we can arrive at

ðr̂ · SκÞ2n ¼
X
Λ
Λ2nPκΛ: ð8Þ

Some interesting consequences follow from Eq. (8).
First, we can see that the Lagrangian in Eq. (4) contains all
possible spin-dependent operators at order 1=mQ. The only
way to construct new operators is to multiply the existing
ones with scalar factors made out of r̂ and Sκ. The only such
scalar factors are precisely ðr̂ · SκÞ2n which due to Eq. (8)
can be expanded in a linear combination of projectors.
Finally, using the properties of the projectors the new
operators can be reduced to the existing ones. The second
interesting use of Eq. (8) is that it can be used to create a
system of equations that can be inverted in order to obtain
expressions for the projectors in terms of ðr̂ · SκÞ2n for n ¼
0; 1;… up to the number of possible values of 0 ≤ Λ ≤ jκj.
In this way we obtain the projectors P up to spin-2

2Additionally the representations are characterized by η ¼ �1,
the P or CP eigenvalue for heavy quark-quark and heavy quark-
antiquark systems, respectively, denoted by g ¼ þ1 and u ¼ −1;
and for Λ ¼ 0 there is a symmetry under reflection in any plane
passing through the axis r̂, the eigenvalues of the corresponding
symmetry operator being σ ¼ �1.
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P1
2
1
2
¼ 12; ð9Þ

P3
2
1
2
¼ 9

8
14 −

1

2
ðr̂ · S3=2Þ2; ð10Þ

P3
2
3
2
¼ −

1

8
14 þ

1

2
ðr̂ · S3=2Þ2; ð11Þ

P10 ¼ 13 − ðr̂ · S1Þ2; ð12Þ
P11 ¼ ðr̂ · S1Þ2; ð13Þ

P20 ¼ 15 −
5

4
ðr̂ · S2Þ2 þ

1

4
ðr̂ · S2Þ4; ð14Þ

P21 ¼
4

3
ðr̂ · S2Þ2 −

1

3
ðr̂ · S2Þ4; ð15Þ

P22 ¼ −
1

12
ðr̂ · S2Þ2 þ

1

12
ðr̂ · S2Þ4 ð16Þ

with 1n an identity matrix in the LDF spin space of
dimension n ¼ 2κ þ 1. The same results can be obtained
by taking a specific representation of the spin-κ matrices,
solving the eigenvalue problem in Eq. (5) and using the
definition in Eq. (7).
Finally, let us note that another useful basis for the

operators inside the brackets in Eq. (4) depending on the
heavy quark pair spin is to use irreducible Oð3Þ tensors

T ij
0 ¼ δij ¼ ðPc:r:

10 Þij þ ðPc:r:
11 Þij; ð17Þ

T ij
2 ¼ r̂ir̂j −

1

3
δij ¼ 2

3
ðPc:r:

10 Þij −
1

3
ðPc:r:

11 Þij: ð18Þ

III. MATCHING TO NRQCD

In the following we obtain the static potentials, Vð0Þ
κpΛ, and

the spin-dependent operators in Vsa
κpΛΛ0 , Vsb

κpΛΛ0 and Vl
κpΛΛ0

in terms of operator insertions in Wilson loops by expand-
ing NRQCD about the static limit.
Now, let us define the following strings for the case of

hadrons containing a heavy quark-antiquark pair or a heavy
quark-quark pair

OQQ̄
κp ðt; r;RÞ ¼ χ⊤c ðt; x2Þϕðt; x2;RÞQQQ̄κpðt;RÞ

× ϕðt;R; x1Þψðt; x1Þ; ð19Þ

OQQ
κp ðt; r;RÞ ¼ ψ⊤ðt; x2Þϕ⊤ðt;R; x2ÞQQQκpðt;RÞ

× ϕðt;R; x1Þψðt; x1Þ; ð20Þ

with ψ the Pauli spinor fields that annihilate a quark
and χ the one that creates an antiquark, χc ¼ iσ2χ�. The
Q operators contain the LDF and are characterized by
quantum numbers κp. In Sec. IV we provide a list of Q
operators corresponding to a wide array of heavy exotic
states. The Wilson line ϕ is defined as follows:

ϕðt; x; yÞ ¼ Pfeig
R

1

0
dsðx−yÞ·Aðt;yþsðx−yÞÞg; ð21Þ

where P is the path-ordering operator.
The matching condition from NRQCD to the heavy

exotic hadron EFT reads as

Oh
κpðt; r;RÞ ¼

ffiffiffiffiffiffiffiffiffi
Zhκp

p
Ψhκpðt; r;RÞ; h ¼ QQ̄;QQ: ð22Þ

The normalization factor is in general a function of
Zhκp ¼ Zhκpðr; pÞ. For simplicity we will not show this
dependence explicitly in the rest of the paper. We also
suppress the label h except in the steps when the matching
procedures for QQ̄ and QQ systems are not the same.
Now, we match the NRQCD and heavy exotic hadron

EFT correlators,

h0jTfOκpðt=2;r;RÞO†
κpð−t=2;r;RÞgj0i

¼
ffiffiffiffiffiffiffi
Zκp

p
h0jTfΨκpðt=2;r;RÞΨ†

κpð−t=2;r;RÞgj0i
ffiffiffiffiffiffiffi
Z†
κp

q
;

ð23Þ

where we have omitted Dirac deltas on the coordinates on
both sides. The right-hand side of Eq. (23) becomes

ffiffiffiffiffiffiffi
Zκp

p
e−ithκp

ffiffiffiffiffiffiffi
Z†
κp

q
¼

ffiffiffiffiffiffiffi
Zκp

p 1

t

Z
t=2

−t=2
dt0e−iðt=2−t

0ÞVð0Þ
κp
ðrÞ
�
1Q1

2 1Q2

2 1LDFð2κþ1Þ

�
1 − it

∇2
r

mQ
− it

∇2
R

4mQ

�

− it
1

mQ
Vð1Þ
κpSDðrÞ þ � � �

�
e−iðt

0þt=2ÞVð0Þ
κp
ðrÞ

ffiffiffiffiffiffiffi
Z†
κp

q
: ð24Þ

The dots stand for Oðm−1
Q Þ spin- and velocity-independent

potentials and further subleading terms in the heavy quark
mass expansion.
Let us introduce the following notation:

WQQ̄
□

¼ Pfe−ig
R
C1þC̄2

dzμAμðzÞg; ð25Þ

WQQ
□

¼ Pfe−ig
R
C1þC2

dzμAμðzÞg; ð26Þ

h…iκp
□

¼ hQκpðt=2;RÞ…Q†
κpð−t=2;RÞW□i; ð27Þ

with C1, C2, and C̄2 denoting the upper or lower paths on the
rectangular Wilson loop of Fig. 1.
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Using NRQCD [15,26,48], the right-hand side of Eq. (23) can be expanded as

h1iκp
□
1Q1

2 1Q2

2 þ � � � þ i
1

2mQ

Z
t=2

−t=2
dt0ðhD2ðt0; x1Þiκp□ þ ð−1ÞhhD2ðt0; x2Þiκp□ Þ1Q1

2 1Q2

2

…þ i
cF
2mQ

Z
t=2

−t=2
dt0ðhσ1 · gBðt0; x1Þiκp□1Q2

2 þ hσ2 · gBðt0; x2Þiκp□1Q1

2 Þ þ… ð28Þ

with ð−1Þh ¼ 1 for h ¼ QQ and ð−1Þh ¼ −1 for h ¼ QQ̄. Comparing Eqs. (24) and (28) we obtain

ffiffiffiffiffiffiffi
Zκp

p
e−itV

ð0Þ
κp
ðrÞ

ffiffiffiffiffiffiffi
Z†
κp

q
¼ h1iκp

□
: ð29Þ

Now we use the expansion of the static potential in irreducible representations of D∞h of Eq. (3) and arrive at the Wilson
loop expressions for the static potentials

Vð0Þ
κpΛðrÞ ¼ lim

t→∞

i
t
ln ðTr½PκΛh1iκp□ �Þ: ð30Þ

BothOðm−1
Q Þ terms in Eq. (28) contribute to heavy quark spin- and angular-momentum-dependent potentials. In the case of

the D2 operators the contributions come from the third and fourth term of Eq. (A14), which added up are given by
Eq. (A17). The potentials match

ffiffiffiffiffiffiffi
Zκp

p 1

t

Z
t=2

−t=2
dt0e−iðt=2−t

0ÞVð0Þ
κp
ðrÞVð1Þ

κpSDðrÞe−iðt
0þt=2ÞVð0Þ

κp
ðrÞ

ffiffiffiffiffiffiffi
Z†
κp

q

¼ −
cF
t

Z
t=2

−t=2
dt0SQQ · hgBðt0; x1Þiκp□ −

Z
1

0

ds sLQQ · hgBðt=2; zðsÞÞiκp
□
; ð31Þ

with zðsÞ ¼ x1 þ sðR − x1Þ.
To complete the matching of the heavy quark spin- and angular-momentum-dependent operators in Eq. (4), we

decompose the Wilson loop averages in the two LDF spin components using standard tensor decomposition techniques

hBiκp
□

¼
X
ΛΛ0

PκΛ

�
δΛΛ0

Tr½ðSκ · Pc:r:
10 Þ · ðPκΛhBiκp□PκΛÞ�

Tr½ðSκ · Pc:r:
10 Þ · ðPκΛSκPκΛÞ�

ðPc:r:
10 · SκÞ

þTr½ðSκ · Pc:r:
11 Þ · ðPκΛhBiκp□PκΛ0 Þ�

Tr½ðSκ · Pc:r:
11 Þ · ðPκΛSκPκΛ0 Þ� ðPc:r:

11 · SκÞ
�
PκΛ0 : ð32Þ

Using Eq. (32) in Eq. (31) we arrive at the following expressions for the heavy quark spin- and angular-momentum-
dependent potentials:

Vsa
κpΛΛ0 ¼ −cF lim

t→∞

δΛΛ0

t
Tr½PκΛ�

Tr½PκΛh1iκp□ �
Z

t=2

−t=2
dt0

Tr½ðSκ · Pc:r:
10 Þ · ðPκΛhBðt0; x1Þiκp□PκΛÞ�

Tr½ðSκ · Pc:r:
10 Þ · ðPκΛSκPκΛÞ�

; ð33Þ

FIG. 1. The bold paths correspond to the Wilson line paths C1, C2, and C̄2 associated with each one of the heavy quarks.
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Vsb
κpΛΛ0 ¼ −cF lim

t→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½PκΛ�Tr½PκΛ0 �

Tr½PκΛh1iκp□ �Tr½PκΛ0 h1iκp
□
�

s
ln
�
Tr½PκΛh1iκp□ �Tr½PκΛ0 �
Tr½PκΛ0 h1iκ

p
□
�Tr½PκΛ�

�
2t sinh

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½PκΛh1iκp□ �Tr½PκΛ0 �
Tr½PκΛ0 h1iκ

p
□
�Tr½PκΛ�

r �

×
Z

t=2

−t=2
dt0

Tr½ðSκ · Pc:r:
11 Þ · ðPκΛhgBðt0; x1Þiκp□PκΛ0 Þ�

Tr½ðSκ · Pc:r:
11 Þ · ðPκΛSκPκΛ0 Þ� ; ð34Þ

Vl
κpΛΛ0 ¼ − lim

t→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½PκΛ�Tr½PκΛ0 �

Tr½PκΛh1iκp□ �Tr½PκΛ0 h1iκp
□
�

s
ln
�
Tr½PκΛh1iκp□ �Tr½PκΛ0 �
Tr½PκΛ0 h1iκ

p
□
�Tr½PκΛ�

�
2 sinh

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½PκΛh1iκp□ �Tr½PκΛ0 �
Tr½PκΛ0 h1iκ

p
□
�Tr½PκΛ�

r �

×
Z

1

0

ds s
Tr½ðSκ · Pc:r:

11 Þ · ðPκΛhgBðt=2; zðsÞÞiκp□PκΛ0 Þ�
Tr½ðSκ · Pc:r:

11 Þ · ðPκΛSκPκΛ0 Þ� : ð35Þ

The computation of the traces not involving B can be found
in Appendix B. In Appendix C we compare with known
results for the matching of the hybrid quarkonium static
potentials and the heavy-quark-spin-dependent potentials
in the short-distance limit.

IV. LIGHT-QUARK AND GLUON OPERATORS

In this section we provide specific LDF operators for
Eqs. (19) and (20) interpolating for a wide array of possible
heavy exotic hadrons. Let us first introduce the notation. The
light quark fields are standard Dirac fermions represented by
qafαðt; xÞwhere a is the color index and α the spin index, and
f is the isospin index. The Cj3m3

j1m1j2m2
is a Clebsch-Gordan

coefficient, the projector Pþ ¼ ð1þ γ0Þ=2 and the polari-
zation vectors eþ1 ¼ −ð1; i; 0Þ= ffiffiffi

2
p

, e−1 ¼ ð1;−i; 0Þ= ffiffiffi
2

p
,

e0 ¼ ð0; 0; 1Þ. Ta is the standard fundamental representation
of the generators of SUð3Þ. We also use the 3̄ and 6 tensor
invariants from Ref. [28]

Tl
ij ¼

1ffiffiffi
2

p ϵlij; i; j; l ¼ 1; 2; 3; ð36Þ

Σσ
ij i; j ¼ 1; 2; 3 σ ¼ 1;…; 6;

Σ1
11 ¼ Σ4

22 ¼ Σ6
33 ¼ 1;

Σ2
12 ¼ Σ2

21 ¼ Σ3
13 ¼ Σ3

31 ¼ Σ5
23 ¼ Σ5

32 ¼
1ffiffiffi
2

p ; ð37Þ

all other entries are zero.BothTl
ij andΣσ

ij are real;T
l
ij is totally

antisymmetric and Σσ
ij symmetric in the i and j indices. They

satisfy the orthogonality and normalization relations:

X3
ij¼1

Tl1
ijT

l2
ij ¼ δl1l2 ;

X3
ij¼1

Σσ1
ij Σ

σ2
ij ¼ δσ1σ2 ;

X3
ij¼1

Tl
ijΣσ

ij ¼ 0:

ð38Þ

In the case of a heavy quark-antiquark pair, these can be
in singlet or octet states. The first case corresponds to the
standard quarkonium. For the latter we can construct the
following operators interpolating for hybrid quarkonium:

Qα
1þ−ðt; xÞ ¼ ðe†α · Bðt; xÞÞ; ð39Þ

Qα
1−−ðt; xÞ ¼ ðe†α · Eðt; xÞÞ; ð40Þ

Qα
2þ−ðt; xÞ ¼ C2α1m11m2

ðe†m1
· Dðt; xÞÞðe†m2

· Eðt; xÞÞ; ð41Þ

Qα
2−−ðt; xÞ ¼ C2α1m11m2

ðe†m1
· Dðt; xÞÞðe†m2

· Bðt; xÞÞ: ð42Þ

Light-quark operators interpolating for isospin I ¼ 0 tetra-
quark states can be constructed as

Q0þþðt; xÞ ¼ ½q̄ðt; xÞTaqðt; xÞ�Ta; ð43Þ

Q0−þðt; xÞ ¼ ½q̄ðt; xÞγ5Taqðt; xÞ�Ta; ð44Þ

Qα
1þþðt; xÞ ¼ ½q̄ðt; xÞðe†α · γÞγ5Taqðt; xÞ�Ta; ð45Þ

Qα
1−−ðt; xÞ ¼ ½q̄ðt; xÞðe†α · γÞTaqðt; xÞ�Ta; ð46Þ

Qα
1þ−ðt; xÞ ¼ ½q̄ðt; xÞðe†α · ðγ × γÞÞTaqðt; xÞ�Ta; ð47Þ

Qα
2þ−ðt; xÞ ¼ C2α1m11m2

½q̄ðt; xÞðe†m1
· Dðt; xÞÞðe†m2

· γÞ
× Taqðt; xÞ�Ta: ð48Þ

The isospin I ¼ 1 tetraquark states can be interpolated by
similar operators by just adding eI3 · τ in between the light
quark fields. Let us note that for the states with κ ¼ 0 the
operators in Eq. (4) vanish.
Quarkonium-pentaquark states with I ¼ 1=2 and

I3 ¼ �1=2 are interpolated by the operators
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Qα
I3ð1=2Þþðt; xÞ ¼ ðδαβ1σ2β2β3 þ δαβ2σ

2
β1β3

þ δαβ3σ
2
β1β2

Þ
× ðδI3f1τ2f2f3 þ δI3f2τ

2
f3f1

þ δI3f3τ
2
f1f2

Þ
× ðTk

l1l2
Ta
kl3
þ Tk

l1l3
Ta
kl2

þ Tk
l2l3

Ta
kl1
Þ

× ðPþql1f1ðt; xÞÞβ1ðPþql2f2ðt; xÞÞβ2
× ðPþql3f3ðt; xÞÞβ3Ta: ð49Þ

Operators interpolating for double heavy baryons with
the heavy quarks in a 3̄ state read as

Qα
ð1=2Þþðt; xÞ ¼ Tl½Pþqlðt; xÞ�α; ð50Þ

Qα
ð1=2Þ−ðt; xÞ ¼ Tl½Pþγ5qlðt; xÞ�α; ð51Þ

Qβ
ð3=2Þ−ðt; xÞ ¼ C3=2β1m1=2αT

l½ðe†m · DÞðPþqðt; xÞÞα�l; ð52Þ

Qβ
ð3=2Þþðt;xÞ¼C3=2β1m1=2αT

l½ðe†m ·DÞðPþγ5qðt;xÞÞα�l: ð53Þ

If the heavy quarks are in a 6 color state, gluonic fields need
to be added:

Qβ
ð3=2Þ−ðt;xÞ ¼ C3=2β1m1=2αΣ

σTr½ðe†m ·EÞΣσTl�ðPþqlðt;xÞÞα;
ð54Þ

Qβ
ð3=2Þþðt;xÞ ¼ C3=2β1m1=2αΣ

σTr½ðe†m ·BÞΣσTl�ðPþqlðt;xÞÞα:
ð55Þ

Finally, one can also construct open heavy flavor
tetraquarks in a similar manner to Eqs. (43)–(48).

Q0−ðt; xÞ ¼ ½q̄ðt; xÞTlγ2q�ðt; xÞ�Tl; ð56Þ

Q0þðt; xÞ ¼ ½q̄ðt; xÞγ5Tlγ2q�ðt; xÞ�Tl; ð57Þ

Qα
1−ðt; xÞ ¼ ½q̄ðt; xÞðe†α · γÞTlγ5γ2q�ðt; xÞ�Tl; ð58Þ

Qα
1þðt; xÞ ¼ ½q̄ðt; xÞðe†α · γÞTlγ2q�ðt; xÞ�Tl; ð59Þ

Qα
2−ðt;xÞ ¼ C2α1m11m2

½q̄ðt;xÞðe†m1
·DÞðe†m2

· γÞTlγ2q�ðt;xÞ�Tl:

ð60Þ

The isospin I ¼ 1 open heavy flavor tetraquark states can
be interpolated by similar operators by adding eI3 · ðτ2τÞ in
between the light quark fields.

V. CONCLUSIONS

We have put forward a general formalism to build EFTs
for exotic hadrons with two heavy quarks as well as double
heavy baryons. It is based on NRQCD [15,49] and the strong
coupling regime of pNRQCD [27]. Hence, the basic

assumptions are that (i) the heavy quark masses are larger
than any other energy scale in the system, and (ii) the
heavy quark binding energies are smaller than the typical
hadronic scale ΛQCD. We pose no extra assumption on the
relative size of the typical momentum exchanges between
the heavy quarks ∼1=r and ΛQCD such as in previous works
[28,29,43,44,50]. The effective theory consists of wave
function fields interacting with potentials, which are a
function of r and ΛQCD. At leading order in the 1=mQ

expansion, these potentials correspond to the Born-
Oppenheimer approximation. They are heavy quark spin-
and angular-momentum independent, but, in general, they
depend on the spin of the LDF. At next-to-leading order
in the 1=mQ expansion, heavy quark spin- and angular-
momentum-dependent potentials arise. We provide formulas
to calculate, both leading-order and next-to-leading order
potentials, from QCD for any spin of the LDF in terms of
operator insertions in theWilson loop.These are suitable to be
computed in lattice QCD with only light quarks and gluons.
It is important to emphasize that unlike heavy quarko-

nium, in general, for exotic hadrons with κ ≠ 0 the
heavy quark-spin and orbital-angular-momentum (velocity)
effects start at order 1=mQ, and not at order 1=m2

Q. This is
important since a heavy quark spin dependence analogous
to the heavy quarkonium one is often assumed in models,
see for example Refs. [51–53]. We hope that our general
formalism makes this point clear.
For a given spin representation of the Oð3Þ symmetry

group (κp) of the LDF, we have seen that 1=mQ terms mix
different representations of theD∞h group. This was already
noted in the specific case of quarkonium hybrids in
Refs. [42–44]. Furthermore, the 1=mQ terms may also
mix different representations of the Oð3Þ group. This
was already noted, again in the specific case of quarkonium
hybrids, in Refs. [37,42]. Indeed, the operators in the
Lagrangian of Eq. (4) can be generalized to consider off-
diagonal terms with κ ¼ κ0 � 1 and p ¼ p0, that will
produce heavy exotic hadrons with mixed sQQ and l.
Moreover, the terms in Eq. (A11) that do not contribute
to the Lagrangian of Eq. (4) could also produce off-diagonal
operators in κ and other quantum numbers. A full analysis
of these mixing operators and its matching is left for future
work. These mixing terms become relevant for the spectrum
at order 1=m2

Q, although their contribution is suppressed by
the energy gap between κp representations. However it may
become important if there are accidental degeneracies in the
spectrum of both representations [37].
The EFT built in this way is expected to be reliable

for the ground and excited states with binding energies
E ≪ ΛQCD about the ground state. When the binding
energies approach the hadronic scale, both light hadron
resonances and hadron pairs with a single heavy quark each
should somehow be included in the approach. Since they
are not, at this scale our EFT becomes a model, which,
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however, fully incorporates the NRQCD symmetries, in
particular the heavy quark spin-symmetry breaking pattern.
It may also happen, and in fact it often does, that the ground
state of the exotic hadron itself is close to a hadron pair
threshold. In that case, again, the hadrons forming the
threshold should be included in the EFT. String breaking
data of lattice QCD [54,55] suggest that for heavy-light
hadron pair thresholds, threshold effects are only noticeable
in a tiny energy band around the threshold of a few tens of
MeV. In case the ground and excited states are away from
these thresholds by more than a few tens of MeV, our EFT
becomes again a reasonable model. Unfortunately, there is
no such information for thresholds involving light hadrons.
Since pions have masses parametrically smaller than

ΛQCD, they could be incorporated to the EFT in a model-
independent way, by using a formalism similar to Heavy
Baryon Chiral Perturbation Theory [56], that was used in
Refs. [47,57] for hybrids and tetraquarks. The outcome
would be similar to hadronic chiral theories, see for instance
[58], but with r-dependent low-energy constants. Soft
photons could also be incorporated by matching NRQCD
coupled to electromagnetism to the effective theory coupled
to soft photons.
Finally, we have listed a number of light quark and gluon

operators at the NRQCD level that describe most of the
exotic hadrons containing two heavy quarks that are being
considered nowadays as well as double heavy baryons.
In an accompanying paper [46], we present a concrete
application to doubly heavy baryons.
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APPENDIX A: SIMPLIFICATION OF THE
WILSON LOOP WITH A KINETIC

OPERATOR INSERTION

The 1=mQ contribution to the left-hand side of Eq. (23)
produced by the kinetic operator isZ

t=2

−t=2
dt0hD2ðt0;x1Þiκp□

¼
Z

t=2

−t=2
dt0h0j…ϕðt=2;R;x1Þϕðt=2; t0;x1Þ

×D2ðt0;x1Þϕðt0;−t=2;x1Þϕð−t=2;x1;RÞ…j0i ðA1Þ
where the dots stand for the terms that we do not display
explicitly, namely the LDF operators and Wilson lines that
do not explicitly depend on x1. These terms will be
unaffected by the manipulations that we will perform in
this Appendix. We also omit the label h ¼ QQ̄;QQ and
comment about the differences between these two cases at
the end of the Appendix.
The Wilson lines are defined as follows:

ϕðt0; t; xÞ ¼ Pfe−ig
R

t0
t
dt00A0ðt00;xÞg; ðA2Þ

ϕðt; x; yÞ ¼ Pfeig
R

1

0
dsðx−yÞ·Aðt;yþsðx−yÞÞg; ðA3Þ

where P stands for path ordered. We will use the following
equalities [11,20]:

ϕðt00; t0; xÞϕðt0; t; xÞ ¼ ϕðt00; t; xÞ; ðA4Þ

Dðx; t0Þϕðt0; t; xÞ ¼ ϕðt0; t; xÞDðx; tÞ þ iOEðt0; t; xÞ; ðA5Þ

Dðx; tÞϕðt; x; yÞ ¼ ϕðt; x; yÞ∇x þ iOBðt; x; yÞ; ðA6Þ

with the abbreviated notation for the following strings:

OEðt0; t; xÞ ¼
Z

t0

t
dt00ϕðt0; t00; xÞgEðt00; xÞϕðt00; t; xÞ; ðA7Þ

OBðt; x; yÞ ¼
Z

1

0

ds sϕðt; x; zðsÞÞðx − yÞ

× gBðt; zðsÞÞϕðt; zðsÞ; yÞ; ðA8Þ

with zðsÞ ¼ yþ sðx − yÞ. Using Eqs. (A4)–(A6) in
Eq. (A1) one can arrive at

hD2ðt0; x1Þiκp□ ¼ ∇x1

2
· ðh1iκp

□
∇x1 þ 2ihOBð−t=2; x1;RÞiκp□ þ 2ihOEðt0;−t=2; x1Þiκp□ Þ þ ð∇x1h1iκ

p

□

þ 2ihOBðt=2;R; x1Þiκp□ − 2ihOEðt=2; t0; x1Þiκp□ Þ ·∇x1

2
− hOBðt=2;R; x1ÞOEðt0;−t=2; x1Þiκp□

þ hOEðt=2; t0; x1ÞOBð−t=2; x1;RÞiκp□ þ hOEðt=2; t0; x1ÞOEðt0;−t=2; x1Þiκp□
þ hOBðt=2;R; x1ÞOBð−t=2; x1;RÞiκp□ ; ðA9Þ
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where the strings in the Wilson loops are understood as replacing that corresponding segment of the loop.
Now it is convenient to work out the following identity:

∇x1h1iκ
p

□
¼ −ihOBðt=2;R; x1Þiκp□ þ ihOEðt=2;−t=2; x1Þiκp□ þ ihOBð−t=2; x1;RÞiκp□ þ h1iκp

□
∇x1 ; ðA10Þ

which allows one to write Eq. (A9) as

hD2ðt0; x1Þiκp□ ¼ ∇2
x1

2
h1iκp

□
þ h1iκp

□

∇2
x1

2

þ∇x1

2
· ðihOBð−t=2; x1;RÞiκp□ þ ihOBðt=2;R; x1Þiκp□ − ihOEðt=2; t0; x1Þiκp□ þ ihOEðt0;−t=2; x1Þiκp□ Þ

× ðihOBðt=2;R; x1Þiκp□ þ ihOBð−t=2; x1;RÞiκp□ − ihOEðt=2; t0; x1Þiκp□ þ ihOEðt0;−t=2; x1Þiκp□ Þ ·∇x1

2

− hOBðt=2;R; x1ÞOEðt0;−t=2; x1Þiκp□ þ hOEðt=2; t0; x1ÞOBð−t=2; x1;RÞiκp□
þ hOEðt=2; t0; x1ÞOEðt0;−t=2; x1Þiκp□ þ hOBðt=2;R; x1ÞOBð−t=2; x1;RÞiκp□ : ðA11Þ

Note also that due to time reversal the identitiesZ
t=2

−t=2
dt0hOEðt0;−t=2; x1Þiκp□ ¼

Z
t=2

−t=2
dt0hOEðt=2; t0; x1Þiκp□ ¼ 1

2

Z
t=2

−t=2
dt0hOEðt=2;−t=2; x1Þiκp□ ðA12Þ

and

hOBðt=2;R; x1Þiκp□ ¼ hOBð−t=2; x1;RÞiκp□ ðA13Þ
are fulfilled. Using Eqs. (A12)–(A13) into Eq. (A11) we arrive at

hD2ðt0; x1Þiκp□ ¼ 1

2
∇2

x1h1iκ
p

□
þ 1

2
h1iκp

□
∇2

x1 þ i∇x1 · hOBðt=2;R; x1Þiκp□ þ ihOBðt=2;R; x1Þiκp□ ·∇x1

− hOBðt=2;R; x1ÞOEðt0;−t=2; x1Þiκp□ þ hOEðt=2; t0; x1ÞOBð−t=2; x1;RÞiκp□
þ hOEðt=2; t0; x1ÞOEðt0;−t=2; x1Þiκp□ þ hOBðt=2;R; x1ÞOBð−t=2; x1;RÞiκp□ : ðA14Þ

The term that matches to the LQQ · Sκ operator is

i∇x1 · hOBðt=2;R; x1Þiκp□ þ ihOBðt=2;R; x1Þiκp□ ·∇x1 ¼ −iriϵijk
Z

1

0

ds shBjðt=2; zðsÞÞiκp
□

�
1

2
∇R þ∇r

�
k
þ � � �

¼
Z

1

0

ds shBjðt=2; zðsÞÞiκp
□
Lj
QQ þ � � � : ðA15Þ

In the heavy quark pair case the contributions from D2ðt; x2Þ are analogous except by two relative minus signs that
compensate each other,

i∇x2 · hOBðt=2;R; x2Þiκp□ þ ihOBðt=2;R; x2Þiκp□ ·∇x2 ¼ iriϵijk

Z
1

0

ds shBjðt=2; z0ðsÞÞiκp
□

�
1

2
∇R −∇r

�
k
þ � � �

¼
Z

1

0

ds shBjðt=2; z0ðsÞÞiκp
□
Lj
QQ þ � � �

¼
Z

1

0

ds shBjðt=2; zðsÞÞiκp
□
Lj
QQ þ � � � ðA16Þ

with z0ðsÞ ¼ Rþ sðx2 − RÞ. Adding up the two contributions we arrive atZ
t=2

−t=2
dt0ðhD2ðt0; x1Þiκp□ þ hD2ðt0; x2Þiκp□ Þ ¼ 2t

Z
1

0

ds shBðt=2; zðsÞÞiκp
□
· LQQ þ � � � : ðA17Þ
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In the case of a heavy quark-antiquark pair the kinetic
operator of the heavy antiquark has a relative minus sign
with respect to the heavy quark one. However, the path of
the Wilson line of the heavy antiquark goes in the opposite
direction to the one of the heavy quark, see Fig. 1. This
opposite trajectory for the antiquark generates an additional
minus sign in Eq. (A8) since that string depends on the
initial and end points. The two minus signs compensate
each other and the result for a heavy quark-antiquark pair is
also the one given by Eq. (A17).

APPENDIX B: TRACES OF PROJECTORS AND
SPIN MATRICES

The trace of the projectors is

Tr½PκΛ� ¼ 2 − δΛ0: ðB1Þ

The traces of projectors and spin matrices in Eqs. (33)–(35)
can be expressed as sums of Clebsch-Gordan coefficients

Tr½ðSκ · Pc:r:
10 Þ · ðPκΛSκPκΛ0 Þ� ¼ 2Λ2δΛΛ0 ; ðB2Þ

Tr½ðSκ · Pc:r:
11 Þ · ðPκΛSκPκΛ0 Þ�

¼ ðκ þ ΛÞðκ − Λ0ÞδΛΛ0−1 þ ðκ − ΛÞðκ þ Λ0ÞδΛΛ0þ1

þ ðκ þ ΛÞðκ þ Λ0ÞδΛ1−Λ0 : ðB3Þ

APPENDIX C: COMPARISON WITH
SHORT-DISTANCE REGIME MATCHING

FOR HYBRID QUARKONIUM

For quarkonium hybrids the matching in the short-
distance regime, that is in the case r≲ 1=ΛQCD, of the
static potential can be found in Refs. [27,35,44]

Vð0Þ
1þΛðrÞ ¼ Λ1þ þ Vð0Þ

o ðrÞ þ b1þΛr2 þ � � � ðC1Þ

with Vð0Þ
o ðrÞ the perturbative octet potential. The constants

Λ1þ and b1þΛ are nonperturbative, local, gluon correlators.
For example, the leading order of the static potential is
given by the so-called gluelump mass, which takes the
following form:

Λ1þ ¼ lim
t→∞

i
t
lnh0jBiaðt=2;RÞϕabðt=2;−t=2;RÞ

× Bibð−t=2;RÞj0i; ðC2Þ

with ϕabðt; t0;RÞ the adjoint static Wilson line defined by
Eq. (A2) with the gluon field in the adjoint representation.
The short-distance regime matching of the heavy quark

spin-dependent potentials can be found in Ref. [44]. To
compare our results with those of Ref. [44] we take heavy
quark spin-dependent potentials of Eq. (4) for the case κp ¼
1þ and use the Cartesian basis representation of the spin-1
matrices, i.e., ðSi1Þjk ¼ −iϵijk. We find that

Ψ†
1þ
X
ΛΛ0

Pc:r:
1Λ ½Vsa

1þΛΛ0 ðrÞSQQ · ðPc:r:
10 · Sc:r:1 Þ þ Vsb

1þΛΛ0 ðrÞSQQ · ðPc:r:
11 · Sc:r:1 Þ�Pc:r:

1Λ0Ψ1þ

¼ ðΨ†
1þÞi½Vsa

1þ11ðrÞSkQQðSk1Þij þ ðVsb
1þ10ðrÞ − Vsa

1þ11ðrÞÞSkQQðr̂ir̂lðSk1Þlj − r̂lðSk1Þlir̂jÞ�ðΨ1þÞj: ðC3Þ

Using Eq. (C3) we can find the correspondence of our results to those of Ref. [44]

Vsa
1þ11ðrÞ ¼ Vnpð0Þ

SK þ Vnpð1Þ
SK r2…; ðC4Þ

Vsb
1þ10ðrÞ ¼ Vnpð0Þ

SK þ ðVnpð0Þ
SKb þ Vnpð1Þ

SK Þr2… ðC5Þ

with Vnpð0Þ
SK , Vnpð1Þ

SK , and Vnpð0Þ
SKb nonperturbative, local, gluon correlators. For example, the leading-order one takes the form

Vnpð0Þ
SK ¼ cF

2
lim
T→∞

ieiΛ1þ t

t

Z
t=2

−t=2
dt0 ϵijkhbcdh0jBiaðt=2;RÞϕabðt=2; t0;RÞgBjcðt;RÞϕdeðt=2; t0;RÞBkeð−t=2;RÞj0i: ðC6Þ

From Eqs. (C1) and (C3) we can see the general structure
for the short-distance expansion of the potentials: a non-
analitic, perturbative term appears if the potential can be
generated by interactions between the heavy quarks with-
out involvement of the LDF, the gluons in the case of
quarkonium hybrids. The nonperturbative contributions

appear as coefficients of a series in powers of r. These
coefficients are given by nonperturbative, local, gluon
correlators. Furthermore, in the short-distance limit,
r→ 0, the symmetry group D∞h is enlarged to Oð3Þ × C
and therefore the potentials at leading order in the short-
distance expansion are independent on the representation of
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D∞h and only depend on the quantum numbers κp of the
LDF operators. The next-to-leading corrections are gen-
erated by r-dependent interactions of the heavy quarks
with the LDF; these break the degeneracy of the D∞h
representations.
We can compare Eq. (C6) to Eqs. (33) and (34). In both

cases there are matching cF coefficients. Using Eq. (C1) we
can see that the factor ieiΛ1þ t=t in Eq. (C6) is the short-
distance expansion of the factor in front of the integral of

Eqs. (33). The same holds true for the factor in front of the
integral of Eq. (34), if we take into account the short-
distance degeneracy of the D∞h representations. One can
also see that the B operators in Eq. (C6) match those
inserted in the Wilson loop of Eqs. (33) and (34): Bðt=2;RÞ
and Bð−t=2;RÞ correspond to the operator in Eq. (39)
inserted in the temporal sides of the Wilson loop and
Bðt;RÞ correspond to the NRQCD operator inserted in the
spatial side of the Wilson loop.
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