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Heavy fermion pair production in eþe− annihilation is a fundamental process in hadron physics and is of
considerable interest for various phenomena. In this paper, we will apply the principle of maximum
conformality (PMC) to provide a comprehensive analysis of these processes. The PMC provides a
systematic, unambiguous method for determining the renormalization scales of the QCD coupling constant
for single-scale and multiple-scale applications. The resulting predictions eliminate any renormalization
scheme-and-scale ambiguities, eliminate the factorial renormalon divergences, and are consistent with the
requirements of the renormalization group. It is remarkable that two distinctly different scales are
determined by using the PMC for heavy fermion pair production near the threshold region. One scale is the
order of the fermion massmf , which enters the hard virtual corrections, and the other scale is of order vmf,
where v is the quark velocity, which enters the Coulomb rescattering amplitude. The PMC scales yield the
correct physical behavior and reflect the virtuality of the propagating gluons (photons) for the QCD (QED)
processes. Moreover, we demonstrate the consistency of PMC scale setting from QCD to QED. Perfect
agreement between the Abelian unambiguous Gell-Mann-Low and the PMC scale-setting methods in the
limit of zero number of colors is demonstrated.

DOI: 10.1103/PhysRevD.102.014005

I. INTRODUCTION

Heavy fermion pair production in eþe− annihilation is a
fundamental process in the Standard Model (SM). The
threshold region is of particular interest. For example, the
precise prediction of the production cross section for
eþe− → τþτ− in the threshold region is important in order
to improve the measurement of the τ-lepton mass [1].
Precise theoretical predictions for the production cross
section of eþe− → cc̄=bb̄ at the thresholds are crucial for
determining accurate values for the charm and bottom
quark masses, as well as the QCD coupling constant αs;

e.g., as determined from the sum rule method [2–4]. One of
the most important physics goals of future high energy
electron-positron colliders is the precise measurement of
properties of the top quark, especially the top quark mass
and its width near the threshold region [5]. A crucial input
is the precise prediction of the top quark pair production
cross section.
An essential feature of heavy quark pair production in

the threshold region of eþe− annihilation is the presence
of singular terms from the QCD Coulomb corrections.
Physically, the renormalization scale which reflects the
subprocess virtuality should become very soft in this
region. It is conventional to set the renormalization scale
to the mass of the heavy fermion μr ¼ mf. This conven-
tional procedure obviously violates the physical behavior
of the QCD corrections and will lead inevitably to
unreliable predictions for the production cross sections
in the threshold region. The resummation of logarithmi-
cally enhanced terms is thus required.
It is often argued that one should set the renormalization

scale as the typical momentum scale of the process with the
purpose of eliminating the large logarithms; this guessed
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scale is then varied over an arbitrary range to ascertain its
uncertainty. However, this conventional procedure gives
scheme-dependent predictions, and it thus violates the
fundamental principle of renormalization group invariance.
The resulting nonconformal perturbative QCD series also
has renormalon n-factorial divergences; one thus introduces
inherent renormalization scheme-and-scale uncertainties.
One often argues that the renormalization scale uncertainty
by guessing the initial scale will be suppressed by including
enough higher-order terms; however, the scale uncertainties
become increasingly large at each order, and the renorma-
lon contributions such as n!βn0α

n
s prevent convergence. One

also cannot decide whether poor pQCD convergence is an
intrinsic property of the pQCD series, or is simply due to
the improper choice of the scale.
In contrast to pQCD, the renormalization scale in quan-

tum electrodynamics (QED) is set unambiguously by
using the Gell-Mann-Low method [6] where the renormal-
ization scales are set by the virtuality of each photon
propagator; this automatically sums all the proper and
improper vacuum polarization contributions to each photon
propagator to all orders. Note that the conventional scale
setting method used for pQCD is incorrect when applied to
the Abelian QED theory. In fact, a correct scale-setting
method in pQCD must reduce in the Abelian limit NC → 0
to the Gell-Mann-Low method [7].
The principle of maximum conformality (PMC) [8–12]

provides a systematic way to eliminate renormalization
scheme-and-scale ambiguities. The PMC determines the
renormalization scales by absorbing all the fβig terms that
govern the behavior of the running coupling via the
renormalization group equation. The resulting pQCD series
matches the conformal series with β ¼ 0; i.e., it is max-
imally conformal. Since the PMC predictions do not
depend on the choice of the renormalization scheme,
PMC scale setting satisfies the principles of renormaliza-
tion group invariance [13–15]. The PMC provides the
underlying principle for the well-known Brodsky-Lepage-
Mackenzie (BLM) method [16] and generalizes the BLM
procedure at all orders. By applying PMC scale setting, the
divergent renormalon series disappear, and the convergence
of pQCD series is greatly improved.
The PMC approach has been successfully applied to

various high energy processes. Recently, we have shown
that the correct physical behavior can be obtained using
PMC scale setting for the event-shape observables such as
the thrust T in electron-positron annihilation [17–19]. The
PMC scale is not a single fixed value, but it depends
continuously on the value of the event-shape observable,
reflecting the virtuality of the QCD dynamics. Thus, one
can determine the QCD running coupling αsðQ2Þ over a
large range of Q2 from a single measurement of eþe− →
Z0 → X at

ffiffiffi
s

p ¼ MZ.
In this paper, we shall apply the PMC to make com-

prehensive analyses for the heavy fermion pair production

in eþe− annihilation near the threshold region. We will
show that two distinctly different scales are determined for
the heavy fermion pair production near the threshold
region. We also will demonstrate the consistency of
PMC scale setting in the QED limit.
The remaining sections of this paper are organized as

follows. In Sec. II, we calculate the QCD process of the
quark pair production in eþe− annihilation near the thresh-
old region in both the modified minimal subtraction scheme
(MS scheme) and the V scheme. In Sec. III, we calculate
the QED process of the lepton pair production in eþe−
annihilation near the threshold region. Section IV is
reserved for a summary.

II. THE HEAVY QUARK PAIR PRODUCTION
NEAR THE THRESHOLD REGION

A. The QCD process of the quark pair
production in the MS scheme

The quark pair production cross section for eþe− →
γ� → QQ̄ at the two-loop level can be written as

σ ¼ σð0Þ½1þ δð1ÞasðμrÞ þ δð2ÞðμrÞa2sðμrÞ þOða3sÞ�; ð1Þ

where asðμrÞ ¼ αsðμrÞ=π, μr is the renormalization scale.
The LO cross section is

σð0Þ ¼ 4

3

πα2

s
Nce2Q

vð3 − v2Þ
2

; ð2Þ

and the quark velocity v is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Q

s

s
: ð3Þ

Here, Nc is the number of colors, eQ is the Q quark electric
charge, s is the center-of-mass energy squared, and mQ is
the mass of the quark Q. The one-loop correction δð1Þ near
the threshold region can be written as

δð1Þ ¼ CF

�
π2

2v
− 4

�
: ð4Þ

The two-loop correction δð2Þ can be conveniently split into
terms proportional to various SUð3Þ color factors,

δð2Þ ¼C2
Fδ

ð2Þ
A þCFCAδ

ð2Þ
NAþCFTRnfδ

ð2Þ
L þCFTRδ

ð2Þ
H : ð5Þ

The terms δð2ÞA , δð2ÞL , and δð2ÞH are the same in either Abelian

or non-Abelian theories; the term δð2ÞNA only arises in the
non-Abelian theory. This process provides the opportunity
to explore rigorously the scale-setting method in the non-
Abelian and Abelian theories.
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The Coulomb correction plays an important role in the
threshold region; it is proportional to powers of (π=v). The
renormalization scale is thus relatively soft in this region. In
fact, the PMC scales must be determined separately for the
non-Coulomb and Coulomb corrections [9,20]. When the
quark velocity v → 0, the Coulomb correction dominates
the contribution of the production cross section, and the
contribution of the non-Coulomb correction will be sup-
pressed. On general grounds, one expects that threshold
physics is governed by the nonrelativistic Coulomb instan-
taneous potential. The potential affects the cross section
through final state interactions when the scale is above
threshold; it leads to bound states when the scale is below
threshold.
The cross section given in Eq. (1) is further divided into

the nf-dependent and nf-independent parts, i.e.,

σ¼ σð0Þ
�
1þδð1Þh asðμrÞþðδð2Þh;inðμrÞþδð2Þh;nf

ðμrÞnfÞa2sðμrÞ

þ
�
π

v

�
δð1Þv asðμrÞþ

�
π

v

�
ðδð2Þv;inðμrÞþδð2Þv;nfðμrÞnfÞa2sðμrÞ

þ
�
π

v

�
2

δð2Þv2 a
2
sðμrÞþOða3sÞ

�
: ð6Þ

The coefficients δð1Þh and δð2Þh are for the non-Coulomb

corrections, and the coefficients δð1Þv , δð2Þv , and δð2Þ
v2

are for

the Coulomb corrections. These coefficients in the MS
scheme are calculated in Refs. [21–23] and at the scale
μr ¼ mQ they can be written as

δð1Þh ¼ −4CF; δð1Þv ¼ CFπ

2
; ð7Þ

δð2Þh;in ¼ −
1

72
CFðCAð302þ 468ζ3 þ π2ð−179þ 192 ln 2ÞÞ

− 2ð−16ð−11þ π2ÞTR þ CFð351þ 6π4 − 36ζ3

þ π2ð−70þ 48 ln 2ÞÞÞ þ 24ð3CA þ 2CFÞπ2 ln vÞ;

δð2Þh;nf
¼ 11CFTR

9
;

δð2Þv;in ¼ −
1

72
CFπð−31CA þ 144CF þ 66CA lnð2vÞÞ;

δð2Þv;nf ¼
1

18
CFπTRð−5þ 6 lnð2vÞÞ;

δð2Þ
v2

¼ C2
Fπ

2

12
: ð8Þ

After absorbing the nonconformal term β0 ¼ 11=3CA −
4=3TRnf into the coupling constant using the PMC,
we obtain

σ ¼ σð0Þ
�
1þ δð1Þh asðQhÞ þ δð2Þh;scðμrÞa2sðQhÞ

þ
�
π

v

�
δð1Þv asðQvÞ þ

�
π

v

�
δð2Þv;scðμrÞa2sðQvÞ

þ
�
π

v

�
2

δð2Þ
v2
a2sðQvÞ þOða3sÞ

�
: ð9Þ

The PMC scales Qi can be written as

Qi ¼ μr exp

�
3δð2Þi;nf

ðμrÞ
2TRδ

ð1Þ
i

�
; ð10Þ

and the coefficients δð2Þi;scðμrÞ are

δð2Þi;scðμrÞ ¼
11CAδ

ð2Þ
i;nf

ðμrÞ
4TR

þ δð2Þi;inðμrÞ; ð11Þ

where i ¼ h and v stand for the non-Coulomb and
Coulomb corrections, respectively. The nonconformal β0
term is eliminated, and the resulting pQCD series matches
the conformal series and thus only the conformal
coefficients remain in the cross section. The conformal
coefficients are independent of the renormalization scale
μr. At the present two-loop level, the PMC scales are also
independent of the renormalization scale μr. Thus, the
resulting cross section in Eq. (9) eliminates the renormal-
ization scale uncertainty.
Taking CA ¼ 3, CF ¼ 4=3, and TR ¼ 1=2 for QCD, the

PMC scales in the MS scheme are

Qh ¼ eð−11=24ÞmQ ð12Þ

for the non-Coulomb correction, and

Qv ¼ 2eð−5=6ÞvmQ ð13Þ

for the Coulomb correction. The scale Qh originates
from the hard gluon virtual corrections, and thus it is
determined for the short-distance process. The scale Qv
originates from Coulomb rescattering. Since the PMC
scales are determined by absorbing the nonconformal
fβig terms, the behavior of the scale is controlled by the
coefficient of the QCD β function. It is noted that the
coefficient of the β0 function for the non-Coulomb cor-
rection is independent of the quark velocity v, whereas the
logarithmic term lnð2vÞ appears in the coefficient of the β0
function for the Coulomb correction. As expected, the
resulting scale Qh is of the order mQ, whereas the scale Qv

is of the order vmQ.
In the following, we will take the bottom quark pair

production as an example to make a detailed analysis
near the threshold region. Taking mQ ¼ 4.89 GeV [24],
we obtain
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Qh ¼ 3.09 GeV; ð14Þ

which is smaller than mQ in the MS scheme. For the
Coulomb correction part, the scale Qv is shown in Fig. 1. It
shows that the scale Qv depends continuously on the quark
velocity v, and it becomes soft for v → 0, yielding the
correct physical behavior of the scale and reflecting the
virtuality of the QCD dynamics. Also, the number of active
flavors nf changes with the quark velocity v according to
the PMC scale.
When the quark velocity v → 0, the small scale in the

coupling constant demonstrates that the perturbative QCD
theory becomes unreliable and nonperturbative effects must
be taken into account. One can adopt the light front
holographic QCD (LFHQCD) [25] to evaluate the coupling
constant αsðQÞ in the low scale region. According to the
LFHQCD, the coupling constant αsðQÞ is finite for Q → 0.
In contrast, the renormalization scale is simply fixed at

μr ¼ mQ using conventional scale setting. Our calculations
show that in theMS scheme, the scale should be eð−11=24ÞmQ,
which is smaller than mQ for the non-Coulomb correction.
For the Coulomb correction, since the scale becomes soft
for v→ 0, simply fixing the renormalization scale μr ¼ mQ

obviously violates the physical behavior and lead to unre-
liable predictions in the threshold region. The resumma-
tion of logarithmically enhanced terms is thus required.
We present the two-loop coefficients δð2Þh of the non-

Coulomb correction in the MS scheme using conventional
and PMC scale settings in Fig. 2. Figure 2 shows that the v-

dependent behavior of the coefficients δð2Þh is the same but
their magnitudes are different using conventional and PMC
scale settings. When the quark velocity v → 0, the behavior
of the non-Coulomb correction coefficients using conven-

tional and PMC scale settings is divergent δð2Þh → þ∞ due
to the presence of the term − ln v. As expected, after

multiplying this term by the v factor in the LO cross section
σð0Þ given in Eq. (2), the contribution of the non-Coulomb
corrections is finite and is suppressed near the threshold

region, i.e., ðσð0Þδð2Þh a2sÞ → 0 for the quark velocity v → 0.
For the Coulomb correction, the resummation of the

Coulomb term of the form ðπ=vÞ2δð2Þ
v2

results in the well-
known Sommerfeld rescattering formula [21]. For the

Coulomb term of the form ðπ=vÞδð2Þv , we present its
v-dependent behavior in the MS scheme using conven-
tional and PMC scale settings in Fig. 3. It shows that when
the quark velocity v → 0, the v-dependent behavior of the

Coulomb term ðπ=vÞδð2Þv is dramatically different using
conventional and PMC scale settings. In the case of

conventional scale setting, its behavior is ðπ=vÞδð2Þv →
þ∞ for v → 0 due to the presence of the term − ln v=v.

FIG. 1. The PMC scale Qv versus the center-of-mass energyffiffiffi
s

p
for the b quark pair production in the MS scheme.

mQ ¼ 4.89 GeV.

Conventional scale setting

PMC scale setting

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

v

h2

FIG. 2. The two-loop coefficients δð2Þh of the non-Coulomb
correction in the MS scheme for the b quark pair production,

where δð2Þh ¼ ðδð2Þh;in þ δð2Þh;nf
nfÞ is for conventional scale setting

while δð2Þh ¼ δð2Þh;sc is for PMC scale setting.

PMC scale setting

Conventional scale setting

0.0 0.2 0.4 0.6 0.8 1.0
600

400

200

0

200

400

v

v
v2

FIG. 3. The Coulomb terms of the form ðπ=vÞδð2Þv in the MS

scheme for the b quark pair production, where δð2Þv ¼ ðδð2Þv;in þ
δð2Þv;nfnfÞ is for conventional scale setting and δð2Þv ¼ δð2Þv;sc is for
PMC scale setting.
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After multiplying this term by the v factor in the LO cross
section σð0Þ, the contribution from the Coulomb term

ðπ=vÞδð2Þv using conventional scale setting is not finite,

i.e., ðσð0Þðπ=vÞδð2Þv Þ → þ∞ for v → 0. It should be stressed
that the term ln v vanishes and the term −1=v remains in the
conformal coefficient after applying PMC scale setting.

Thus, the v-dependent behavior is ðπ=vÞδð2Þv → −∞ for
v → 0. This term −1=v is canceled by multiplying it by
the v factor in the LO cross section σð0Þ, and thus the

contribution from the Coulomb term ðπ=vÞδð2Þv using
PMC scale setting is finite for v → 0. It is noted that the
contributions of the Coulomb correction using conven-
tional and PMC scale settings are suppressed for v → 1.

B. The QCD process of the quark pair
production in the V scheme

The quark pair production cross section in the above
analysis is calculated in the MS scheme. Effective charge
aVs ¼ αV=π (V scheme) defined by the interaction potential
between two heavy quarks [26–32],

VðQ2Þ ¼ −
4π2CFaVs ðQÞ

Q2
; ð15Þ

provides a physically based alternative to the usual MS
scheme. As in the case of QED, when the scale of the
coupling aVs is identified with the exchanged momentum,
all vacuum polarization corrections are resummed into aVs .
By using the relation between as and aVs at the one-loop
level, i.e.,

aVs ðQÞ ¼ asðQÞ þ
�
31

36
CA −

5

9
TRnf

�
a2sðQÞ þOða3sÞ;

ð16Þ

we convert the quark pair production cross section from
the MS scheme to the V scheme. The corresponding
perturbative coefficients in Eq. (6) in the V scheme are

σð0ÞjV ¼ σð0Þ; ð17Þ

δð1Þh jV ¼ δð1Þh ; δð1Þv jV ¼ δð1Þv ; ð18Þ

δð2Þh;injV ¼ δð2Þh;in −
31

36
CAδ

ð1Þ
h ;

δð2Þh;nf
jV ¼ δð2Þh;nf

þ 5

9
TRδ

ð1Þ
h ;

δð2Þv;injV ¼ δð2Þv;in −
31

36
CAδ

ð1Þ
v ;

δð2Þv;nf jV ¼ δð2Þv;nf þ
5

9
TRδ

ð1Þ
v ;

δð2Þ
v2
jV ¼ δð2Þ

v2
: ð19Þ

After applying PMC scale setting in the V scheme, we
obtain the PMC scales

Qh ¼ eð3=8ÞmQ ð20Þ

for the non-Coulomb correction, and

Qv ¼ 2vmQ ð21Þ

for the Coulomb correction. Again, in the V scheme, Qh is
of order mQ, while Qv is of order vmQ, since the scale Qh

originates from the hard gluon virtual corrections, and Qv
originates from Coulomb rescattering. The physical behav-
ior of the scales does not change using different renorm-
alization schemes. We note that the PMC scales in the usual
MS scheme are different from the scales in the physically
based V scheme. This difference is due to the convention
used in defining the MS scheme. The PMC predictions
eliminate the dependence on the renormalization scheme;
this is explicitly displayed in the form of “commensurate
scale relations” (CSR) [33,34].
Taking mQ ¼ 4.89 GeV for the b quark pair production,

we obtain Qh ¼ 7.11 GeV for the non-Coulomb correc-
tion, and its value is larger than the conventional choice
μr ¼ mQ. For the Coulomb correction, we present its PMC
scale Qv versus the center-of-mass energy

ffiffiffi
s

p
for the

b quark pair production in the V scheme in Fig. 4. The
exponent disappears in Eq. (21) compared to the scale in
Eq. (13) in the MS scheme. The scale Qv becomes soft for
v → 0, and Qv → 2mQ for v → 1, yielding the correct
physical behavior.
As in the case of the MS scheme, the v-dependent

behavior of the coefficients δð2Þh of the non-Coulomb
correction in the V scheme using conventional and PMC
scale settings is the same. For the Coulomb correction, the

high-order Coulomb term of the form ðπ=vÞ2δð2Þ
v2

is not

10 20 30 40 50
0

2

4

6

8

10

s GeV

PM
C

sc
al

e
G

eV

FIG. 4. The PMC scale Qv versus the center-of-mass energyffiffiffi
s

p
for the b quark pair production in the V scheme.

mQ ¼ 4.89 GeV.
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finite for v → 0 before and after using the PMC. This is

because the coefficient δð2Þv2 of the high-order Coulomb term
is independent of the nonconformal fβig terms and the
logarithmic term lnðvÞ. After absorbing the nonconformal
β0 term using the PMC, the behavior of the Coulomb term

of the form ðπ=vÞδð2Þv is dramatically changed. More

explicitly, the Coulomb terms of the form ðπ=vÞδð2Þv in
the V scheme using conventional and PMC scale settings
are presented in Fig. 5. When the quark velocity v → 0, the

Coulomb term is ðπ=vÞδð2Þv → þ∞ due to the presence of
the term − ln v=v using conventional scale setting. After
applying PMC scale setting, the logarithmic term lnðvÞ
vanishes in the coefficient δð2Þv ; the Coulomb term is

ðπ=vÞδð2Þv → −∞ due to the term −ðπ=vÞ. Thus, multiply-
ing by the v factor in the LO cross section σð0Þ, the

Coulomb term σð0Þðπ=vÞδð2Þv for v → 0 is not finite using
conventional scale setting, but it is finite after using PMC
scale setting. It is noted that the quark pair and lepton pair
productions in eþe− annihilation near the threshold region
should show similar physical behavior. This dramatically

different behavior of the ðπ=vÞδð2Þv between conventional
and PMC scale settings near the threshold region should be
checked in QED.

III. THE QED PROCESS OF THE
LEPTON PAIR PRODUCTION

Similar to quark pair production, the lepton pair pro-
duction cross section for the QED process eþe− → γ� → ll̄
is expanded in the QED coupling constant α. The cross
section can also be divided into the non-Coulomb and
Coulomb parts. As in Eq. (6), the corresponding perturba-
tive coefficients for the lepton pair production cross section
are [21,35,36]

σð0Þ ¼ 4

3

πα2

s
vð3 − v2Þ

2
; ð22Þ

δð1Þh ¼ −4CF; δð1Þv ¼ CFπ

2
; ð23Þ

δð2Þh;in ¼
1

36
CFð−16ð−11þ π2ÞTR þ CFð351þ 6π4

− 36ζ3 þ π2ð−70þ 48 ln 2ÞÞ − 24CFπ
2 ln vÞ;

δð2Þh;nf
¼ 11CFTR

9
;

δð2Þv;in ¼ −2C2
Fπ;

δð2Þv;nf ¼
1

18
CFπTRð−5þ 6 lnð2vÞÞ;

δð2Þ
v2

¼ C2
Fπ

2

12
: ð24Þ

The one-loop correction coefficients δð1Þh and δð1Þv and the

two-loop correction coefficients δð2Þh;nf
, δð2Þv;nf and δð2Þ

v2
have

the same form in QCD and QED with only some replace-
ments: CA ¼ 3, CF ¼ 4=3, and TR ¼ 1=2 in QCD and
CA ¼ 0, CF ¼ 1, and TR ¼ 1 in QED.
By using the PMC, the vacuum polarization corrections

can be absorbed into the QED running coupling,

αðQÞ ¼ α

�
1þ

�
α

π

�Xnf
i¼1

1

3

�
ln

�
Q2

m2
i

�
−
5

3

��
; ð25Þ

where mi is the mass of the light virtual lepton, and it is far
smaller than the final state lepton mass ml. We then obtain

σ ¼ σð0Þ
�
1þ δð1Þh

αðQhÞ
π

þ δð2Þh;in

�
αðQhÞ
π

�
2

þ
�
π

v

�
δð1Þv

αðQvÞ
π

þ
�
π

v

�
δð2Þv;in

�
αðQvÞ
π

�
2

þ
�
π

v

�
2

δð2Þ
v2

�
αðQvÞ
π

�
2

þOðα3Þ
�
: ð26Þ

The resulting PMC scales can be written as

Qi ¼ ml exp

�
5

6
þ 3

2

δð2Þi;nf

δð1Þi

�
; ð27Þ

where, i ¼ h and v stand for the non-Coulomb and
Coulomb corrections, respectively. Taking CA¼0, CF¼1,
and TR ¼ 1 for QED, the PMC scales are

Qh ¼ eð3=8Þml ð28Þ

for the non-Coulomb correction and

PMC scale setting 

Conventional scale setting 

0.0 0.2 0.4 0.6 0.8 1.0
600

400

200

0

200

400

v

v
v2

FIG. 5. The Coulomb terms of the form ðπ=vÞδð2Þv in the V

scheme for the b quark pair production, where δð2Þv ¼ ðδð2Þv;injV þ
δð2Þv;nf jVnfÞ is for conventional scale setting and δð2Þv ¼ δð2Þv;scjV is for
PMC scale setting.
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Qv ¼ 2vml ð29Þ

for the Coulomb correction. Since the scales Qh stem from
the hard virtual photons corrections andQv originates from
the Coulomb rescattering, Qh is of order ml and Qv is of
order vml. The scales show the same physical behavior
from QCD to QED after using PMC scale setting. It is
noted that the PMC scales in Eqs. (20) and (21) for QCD in
the V scheme coincide with the scales in Eqs. (28) and (29)
for QED, respectively. This scale self-consistency shows
that the PMC method in QCD agrees with the standard
Gell-Mann-Low method [6] in QED. The V scheme
provides a natural scheme for the QCD process for the
quark pair productions.
In the following, we take the τ lepton pair production as

an example to make a detailed analysis near the threshold
region. Taking mτ ¼ 1.777 GeV [37], we obtain the scale
Qh ¼ 2.59 GeV, which is larger than mτ for the non-
Coulomb correction. For the Coulomb correction, as in the
case of QCD, the scale becomes soft for v → 0 and Qv →
2ml for v → 1. The PMC scales thus rigorously yield the
correct physical behavior for the lepton pair production
near the threshold region.
For the non-Coulomb correction, the v-dependent behav-

ior of the coefficients δð2Þh using conventional and PMC
scale settings is the same, as in the case of QCD. For the
Coulomb correction, the high-order Coulomb term of the

form ðπ=vÞ2δð2Þ
v2

is not finite for v → 0 before and after

using the PMC. The Coulomb terms of the form ðπ=vÞδð2Þv

using conventional and PMC scale settings are presented in
Fig. 6. It is noted that in different from the case of QCD,
when the quark velocity v → 0, the Coulomb terms are

ðπ=vÞδð2Þv → −∞ due to the presence of the term ln v=v
using conventional scale setting, and the term −1=v using
PMC scale setting. Multiplying by the v factor in the

LO cross section σð0Þ, the Coulomb term for v → 0 is

ðσð0Þðπ=vÞδð2Þv Þ → −∞ using conventional scale setting and
is a finite using PMC scale setting. Thus, we can see from
Figs. 3, 5, and 6 that after using the PMC, the behavior of

the coefficients δð2Þv is dramatically changed; the coeffi-

cients δð2Þv in the threshold region are not finite using
conventional scale setting and are finite using PMC scale
setting for both QCD and QED.

IV. SUMMARY

Heavy fermion pair production in eþe− annihilation is a
fundamental process in the SM. However, the conventional
procedure of simply setting the renormalization scale as
μr ¼ mf violates the physical behavior of the reaction and
leads to the unreliable predictions near the threshold region.
In contrast, the PMC scale-setting method provides a self-
consistent analysis and reveals the correct physical behav-
ior of the scale for the heavy fermion pair production near
the threshold region, both in QCD and QED

(i) It is remarkable that two distinctly different scales
are determined for the heavy fermion pair produc-
tion near the threshold region using the PMC. The
scale determined for the hard virtual correction is of
order the fermion mass mf; the scale determined for
the Coulomb rescattering is of order vmf, which
becomes soft for v → 0. Thus, PMC scale setting
provides a rigorous method for setting unambigu-
ously the renormalization scale as function of the
quark velocity v, reflecting the virtuality of the
propagating gluons (photons) for the QCD (QED)
processes.

(ii) For the non-Coulomb correction of the fermion pair
production, the contributions will be suppressed in
the threshold region. For the Coulomb correction,
the contribution in the threshold region is not finite
using conventional scale setting. A resummation of
the logarithmically enhanced terms is thus required.
After using PMC scale setting, the logarithmic terms

lnðvÞ vanish in the coefficient δð2Þv from QCD to

QED, and thus the coefficient δð2Þv is finite in the
threshold region.

(iii) The V scheme provides a natural scheme for the
QCD calculation for the quark pair production. After
converting the QCD calculation from the MS
scheme to the V scheme, the resulting PMC pre-
dictions in the Abelian limit are consistent with the
results of QED. The scales are Qh ¼ eð3=8Þmf for
the hard virtual correction and Qv ¼ 2vmf for the
Coulomb rescattering for both QCD and QED. The
PMC scales for QCD and QED are identical after
applying the relation between PMC scales:
Q2

QCD=Q
2
QED ¼ e−5=3; this factor converts the scale

underlying predictions in the MS scheme used in

Conventional scale setting 

PMC scale setting 
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FIG. 6. The Coulomb terms of the form ðπ=vÞδð2Þv for the

τ lepton pair production, where δð2Þv ¼ ðδð2Þv;in þ δð2Þv;nfnfÞ is

for conventional scale setting and δð2Þv ¼ δð2Þv;in is for PMC
scale setting.
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QCD to the scale of the V scheme conventionally
used in QED [33]. We emphasize that the predic-
tions based on the conventional scale-setting
method are incorrect when applied to the Abelian
theory. The renormalization scale in QED can be
set unambiguously by using the Gell-Mann-Low
method. The PMC scale-setting method in QCD
reduces correctly in the Abelian limit NC → 0 to
the Gell-Mann-Low method. This consistency pro-
vides rigorous support for the PMC scale-setting
method.
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