
 

Rapidity loss, spin, and angular asymmetries in the scattering of a quark
from the color field of a proton or nucleus
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We calculate the helicity amplitudes for scattering of a quark from both large and small x gluons of a
target proton or nucleus using spinor helicity formalism. We show that scattering from large x gluons of the
target results in nonzero spin asymmetry at intermediate pt as well as rapidity loss of the projectile quark.
We comment on how this can also generate angular asymmetries in particle production in high energy
collisions.
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I. INTRODUCTION

The color glass condensate (CGC) is an effective theory
of small x gluons in a proton or nucleus, valid in the limit
x → 0 where QCD cross sections are dominated by small x
kinematics and gluon saturation is expected to be the
dominant dynamics [1]. Whereas there are strong and
tantalizing hints about presence and contribution of gluon
saturation dynamics to forward rapidity particle production
and dijet angular asymmetry in proton-nucleus collisions
at RHIC and the LHC, an unambiguous and definitive
interpretation of the data in terms of gluon saturation is still
lacking [2]. To help clarify the contribution of gluon
saturation to these processes, higher order (in αs) correc-
tions [3] to various particle production cross sections have
been computed which improve the precision of CGC
calculations in the small x kinematics, commonly taken
to be x ≤ 0.01.
While higher order corrections are invaluable for pre-

cision studies of CGC, they are still limited to the small x
kinematics where x ≤ 0.01. Recalling the kinematic rela-
tion between transverse momentum and rapidity of a
produced particle in high energy collisions and the
Bjorken x of the gluons of the target probed in the
scattering given by x ∼ ptffiffi

s
p e−y we see that production of

high pt particles is necessarily dominated by large x
kinematics. Since the center of mass energy

ffiffiffi
s

p
of a high

energy collision, such as that at RHIC or the LHC, is fixed
it is perhaps more useful to think of small vs large x limits

of the observables rather than the
ffiffiffi
s

p
→ ∞ limit as is

commonly done in CGC formalism. This is also important
because the large x kinematics will be a significant part of
the phase space of proton/nucleus wave function probed in
all proposed electron ion colliders [2]. For the first time it
will be possible to experimentally investigate in detail the
transition from large to small x dynamics in large nuclei in a
transverse momentum region where genuinely nonpertur-
bative QCD effects may not be significant.
Even more significant is perhaps the common estimates

of the x kinematics contributing to a production cross
section in CGC formalism. Unlike DIS structure functions
which can be measured at various Q2 at a fixed value of x,
particle production in proton (nucleus)-proton (nucleus)
collisions in the collinear factorization formalism involves
a convolution in x and is sensitive to a range of parton x
in the target (and projectile). In the small x approximation
employed in CGC calculations one assumes the target
gluon distribution xGðx;Q2Þ is rising so fast with 1=x
that one can approximate it as being given by the minimum
value of ×ð≡xminÞ in the convolution, symbolically
written asZ

1

xmin

dxxGðx;Q2Þ � � � ≃ xminGðxmin; Q2Þ; ð1Þ

where � � � stands for the rest of the collinearly factorized
cross section. While this kind of an approximation may be
fine for making parametric estimates or even for semi-
quantitative analysis of the data it cannot be expected to be
precise as the above approximation disregards contribution
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1For a comparison of the target x kinematics contributing to a
given process, compare Fig. 10 in [4] with Fig. 1 in [5].
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the small x approximation allows one to use eikonal
methods [6] which treat the projectile parton as moving
on a straight line and not deflected after multiply scattering
from the target. Clearly this cannot be a good approxima-
tion when the scattered parton is at high pt, i.e., deflected
by a large angle.
In [7] we proposed a new approach which aims to

include contribution of both small and large x partons of the
target to a scattering cross section (see also [8]). The small x
gluons of the target are treated via CGC methods while
large x gluons of the target are treated as the standard
partons of QCD-improved parton model. To do so we
calculated the amplitude for multiple scatterings of a quark
from a color field Aμ ¼ Sμ þ Aμ where Aμ ¼ ðAμ − SμÞ
and Sμ ¼ δμ− in light cone gauge. We included multiple
scatterings from the soft field Sμ, radiated by small x
gluons, to all orders but kept only the single scattering
contribution from the Aμ field radiated by a large x gluon.
This allows exchange of potentially large longitudinal and
transverse momentum between the projectile and the target,
unlike the CGC formalism where scattering involves
exchange of small transverse momenta only and no
longitudinal momentum is exchanged.
Here we use spinor helicity formalism [9] to calculate the

helicity amplitudes for scattering of a quark on a proton or
nucleus target, including both small and large x gluons of
the target. We show that the scattering cross section is
sensitive to the helicity of the projectile quark and that
inclusion of scattering from the large x gluon results in spin
asymmetry for quark scattering. Furthermore, there is
longitudinal momentum transferred from the projectile to
the target which results in projectile rapidity loss, unlike the
CGC formalism where the projectile longitudinal momen-
tum remains unchanged. We argue that, coupled to a
realistic description of the target geometry, this would also
lead to angular asymmetries in particle production in high
energy proton-proton (nucleus) collisions.

II. HELICITY AMPLITUDES

The amplitude for scattering of a quark projectile on both
small and large x gluons of a target proton or nucleus was

computed in [7]. Here we use spinor helicity methods to
evaluate the amplitude for a given projectile quark helicity.
There are in principle four classes of diagrams contributing
as shown in Fig. 1. Multiple soft scatterings of the quark
(gluon) from the classical color field representing small x
gluons of the target is summed into a semi-infinite Wilson
line in fundamental (adjoint) representation which is shown
as solid black rectangles while the wavy line represents
single scattering from a large x gluon of the target proton or
nucleus, which itself is shown as a big open ellipse. The
eikonal diagram, labeled “eik” above, is the standard
diagram used in the hybrid formulation of quark scattering
from the small x gluons of a target in the CGC approach
[10]. The other three diagrams, labeled 1–3, are nonzero
only in the large x kinematics and vanish in the small x
limit. The amplitudes are (for details and definitions of
Wilson lines see [7], note that anti-path-ordering label is
dropped for the sake of compactness)

iMeikðp; qÞ ¼ 2πδðpþ − qþÞ
Z

d2xte−iðqt−ptÞ·xt ½VðxtÞ − 1�N eik

iM1ðp; qÞ ¼
Z

d4xd2ztd2z̄t

Z
d2kt
ð2πÞ2

d2k̄t
ð2πÞ2 e

iðk̄−kÞxe−iðq̄t−k̄tÞ·z̄te−iðkt−ptÞ·zt V̄ðxþ; z̄tÞðigtbÞVðzt; xþÞN b
1

iM2ðp; qÞ ¼ 2i
Z

d4xeiðq̄þ−pþÞx−−iðq̄t−ptÞ·xtðigtaÞ½∂xþU†ðxt; xþÞ�abN b
2

iM3ðp; qÞ ¼ −2i
Z

d4xd2x̄tdx̄þ
d2p̄1t

ð2πÞ2 e
iðp̄þ

1
−pþÞx−e−iðp̄1t−ptÞ·xte−iðq̄t−p̄1tÞ·x̄t ½∂ x̄þV̄ðx̄þ; x̄tÞ�ðigtaÞ½∂xþU†ðxt; xþÞ�abN b

3; ð2Þ

FIG. 1. Scattering of a quark from small and large x gluons of
the target.
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where p, q are the momenta of the incoming and outgoing quark. The Dirac structure of the numerators in Eq. (2) is labeled
as N , respectively defined as

N eik ¼ ūðqÞ=nuðpÞ

N b
1 ¼

1

2kþ
1

2k̄þ
ūðq̄Þ½=̄n =̄k =AbðxÞ=k=n�uðpÞ

N b
2 ¼

1

ðp − q̄Þ2 ūðq̄Þ½n · ðp − q̄Þ=AbðxÞ − ðp − q̄Þ · AbðxÞ=n��uðpÞ

N b
3 ¼

1

2n̄ · p̄1ðp − p̄1Þ2
ūðq̄Þ½=̄n=̄p1ðn · ðp − p̄1Þ=AbðxÞ − ðp − p̄1Þ · AbðxÞ=nÞ�uðpÞ: ð3Þ

Note that we have not written out the color indices in
fundamental representation in order to ensure a compact
form for the expressions. The contribution of N �

eik in the
eikonal diagram isN �

eik ∼ pþ ∼
ffiffiffi
s

p
and is already included

in CGC calculations. Furthermore it has zero overlap with
the new noneikonal contributions, therefore we will ignore
it from now on and focus on the new terms.
To calculate the helicity amplitudes we consider a quark

of a given helicity� and write the spinor in terns of helicity

eigenstates u�ðpÞ defined via u�ðpÞ≡ 1�γ5

2
uðpÞ. We then

use the fact that due to the presence of γ5 product of states
with wrong helicities are zero, for example,
ūþðpÞuþðkÞ ¼ 0. Furthermore, any on-shell momentum
=p can be written as a sum over helicity eigenstates
=p ¼ uþðpÞūþðpÞ þ u−ðpÞū−ðpÞ. The specific helicity
amplitudes are then2

N þ;b
1 ¼ hk̄þj=AbðxÞjkþi

N −;b
1 ¼ hk̄−j=AbðxÞjk−i

N þ;b
2 ¼ 1

ðp − q̄Þ2 ½n · ðp − q̄Þhq̄þj=AbðxÞjpþi − hnpi½q̄n�ðp − q̄Þ · AbðxÞ�

N −;b
2 ¼ 1

ðp − q̄Þ2 ½n · ðp − q̄Þhq̄−j=AbðxÞjp−i − hq̄ni½np�ðp − q̄Þ · AbðxÞ�

N þ;b
3 ¼ ½q̄ n̄�hn̄p̄1i½n · ðp − p̄1Þhp̄þ

1 j=AbðxÞjpþi − hnpi½p̄1n�ðp − p̄1Þ · AbðxÞ�
2n̄ · p̄1ðp − p̄1Þ2

N −;b
3 ¼ hq̄ n̄i½n̄p̄1�½n · ðp − p̄1Þhp̄−

1 j=AbðxÞjp−i − hp̄1ni½np�ðp − p̄1Þ · AbðxÞ�
2n̄ · p̄1ðp − p̄1Þ2

: ð4Þ

We note that

N þ;b
3 ¼ ½q̄ n̄�hn̄p̄1i

2n̄ · p̄1

N þ;b
2 ðq̄ → p̄1Þ ¼ N þ;b

2 ðq̄ → p̄1Þ ð5Þ

and similarly for N −;b
3 . The helicity amplitudes above (4)

are related via identities like

hk̄þj=Abjkþi ¼ hk−j=Abjk̄−i
hk̄þj=Abjkþi ¼ ðhk̄−j=Abjk−iÞ⋆: ð6Þ

Using these relations we note that

N −;b
1;2;3 ¼ ½N þ;b

1;2;3�⋆: ð7Þ

A. Evaluating the helicity amplitudes

To evaluate the helicity amplitudes above we will need
the following relations:

hk�1 jγþjk�2 i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ1 2k

þ
2

q
ð8Þ

and

2The superscript � refers to helicity of the incoming quark.
Since helicity is conserved the helicity of the outgoing quark is
the same as the helicity of the incoming quark and is not shown
explicitly.
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hk�1 jγijk�2 i ¼
ffiffiffiffiffiffiffiffiffiffiffi
kþ1 k

þ
2

q �
k1i ∓ iϵijk

j
1

kþ1
þ k2i � iϵijk

j
2

kþ2

�
: ð9Þ

It should be noted that our final state quark spinors are
labeled by their momenta in a bar-ed frame in which their
momenta are all longitudinal while momenta of the initial
state quark spinors are in the original center of mass frame.
Therefore we need to transform all the final state momenta

and spinors and write them in the original frame, this can be
formally done using the kinematical generators of the
Poincaré group in the light front form [11] and light front
spinors [9] (note that our normalization of the light front
spinors differs from [9] and is the same as [12]). Here we
denote by k1ðp1Þ the momentum vector constructed from
the components of k̄ðp̄1Þ in the original frame. We then
have

N þ
1;b ¼ pþ

ffiffiffiffiffiffi
qþ

pþ

s �
2A−

b ðxÞ − Ai
bðxÞ

�
k1i − iϵijk

j
1

qþ
þ ki þ iϵijkj

pþ

��

N þ
2;b ¼

pþ

q2⊥

ffiffiffiffiffiffi
qþ

pþ

s ��
1þ qþ

pþ

�
q⊥ · Ab⊥ðxÞ þ i

�
1 −

qþ

pþ

�
ϵijqiAb

j ðxÞ
�

N þ
3;b ¼ N þ;b

2 ðqi → p1iÞ

¼ pþ

p2
1⊥

ffiffiffiffiffiffiffi
qþ
pþ

r ��
1þ qþ

pþ

�
p1⊥ · Ab⊥ðxÞ þ i

�
1 −

qþ

pþ

�
ϵijp1iAb

j ðxÞ
�
: ð10Þ

To facilitate comparison with the contribution of the eikonal term ∼pþ ∼
ffiffiffi
s

p
, we have extracted an explicit factor of pþ

above. We also note the appearance of imaginary term iϵij in the helicity amplitudes which will lead to spin asymmetry.
Next we square the helicity amplitudes which will be needed for calculation of the scattering cross section. This is
straightforward and gives

jN þ;bc
1 j2 ¼ 4pþqþA−

b ðxÞA−
c ðyÞ− 2A−

b ðxÞ½qþl⊥ þpþl1⊥� ·Ac⊥ðyÞ− 2A−
c ðyÞ½qþk⊥ þpþk1⊥� ·Ab⊥ðxÞ

þ k1⊥ ·Ab⊥ðxÞl⊥ ·Ac⊥ðyÞ þ k⊥ ·Ab⊥ðxÞl1⊥ ·Ac⊥ðyÞ þ l⊥ ·Ab⊥ðxÞk1⊥ ·Ac⊥ðyÞ þ l1⊥ ·Ab⊥ðxÞk⊥ ·Ac⊥ðyÞ

− ½k⊥ · l1⊥ þ l⊥ · k1⊥�Ab⊥ðxÞ ·Ac⊥ðyÞ þ
qþ

pþ ½k⊥ ·Ab⊥ðxÞl⊥ ·Ac⊥ðyÞ− l⊥ ·Ab⊥ðxÞk⊥ ·Ac⊥ðyÞ þ k⊥ · l⊥Ab⊥ðxÞ ·Ac⊥ðyÞ�

þpþ

qþ
½k1⊥ ·Ab⊥ðxÞl1⊥ ·Ac⊥ðyÞ− l1⊥ ·Ab⊥ðxÞk1⊥ ·Ac⊥ðyÞ þ k1⊥ · l1⊥Ab⊥ðxÞ ·Ac⊥ðyÞ�

þ iϵij

�
2½pþli1 − qþli�A−

b ðxÞAj
cðyÞ− 2½pþki1 − qþki�Aj

bðxÞA−
c ðyÞ

þ
�
lik1⊥ − li1k⊥ þ qþ

pþ lik⊥ −
pþ

qþ
li1k1⊥

�
·Ab⊥ðxÞAj

cðyÞ þ
�
ki1l⊥ − kil1⊥ −

qþ

pþ kil⊥ þpþ

qþ
ki1l1⊥

�
·Ac⊥ðyÞAj

bðxÞ
�
ð11Þ

and

jN þ;bc
2 j2 ¼ qþ

pþ
1

q4⊥
f½ð4pþqþÞq⊥ · Ab⊥ðxÞq⊥ · Ac⊥ðyÞ þ ðpþ − qþÞ2q2⊥Ab⊥ðxÞ · Ac⊥ðyÞ�

þ iϵij½ðpþÞ2 − ðqþÞ2�½qiAb
j ðxÞq⊥ · Ac⊥ðyÞ − qiAc

jðyÞq⊥ · Ab⊥ðxÞ�g ð12Þ

and

jN þ;bc
3 j2 ¼ qþ

pþ
1

p2
1⊥p2

2⊥
f½ðpþ þ qþÞ2p1⊥ · Ab⊥ðxÞp2⊥ · Ac⊥ðyÞ

− ðpþ − qþÞ2½p2⊥ · Ab⊥ðxÞp1⊥ · Ac⊥ðyÞ − p1⊥ · p2⊥Ab⊥ðxÞ · Ac⊥ðyÞ��
þ iϵij½ðpþÞ2 − ðqþÞ2�½p1iAb

j ðxÞp2⊥ · Ac⊥ðyÞ − p2iAc
jðyÞp1⊥ · Ab⊥ðxÞ�g: ð13Þ
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There are also the off-diagonal terms in the amplitude
squared which are not written out here to save space and
especially since they add nothing qualitatively new to the
diagonal terms included here. Using relations (7) it should
be clear that all the imaginary terms proportional to iϵij

above will cancel between contribution of positive and
negative helicity quarks to the unpolarized scattering cross
section. On the other hand, if one is interested in spin
asymmetry (in this case the so-called longitudinal double
asymmetry)

ALL ≡ dσþþ − dσ−þ

dσþþ þ dσ−þ
ð14Þ

the real terms in the helicity amplitude (squared) cancel
and the iϵij terms will survive and give a nonzero spin
asymmetry. The appearance of this nonzero spin asymme-
try may seem confusing at first since we have said nothing
about the helicity of the partons in the target which radiate
the gluon field from which the quark is scattering. While
the exact form of the asymmetry will depend on the
assumptions made about the target partons, it is clear that
the color field Aμ radiated by the target partons (large x
partons in our case) will “know” about helicity of the target
parton which is radiating it, as is illustrated in [13] [see
Eqs. (19) and (20)]. Subeikonal corrections at small x are
known to contribute to various spin observables [14]. In our
case, however, this spin asymmetry is generated at inter-
mediate-large x corresponding to larger transverse momen-
tum of the scattered quark. This can be easily checked by
considering the single (large x) gluon exchange limit of our
results, analogous to quark antiquark scattering considered
in Appendix A of the last listing of [14].
Furthermore, noneikonal corrections to high energy scat-

tering at small x have been shown to generate angular
asymmetries in particle production at small x [15]. Very
similarly the large x corrections to eikonal scattering
considered here result in angular asymmetries, with the
important difference that the asymmetries generated in our
formalism will be at higher transverse momenta than the
standard small x results. We emphasize that, unlike eikonal
scattering, the projectile quark here loses energy (rapidity)
which could be used to investigate beam rapidity loss and the
limiting fragmentation phenomenon [16] in high energy
collisions. Furthermore, our approach allows one to calculate
ultrahigh energy neutrino-nucleon cross sections [17] which
receive significant contributions from the small x kinematic
region but are dominated by a large hard scale ∼mW;Z.

There are several issues that need to be investigated
further and clarified before one can apply our results to
phenomenology. For instance, it is easy to show that all the
new noneikonal contributions vanish at small x and one
recovers the standard eikonal (tree level CGC) results.
Taking the high transverse momentum limit, on the other
hand, one is tempted to disregard all the soft multiple
scatterings. However this matching with pQCD must be
done carefully [18] in order to avoid difficulties with gauge
invariance and needs to be better understood. A study of
this limit in DIS structure functions calculated using our
results here is in progress.
It will also be interesting to go beyond our tree level

process and consider radiation. The simplest case is radiation
of a photon from either the initial or final state quark [19].
This would allow one to investigate photon-jet angular
correlations from low to high pt (from low to high x)
and study appearance/disappearance of the away side peak
and its dependence on the exact kinematics of the process.
One can also investigate cold matter energy loss, from
incoherent Bethe-Heitler to coherent Landau-Pomeranchuk-
Migdal regimes at the same time using our approach.
Calculating photon radiation would also serve as a warm-
up for the calculation of gluon radiation [20] which would
then allow one to investigate dijet production and angular
correlations in the full transverse momentum range, unlike
the CGC calculations where one is limited to the low pt
range. Radiation of a real gluon will also be part of the one-
loop corrections to our tree level result, which augmented
with virtual corrections, would lead to scattering cross
sections which generalize and unify the small x expressions
of “kt-factorized” CGC [21,22] with the collinearly factor-
ized pQCD [23] approach at large x.
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