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We investigate the stability of the magnetic dual chiral density wave (MDCDW) phase of cold and dense
QCD against collective low-energy fluctuations of the order parameter. The appearance of additional
structures in the system free energy due to the explicit breaking of the rotational and isospin symmetries by
the external magnetic field play a crucial role in the analysis. The new structures stiffen the spectrum of the
thermal fluctuations in the transverse direction, thereby avoiding the Landau-Peierls instability that affects
single-modulated phases at arbitrarily low temperatures. The lack of Landau-Peierls instabilities in the
MDCDW phase makes this inhomogeneous phase of dense quark matter of particular interest for the
physics of neutron stars.
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I. INTRODUCTION

In recent years, a great deal of effort has been dedicated
to complete the temperature-density phase map of QCD.
The regions of extreme high temperature or density are
better understood in part thanks to the weakening of the
strong coupling by the phenomenon of asymptotic free-
dom. They are described by the quark-gluon plasma (QGP)
phase at high temperature and low density, or by the color
superconducting color-flavor locked (CFL) phase at
asymptotically large density and low temperature [1].
More challenging, nonetheless, is to determine the phases
that take place at intermediate density-temperature regions,
where lattice QCD is not applicable due to the sign
problem, so one has to rely on nonperturbative methods
and effective theories.
It has long been argued that the region of intermediate

density and relatively low temperature may feature inho-
mogeneous phases, many of which have spatially inhomo-
geneous chiral condensates that are favored over the
homogeneous ones. Such spatially inhomogeneous phases
have been found in the large-N limit of QCD [2,3], in NJL
models [4–7], and in quarkyonic matter [8]. In all the cases,
single-modulated chiral condensates are energetically
favored over chiral condensates with higher-dimensional
modulations.
However, single-modulated phases in three spatial

dimensions are known to be unstable against thermal
fluctuations at any arbitrarily small finite temperature, a
phenomenon known in the literature as Landau-Peierls
instability [9]. In dense QCD models, the Landau-Peierls
instability occurs in the periodic real kink crystal phase
[10], in the dual chiral density wave (DCDW) phase [11],

and in the quarkyonic phase [12]. The instability signals the
lack of long-range correlations at any finite temperature and
hence the lack of a true order parameter. Only a quasi-long-
range order remains in all these cases, a situation that
resembles what happens in smectic liquid crystals [13].
It is worth noticing, on the other hand, that the two

scenarios where dense quark matter phases can be realized,
neutron stars [14,15] and heavy-ion collisions [16], typi-
cally have very strong magnetic fields. Consequently, the
field effect on dense quark matter phases has become a hot
topic of investigation (see [17,18] and references therein),
adding an extra dimension to the QCD phase map problem.
The effect of a magnetic field in inhomogeneous phases has
been considered in quarkyonic matter [19] and in the
DCDW phase [20,21].
The presence of a magnetic field is relevant due to the

activation of new channels of interaction and, occasionally,
the generation of additional condensates. For instance, in
the quarkyonic phase, a magnetic field is responsible for the
appearance of a new chiral spiral between the pion and
magnetic moment condensates, hψ̄γ5ψi and hψ̄γ1γ2ψi,
respectively [19]. Additional condensates also emerge in
the homogeneous chiral phase [22], as well as in color
superconductivity [23].
Adding a magnetic field to the DCDW phase explicitly

reduces the rotational and isospin symmetries, significantly
enhances the window for inhomogeneity [20,21], and leads
to topologically nontrivial transport properties [24,25]
related to the spectral asymmetry of the lowest Landau
level (LLL). Because the DCDW phase in a magnetic field
is physically distinguishable from the conventional DCDW
one at zero field, it has been termed the magnetic DCDW
(MDCDW) phase [24].
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In this paper, we go beyond the mean-field approxima-
tion to investigate the stability of the MDCDW phase
against thermal fluctuations in the region of relevance for
neutron star applications. As it will be shown below, an
external magnetic field introduces new structures in the
system’s free energy that make it anisotropic, so terms with
transverse and parallel (to the magnetic field direction)
derivatives of the order parameter enter with different
coefficients. The field-induced structures also affect the
condensate minimum equations. Furthermore, the coeffi-
cients of these structures contribute to the free energy of the
fluctuations in such a way that their dispersion becomes
linear in all the directions, and thus the system lacks the
severe infrared divergencies that characterize the Landau-
Peierls instability. This means that the long-range order is
not wiped out by thermal fluctuations at arbitrarily low
temperatures, in nice agreement with the general arguments
presented in [25] for the MDCDW phase and in [10] for
single-modulated phases with an external vector field.
The paper is organized as follows. In Sec. II, the gen-

eralized Ginzburg-Landau (GL) expansion of the MDCDW
thermodynamic potential in powers of the order parameter
and its derivatives is obtained and shown to differ from the
corresponding DCDW expansion due to two types of new
structural terms induced by the magnetic field. The new
structural terms make the GL expansion anisotropic and
modify the stationary equation that determines the ground
state of the system. In Sec. III, we derive the low-energy
theory of the thermal fluctuations about the condensate
solution, demonstrating how the magnetic field leads to a
spectrum of thermal fluctuations that is linear in all the
directions. We then show how this property prevents the
system from exhibiting the Landau-Peierls instability
despite being a single-modulated phase. The origin and
physical interpretations of the new terms, as well as the
implications of our findings, are discussed throughout the
paper and summarized in our concluding remarks
in Sec. IV.

II. LOW-ENERGY GINZBURG-LANDAU
EXPANSION IN THE MDCDW PHASE

The MDCDW phase emerges in a two-flavor NJL theory
of interacting quarks at finite baryon density in the presence
of a magnetic field [20]. The ground state of this phase is
characterized by an inhomogeneous chiral condensate

hψ̄ψi þ ihψ̄iγ5τ3ψi ¼ Δ̄ expðiq̄zÞ ¼ −
1

2G
M0ðzÞ; ð1Þ

identical in form to the one that exists in the single-
modulated DCDW phase, except that the modulation vector
there can be arbitrarily chosen along any direction, while in
the MDCDW a modulation vector parallel to the magnetic
field is energetically favored. Without loss of generality, we

choose the magnetic field B in the z-direction, and thus the
condensate modulation is q ¼ ð0; 0; q̄Þ.
The two-flavor NJL theory in the absence of a magnetic

field exhibits the following global symmetries: vector
and axial isospin SUVð2Þ × SUAð2Þ, full spatial rotations
SOð3Þ, and translations R3. However, when an external B
is present, it explicitly breaks the isospin symmetry and the
rotations about the axes perpendicular to the field direction.
Hence, in this case the symmetry reduces to UVð1Þ×
UAð1Þ × SOð2Þ × R3. In addition, the theory is invariant
under parity (P) and time-reversal (T) discrete symmetries.
The low-energy theory of the MDCDW phase is

described by a generalized Ginzburg-Landau (GL) expan-
sion of the thermodynamic potential in powers of the order
parameter and its derivatives. The GL expansion usually
assumes that both the order parameter and its derivatives
are small, a condition that may occur near the phase
transition. The GL expansion of the MDCDW phase near
the critical point (CP), that is, in the region of large
temperatures and low chemical potentials, was explored in
[21]. For neutron star applications, however, the region of
interest is that of large chemical potentials and low temper-
atures. Henceforth, our study will be mainly focused on the
region of relevance for neutron stars near the transition to
the chirally restored phase. Later in this section, we shall
discuss the validity of the GL expansion in this region.
The GL expansion must be invariant under the sym-

metries of the theory in the presence of the external
magnetic field. In the MDCDW system, the order param-
eter is characterized by the scalar and pseudoscalar fields
σ ¼ −2Gψ̄ψ and π ¼ −2Gψ̄iγ5τ3ψ , respectively. Under a
global chiral transformation eiγ5τ3θ=2 of the fermion fields,
they transform as σ → σ cos θ þ π sin θ and π → π cos θ −
σ sin θ, reflecting the isomorphism between the chiral
group UAð1Þ and the SOð2Þ of internal rotations acting
on the two-dimensional vector ϕ ¼ ðσ; πÞ. In a similar way,
one can see that the UVð1Þ transformations of the fermions
reduce to the trivial group acting on the vector ϕ.
Using the SOð2Þ representation, the GL expansion can

be written as

F ¼ a2;0ϕTϕþ b3;1
2

½ϕTB̂ · ∇̃ϕþ B̂ · ð∇̃ϕÞTϕ� þ a4;0ðϕTϕÞ2

þ að0Þ4;2ð∇̃ϕÞT · ∇̃ϕþ að1Þ4;2B̂ · ð∇̃ϕÞTB̂ · ∇̃ϕ

þ b5;1
2

ðϕTϕÞ½ϕTB̂ · ∇̃ϕþ B̂ · ð∇̃ϕÞTϕ�

þ b5;3
2

½ð∇̃2ϕÞTB̂ · ∇̃ϕþ B̂ · ð∇̃ϕÞT∇̃2ϕ� þ a6;0ðϕTϕÞ3

þ að0Þ6;2ðϕTϕÞð∇̃ϕÞT · ∇̃ϕþ að1Þ6;2ðϕTϕÞ½B̂ · ð∇̃ϕÞTB̂ · ∇̃ϕ�
þ a6;4ð∇̃2ϕÞTð∇̃2ϕÞ þ � � � ; ð2Þ

where we introduced the normalized vector B̂ ¼ B=jBj in
the direction of the magnetic field and used it to form
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additional structural terms that are consistent with the
symmetry of the theory in a magnetic field. In the
SOð2Þ representation the complex unit i is a matrix,

i≡
�
0 −1
1 0

�
; hence the derivative operator −i∇ is

represented by

∇̃ ¼
�

0 1

−1 0

�
∇: ð3Þ

The coefficients a and b are functions of T, μ and B.
They can be derived from the MDCDW thermodynamic
potential found in [25], although their explicit expressions
are not relevant for the present study. The first subindex in
the coefficient’s notation indicates the power of the order
parameter plus its derivatives in that term; the second index
denotes the power of the derivatives alone.
There are two distinguishable effects of the external

magnetic field on the GL expansion. On the one hand, it
allows the presence of terms with coefficients að1Þi;j . These
terms, which are even in B̂, are responsible for the explicit
separation of transverse and parallel derivatives, as is
expected to occur in any theory where the rotational
symmetry is broken by an external vector. Their structures

are similar to the ones with coefficients að0Þi;j , except that the
gradient operator is replaced by the projection of the
gradient along the external field. These additional struc-
tures were missed in previous studies of the MDCDW
low-energy theory [21,26], even though they affect the
fluctuation spectrum, a fact that will become apparent in the
next section.
On the other hand, the symmetries of the theory also

allow us, in principle, to construct B-dependent terms that
are linear in B̂. These are the structures with coefficients
bi;j. As B is odd under the T symmetry, the rest of the
structure has to also be odd under T and hence odd in the
pseudoscalar order parameter. Even though these terms are
permitted from general symmetry arguments, they are not a
common feature of theories with an external vector, but
they exist instead when the system exhibits nontrivial
topology. We shall see below that in the MDCDW case,
the existence of nonzero bi;j can indeed be traced back to
the nontrivial topology manifested through the spectral
asymmetry of the lowest Landau level (LLL) fermions [20].
The isomorphism between SOð2Þ and UAð1Þ allows us

to represent the order parameter as a complex function
MðxÞ ¼ σðxÞ þ iπðxÞ. In terms of MðxÞ the GL expansion
of the free energy (2) takes the form

F ¼ a2;0jMj2 − i
b3;1
2

½M�ðB̂ ·∇MÞ − ðB̂ ·∇M�ÞM� þ a4;0jMj4 þ að0Þ4;2j∇Mj2

þ að1Þ4;2ðB̂ · ∇M�ÞðB̂ · ∇MÞ − i
b5;1
2

jMj2½M�ðB̂ ·∇MÞ − ðB̂ · ∇M�ÞM�

þ ib5;3
2

½ð∇2M�ÞB̂ · ∇M − B̂ ·∇M�ð∇2MÞ� þ a6;0jMj6 þ að0Þ6;2jMj2j∇Mj2

þ að1Þ6;2jMj2ðB̂ · ∇M�ÞðB̂ · ∇MÞ þ a6;4j∇2Mj2 þ � � � : ð4Þ

Assuming that the MDCDW order parameter is a single-modulated density wave MðzÞ ¼ meiqz, with m≡ −2GΔ, the
free energy (4) becomes

F ¼ a2;0m2 þ b3;1qm2 þ a4;0m4 þ a4;2q2m2 þ b5;1qm4

þ b5;3q3m2 þ a6;0m6 þ a6;2q2m4 þ a6;4q4m2; ð5Þ

where a4;2 ¼ að0Þ4;2 þ að1Þ4;2, a6;2 ¼ að0Þ6;2 þ að1Þ6;2, and we kept up
to sixth order terms to ensure the stability of the MDCDW
phase in the mean-field approximation.
We can now explain why the expansion (5) is valid in the

region T < mV < μ, near the chirally restored phase, with
mV the vacuum quark mass. In such a region, the order
parameters satisfy m=μ < 1 and q=2μ < 1 [20]. One can
readily show [27], following an approach similar to the one
used in [28] for the DCDW case, that the power series in q
effectively becomes an expansion in powers of q=2μ, hence
corroborating the consistency of the expansion and the
truncation used.

Straight derivations [27] show that the a coefficients get
contributions from all Landau levels l. In contrast, the
higher Landau levels (HLL), l > 1, do not contribute to the
b-coefficients. This can be understood from the following
observations: The b-terms in (5) are odd in q, but, as can be
gathered from the fermion spectrum [Eqs. (9) and (10) in
[25]] and the thermodynamic potential [Eq. (70) in [25]],
the part of the potential that comes from the HLL is
invariant under the change q → −q, so it cannot generate
odd-in-q terms in the GL expansion. That leaves the LLL
modes as the only possible source of the b-terms. Indeed,
the LLL contribution is not invariant under q → −q, due to
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the asymmetry of the LLL modes. In principle, the LLL
part of the thermodynamic potential can have q-odd and
q-even terms. Obviously the b-terms come from the odd
part. Such an odd part is topological in nature, a fact that
manifests in the existence of several anomalous quantities,
like the anomalous part of the quark number, which is
proportional to a topological invariant [21], or the anoma-
lous electric charge and the anomalous Hall current [25], all
of which are odd in q.
So in summary, the additional a and b terms have quite

different origins. New a terms will always appear if an
external vector is added to the system because they simply
reflect the explicit breaking of the rotational symmetry
produced by this vector. The b terms, however, come from
the topology of the modified fermion spectrum in the
ground state with the external field. As the LLL part of the
thermodynamic potential is linear in the magnetic field B,
so will the b-coefficients be.
The ground state is found as the solution of the stationary

equations

∂F=∂m ¼ 2mfa2;0 þ 2a4;0m2 þ 3a6;0m4

þ q2½a4;2 þ 2a6;2m2 þ a6;4q2�
þ q½b3;1 þ 2b5;1m2 þ b5;3q2�g ¼ 0; ð6aÞ

∂F=∂q ¼ m2f2q½a4.2 þ a6;2m2 þ 2a6.4q2�
þ b3;1 þ b5;1m2 þ 3b5;3q2g ¼ 0: ð6bÞ

It is easy to see that in the limit of zero magnetic field,
where the a1i;j and bi;j coefficients vanish, one recuperates
the minimum equations of the DCDW phase [11], as
expected.

III. NO LANDAU-PEIERLS
INSTABILITY AT B ≠ 0

To explore the Landau-Peierls instability we need to go
beyond the mean-field approximation and investigate the
low-energy thermal fluctuations that may affect the long-
range order of the inhomogeneous ground state. In prin-
ciple, there can be fluctuations of the condensate magnitude
and of the condensate phase. However, not all of them are
associated with the spontaneous breaking of a global
symmetry. We notice that to probe the instability of the
ground state at arbitrarily low temperatures, the relevant
fluctuations are those that can be excited at very low
energies, i.e., those generated by the Goldstone bosons of
the system. Hence, in our analysis, we do not consider the
magnitude fluctuations because they are not associated with
a Goldstone mode.
The ground state of the MDCDW system spontaneously

breaks the chiral symmetry UAð1Þ and the translation along
z, reducing the symmetry group to UVð1Þ × SOð2Þ × R2.
Hence, there are, at least in principle, two Goldstone

bosons: the neutral pion τ and the phonon ξ. Before
considering their fluctuations, it is convenient to examine
the effect of the global transformations of these broken
groups on the order parameter,

MðxÞ → eiτMðzþ ξÞ ¼ eiðτþqξÞMðzÞ: ð7Þ

From Eq. (7), one clearly sees that there is a locking
between the chiral rotation and the z translation. Therefore,
we can always express them as two orthogonal combina-
tions, one that leaves the order parameter invariant and
one that changes it. As a consequence, there is only one
legitimate Goldstone field in the MDCDW theory. One can
arbitrarily choose it as either the pion, the phonon, or a
linear combination of them. Henceforth, without loss of
generality, we consider it to be the phonon.
We now subject the order parameter to a small phonon

fluctuation uðxÞ and expand it about the condensate
solution up to quadratic order in the fluctuation,

MðxÞ ¼ Mðzþ uðxÞÞ

≃M0ðzÞ þM0
0ðzÞuðxÞ þ

1

2
M00

0ðzÞu2ðxÞ; ð8Þ

where M0ðzÞ ¼ m̄eiq̄z is the ground state (1) with m̄ and q̄
the solutions of (6a) and (6b).
Inserting (8) into (4), and keeping terms up to quadratic

order in uðxÞ, we arrive at the phonon free energy

F ½MðxÞ� ¼ F 0 þ v2zð∂zθÞ2 þ v2⊥ð∂⊥θÞ2 þ ζ2ð∂2
zθþ ∂2⊥θÞ2;

ð9Þ

where we rewrote the free energy in terms of a dimension-
1 pseudo-boson field θ ¼ qmu, and introduced the notation
F 0 ¼ F ðM0Þ, ð∂⊥θÞ2 ¼ ð∂xθÞ2 þ ð∂yθÞ2 and ζ2 ¼ a6.4.
The coefficients v2z , v2⊥ are the squares of the parallel and

transverse group velocities, respectively given by

v2z ¼ a4.2 þm2a6.2 þ 6q2a6.4 þ 3qb5;3; ð10Þ

v2⊥ ¼ a4.2 þm2a6.2 þ 2q2a6.4 þ qb5;3 − að1Þ4.2 −m2að1Þ6.2:

ð11Þ

For the sake of simplicity, we dropped the bar notation
for the dynamical parameters m and q in (10) and (11), but
they must be understood as the solutions of the stationary
conditions (6a) and (6b). In deriving (9), the term linear in
∂zθ cancels out after considering (6b).
The corresponding low-energy Lagrangian density is

L ¼ 1

2
½ð∂0θÞ2 − v2zð∂zθÞ2 − v2⊥ð∂⊥θÞ2 − ζ2ð∂2

zθ þ ∂2⊥θÞ2�:
ð12Þ

E. J. FERRER and V. DE LA INCERA PHYS. REV. D 102, 014010 (2020)

014010-4



The resultant phonon spectrum is anisotropic and linear
in the longitudinal and transverse directions,

E ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2zk2z þ v2⊥k2⊥

q
; ð13Þ

where k2⊥ ¼ k2x þ k2y.
The spectrum of the gapless excitations over the same

background was also worked out in [26]. However, a direct
comparison of the results is not possible because there the
structures with coefficients að1Þi;j were not considered in
the GL expansion and, besides, their free energy included
the magnitude fluctuations which are irrelevant to probe the
Landau-Peierls instability. We underline that Eqs. (11) and

(13) highlight why the að1Þi;j coefficients cannot be ignored
in the analysis, as they explicitly affect the phonon
spectrum and, through it, the behavior of the thermal
fluctuations.
Notice that in the absence of the magnetic field, the

coefficients að1Þ and b vanish and, at the same time, the
remaining combination in (11) becomes zero due to the sta-
tionary condition (6b), leading to v⊥ ¼ 0. On the other
hand, vz ≠ 0 because a6.4 cannot be zero for the minimum
solution to exist [5]. As a consequence, the spectrum
becomes soft in the transverse direction. This is precisely
the origin of the Landau-Peierls instability in the DCDW
phase, as will become clear in the discussions below.
To investigate the stability of the condensate against the

fluctuations, we calculate its average,

hMi ¼ meiqzhcos qui; ð14Þ

where the average is defined as

h…i ¼
R
DuðxÞ…e−Sðu2ÞR
DuðxÞe−Sðu2Þ ; ð15Þ

with

Sðu2Þ ¼ T
X
n

Z
∞

−∞

d3k
ð2πÞ3

× ½ω2
n þ ðv2zk2z þ v2⊥k2⊥ þ ζ2k4Þ�q2m2u2; ð16Þ

the finite-temperature effective action of the phonon and
ωn ¼ 2nπT the Matsubara frequency.
We can now consider the relation

hcos qui ¼ e−hðquÞ2i=2 ð17Þ

and use (15) to find the mean square of the fluctuation as

hq2u2i ¼ 1

ð2πÞ2
Z

∞

0

dk⊥k⊥

×
Z

∞

−∞
dkz

T
m2ðv2zk2z þ v2⊥k2⊥ þ ζ2k4Þ

≃
πT

m
ffiffiffiffiffiffiffiffiffiffi
v2zv2⊥

p ; ð18Þ

where we took into account that the lowest Matsubara
mode is dominant in the infrared.
The first thing to notice from (18) is that hq2u2i is finite,

and then hMi ≠ 0. This means that at B ≠ 0 the fluctuations
do not automatically wipe out the condensate at arbitrarily
low T, or in other words, the MDCDW system does not
exhibit the Landau-Peierls instability.
This finding is in sharp contrast to the case at zero

magnetic field, where

hu2i ¼ 1

ð2πÞ2
Z

∞

l−1⊥
dk⊥k⊥

Z
∞

−∞
dkz

T
v2zk2z þ ζ2k4⊥

≃
T

4πvzζ
ln

�
vzl⊥
ζ

�
ð19Þ

is infrared divergent when l⊥ → ∞, leading to hMi ¼ 0 at
any nonzero T.
Comparing the two results, one realizes that the lack

of Landau-Peierls instabilities in the presence of a mag-
netic field is due to the stiffening of the spectrum in the
transverse direction. As discussed above, this feature is
a direct consequence of the explicit breaking of the
rotational symmetry by the external field, which is the

necessary condition for the coefficients að1Þi;j to be turned on.
Therefore, this behavior should happen in spatially inho-
mogeneous systems, even if they have no nontrivial
topology in their fermion structure, i.e., in cases where
the bi;j-type coefficients are not present.
A second important point to highlight from the result

(18) is that as the temperature increases and the system
approaches the transition to the chirally restored phase,
m → 0, and the fluctuations tend to exponentially wipe
out the long-range order. The threshold temperature Th at
which this regime becomes operative can be found from
the condition Th ¼ mjvzjjv⊥j=π. If Th < Tc, with Tc the
temperature for chiral restoration, there is a region of
temperatures Th < T < Tc where, despite the presence
of the magnetic field, the long-range order is effectively
wiped out by the phonon thermal fluctuations. In this
region the system will likely be characterized by a quasi-
long-range order [10] similar to the smectic phase of liquid
crystals [13].
It is worth noticing that the lack of Landau-Peierls

instabilities in the presence of a magnetic field will not
be changed by a nonzero current quark mass since this
property comes from the effect of the magnetic field on the
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low-energy behavior of the phonon, which persists as a
Goldstone boson even at nonzero quark masses.

IV. CONCLUSIONS

In this paper we have shown that a magnetic field
eliminates the Landau-Peierls instability of the single
modulated DCDW phase in dense QCD. In this context,
the magnetic field plays a dual role. On the one hand, it acts
as an extra vector that explicitly breaks the rotational and
isospin symmetries, allowing the formation of additional
structures in the GL expansion of the MDCDW thermo-
dynamic potential and making it anisotropic. On the other
hand, it induces a nontrivial topology in the system that
manifests itself in the asymmetry of the LLL modes and in
the appearance of odd-in-q terms in the GL expansion.
These two features in turn affect the low-energy theory of
the thermal fluctuations, giving rise to a linear transverse
mode in the fluctuation dispersion relation, thereby pre-
venting the Landau-Peierls instability, which is a hallmark
of single-modulated phases in 3þ 1 dimensions at finite
temperature.
Physically, the new terms correspond to new channels of

interactions expressed as powers of the coupling of the
magnetic field with the magnetic moment of the order
parameter ∼B̂ ·∇M. The order parameter has a magnetic
moment because it is a neutral composite scalar, made of
oppositely charged fermions with opposite spins. From the

new interaction channels, those with að1Þi;j coefficients have

even powers of ∼B̂ ·∇M and hence get contributions from
both the HLL and the even-in-q part of the LLL.
Meanwhile, odd-power terms have a topological origin
that can be traced back to the asymmetry of the LLL and its
odd-in-q contributions to the thermodynamic potential.
This same feature is at the heart of the anomalous properties
of the MDCDW phase. A similar type of topological
contribution was found in [29] for a neutral Goldstone
boson π0 that coupled to the magnetic field via the triangle
anomaly.
The results obtained in this paper were derived by taking

into account that the internal symmetry group of the theory
in a magnetic field is reduced from SUð2ÞV × SUð2ÞA to
Uð1ÞV × Uð1ÞA, which allows us to ignore the charged
pions in the analysis. In a magnetic field, the charged pions
acquire a field-induced mass m2

π ∼ 2ẽjBj that increases

with the field, even in the chiral limit. That is why the
charged pions are not relevant for the existence of the
Landau-Peierls instabilities since, for that, only gapless
fluctuations are important.
Nevertheless, one could expect that the charged pions

could affect the threshold temperature Th. This can be
understood by noticing that at weak magnetic fields the
mass of the charged pions is small; thus, they would behave
as quasi-Goldstone bosons, and their fluctuations could, in
principle, become relevant with increasing temperatures.
However, ignoring the charged pions is self-consistent
when their mass is larger than twice the mass of the
quasiparticles, mπ ≳ 2m, as in this case they become
unstable and decay into quasiparticle-quasihole pairs
[30]. Therefore, Th can be found by ignoring the charged
pions, as long as the field is large enough to ensure this
condition is met. At T ¼ 0, in the region of intermediate to
high density where the condensate is favored over the
chirally restored phase, the magnitude of the condensate
sharply decreases with the chemical potential at strong [20]
and weak [31] coupling. Inserting a small temperature into
the mix does not significantly change this trend. We can
then conservatively (over)estimate the field magnitude
from the results at zero temperature. For example, quasi-
particle masses of order 0.2mV ≃ 60 MeV and smaller are
reasonable estimates [20] for this region of chemical
potential, so fields of order 1016 G and higher should be
enough to disregard the charged pion effects. Such a
strength of magnetic field is reasonable for neutron star
cores [15,32].
Although more work is still needed to determine

the range of temperatures where the MDCDW phase
remains stable for reasonable values of density and mag-
netic field, the lack of Landau-Peierls instability and the
fact that this phase has been shown to be compatible with
the observed 2 M⊙ mass of neutron stars [33] make the
MDCDW phase a robust candidate for the core of compact
objects.
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