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A symmetry-preserving continuum approach to meson bound states in quantum field theory, employed
elsewhere to describe numerous π- and K-meson electroweak processes, is used to analyze leptonic and
semileptonic decays ofDðsÞ mesons. Each semileptonic transition is conventionally characterized by thevalue

of the dominant form factor at t ¼ 0 and the following results are obtained herein: fDs→K
þ ð0Þ ¼ 0.673ð40Þ;

fD→πþ ð0Þ ¼ 0.618ð31Þ and fD→Kþ ð0Þ ¼ 0.756ð36Þ. Working with the computed t-dependence of these form
factors and standard averaged values for jVcdj, jVcsj, one arrives at the following predictions for the associated
branching fractions: BDþ

s →K0eþνe ¼ 3.31ð33Þ × 10−3, BD0→π−eþνe ¼ 2.73ð22Þ × 10−3, and BD0→K−eþνe ¼
3.83ð28Þ%:Alternatively, using the calculated t-dependence, agreement with contemporary empirical results
for these branching fractions requires jVcdj ¼ 0.221ð9Þ, jVusj ¼ 0.953ð34Þ. With all DðsÞ transition form
factors in hand, the nature of SU(3)-flavor symmetry breaking in this array of processes can be analysed; and
just as in the π-K sector, the magnitude of such effects is found to be determined by the scales associated with
emergent mass generation in the Standard Model, not those originating with the Higgs mechanism.

DOI: 10.1103/PhysRevD.102.014007

I. INTRODUCTION

Working with a large sample of eþe− collision data that
was acquired using the Beijing Electron Positron Collider
(BEPC), the BES III Detector Collaboration has released
precise results on the semileptonic decays of DðsÞ mesons
[1–3]. When these results are combined with those obtained
using the BABAR detector at the Stanford Linear
Accelerator Center [4], the Belle detector in Japan [5],
and the CLEO detector at Cornell University [6], science is
shown a new window into the Standard Model and beyond.
For example, such precise information on these transition
form factors can be used to provide increasingly tight
constraints on the Cabbibo-Kobayashi-Maskawa (CKM)
matrix elements jVcdj, jVcsj [7].
Another perspective is also offered. Namely, given that

DðsÞ semileptonic decays proceed from a heavyþ light

meson in the initial state to a pseudo-Nambu-Goldstone
mode in the final state, any sound theoretical analysis of
these processes will provide fresh ways of revealing the
interplay between explicit (Higgs-related) mass generation
and emergent hadronic mass (EHM) in the Standard Model.
Insights here have the potential to expose facets of confine-
ment dynamics.
It is for reasons such as those described above, viz., their

relevance to a diverse range of topical problems in physics,
that the semileptonic decays ofDðsÞ mesons have long been
the subject of theoretical interest. For instance, numerous
phenomenological analyses have been completed, most
recently Refs. [8–10].
The D → ðπ; KÞ transition form factors have also been

computed using lattice-regularized QCD (lQCD) [11].
Notably, it is still necessary for lattice analyses to correct
for discretization-induced symmetry violations and employ
extrapolations in order to reach physical light-quark current
masses [12]. Thus, comparison with results obtained using
continuum Schwinger function methods (CSMs) can be
valuable in both validating the lQCD results and enabling
their insightful interpretation.
Herein, motivated by such considerations, we use

the leading-order truncation of those equations required
to complete a symmetry-preserving formulation of the
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continuum bound-state equations and deliver predictions
for D → ðπ; KÞlνl, Ds → Klνl transition form factors. In
addition to complementing available lQCD computations,
our results should (a) prove useful in constraining jVcdj,
jVcsj and (b) expose the response of meson structure to the
transition between the heavy-quark domain, within which
the Higgs mechanism dominates quark mass generation
and the light-quark sector, wherein EHM largely defines
the characteristics of pseudoscalar mesons. To ensure our
study’s reliability, we use existing continuum calculations
of π- and K-meson leptonic and semileptonic decays as
benchmarks [13,14]. Namely, current-quark masses are
varied smoothly from those associated with π and K initial
states up to those characterizing DðsÞ mesons. In doing so,
we complete a unified description of the leptonic and
semileptonic decays of the following systems: π, K, D, Ds.
The paper is arranged as follows. Section II describes

the necessary transition matrix elements and our approxi-
mations to them. The computational framework and
associated algorithms are explained in Sec. III, augmented
by a collection of detailed appendixes; and the results, their
interpretation, and the insights they provide are canvassed
in Sec. IV. Section V presents a summary and perspective.

II. TRANSITION FORM FACTORS

A. Observations on kinematics

We consider the following matrix elements:

dM
Dþ

s
μ ðP;QÞ ¼ hK0ðpÞjd̄iγμcjDþ

s ðkÞi
¼ Pμf

Dd
sþ ðtÞ þQμfD

d
s− ðtÞ; ð1aÞ

dM
D0

μ ðP;QÞ ¼ hπ−ðpÞjd̄iγμcjD0ðkÞi
¼ ½Pμf

Dd
uþ ðtÞ þQμfD

d
u− ðtÞ�; ð1bÞ

sMDþ
μ ðP;QÞ ¼ hK̄0ðpÞjs̄iγμcjDþðkÞi

¼ Pμf
Ds

dþ ðtÞ þQμf
Ds

d− ðtÞ; ð1cÞ

sMD0

μ ðP;QÞ ¼ hK−ðpÞjs̄iγμcjD0ðkÞi
¼ Pμf

Ds
dþ ðtÞ þQμf

Ds
d− ðtÞ; ð1dÞ

where the last line is true so long as isospin symmetry is
assumed; P ¼ kþ p, Q ¼ p − k, with k2 ¼ −m2

DðsÞ and
p2 ¼ −m2

K;π , depending on the initial and final state; and
the squared momentum transfer is t ¼ −Q2.1

Naturally, the masses of the hadrons involved limit the
physically accessible range of the transition form factors:

P ·Q ¼ −ðm2
DðsÞ −m2

K;πÞ≕ − ΔDðsÞðK;πÞ; ð2aÞ

P2¼−2ðm2
DðsÞ þm2

K;πÞ−Q2≕−2ΣDðsÞðK;πÞ−Q2; ð2bÞ

and t
DðsÞðK;πÞ
m ¼ðmDðsÞ−mK;πÞ2≕m2

DðsÞy
DðsÞðK;πÞ
m is the largest

value of the squared momentum transfer in the identified
physical decay process.
It is worth remarking that in the SU(4)-flavor symmetry

limit, fDþðtÞ is the same as the elastic form factor for a
charged pionlike meson constituted from a valence quark
and antiquark with equal current masses [15]. Moreover,
fD−ðtÞ≡ 0. Hence, fD−ðtÞ should be a useful measure of

SU(4)-flavor breaking. Similarly, fD
d
sþ =f

Ds
dþ and fD

d
sþ =fD

d
uþ

serve as gauges of SU(3)-flavor symmetry breaking. These
features are correlated with the scalar form factor

fD0 ðtÞ ¼ fDþðtÞ þ
t

m2
DðsÞ −m2

K;π
f−ðtÞ; ð3Þ

which measures the divergence of the transition current,
Q ·MDðP;QÞ.
We note, too, that it is common to focus on the form

factors fþ;0ðtÞ because each is separately characterized by a
different resonance structure on t≳ tm: fþðtÞ connects with
the vector meson D�

ðsÞ and f0ðtÞ with the analogous scalar

resonance. In contrast, f−ðtÞ overlaps with both channels.
(These properties have been exemplified in studies of Kl3
transitions [13,14].)

B. Transition amplitudes

We compute the matrix elements in Eqs. (1) at leading
order in a symmetry-preserving truncation scheme for the
continuum bound-state equations [16,17], i.e., the rainbow-
ladder (RL) truncation. We focus onDþ

s → K0, because the
others are obvious by analogy:

dM
Dþ

s
μ ðP;QÞ ¼ Nctr

Z
d4s
ð2πÞ4 ΓDs

ðsþ p=2;pÞScðsþ pÞ

× iΓcd
μ ðsþ p; s − kÞSdðs − kÞ

× ΓKðs − k=2;−kÞSsðsÞ; ð4Þ

where the trace is over spinor indices and Nc ¼ 3.
There are three distinct types of matrix-valued functions

in Eq. (4). The simplest are the propagators for the dressed
quarks involved in the transition process: SfðsÞ, f¼d, s, c;
then there are the Bethe-Salpeter amplitudes for the mesons
involved: ΓM, M ¼ Ds; K; and, finally, the dressed vector
piece of the c → d weak transition vertex: Γcd

μ . These
functions are explained in Appendix. The scalar functions
characterizing the transition are obtained from Eq. (4) using
straightforward projections:

1In our Euclidean metric conventions, fγμ;γνg¼2δμν; γ
†
μ ¼ γμ;

γ5 ¼ γ4γ1γ2γ3, tr½γ5γμγνγργσ � ¼ −4ϵμνρσ ; σμν ¼ ði=2Þ½γμ; γν�;
a · b ¼ P

4
i¼1 aibi; and Qμ timelike ⇒ Q2 < 0.
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fD
d
sþ ðtÞ ¼ tPμ − ðm2

Ds
−m2

KÞQμ

tP2 þ ðm2
Ds

−m2
KÞ2 dM

Dþ
s

μ ðP;QÞ; ð5aÞ

fD
d
s

0 ðtÞ ¼ −
Qμ

m2
Ds

−m2
K

dM
Dþ

s
μ ðP;QÞ; ð5bÞ

with fD
d
s− ðtÞ reconstructed via Eq. (3).

III. COMPUTATIONAL METHOD
AND RESULTS

Predictions for the transition form factors can now be
obtained by combining the quark propagators, Bethe-
Salpeter amplitudes, and transition vertex, computed as
described in the Appendix, to form the integrand in Eq. (4),
computing the integral as a function of t, and projecting the
results according to Eq. (5). These steps can be completed in
a straightforward manner so long as the difference between
the current masses of the quarks involved is not too large,
e.g., in the case of Kl3 transitions [13]. (We verified this
explicitly by repeating the analysis in Ref. [13], obtaining
consistent results for all calculated quantities.) However, for
both the K and π final states, owing to the analytic structure
of the dressed-quark propagators and associated moving
singularities in the complex-s2 domain sampled by the
bound-state equations [18,19], the direct approach fails
when the current mass of the heavier quark in the initial
state exceeds 2.7 times that of the s-quark.
Reference [20] solved an analogous issue with pseudo-

scalar meson elastic electromagnetic form factors by using
perturbation theory integral representations (PTIRs) [21]
for each matrix-valued function in the integrand defining
the associated matrix element, thereby enabling a reliable
computation of the form factor to arbitrarily large Q2.
However, constructing accurate PTIRs is time consuming,
particularly so here because the complete set of integrands
involves 46 distinct scalar functions, for each of which one
would need to build a PTIR.
We therefore adopted a different approach. Namely, we

considered a fictitious pseudoscalar meson P ¼ DQq, and
computed its mass mP and leptonic decay constant fP as a
function of m̂Q, the currentmass of the quark partneringwith
the light quarkq in the initial state, up to avalue m̂Q ¼ 2.7m̂s.
[Here m̂f is the renormalization point invariant current mass
for the f-quark. Light quark values are listed in Eq. (A9).]
Then, using the Schlessinger point method (SPM) [22,23],
strengthened by the statistical sampling technique introduced
in Refs. [24–26], we built interpolations:mPðm̂QÞ, fPðm̂QÞ.
In explanation, the SPM is based on interpolation via

continued fractions augmented by statistical sampling and
avoids any assumptions on the form of function used for the
representation of input and subsequent extrapolation. It can
accurately reconstruct a function in the complex plane
within a radius of convergence specified by one of the
function’s branch points which lies nearest to the real

domain from which the sample points are drawn.
Additionally, owing to the procedure’s discrete nature
and our statistical implementation, the reconstruction can
also provide a reasonable continuation on a larger domain
along with an estimate of the associated error.
Although details are provided elsewhere [24–28], it is

nonetheless worth explaining the nature of the SPM uncer-
tainty estimates herein. We first compute the value of any
given quantity, Qðm̂QÞ, at N ¼ 40 different values of
current-quark mass distributed evenly on m̂Q < 2.7m̂s.
M ¼ 20 current-mass values are then chosen at random
from that 40-element set, and a continued fraction interpo-
lation is developed for Qðm̂QÞ on this 20-element subset.
A very large number of interpolating functions, nI , is
subsequently obtained by scanning through the CðN;MÞ
combinatorial possibilities for the M element subset, elimi-
nating those functions that fail to satisfy certain physical
constraints. We insist that each interpolation be free of
singularities on thedomain of required current-quarkmasses.
For all quantities considered, this constraint yields nI ≈
100 000 acceptable interpolations. Our prediction for Q is
then obtained by extrapolating each one of the associated nI
physical SPM interpolants to the required current mass and
quoting as the result that value which lies at the center of the
band within which 68% of the interpolants lie. This 1σ band
is identified as the uncertainty in the result.
Capitalizing on the strength of the statistical SPM, m̂c

could be determined by extrapolating the interpolating
function, mPðm̂QÞ, and locating that value of the argument
for which the projected meson mass matches the empirical
value of the DðsÞ meson. This exercise yielded

m̂c ¼ 1.98ð13Þ GeV; ð6Þ
hence, m̂c=m̂s ¼ 12.2ð8Þ and one-loop evolved to ζ2 ¼
2 GeV, mζ2

c ¼ 1.37ð9Þ GeV. These values are commensu-
rate with those determined by other means [7].
To check consistency, we evaluated fPðm̂cÞ and com-

pared with experiment. The results are listed in Table I.
Evidently, the SPM delivers sound results for the masses
and decay constants. Confidence in the procedure is
increased by noting that all values are consistent with
those determined in Ref. [25] by extrapolating in the other
direction, viz., from heavy to light current masses.
Having determined the c-quark current mass and vali-

dated the SPM in connection with static properties of DðsÞ
mesons, we computed the m̂Q-dependence of fPþ;0ðtÞ via
direct calculation up to m̂Q ¼ 2.7m̂s and subsequently
constructed SPM interpolations of fPþ;0ðt; m̂QÞ, writing

fPþðt; m̂QÞ ¼ α1ðm̂QÞ þ
tα2ðm̂QÞ
1 − t=m2

V
; ð7aÞ

fP0 ðt; m̂QÞ ¼ α1ðm̂QÞ þ tβ2ðm̂QÞ þ
t2β3ðm̂QÞ
1 − t=m2

S
: ð7bÞ
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These expressions capitalize on the fact that fPþð0Þ¼fP0 ð0Þ,
Eq. (3), and exploit the known singularity structure of the
weak vector transition vertex, so that mVðSÞ is the mass of
the vector (scalar) state correlated with P. These masses
were calculated using Eq. (A11) in tandem with the SPM,
and the results are listed in Table I. The mean absolute
relative error is 5(3)%.
The coefficients α1;2, β2;3 in Eq. (7) evolve with

increasing m̂Q. We analyzed that behavior using the
SPM and obtained the coefficients in Table II. Using these
values, the formulas in Eqs. (7) deliver predictions for the
Ds → K transition form factors. Repeating the procedure,
one also obtains the form factors describingD→π,D → K
transitions.

IV. COMPARISONS AND INSIGHTS

A. Form factors

Data are now available for DðsÞ semileptonic transition
form factors [1,2], and in Table III and Fig. 1 we compare
our predictions for fþ;0ðt ¼ 0Þ with experiment and

available lQCD results. No parameters were varied in order
to obtain our results, and the agreement with both experi-
ment and lQCD is good. This is particularly important for

fD
d
sþ ð0Þ because no lQCD results are yet available and our

result confirms the only available experiment [2].
We draw our predictions for the Ds → K semileptonic

transition form factors in Fig. 2. Apart from the t ¼ 0
datum in Table III [2], there are neither empirical data nor
lQCD results for any of these three form factors.
Our calculated D → π semileptonic transition form

factors are plotted in Fig. 3. Referring to the middle panel,

our result for fD
d
uþ ðtÞ agrees with existing experiment [1].

On the other hand, the lQCD points lie systematically
below our curves. Turning to the bottom panel, we note that

no data are available for fD
d
u

0 ðtÞ, and here, too, the lQCD
points lie systematically below our results.
We plot our calculated D → K semileptonic transition

form factors in Fig. 4. Note that f
Ds

dþ ðtÞ (middle panel)
agrees fairly well with experiment [1]; albeit comparison
with the simple least-squares fit to data indicates that it may
be a little too large at small t. The lQCD points typically lie

at the lower edge of our range for f
Ds

dþ ðtÞ. Regarding fDs
d

0 ðtÞ
(bottom panel), again the lQCD points typically lie below
our result.

FIG. 1. Pictorial representation of Table III; namely, maximum
recoil (t ¼ 0) value of DðsÞ semileptonic transition form factors
computed herein (blue circles) compared with inferences from
experiment (cyan squares) [1,2] and lQCD (purple diamonds)
[11] (where the latter are available).

TABLE I. Computed values for static properties of mesons
involved in the transitions studied herein, compared with em-
pirical values [7]. Current-quark masses are given in Eqs. (6) and
(A9). The results in row 1 were obtained by direct computation.
The SPM was used to compute the values in rows 3 and 5. In
these cases, as detailed in Sec. III, the uncertainty in our
prediction expresses a 1σ confidence level on the SPM extrapo-
lation, i.e., 68% of all SPM approximants give values that lie
within the indicated range. (All quantities in GeV.)

mπ fπ mK fK

Herein 0.135 0.093 0.494 0.108
Expt. [7] 0.092 0.494 0.110

mD fD mDs
fDs

Herein 1.88(8) 0.150(5) 1.97(4) 0.188(8)
Expt. [7] 1.87 0.153(7) 1.97 0.177(3)

mD� mD�
s

mScd̄ mScs̄

Herein 2.11(5) 2.15(4) 2.12(3) 2.25(4)
Expt. [7] 2.01 2.11 2.30(2) 2.32

TABLE II. Used in Eqs. (7), these coefficients define predic-
tions for all independent DðsÞ semileptonic transition form
factors. As explained in Sec. III, the listed uncertainty on any
one of these coefficients expresses a 1σ confidence level on the
associated SPM extrapolation.

α1 α2 β2=GeV β3=GeV2

Ds → K 0.673(40) 0.315(45) 0.163(27) 0.034(11)
D → π 0.618(31) 0.233(26) 0.129(18) 0.022(06)
D → K 0.756(36) 0.221(22) 0.136(08) 0.028(04)

TABLE III. Maximum recoil (t ¼ 0) value ofDðsÞ semileptonic
transition form factors compared with inferences from experi-
ment [1,2] and lQCD [11] (where available). In each case, we also
list our predictions for f−ðt ¼ 0Þ. The listed uncertainty in each
of our results reflects the 1σ confidence level for the associated
SPM extrapolation. (See Sec. III.)

fP1→P2þ ð0Þ Herein Expt. lQCD −fP1→P2− ð0Þ
Ds → K 0.673(40) 0.720(85) 0.553(65)
D → π 0.618(31) 0.637(09) 0.612(35) 0.362(28)
D → K 0.756(36) 0.737(04) 0.765(31) 0.277(45)
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B. Branching fractions

With computed transition form factors and available
experimental data, one can place constraints on the CKM
matrix elements jVcdj and jVcsj. Here, the Ds → K tran-
sition is most interesting because the experimental uncer-

tainty is largest, lQCD results for fD
d
s

þ;0;−ðtÞ are not yet
available, and we have predictions for these form factors.
The partial width for the Dþ

s → K0eþνe transition is
given by [29]

ΓDsK ¼ jVcdj2
G2

Fm
2
Ds

24π3

×
Z

yDsK
m

0

dy½fDd
sþ ðym2

Ds
Þ�2k3DsK

ðyÞ; ð8aÞ

k2DsK
ðtÞ ¼ ðm2

Ds
ð1 − yÞ þm2

KÞ2=½4m2
Ds
� −m2

K; ð8bÞ

with GF ¼ 1.166 × 10−5 GeV−2. Using our result for

fD
d
sþ ðtÞ, the associated branching fraction is

BDþ
s →K0eþνe ¼ ð0.264ð13ÞjVcdjÞ2: ð9Þ

Combining Eq. (9) with the branching fraction reported in
Ref. [2], 3.25ð38Þ × 10−3, one finds

jVcdj ¼ 0.216ð17Þ; ð10Þ

a result that is consistent with the average in Ref. [7]:
jVcdj ¼ 0.218ð4Þ. Alternatively, using this average value,
Eqs. (8) yield

BDþ
s →K0eþνe ¼ 3.31ð33Þ × 10−3: ð11Þ

To obtain something new from Ds → K transitions, the
precision of both experiment and theory must improve.
We collect our results for branching fractions in Table IV.
Analogies of Eq. (8) can be used for D0 → ðπ; KÞ

transitions, and with our result for fD
d
uþ ðtÞ,

BD0→π−eþνe ¼ ð0.240ð10ÞjVcdjÞ2: ð12Þ

Combining Eq. (12) with the branching fraction reported in
Ref. [1], 2.95ð05Þ × 10−3, one finds

FIG. 3. D → π semileptonic transition form factors, defined by
Eqs. (3) and (7) with the associated coefficients listed in Table II.

Legend: fD
d
uþ , solid blue curve; fD

d
u

0 , dashed green curve; and fD
d
u− ,

dot-dashed red curve. The shaded band around each of these
curves indicates the 1σ confidence level for the associated SPM
extrapolation. (See Sec. III.) Empirical data-cyan squares [1]; and
lQCD results, purple diamonds [11].

FIG. 2. Ds → K semileptonic transition form factors, defined
by Eqs. (3) and (7) with the associated coefficients listed in

Table II. Legend: fD
d
sþ , solid blue curve; fD

d
s

0 , dashed green curve;
and fD

d
s− , dot-dashed red curve. The shaded band around each of

these curves indicates the 1σ confidence level for the associated
SPM extrapolation. (See Sec. III.) Empirical datum-cyan
square [2].
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jVcdj ¼ 0.227ð10Þ; ð13Þ

consistent with Eq. (10). On the other hand, with
jVcdj ¼ 0.218ð4Þ,

BD0→π−eþνe ¼ 2.73ð22Þ × 10−3: ð14Þ

An average of Eqs. (10) and (13) yields jVcdj ¼
0.221ð9Þ.
Considering D0 → K−eþνe, our result for f

Ds
dþ ðtÞ

produces

BD0→K−eþνe ¼ ð0.196ð7ÞjVcsjÞ2; ð15Þ

hence, with jVcsj ¼ 0.997ð17Þ [7] one obtains

BD0→K−eþνe ¼ 3.83ð28Þ × 10−2: ð16Þ

This may be compared with the empirical value reported in
Ref. [1]: BD0→K−eþνe ¼ 3.505ð36Þ × 10−2. Agreement with
this fraction would require

jVcsj ¼ 0.953ð34Þ: ð17Þ

These comparisons suggest that our result for f
Ds

dþ ðtÞmay
bemarginally too large on t ≃ 0. To explore this possibility,
we repeated the analysis using the simple fit to experi-
mental data depicted as the dashed purple curve in Fig. 4
(middle panel), retaining the uncertainty of our calculated
result, and obtained

BD0→K−eþνe ¼ ð0.194ð7ÞjVcsjÞ2; ð18aÞ

¼jVcsj¼0.997ð17Þ
3.73ð27Þ × 10−2; ð18bÞ

or jVcsj ¼BD0→K− in Ref: ½1�
0.966ð35Þ: ð18cÞ

Evidently, this replacement achieves no material improve-
ment, but the test does confirm consistency of our results
with the analysis in Ref. [1].

C. Flavor Symmetry Breaking

Predictions for the collection of DðsÞ semileptonic
transition form factors also enable examination of the
interplay between EHM and Higgs-related mass generation
in QCD’s matter sector. For example, given thatmDs

≈mD,
then windows on SU(3)-flavor symmetry breaking are
provided by the ratio of associated leptonic decay constants
and aspects of DðsÞ → K transitions.2 With this in mind,
consider Table I:

FIG. 4. D → K semileptonic transition form factors, defined by
Eqs. (3) and (7) with the associated coefficients listed in Table II.

Legend: f
Ds

dþ , solid blue curve; f
Ds

d
0 , dashed green curve; and f

Ds
d− ,

dot-dashed red curve. The shaded band around each of these
curves indicates the 1σ confidence level for the associated SPM
extrapolation. (See Sec. III.) Empirical data-cyan squares [1]; and
lQCD results, purple diamonds [11]. Long-dashed purple curve:
least-squares fit to data ffitþðtÞ ¼ ð0.70þ 0.27tÞ=ð1 − 0.089tÞ.

TABLE IV. Computed branching fractions (row 1) compared
with empirical results (row 2) drawn from Refs. [1,2]: in these
rows, each entry should be multiplied by 10−3. Row 3, value of

jVcðd;sÞj required to reproduce row 2 using our results for f
DðsÞðπ;KÞ
þ .

Reference [1] lists jVcdj ¼ 0.216ð10Þ, jVcsj ¼ 0.960ð25Þ, and
Ref. [7] has jVcdj ¼ 0.218ð04Þ, jVcsj ¼ 0.997ð17Þ.

BDþ
s →K0eþνe BD0→π−eþνe BD0→K−eþνe

Herein 3.31(33) 2.73(22) 38.34(2.82)
Expt. [1,2] 3.25(38) 2.95(05) 35.05(0.36)
Herein 0.216(17) 0.227(10) 0.953(34)

2An early attempt to understand flavor-symmetry breaking in
pseudoscalar meson decay constants is described in Ref. [30].
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fDs

fD
¼ 1.25ð7Þ ≈ fK

fπ
¼ 1.16ð1.20expt:Þ; ð19Þ

and Table III:

f
Ds

dþ ð0Þ
fD

d
sþ ð0Þ

¼ 1.12ð09Þ ≈ fK
fπ

: ð20Þ

The ratio in Eq. (20) simultaneously compares
(i) dynamical corrections to the c → s and c → d vertices
and (ii) processes with different interaction spectators:
s̄-quark cf. ū. A simpler quantity is

fD
d
sþ ð0Þ

fD
d
uþ ð0Þ

¼ 1.09ð08Þ; ð21Þ

where the result follows from Table III. For this ratio, the
transition vertices involved are identical; only the spectators
are different. Plainly, there is little flavor sensitivity at
t ¼ 0; but as revealed by Fig. 5, the ratio increases as t
ranges over the physical domain, undermining quantitative
accuracy of the “U-spin symmetry” hypothesis in DðsÞ
decays [31]. It is likely to work better for heavyþ light
pseudoscalars containing a b-quark [32].
Plainly, the scale of SU(3)-flavor symmetry breaking is

commensurate in all these systems. Looking further, one
finds that the ratios in Eqs. (19) and (20) are also similar in
size to the skewing of the kaon’s leading-twist parton
distribution amplitude (PDA) with respect to the asymp-
totic PDA profile [33] and analogous distortions of the
kaon’s valence u- and s̄-quark distribution functions [34].
All these ratios are much smaller than

m̂s=m̂d ≈ 25: ð22Þ

This fact and the confluence of results highlighted
above emphasizes again that the observable magnitude
of SU(3)-flavor symmetry breaking in hadron properties is
determined by EHM, which is directly expressed in
the infrared value for the ratio of s- and d-quark mass
functions [18,33,34]:

ME
s =ME

d ¼ 1.25ð9Þ; ð23Þ

where the Euclidean constituent-quark mass ME
f is a

nonperturbative analogue of the so-called pole mass [7].

V. SUMMARY AND PERSPECTIVE

We studied the leptonic and semileptonic decays of DðsÞ
mesons using a well-constrained symmetry-preserving
continuum treatment of the meson bound-state problem
in quantum field theory, thereby unifying the treatment of
these features of such systems with analogous properties of
π and K mesons.
Our predictions for the DðsÞ transition form factors agree

with available experimental data (Sec. IVA). On the other
hand, results obtained using lattice-regularized QCD typ-
ically lie below our results. Additionally, our computed
form factors deliver values for the DðsÞ → ðK; πÞeþνe
branching fractions which match those measured exper-
imentally (Sec. IV B). Subsequently, having calculated all
DðsÞ transition form factors, we analyzed the character of
SU(3)-flavor symmetry breaking, finding that, as in the
π − K sector, the observable magnitude of this effect is
determined by the scales associated with emergent mass
generation, not those originating with the Higgs mecha-
nism (Sec. IV C).
With the validity of our framework and computational

algorithms supported by the results described herein, it is
natural to extend this analysis to semileptonic DðsÞ → V
decays, where V is a light-quark vector meson, and also to
the leptonic and semileptonic decays of B, Bs, Bc mesons.
Such efforts are underway. Kindred decays of baryons
could also be treated on an equal footing using the Poincaré
covariant Faddeev equation [35–37] and the same
symmetry-preserving truncations.
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APPENDIX: ELEMENTS CONSTITUTING THE
TRANSITION AMPLITUDE

1. Dressed-quark propagators

In RL truncation, the gap equation for the dressed
propagator of a quark with bare mass mbm

f ðΛÞ takes the
form

S−1ðkÞ ¼ ½iγ · kþMfðk2Þ�=Zfðk2Þ ðA1aÞ
¼ Z2ðiγ · kþmbm

f Þ þ ΣfðkÞ; ðA1bÞ

ΣfðkÞ ¼
Z

Λ

ds
Gμνðk − sÞ λ

a

2
γμSfðsÞ

λa

2
γν; ðA1cÞ

where Z2 is the quark wave-function renormalization con-
stant, with ζ the renormalization point; and

R
Λ
ds represents a

Poincaré invariant regularization of the four-dimensional
Euclidean integral, with Λ the regularization mass scale.
(A Pauli-Villars-like scheme is usually adequate [38], and
renormalization is performed in the chiral limit so that Z2 is
flavor independent [39].) Following Ref. [18], we choose
ζ ¼ 19 GeV≕ ζ19: physical quantities do not depend on the
value of ζ.
In Eq. (4), Gμν is the quark-quark interaction appropriate

for RL truncation, which is explained in Refs. [40,41]:

GμνðkÞ ¼ G̃ðk2ÞTμνðkÞ; ðA2Þ
with k2TμνðkÞ ¼ k2δμν − kμkν and (u ¼ k2),

1

Z2
2

G̃ðuÞ ¼ 8π2D
ω4

e−u=ω
2 þ 8π2γmF ðuÞ

ln½τ þ ð1þ u=Λ2
QCDÞ2�

; ðA3Þ

where γm ¼ 4=β0, β0 ¼ 11 − ð2=3Þnf, nf ¼ 4,
ΛQCD ¼ 0.234 GeV, τ ¼ e2 − 1 ðln e ¼ 1Þ, and F ðuÞ ¼
f1 − expð−u=½4m2

t �Þg=u, mt ¼ 0.5 GeV. The evolution of
Eqs. (A2) and (A3) is reviewed in Ref. [40], and their
relation to QCD is elaborated in Ref. [42]. Here we
note only that the interaction is (a) deliberately consistent
with that obtained in studies of QCD’s gauge sector and
(b) preserves QCD’s one-loop renormalization group
behavior.
Experience has shown [15,36,37,40–44] that Eq. (A3) is

a one-parameter Ansatz because observable properties of
light-quark ground-state vector- and flavor-nonsinglet
pseudoscalar mesons are practically insensitive to varia-
tions of ω ∈ ½0.4; 0.6� GeV so long as

ς3 ≔ Dω ¼ constant: ðA4Þ
The value of ς is usually chosen to reproduce the measured
value of the pion’s leptonic decay constant, fπ . In RL
truncation this requires

ς ¼ 0.80 GeV: ðA5Þ

We employ ω ¼ 0.5 GeV, the midpoint of the domain of
insensitivity.

2. Bethe-Salpeter amplitudes

The RL Bethe-Salpeter equation for a pseudoscalar
meson P constituted from a valence f-quark and a valence
g-antiquark is

Γfḡ
P ðk;QÞ ¼

Z
d4s
ð2πÞ4 Gμνðk − sÞ

×
λa

2
iγμSfðsþÞΓfḡ

P ðs;QÞSgðs−Þ
λa

2
iγν; ðA6Þ

where sþ ¼ sþ ηQ, s− ¼ s − ð1 − ηÞQ and the quark
propagators must be computed using Eq. (A1). The
solution has the form ðk̄ ¼ ½kþ þ k−�=2Þ

Γfḡ
P ðk;QÞ ¼ iγ5½Efḡ

P ðk̄;QÞ þ γ ·QFfḡ
P ðk̄;QÞ

þγ · k̄Gfḡ
P ðk̄;QÞ þ σμνk̄μQνH

fḡ
P ðk̄;QÞ�: ðA7Þ

In a symmetry-preserving framework, no measurable
quantity is sensitive to the value of η ∈ ½0; 1�, i.e., to the
definition of relative momentum within the bound state
[18]. The choice we make is convenient because it ensures
that the scalar functions in Eq. (A7) are even under
k̄ ·Q → −k̄ ·Q.
The leptonic decay constant for this pseudoscalar meson,

fP, is obtained from the following expression:

fPQμ ¼ Z2NctrD

Z
Λ

dk
γ5γμχ

fḡ
P ðk;QÞ; ðA8aÞ

χfḡP ðk;QÞ ¼ SfðkþÞΓfḡ
P ðk;QÞSgðk−Þ; ðA8bÞ

where the trace is over spinor indices. Naturally, the
integral in Eq. (A8a) must be defined in the same manner
as that in Eq. (A1), using the same renormalization point
and regularization scale.
With the following choices for the renormalization group

invariants (in GeV),

m̂u¼d ¼ 0.0068; m̂s ¼ 0.162; ðA9Þ

which correspond to mζ19
u ¼0.0034GeV, mζ19

s ¼0.082GeV
and one-loop evolved values (ζ2 ¼ 2 GeV),

mζ2
u ¼ 0.0047; mζ2

s ¼ 0.112; ðA10Þ

one obtains the masses and decay constants in Table I.
These values of the light-quark current masses are
commensurate with those obtained via other means [7].
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3. Weak vector transition vertex

The vector component of the c → d weak transition
vertex is computed from the following inhomogeneous
Bethe-Salpeter equation:

Γcd
ρ ðp; kÞ ¼ Z2γρ þ

Z
Λ

ds
GμνðsÞ

λa

2
iγμScðsþ pÞ

× Γcd
ρ ðsþ p; s − kÞSdðs − kÞ λ

a

2
iγν: ðA11Þ

This vertex satisfies a Ward-Green-Takahashi identity
[45–47]

ðp − kÞρiΓcd
μ ðp; k; ζÞ ¼ S−1c ðp; ζÞ − S−1d ðk; ζÞ

− ðmζ
c −mζ

dÞΓcd
I ðp; k; ζÞ; ðA12Þ

where Γcd
I is an analogous Dirac-scalar vertex. (The axial-

vector piece of the weak transition vertex cannot contribute
to a 0− → 0− transition in the Standard Model.) Here, we
have made the renormalization scale explicit to mark the
character of the current-quark masses.

When considering the electromagnetic current, f → f,
the solution of the analogous equation involves 11 inde-
pendent terms, each with its own scalar coefficient function
[48]: owing to the analogue of Eq. (A12), three of these are
determined by the dressed-quark propagator, leaving eight
coupled equations to solve [49].
In the present case, however, the active presence of Γcd

I in
Eq. (A12) entails that the vertex dynamics is not purely
transverse; hence, the solution for Γcd

ρ involves 12 inde-
pendent scalar functions to be obtained from associated,
coupled integral equations. This task can readily be
accomplished by separating the vertex into transverse
and longitudinal components, choosing Dirac-matrix bases
for both which are free of kinematic singularities [50], and
solving the resulting integral equations using now well-
known algorithms [18,51].
It is worth reiterating that the transverse part of Γcd

ρ ðp; kÞ
exhibits a singularity when ðp − kÞ2 enters the neighbor-
hood of the mass of the D� meson. The same is true for the
longitudinal part in the neighborhood of the mass of the
analogous scalar meson. In RL truncation, both singular-
ities are simple poles.
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