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We study tensor meson photoproduction outside of the resonance region, at beam energies of a fewGeVs.
We build a model based on Regge theory that includes the leading vector and axial exchanges. We consider
two determinations of the unknown helicity couplings and fit to the recent a2 photoproduction data from
CLAS.Both choices give a similar description of the a2 cross section but result in different predictions for the
parity asymmetries and the f2 photoproduction cross section. We conclude that new measurements of f2
photoproduction in the forward region are needed to pin down the correct production mechanism. We also
extend our predictions to the 8.5 GeV beam energy, where current experiments are running.
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I. INTRODUCTION

The lightest tensor meson multiplet is well established
experimentally and theoretically [1–3] and fits well into the
quark model. Given their relatively narrow width, light
tensors can be used as a benchmark when searching for
states which are less prominent in data, for example the
JPC ¼ 1−þ exotic hybrid candidate [4,5].
A comprehensive understanding of tensor meson pro-

duction dynamics is thus needed to pin down the properties
of hybrid mesons.
In particular, in photoproduction both hybrids and tensors

can be produced through vector and axial exchanges. The
a2ð1320Þ0 photoproduction cross section has been recently
measured by the CLAS experiment in the 4–5 GeV beam

energy range [6]. The f2ð1270Þ cross section has not been
extracted explicitly, but it can be inferred from the partial
wave analysis of γp → πþπ−p [7]. A pattern seems to
emerge from various photoproduction reactions: when
isovector mesons like the π0 or a02 are produced, the
differential cross section exhibits a dip at t ≃ −0.5 GeV2,
which does not appear in photoproduction of isoscalars, like
the η or f2.
In this paper, we describe tensor meson photoproduction

in the 3–10 GeV beam energy range with a model based on
Regge pole exchanges. The model is compared to CLAS
data in Sec. II. In its simplest version, the amplitude
includes the leading vector exchanges only and leads to
an exact zero at the so-called wrong-signature point. The
overall normalization is constrained from known tensor
meson decay widths. In Sec. III, we introduce axial
exchanges as a possible mechanism to fill in the zero.
The strength of vector and axial exchanges is refitted to the
CLAS a2 data. We then compare the predictions of the
model with the f2 cross section data. Our predictions
are extended to a higher beam energy of Eγ ¼ 8.5 GeV,
where GlueX and CLAS12 are currently operating [8,9].
Polarization observables sensitive to the naturality of the

*vmathieu@ucm.es
†pillaus@jlab.org

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 014003 (2020)

2470-0010=2020=102(1)=014003(13) 014003-1 Published by the American Physical Society

https://orcid.org/0000-0003-4257-0928
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.014003&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevD.102.014003
https://doi.org/10.1103/PhysRevD.102.014003
https://doi.org/10.1103/PhysRevD.102.014003
https://doi.org/10.1103/PhysRevD.102.014003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


exchanges are predicted in Sec. IV. Summary and con-
clusions are presented in Sec. V, while several technical
details are left to the Appendixes.

II. VECTOR EXCHANGES

We consider the process γp→Tp, where T¼a2ð1320Þ0;
f2ð1270Þ. We do not consider charge exchange
processes, as γp → a2ð1320Þþn or γp → K�

2ð1430ÞþΛ
or →K�

2ð1430Þþ;0Σ0;þ, which are driven by pion or kaon
exchange, respectively, and exhibit a different phenome-
nology (for example, the former has been studied in [10]).
At high energies, the amplitude in the forward direction is
dominated by the leading Regge exchanges. As represented
in Fig. 1, Regge pole amplitudes factorize into a product of
an upper and a lower vertex [11,12] that describe the beam
and target interactions, respectively. The amplitude can be
written

MλγλT ;λpλ
0
p
¼ −

X
E

TE
λγλT

ðtÞREðs; tÞBE
λpλ

0
p
ðtÞ; ð1Þ

where λi is the center-of-mass helicity of particle i and s
and t the Mandelstam variables describing the total energy
squared and the momentum transferred squared between
the initial and final nucleon, respectively. The sum runs
over the Regge poles that contribute to tensor production.
As customary, Reggeons are labeled by the lightest meson
lying on the trajectory and classified by this meson’s
quantum numbers, in particular parity P, signature
τ ¼ ð−ÞJ, and naturality η ¼ Pð−ÞJ. The dominant natural
exchanges are the vector ρ and ω, while the unnatural ones
are the axial b1 and h1. The beam asymmetry in π0 and η
photoproduction by GlueX [13] suggest that natural
exchanges dominate over unnatural ones as long as pion
exchange is forbidden [14–16]. For this reason, we now
focus on the leading vector exchanges only, V ¼ ρ, ω.
The Regge propagator is given by [17]

Rðs; tÞ ¼ τ þ e−iπαðtÞ

2
ð−ÞlΓ½l − αðtÞ�ðα0sÞαðtÞ: ð2Þ

The factor Γ½l − αðtÞ� has poles for integers αðtÞ ¼ J ≥ l,
representing the exchange of a particle of spin J in the
t channel. The signature factor τ þ e−iπαðtÞ cancels the
wrong-signature poles at J ≥ l and provides additional
wrong-signature zeros for J < l.
Duality arguments based on the nonexistence of flavor-

exotic resonances, at least in the light sector, require the
parameters in the propagator to be equal for vectors and
tensors [exchange degeneracy (EXD)]. For the trajectories
it holds since αðtÞ ¼ 1þ α0ðt −m2

VÞ ≃ 2þ α0ðt −m2
TÞ ≃

α0tþ 0.5 with α0 ¼ 0.9 GeV−2. The value of l is the spin
of the lightest state that appears on all the degenerate
trajectories. Since there is no scalar meson on the leading
trajectories, l ¼ 1. For vector exchanges, τ ¼ −1 and the
amplitude vanishes at J ¼ 0, which corresponds to
t ¼ −0.55 GeV2. The propagator is normalized such that,
at the vector pole,

Rðs; t → m2
VÞ →

α0s
1 − αðtÞ ¼

s
m2

V − t
: ð3Þ

The bottom vertex depends on two helicity couplings:

BV
λpλ

0
p
ðtÞ ¼

�
−t0

4m2
p

�ð1=2Þjλp−λ0pj

× ½GV
1 δλp;λ0p þ 2λpGV

2 δλp;−λ0p �: ð4Þ

The half-angle factor ð−t0Þð1=2Þjλ1−λ2j arises from conserva-
tion of angular momentum in the forward direction, with t0
defined as

t0 ¼ t − tmin ¼ −4qq0 sin2
θ

2
¼ t −

m4
T

4s
þ ðq − q0Þ2; ð5aÞ

with q and q0 the incoming and outgoing 3-momentum,
respectively, q¼ðs−m2

pÞ=2
ffiffiffi
s

p
and q0¼λ1=2ðs;m2

p;m2
TÞ=

2
ffiffiffi
s

p
, with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ bcþ caÞ.

Similarly, in the top vertex, we factorize the half-angle
factor and an overall normalization:

TV
λγλT

ðtÞ ¼ βγTV

�
−t0

m2
T

�ð1=2Þjλγ−λT j
βλγλT ðtÞ: ð6Þ

Parity conservation implies

β−λγλT ðtÞ ¼ ð−Þλγ−λTβλγ−λT ðtÞ: ð7Þ

The five independent helicity structures β1;λT ðtÞ could, in
principle, be extracted from the angular correlations of the
decay T → Vγ. Unfortunately, these decay modes have not
been measured yet. We thus must introduce a hypothesis to
fix the relative size of the various structures and fit
the overall coupling to data. We consider two models, a

FIG. 1. Factorization of the tensor meson T photoproduction
amplitude via the Regge exchange E ¼ V, A.
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“minimal” one (see e.g. [18]), and a second one that we
refer to as tensor meson dominance (TMD) [19]. The
helicity couplings βλγλT of the two models are summarized
in Table I, and the derivation is described in Appendix A.
The overall normalization βγTV could be extracted from

the branching ratio of the radiative transitions between
tensors and vectors. In the absence of this, we resort to
vector meson dominance (VMD); i.e. we assume that the
photon mixes with vector mesons through:

LVMD ¼ −
ffiffiffiffiffiffiffiffi
4πα

p
Aμðmρfρρμ þmωfωωμÞ; ð8Þ

where fρ;ω are the meson decay constants and are related to
the leptonic width ΓðV → eþe−Þ ¼ 4πα2f2V=3mV .
Since the systematic uncertainties related to the model

are much larger than the uncertainties of the parameters the
model depends upon, we do not perform the usual error
propagation and just consider the qualitative behavior and
the order of magnitude of these first estimates.
In the following, we extract the couplings for the a2 and

leave thedetermination of thef2 ones toAppendixD.We can
use VMD to relate the radiative transition T → Vγ to either
the divector decayT → VVð0Þ or the two-photon annihilation
T → γγ. In the first method, we determine the βγa2V coupling
from Γða2 → ωρÞ ∼ Γða2 → ωππÞ ¼ 11.1� 3.4 MeV,
assuming that the ρ saturates the ππ pair [1]. The matrix
element

P
pol jMj2 is given in Eqs. (A6a) and (A7a) and

must be averaged over the ρ line shape:

Γða2 → ωρÞ ¼ ðβωρa2 Þ2
40πm4

a2

Z ðma2
−mωÞ2

4m2
π

ds0

π

×
λ1=2ðm2

a2 ; m
2
ω; s0Þ

2ma2

X
pol

jMj2Bρðs0Þ; ð9Þ

with

Bρðs0Þ ¼
mρΓρðs0Þ

ðm2
ρ − s0Þ2 þm2

ρΓ2
ρðs0Þ

; ð10aÞ

Γρðs0Þ ¼ Γρ
mρffiffiffiffi
s0

p
�
s0 − 4m2

π

m2
ρ − 4m2

π

�
3=2

: ð10bÞ

Finally, VMD leads to

βγa2V ¼
ffiffiffiffiffiffiffiffi
4πα

p fV
mV

βωρa2 : ð11Þ

Using the second method, we consider Γða2 → γγÞ ¼
1.00� 0.06 keV [1] and use Eqs. (A6b) and (A7b) to
extract the two-photon couplings βγγa2 . With VMD, we
obtain

βγa2ω ¼ βγγa2ffiffiffiffiffiffiffiffi
4πα

p
�
fω
mω

þ 1

3

fρ
mρ

�
−1
; βγa2ρ ¼ 1

3
βγa2ω ; ð12Þ

using the isospin relations derived in Appendix B. The
numerical values of the overall normalization obtained with
these two methods for the two models studied are sum-
marized in Table II.
The differential cross section obtained using the divector

decay width is compared to the CLAS data [6] in Fig. 2.
The model describes the dip in the−t ∈ ½0.4; 0.6� GeV2 bin
with an exact wrong-signature zero at t ¼ −0.55 GeV2. To
improve the agreement with data, we need to invoke a
mechanism that partially fills in the zero.
There is phenomenological evidence that the ρ nucleon

helicity-flip amplitude does not have the wrong-signature
zero [21,22]. For example in η photoproduction, which is
dominated by ρ exchange, the cross section does not dip
[15]. Accordingly, we will modify the helicity-flip bottom
coupling Gρ

2 →
1

αðtÞG
ρ
2 to remove the wrong-signature zero.

The predicted curves are shown in the right panels of Fig. 2.
Both models, in particular the minimal one, have roughly

the right order of magnitude. However, they fail at giving a
good description of data. Moreover, from Table II we notice
that the βγTV obtained using VMD from different reactions
are substantially different. In the next section we will refit
the overall normalization to data.

III. UNNATURAL EXCHANGES AND
COMPARISON WITH f 2ð1270Þ DATA

One can wonder whether other exchanges contribute to
filling in the zero. If the strength of the dip is due to the
nonflip ρ exchange only, the isospin relations (given in

TABLE I. Helicity structures βλγλT ðtÞ of the top vertex for the
interaction models considered. The other structures can be
obtained via the parity transformation in Eqs. (7) and (15).

β1;2 β1;1 β1;0 β1;−1 β1;−2

Minimal 0 1=2 −1=
ffiffiffi
6

p
0 0

TMD −1=2 −t=2m2
T t=2

ffiffiffi
6

p
m2

T
0 0

M1 0 1=4 −1=
ffiffiffi
6

p
1=4 0

TABLE II. Parameters extracted from known decay widths. The
bottom vertex couplings are taken from [20].

βγa2ρ βγa2ω βγf2ρ βγf2ω

ΓVV0 Minimal 0.235 0.791 0.700 0.233
TMD 1.143 3.8373 3.31822 1.10607

Γγγ Minimal 0.110 0.331 0.316 0.105
TMD 0.238 0.715 0.684 0.228

Gρ
1 Gρ

2 Gω
1 Gω

2

Bottom vertex 1.63 13.01 8.13 1.8600
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Appendix B) predict that the f2 cross section is 9 times
larger than the a2 one at the wrong-signature point. On the
contrary, they are comparable, as one can see from Fig. 4.
This suggests the existence of other isoscalar exchanges
that contribute to filling in the zero. Isoscalar axial
exchanges play a significant role in π0 and η photo-
production [15,22]. We investigate here how much they
are relevant in tensor photoproduction.
The Regge propagator for axials is given by Eq. (2) with

l ¼ 0, since the lowest spin on the EXD trajectory is the
pion. The unnatural Regge trajectory is αðtÞ ¼ α0ðt −m2

πÞ,
with α0 ¼ 0.7 GeV−2. Charge conjugation invariance
restricts the bottom vertex to the helicity-flip component
only,

BA
λpλ

0
p
ðtÞ ¼ GA

2

�
−t
4m2

p

�ð1=2Þjλp−λ0pj
δλp;−λ0p ; ð13Þ

with the coupling obtained from Ref. [17], GA
2 ¼ 25.24,

taking into account the normalization properly. The top
vertex reads

TA
λγλT

ðtÞ ¼ βγAT

�
−t
m2

T

�ð1=2Þjλγ−λT j
βλγ ;λT ; ð14Þ

with parity conservation implying

β−λγ ;λT ¼ −ð−Þλγ−λTβλγ ;−λT : ð15Þ

In the absence of information on the angular distributions
of the T → Aγ decay, we restrict ourselves to the M1

transition that dominates in the nonrelativistic quark model.
This fixes the relative size of the various helicity structures
(see details in Appendix A), reported in Table I.
Transitions of tensors to axials have not been observed,

so we cannot proceed in the same way as we did for the
natural case to predict the couplings. Moreover, from
Table II we notice that the βγTV obtained using VMD from
different reactions are substantially different. Therefore, we
now refit both vector and axial couplings to the a2 data. We
notice that the amplitude of h1 and b1 are identical; thus,
the fit is sensitive to the sum of couplings βγa2b1

þ βγa2h1
only.

We know that h1 and b1 contribute equally to η photo-
production and that the former is 9 times larger than the
latter in π0 photoproduction [15,22]. This agrees with the
expectation from the isospin relations discussed in
Appendix B. We thus set

βV ¼ βγa2ω ¼ 3βγa2ρ ; βA ¼ βγa2h1
; βγa2b1

¼ 0: ð16Þ

We fit these two overall normalizations to data, using
the sets of helicity structures given in Table I. The
systematic uncertainties from [6] are not considered in
the fit. The results are shown in Fig. 3 and the fit parameters
are summarized in Table III. We quote the statistical
uncertainty on the fit parameters which propagates
from the statistical uncertainties of the data points. No
significant difference between the two models appears for
−t≳ 0.6 GeV2. In the forward region, the TMD model
vanishes quickly due to the presence of higher derivatives,
which turns into an additional factor of t in the nonflip β1;1
helicity coupling. It is also worth noting that, away from the

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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0.4
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b/
G
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/dσd

TMD
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TMD w/o zero

0.1
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0.4

0.5

0.6
)

2
b/

G
eV

μ (t
/dσd

Minimal Minimal w/o zero
 = 4 GeVγECLAS data, 

 = 5 GeVγECLAS data, 

)2 (GeVt- )2 (GeVt-

FIG. 2. Predictions for a2ð1320Þ photoproduction differential cross section at Eγ ¼ 4 (blue lines) and 5 GeV (red lines). In the top
panels we show the results for the minimal model, in the bottom ones the tensor meson dominance. The left plots feature the wrong-
signature zero at t ¼ −0.55 GeV2. In the right plots, we modify the ρ helicity-flip bottom coupling Gρ

2 →
1

αðtÞG
ρ
2 to fill in the zero, as

explained in the text. The overall coupling is determined from the ωππ width. Data points from CLAS [6].
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very forward region, the cross section is dominated by
unnatural exchanges. This is not the case for the TMD
model, which captures the wrong-signature dip at t ¼
−0.55 GeV2 much better. More data at −t≲ 0.6 GeV2

will help in discriminating between the two models.
We discuss now f2 photoproduction. Using the isospin

relations of Appendix B, we can predict the behavior of the
differential cross section. If we include the h1 exchange
only, the ratio of the couplings is βγa2h1

=βγf2h1
¼ 3. If instead

we set βγf2b1
¼ βγf2h1

as suggested by η photoproduction [15],
the ratio of the contribution from axials to a2 and to f2
amplitudes would be ðβγa2b1

þ βγa2h1
Þ=ðβγf2b1

þ βγf2h1
Þ ¼ 5.

Since we are fitting the a2 data only, this choice affects
the predictions of the f2. Moreover, since the f2 cross
section is dominated by ρ exchange, choosing either value
of βγf2b1

makes little difference. In the following, we show

the results for βγa2b1
¼ βγf2b1

¼ 0.
Information about the f2 may be extracted from the

CLAS partial wave analysis of πþπ− photoproduction [7].
Since data are available in bins of t and beam energy, we get
the f2 from the ππD wave with a simple fit as described in
Appendix C. A new analysis by CLAS, dedicated to the f2
cross section extracted from π0π0 photoproduction, is
currently ongoing and will be published soon [23]. We
notice two main features: data look much flatter in t, and
there is no evidence of the wrong-signature dip. As seen in

Fig. 4, the minimal and TMD models differ significantly.
We already noticed that the TMD vanishes in the forward
direction, in opposition to the minimal one. Moreover, the
former peaks at t ≃ −0.6 GeV2, while the latter at
t ≃ −0.2 GeV2. These differences persist at higher beam
energies. The minimal model fits well the f2 data, while the
TMD overshoots the data by a factor of 4. In Fig. 4 we also
show the predictions for cross sections and parity asym-
metries at the beam energy Eγ ¼ 8.5 GeV, which will be
measured soon by GlueX and CLAS12.
Finally, we would like to comment about f02ð1525Þ

production, which could be extracted from a γp →
KþK−p partial wave analysis. In the ideal mixing scenario,
the leading exchanges are ϕ and h01ð1415Þ. The formalism
is identical to the one discussed above. Since the couplings
are independent from the a2 and f2 ones, and there are no
data to fit, we cannot provide reliable predictions.

IV. POLARIZATION OBSERVABLES

The GlueX experiment operates with a linearly polarized
beam at peaking energy Eγ ¼ 8.5 GeV. The photon polari-
zation can also be extracted at the CLAS12 experiment, by
measuring the angular distribution of the impinging elec-
tron. This information, correlated with the angular distri-
bution of the tensor meson decay products, allows one to
extract the spin density matrix elements (SDMEs). From
the latter, we construct the parity asymmetry Pσ, which
measures the relative strength of vector and axial
exchanges: the asymmetry is close to 1 when the natural
exchanges dominate and to −1 when the unnatural
exchanges dominate. The definitions of SDME and Pσ

are given in Appendix E. We present in Fig. 5 the predicted
behavior of Pσ for a2 and f2 photoproduction.
The predictions of a2 parity asymmetry in the minimal

and TMD models differ substantially. The dominance of

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

)2 (GeVt-

0.0

0.1
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0.6
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G
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 (t
/d�d
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 = 4 GeV�E
 = 5 GeV�E

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

)2 (GeVt-

TMD

1
h + � + �

 only1h

FIG. 3. Fit to a2 photoproduction at Eγ ¼ 4 and 5 GeV. The minimal model (left panel) and TMD model (right panel) are fitted to the
CLAS data [6]. The solid lines show the full models, which includes both vector and axial exchanges. The strengths of vectors and axials
is fitted to data. The contribution of axials is shown separately with dashed lines. The systematic uncertainties of [6] are reported in the
bands on top and have not been considered in the fit.

TABLE III. Fitted couplings defined in Eq. (16). The error
quoted is statistical and results from the fit.

βV βA

Minimal 0.251� 0.053 0.821� 0.023
TMD 1.060� 0.073 0.581� 0.053
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axial exchanges for −t≳ 0.4 GeV2 drives Pσ toward −1
in the minimal model, while in the TMD model the parity
asymmetry stays positive. For the f2, the importance of
axial exchanges grows as −t increases in the minimal
model, while the dominance of ρ exchange in the TMD
model for the f2 leads to a parity asymmetry close to 1.

V. CONCLUSIONS

In this paper we studied tensor meson photoproduction
in the 3–10 GeV beam energy range, based on a Regge
model, with vector and axial exchanges. We considered two
different schemes for the vector helicity couplings. We first
give an order-of-magnitude estimate of the couplings in

0.0 0.5 1.0 1.5 2.0

)2 (GeVt-
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G
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� (t
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p2a�p�Minimal p2a�p�TMD

CLAS data
Appendix C

FIG. 4. Differential cross sections of a2 (top) and f2 (bottom), for different beam energies. The minimal model is shown in the left
panel, the TMD in the right ones. The strengths of vectors and axials are fitted to the a2 data only. The results are shown in Table III. The
error bands show the 1σ confidence interval which results from the statistical uncertainty of the fit. The a2 data are taken from CLAS [6],
and the extraction of the f2 data from the partial wave analysis of πþπ− by CLAS [7] is described in Appendix C.
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FIG. 5. Parity asymmetry Pσ in a2 and f2 photoproduction, for different beam energies. The minimal model is shown in the left panel,
the TMD in the right ones. The strengths of vectors and axials are fitted to the a2 differential cross section data only. The results are
shown in Table III. The error bands show the 1σ confidence interval which results from the statistical uncertainty of the fit.
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both models. We then fit the a2 data recently published by
CLAS [6]. We predicted the f2 cross section and compared
to f2 data extracted from a partial wave analysis of πþπ−
photoproduction, also by CLAS [7]. While the two models
give similar descriptions of the a2 cross section, they differ
in predicting the parity asymmetries and the f2 cross
section. The so-called minimal model provides better
overall agreement with both a2 and f2 data, but at the
price of missing the dip in a2. Moreover, it predicts that the
a2 cross section is dominated by unnatural exchanges,
which is at odds with the phenomenology of single meson
photoproduction. On the other hand, the TMD model
appears better grounded phenomenologically, but it over-
estimates the f2 data. New data on both a2 and f2
photoproduction cross sections and beam asymmetries,
in particular in the −t≲ 0.6 GeV2 region, will allow us
to pin down the exact strength of vector and axial con-
tributions and lead to a better understanding of the tensor
meson production mechanisms. The code to reproduce
these results can be accessed at the Joint Physics Analysis
Center Web site [24].
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APPENDIX A: TOP VERTEX MODELS

1. Photon-tensor-vector interaction

The parity-conserving interaction between a tensor
and two vectors involves five independent Lorentz
structures. In the decay kinematics Tðtμν; p1 þ p2Þ →
V1ðϵð1Þ; p1Þ þ V2ðϵð2Þ; p2Þ, the most generic covariant
amplitude takes the form [25]

M ¼ βV1V2

T

mT
tμν½αϵ�ð1Þμ ϵ�ð2Þν þ β1ðϵ�ð1Þ · p2Þϵ�ð2Þμ p1ν

þ β2ðϵ�ð2Þ · p1Þϵ�ð1Þμ p2ν þ γðϵ�ð1Þ · ϵ�ð2ÞÞp1μp2ν

þ δðϵ�ð1Þ · p2Þðϵ�ð2Þ · p1Þp1μp2ν�; ðA1Þ

which leads to the decay width

ΓðT → V1V2Þ ¼
ðβV1V2

T Þ2
40π

p
m4

T

X
λ1λ2

jMλ1λ2 j2; ðA2Þ

with p ¼ λ1=2ðm2
T; m

2
1; m

2
2Þ=2mT , Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
, and

M11 ¼
α − 2p2γffiffiffi

6
p ; ðA3aÞ

M10 ¼
p2mTβ2 þ E2α

m2

ffiffiffi
2

p ; ðA3bÞ

M01 ¼
p2mTβ1 þ E1α

m1

ffiffiffi
2

p ; ðA3cÞ

M00 ¼
ffiffiffiffiffiffiffiffi
2=3

p
m1m2

½E1E2αþ p2mTðE2β1 þ E1β2Þ

þ p2ðE1E2 þ p2Þγ þ p4m2
Tδ�; ðA3dÞ

M1−1 ¼ α; ðA3eÞ

M−λ1−λ2 ¼ Mλ1λ2 : ðA3fÞ

In order to extract the Regge couplings from Eq. (A1),
we write the amplitude of the process γðλγÞγðλ0γÞ →
TðλTÞTðλ0TÞ with vector exchange in the t channel, at
leading order in s. By matching to the expected form
[Eq. (6)]:

AλγλT ;λ0γλ0T
¼ ðβγTV Þ2βVλγ ;λT

�
−t
m2

T

�ð1=2Þjλγ−λT j

×
s

m2
V − t

�
−t
m2

T

�ð1=2Þjλ0γ−λ0T j
βV−λ0γ ;−λ0T

; ðA4Þ

we obtain the structures for the Regge couplings:

β1;2 ¼ ð2β2 − tδÞ=4; ðA5aÞ

β1;1 ¼
1

4m2
T
½ð2tþm2

TÞβ2 − tβ1 ðA5bÞ

− tðtþm2
TÞδþ 2α�; ðA5cÞ

β1;0 ¼
−1

4
ffiffiffi
6

p
m2

T

½4α − 2ðm2
T þ tÞβ1 þ 2ðtþ 2m2

TÞβ2

− ðt2 þ 4tm2
T þm4

TÞδ�; ðA5dÞ

β1;−1 ¼ ½β2 − β1 − ðtþm2
TÞδ�=4; ðA5eÞ

β1;−2 ¼ m2
Tδ=4; ðA5fÞ

β−1;λT ¼ ð−Þ1−λTβ1;−λT : ðA5gÞ
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So far, the equations are completely generic, since no
assumption has been made on the ðα; β1; β2; γ; δÞ scalar
functions. We also remark that the amplitude in Eq. (A1) is
not automatically gauge invariant when V1 is massless. In
the absence of information about the multipoles of T → Vγ,
we consider two possible models, described below.

2. The minimal model

The “minimal” model is inspired by effective field
theories (EFTs) and prescribes to neglect all the terms
with particle momenta, which correspond to higher deriva-
tive interactions in the EFT Lagrangian [18]. We thus set
α ¼ m2

T and β1 ¼ β2 ¼ γ ¼ δ ¼ 0. The resulting covariant
amplitude is not explicitly gauge invariant, so one needs to
restrict manually the sum in Eq. (A2) to the transverse
photon polarizations. The widths read

ΓðT → V1V2Þ ¼
p
8π

ðβV1V2

T Þ2
�
1þ 1

3
p2

�
1

m2
2

þ 1

m2
1

�

þ 2

15

p4

m2
1m

2
2

�
; ðA6aÞ

ΓðT → γγÞ ¼ 7mTðβγγT Þ2
480π

; ðA6bÞ

while the Regge structures are reported in Table I.

3. Tensor meson dominance

TMD [19] assumes that a tensor meson couples to a
vector field with the stress-energy tensor, L ¼ TμνFμρF

ρ
ν.

The coupling to two distinct vectors is easily achieved by
considering two distinct curvature tensors. The Lagrangian
is manifestly gauge invariant. This model corresponds to
setting α ¼ p1 · p2, γ ¼ −β1 ¼ −β2 ¼ 1, and δ ¼ 0 in
Eq. (A1). The widths read

ΓðT → V1V2Þ ¼
p

8πm4
T
ðβV1V2

T Þ2
�
m2

1m
2
2

þ p2

3
ðm2

T þm2
1 þm2

2Þ þ
4

15
p4

�
; ðA7aÞ

ΓðT → γγÞ ¼ mT

320π
ðβγγT Þ2; ðA7bÞ

while the Regge structures are reported in Table I.

4. Photon-tensor-axial interaction

Theparity-conserving interactionbetweena tensor, an axial
and a vector involves four independent Lorentz structures:

M ¼ −i
βVTA
mT

εμνρσtαμðpV þ pAÞσ½α1ϵ�Vα ϵ�Aν pVρ

þ β1pVαϵ
�A
ν pVρϵ

�V · pA þ α2ϵ
�A
α ϵ�Vν pVρ

þ β2pVαϵ
�V
ν pVρϵ

�A · pV �: ðA8Þ
However, since in the nonrelativistic quark model the tran-
sition Tðtμν;pγþpAÞ→γðϵγ;pγÞþAðϵA;pAÞ is dominated by
theM1multipole,we restrict ourselves to the single amplitude
with α1 ¼ 1, α2 ¼ β1 ¼ β2 ¼ 0. The helicity amplitudes
MλγλA in the tensor rest frame are

M11 ¼
pffiffiffi
6

p ; M10 ¼
EApffiffiffi
2

p
mA

; ðA9aÞ

M1−1 ¼ p; M−1;λA ¼ −M1;−λA ; ðA9bÞ

times the overall coupling βγTA . We write the amplitude of the
process γðλγÞγðλ0γÞ → TðλTÞTðλ0TÞwith axial exchange in the
t channel at leading order in s. By matching to the expected
form [Eq. (6)]:

AλγλT ;λ0γλ0T
¼ −ðβγTA Þ2βAλγ ;λT

�
−t
m2

T

�ð1=2Þjλγ−λT j s
m2

A − t

×

�
−t
m2

T

�ð1=2Þjλ0γ−λ0T j
βA−λ0γ ;−λ0T

; ðA10Þ

we get the structures in Table I.

APPENDIX B: ISOSPIN RELATIONS

The transition of tensor to axial mesons is dominated by
the M1 multipole. In the quark model, this requires a spin
flip from S ¼ 1 to S ¼ 0 to conserve charge conjugation. In
the tensor rest frame, the matrix elements read [26,27]

MðT → γAÞ ∝
X
i¼1;2

hA; λAjμiσ⃗i · ϵ�!ðλγÞjT; λTi; ðB1Þ

where the sum runs over the two quarks, μi is the quark
magnetic moment, σi the spin operator, and ϵ the emitted
photon polarization.
The transition of tensor to vector meson is instead

dominated by the E1 multipole and does not involve the
quark spin:

MðT → γVÞ ∝
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 ð2πÞ
3δ3ðp⃗1 þ p⃗2Þ

×
X
i¼1;2

hV; λV jeiϵ�!ðλγÞ · p⃗ijT; λTi; ðB2Þ

where p⃗ is the 3-momentum of the quark in the center-of-
mass frame.
We align the spin quantization axis along the direction of

the emitted photon. We consider a right-handed photon and
the tensor helicity þ2. The wave functions are
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jTi ¼ 1ffiffiffi
2

p ðjuūi ∓ jdd̄iÞj↑↑iR1;1ðrÞY1
1ðθ;ϕÞ; ðB3aÞ

jAi¼1

2
ðjuūi∓ jdd̄iÞðj↑↑i− j↓↓iÞR1;1ðrÞY1

1ðθ;ϕÞ; ðB3bÞ

jVi¼1

2
ðjuūi∓ jdd̄iÞðj↑↑iþj↓↓iÞR1;0ðrÞY0

0ðθ;ϕÞ; ðB3cÞ

where Ym
l ðθ;ϕÞ are the usual spherical harmonics and

Rn;lðrÞ the (unspecified) radial functions. The upper
(lower) sign is for isovector (isoscalar) mesons. We are
implicitly assuming that the orbital wave function of
tensors and axials is the same. So are the isovector and
isoscalar wave functions. We are also assuming ideal
mixing for the mesons, namely that no strange component
is included in the wave functions.
The magnetic moment is proportional to the electric

charge μi ¼ ei=2m, where m is the constituent light quark
mass:

Mðf2 → γb1Þ ¼ Mða2 → γh1Þ ∝ ðeu − edÞ
1

2m
; ðB4aÞ

Mðf2 → γh1Þ ¼ Mða2 → γb1Þ ∝ ðeu þ edÞ
1

2m
; ðB4bÞ

Mðf2 → γρÞ ¼ Mða2 → γωÞ ∝ ðeu − edÞI; ðB4cÞ

Mðf2 → γωÞ ¼ Mða2 → γρÞ ∝ ðeu þ edÞI; ðB4dÞ

with I¼R
r2drR1;0ðrÞð−i∂rÞR1;1ðrÞ. Since eu−ed¼

ffiffiffiffiffiffiffiffi
4πα

p
,

and eu þ ed ¼
ffiffiffiffiffiffiffiffi
4πα

p
=3, we get

βγa2ω ¼ βγf2ρ ¼ 3βγa2ρ ¼ 3βγf2ω ; ðB5aÞ

βγf2b1
¼ βγa2h1

¼ 3βγa2b1
¼ 3βγf2h1

: ðB5bÞ

The two-photon couplings become

βγγf2 ¼
ffiffiffiffiffiffiffiffi
4πα

p �
βγf2ρ

fρ
mρ

þ βγf2ω
fω
mω

�

¼
ffiffiffiffiffiffiffiffi
4πα

p
βγf2ρ

�
fρ
mρ

þ 1

3

fω
mω

�
; ðB6aÞ

βγγa2 ¼
ffiffiffiffiffiffiffiffi
4πα

p �
βγa2ρ

fρ
mρ

þ βγa2ω
fω
mω

�

¼
ffiffiffiffiffiffiffiffi
4πα

p
βγa2ω

�
1

3

fρ
mρ

þ fω
mω

�
; ðB6bÞ

that are used in Eqs. (12) and (D4). For the decay constants,
following the arguments above one gets fρ ¼ 3fω. This
relation is broken at the 10% level, suggesting some
contributions from annihilation diagrams neglected here.
If we apply this relation and setmρ¼mω, we get β

γγ
a2 ¼ 3

5
βγγf2 ,

in agreement with the experimental values.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
 (GeV)ππm

0.0

0.5

1.0

1.5

2.0

)3
b/

G
eV

μ
 ( ππ

mdt
/dσd

2 0.45 GeV− = t

CLAS data

Independent fit

Combined fit

p−π+πγ→pγ

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
 (GeV)ππm

0.0

0.5

1.0

1.5

2.0

)3
b/

G
eV

μ
 ( ππ

mdt
/dσd

2 0.55 GeV− = t

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
 (GeV)ππm

0.0

0.5

1.0

1.5

2.0

)3
b/

G
eV

μ
 ( ππ

mdt
/dσd

2 0.65 GeV− = t

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
 (GeV)ππm

0.0

0.5

1.0

1.5

2.0

)3
b/

G
eV

μ
 ( ππ

mdt
/dσd

2 0.75 GeV− = t

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
 (GeV)ππm

0.0

0.5

1.0

1.5

2.0

)3
b/

G
eV

μ
 ( ππ

mdt
/dσd

2 0.85 GeV− = t

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
 (GeV)ππm

0.0

0.5

1.0

1.5

2.0

)3
b/

G
eV

μ
 ( ππ

mdt
/dσd

2 0.95 GeV− = t

FIG. 6. Fit to the CLASD-wave data on πþπ− photoproduction, as discussed in the text. Data are averaged over the four beam energy
bins, Eγ ¼ 3.0–3.8 GeV. Mass and width of f2 are fitted independently in each t bin (red curve) or constrained to be the same (green
curve). In dashed lines we show the separate contributions of f2 and of the linear background. The strength of the f2 looks constant in t,
while the strength and shape of background change dramatically.
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APPENDIX C: EXTRACTION
OF f 2ð1270Þ CROSS SECTION

As we mentioned, CLAS published the partial wave
analysis of πþπ− photoproduction for 3.0–3.8 GeV beam
energy range [7]. The t dependence of the f2 was not
directly extracted. The plot in Fig. 24 of [7] indeed reports
the differential cross section integrating the ππ invariant
mass over the f2 peak region, mππ ∈ ½1090; 1400� MeV.
This would be a good estimate for the f2 differential cross
section if the background underneath the peak were
negligible. One can appreciate from Fig. 14 of [7] that
this is not the case. The published version of the paper does
not report the ππ invariant mass in bins of t. However, the
D-wave dataset can be downloaded from the HEPDATA
repository, in bins of t and beam energy [28]. We see that
the amount of background is even larger at small values of
t. We extract the f2 cross section by fitting theD-wave data
in the f2 region with a simple constant width Breit-Wigner
on top of a incoherent linear background:

dσðγp → ðπþπ−ÞD-wavepÞ
dt dmππ

¼ 2mππ

�
dσðγp → f2pÞ

dt
1

π

mf2Γf2Bðf2 → πþπ−Þ
ðm2

f2
−m2

ππÞ2 þm2
f2
Γ2
f2

þ cm2
ππ þ d

�
; ðC1Þ

where Bðf2 → πþπ−Þ ¼ 56.2þ1.9
−0.6% [1]. We fit to the 1.09–

1.4mππ range only, in order to have an easier description of
the background. Since the errors quoted in HEPDATA are
systematic only, we ignore them in the fit, assuming equal
weights for each bin, and assign a 40% error to our final
results, consistently with what is done in [7]. Data are
available for also bins of beam energy, from 3.0 to 3.8 GeV,
but the energy dependence of data is mild. Therefore, we
average data over the four bins and quote the results at
the mean energy Eγ ¼ 3.4 GeV. The fit is shown in Fig. 6.
The f2 mass and width is fitted independently in the six t
bins, obtaining results consistent with each other and with
the PDG value. Alternatively, we impose mass and width to
be the same in all t bins. The final result is the same within
errors, as seen in Fig. 7. We notice that the background
depends on t much more than the f2.

APPENDIX D: f 2ð1270Þ COUPLINGS

We determine the βγf2V couplings from the decay width:

Γðf2 → ρ0ρ0 þ ρþρ−Þ ≃ Γðf2 → 2πþ2π− þ πþπ−2π0Þ
¼ 19.6þ4.0

−8.6 MeV; ðD1Þ

assuming that the pion system is saturated by ρ mesons.
The matrix element

P
pol jMj2 given by Eqs. (A6a) and

(A7a) must be averaged over the two ρ line shapes:

Γðf2 → ρ0ρ0 þ ρþρ−Þ

¼ 3

2

ðβρρf2Þ2
40πm4

f2

ZZ
ds0

π

ds00

π

X
pol

jMj2 λ
1=2ðm2

f2
; s0; s00Þ

2mf2

× Bρðs0ÞBρðs00Þθðλðm2
f2
; s0; s00ÞÞ; ðD2Þ

where BρðsÞ is given in Eq. (10) and the factor of 3=2 takes
into account the sum over isospin and the identical particle
phase space. VMD allows us to get

βγf2ρ ¼
ffiffiffiffiffiffiffiffi
4πα

p fρ
mρ

βρρf2 : ðD3Þ

Alternatively, the βγf2ρ can be extracted from the
two-photon width, Γðf2 → γγÞ ¼ 2.6� 0.5 keV [1] and
Eqs. (A6b) and (A7b), to extract the two-photon couplings
βγγf2 for the two models. We then obtain the βγf2V couplings
from

βγf2ρ ¼ βγγf2ffiffiffiffiffiffiffiffi
4πα

p
�
fρ
mρ

þ 1

3

fω
mω

�
−1
; ðD4Þ

derived in Appendix B within the quark model. The
coupling to ω can be obtained from either determination,
using
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FIG. 7. Differential cross section of f2. A 40% systematic error
is shown. We compare with the CLAS data points from Fig. 24 of
[7] (blue lines). We remind that CLAS points were obtained by
integrating the mππ bins in the ½1090; 1400� MeV range, that
roughly corresponds to ½mf2 − Γf2 ; mf2 þ 2

3
Γf2 �. Some f2 signal

is lost, and a substantial background is included. Moreover, the
branching ratio Bðf2 → ππÞ is not included. The red and green
points correspond to the different extractions, namely if the f2
mass and width are fitted independently or not in the different t
bins. These two results are consistent within error. Red and green
points are slightly shifted horizontally to ease the reading.
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βγf2ω ¼ 1

3
βγf2ρ : ðD5Þ

The numerical values under the different assumptions are
summarized in Table II.

APPENDIX E: SPIN AND
POLARIZATION OBSERVABLES

Experimentally, observables related to tensor meson
photoproduction are extracted from their decay products.
The simplest final state to detect is two pseudoscalars,
i.e. ηπ for a2 and ππ for f2. The general case of two-
pseudoscalar photoproduction with a linearly polarized
beam has been treated in detail in [29]. We summarize
here the relevant formulae when the tensor meson is so
narrow that the existence of other partial waves can be
neglected.
For a linearly polarized photon, the differential cross

section is

IðΩ;ΦÞ ¼ dσðγp → Tð→ PP0ÞpÞ
dtdΩdΦ

¼ κ
X
λγ λ

0
γ

λpλ0p

Aλγ ;λpλ
0
p
ðΩÞργλγλ0γ ðΦÞA�

λ0γ ;λpλ0p
ðΩÞ; ðE1Þ

where Φ is the azimuthal angle between the polarization
plane (which contains the photon polarization and
momentum) and the production plane (which contains
the photon, tensor and recoiling proton momenta), while
Ω ¼ ðθ;ϕÞ are the decay angles of the pseudoscalar P in
the helicity frame. The photon SDMEs are ργλγλ0γ ðΦÞ ¼
1
2
½1 − Pγðσ1 cos 2Φþ σ2 sin 2ΦÞ�λγλ0γ , with Pγ the beam

polarization and σ1;2 the Pauli matrices. In the narrow
width approximation, Aλγ ;λpλ

0
p
Aλ0γ ;λpλ0p

� ∝ δðm2
PP0 −m2

TÞ,
and the dependence of A on s, t is understood. We include
all numerical factors in

κ ¼ 1

2

1

16π

1

2π

1

ð2mpEγÞ2
×

� 1
2

for f2 → π0π0;

1 otherwise:
ðE2Þ

The amplitude is saturated by the D wave:

Aλγ ;λpλ
0
p
¼

X
m

Mλγm;λpλ
0
p
Ym
2 ðΩÞ: ðE3Þ

With a linearly polarized beam, only two observables are
accessible when the decay angles are integrated over, the
differential cross section dσ=dt and the integrated beam
asymmetry Σ4π:

dσ
dtdΦ

¼ 1

2π

dσ
dt

ð1þ PγΣ4π cos 2ΦÞ; ðE4Þ

where

dσ
dt

¼ πκ
X
λγm
λpλ0p

jMλγm;λpλ
0
p
j2 ≡ 2πκN; ðE5aÞ

Σ4π ¼ −
1

2N

X
λγm
λpλ0p

M−λγm;λpλ
0
p
M�

λγm;λpλ
0
p
: ðE5bÞ

The component proportional to sin 2Φ vanishes indeed
upon integration over Ω because of parity conservation.
The angular dependence allows one to extract the SDME,
defined as

ρ0mm0 ¼ 1

2N

X
λγ ;λ

ð0Þ
p

Mλγm;λpλ
0
p
M�

λγm0;λpλ0p
; ðE6aÞ

ρ1mm0 ¼ 1

2N

X
λγ ;λ

ð0Þ
p

M−λγm;λpλ
0
p
M�

λγm0;λpλ0p
; ðE6bÞ

ρ2mm0 ¼ i
2N

X
λγ ;λ

ð0Þ
p

λγM−λγm;λpλ
0
p
M�

λγm0;λpλ0p
: ðE6cÞ

They satisfy ½ραmm0 �� ¼ ραm0m. Parity conservation implies

ρ0−m−m0 ¼ ð−1Þm−m0
ρ0mm0 ; ðE7aÞ

ρ1−m−m0 ¼ ð−1Þm−m0
ρ1mm0 ; ðE7bÞ

ρ2−m−m0 ¼ −ð−1Þm−m0
ρ2mm0 : ðE7cÞ

The SDMEs are normalized such that

ρ000 þ 2ρ011 þ 2ρ022 ¼ 1; ðE8aÞ

ρ100 þ 2ρ111 þ 2ρ122 ¼ −Σ4π: ðE8bÞ

We use the reflectivity basis [29]. The SDMEs can be
split into reflectivity components using

ρð�Þ
mm0 ¼ 1

2
ðρ0mm0 ∓ ð−1Þm0

ρ1m−m0 Þ: ðE9Þ

The convention is such that the natural (unnatural)
exchanges contribute only to ρðþÞ

mm0 (ρ
ð−Þ
mm0 ) at the leading

order in the energy squared [29].
We decompose the intensity (E1) as

IðΩ;ΦÞ ¼ 5

4π

1

2π

dσ
dt

½W0ðΩÞ −W1ðΩÞPγ cosΦ

−W2ðΩÞPγ sinΦ�: ðE10Þ

The SDME can be extracted from the angular dependence
of the intensities:
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WαðΩÞ ¼ 1

16
ρα00ð1þ 3 cos 2θÞ2 − 3

4
ρα1−1 sin

2 2θ cos 2ϕ −
ffiffiffi
3

8

r
Reρα10 sin 2θð1þ 3 cos 2θÞ cosϕ

þ 3

4
ρα11 sin

2 2θ þ 3Reρα2−1 cos θ sin
3 θ cos 3ϕþ 3

4
ρα2−2 sin

4 θ cos 4ϕ

þ
ffiffiffi
3

8

r
Reρα20ð1þ 3 cos 2θÞ sin2 θ cos 2ϕ − 3Reρα21 cos θ sin

3 θ cosϕþ 3

4
ρα22 sin

4 θ;

valid for α ¼ 0, 1. The intensity W2 decomposes into

W2ðΩÞ ¼
ffiffiffi
3

8

r
Imρ210 sin 2θð1þ 3 cos 2θÞ sinϕþ 3

4i
ρ21−1sin

22θ sin 2ϕ

−
ffiffiffi
3

8

r
Imρ220sin

2θð1þ 3 cos 2θÞ sin 2ϕþ 3 cos θsin3θ½Imρ221 sinϕ − Imρ22−1 sin 3ϕ�

−
3

4i
ρ22−2sin

4θ sin 4ϕ: ðE11Þ

We remind the reader that ρ0;1m�m is purely real, ρ2m−m purely imaginary, and ρ200 ¼ 0.
With a linearly polarized beam, the accessible reflectivity components are ρð�Þ

m�m and Reρð�Þ
mm0 .

Opposite reflectivities do not interfere, dσ=dt ¼ dσðþÞ=dtþ dσð−Þ=dt, with dσð�Þ=dt¼2πκNðρð�Þ
00 þ2ρð�Þ

11 þ2ρð�Þ
22 Þ.

The parity asymmetry

Pσ ¼
dσðþÞ
dt − dσð−Þ

dt
dσðþÞ
dt þ dσð−Þ

dt

¼ 2ρ11−1 − 2ρ12−2 − ρ100 ðE12Þ

measures the relative importance of the two reflectivity components. When the two pseudoscalar mesons only couple in a
D-wave, Pσ corresponds to the beam asymmetry along the y axis, Σy, as defined in Ref. [29].

[1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[2] A. Jackura et al. (COMPASS and JPAC Collaborations),
Phys. Lett. B 779, 464 (2018).

[3] J. J. Dudek, R. G. Edwards, C. E. Thomas, and D. J. Wilson
(Hadron Spectrum Collaboration), Phys. Rev. Lett. 113,
182001 (2014); J. J. Dudek, R. G. Edwards, and D. J.
Wilson (Hadron Spectrum Collaboration), Phys. Rev. D
93, 094506 (2016); R. A. Briceño, J. J. Dudek, R. G.
Edwards, and D. J. Wilson, Phys. Rev. D 97, 054513 (2018).

[4] C. Adolph et al. (COMPASS Collaboration), Phys. Rev. D
95, 032004 (2017).

[5] A. Rodas et al. (JPAC Collaboration), Phys. Rev. Lett. 122,
042002 (2019).

[6] A. Celentano, V. Mathieu, A. Pilloni, A. Szczepaniak et al.
(CLAS Collaboration), arXiv:2004.05359.

[7] M. Battaglieri et al. (CLAS Collaboration), Phys. Rev. D 80,
072005 (2009).

[8] H. Al Ghoul et al. (GlueX Collaboration), AIP Conf. Proc.
1735, 020001 (2016).

[9] M. Battaglieri et al. (CLAS Collaboration), https://www.jlab
.org/exp_prog/proposals/11/PR12-11-005.pdf (2011).

[10] X.-Y. Wang and A. Guskov, Phys. Rev. D 93, 074016
(2016).

[11] V. N. Gribov and I. Y. Pomeranchuk, Sov. Phys. JETP 15,
788L (1962); Phys. Rev. Lett. 8, 343 (1962).

[12] F. Arbab and J. D. Jackson, Phys. Rev. 176, 1796
(1968).

[13] H. Al Ghoul et al. (GlueX Collaboration), Phys. Rev. C 95,
042201 (2017).

[14] V. Mathieu, G. Fox, and A. P. Szczepaniak, Phys. Rev. D 92,
074013 (2015).

[15] J. Nys, V. Mathieu, C. Fernández-Ramírez, A. N.
Hiller Blin, A. Jackura, M. Mikhasenko, A. Pilloni, A. P.
Szczepaniak, G. Fox, and J. Ryckebusch (JPAC Collabo-
ration), Phys. Rev. D 95, 034014 (2017).

[16] J. Nys, V. Mathieu, C. Fernández-Ramírez, A. Jackura, M.
Mikhasenko, A. Pilloni, N. Sherrill, J. Ryckebusch, A. P.
Szczepaniak, and G. Fox (JPAC Collaboration), Phys. Lett.
B 779, 77 (2018).

[17] A. C. Irving and R. P. Worden, Phys. Rep. 34, 117 (1977).
[18] R. Molina, D. Nicmorus, and E. Oset, Phys. Rev. D 78,

114018 (2008); L. Geng and E. Oset, Phys. Rev. D 79,
074009 (2009); J.-J. Xie and E. Oset, Eur. Phys. J. A 51, 111

V. MATHIEU et al. PHYS. REV. D 102, 014003 (2020)

014003-12

https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.physletb.2018.01.017
https://doi.org/10.1103/PhysRevLett.113.182001
https://doi.org/10.1103/PhysRevLett.113.182001
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.1103/PhysRevLett.122.042002
https://doi.org/10.1103/PhysRevLett.122.042002
https://arXiv.org/abs/2004.05359
https://doi.org/10.1103/PhysRevD.80.072005
https://doi.org/10.1103/PhysRevD.80.072005
https://doi.org/10.1063/1.4949369
https://doi.org/10.1063/1.4949369
https://www.jlab.org/exp_prog/proposals/11/PR12-11-005.pdf
https://www.jlab.org/exp_prog/proposals/11/PR12-11-005.pdf
https://www.jlab.org/exp_prog/proposals/11/PR12-11-005.pdf
https://www.jlab.org/exp_prog/proposals/11/PR12-11-005.pdf
https://doi.org/10.1103/PhysRevD.93.074016
https://doi.org/10.1103/PhysRevD.93.074016
https://doi.org/10.1103/PhysRevLett.8.343
https://doi.org/10.1103/PhysRev.176.1796
https://doi.org/10.1103/PhysRev.176.1796
https://doi.org/10.1103/PhysRevC.95.042201
https://doi.org/10.1103/PhysRevC.95.042201
https://doi.org/10.1103/PhysRevD.92.074013
https://doi.org/10.1103/PhysRevD.92.074013
https://doi.org/10.1103/PhysRevD.95.034014
https://doi.org/10.1016/j.physletb.2018.01.075
https://doi.org/10.1016/j.physletb.2018.01.075
https://doi.org/10.1016/0370-1573(77)90010-2
https://doi.org/10.1103/PhysRevD.78.114018
https://doi.org/10.1103/PhysRevD.78.114018
https://doi.org/10.1103/PhysRevD.79.074009
https://doi.org/10.1103/PhysRevD.79.074009
https://doi.org/10.1140/epja/i2015-15111-3


(2015); J.-J. Xie, E. Oset, and L.-S. Geng, Phys. Rev. C 93,
025202 (2016).

[19] M. Suzuki, Phys. Rev. D 47, 1043 (1993); F. Giacosa, T.
Gutsche, V. E. Lyubovitskij, and A. Faessler, Phys. Rev. D
72, 114021 (2005).

[20] A. C. Irving and C. Michael, Nucl. Phys. B82, 282 (1974).
[21] V. Mathieu, I. V. Danilkin, C. Fernández-Ramírez, M. R.

Pennington, D. Schott, A. P. Szczepaniak, and G. Fox, Phys.
Rev. D 92, 074004 (2015).

[22] V. Mathieu, J. Nys, C. Fernández-Ramírez, A. N. H. Blin, A.
Jackura, A. Pilloni, A. P. Szczepaniak, and G. Fox (JPAC
Collaboration), Phys. Rev. D 98, 014041 (2018).

[23] CLAS Collaboration (private communication).
[24] JPAC Collaboration, https://ceem.indiana.edu/jpac.

[25] N. Levy, P. Singer, and S. Toaff, Phys. Rev. D 13, 2662
(1976).

[26] F. Halzen and A. D. Martin, Quarks and Leptons: An
Introductury Course in Modern Particle Physics
(John Wiley & Sons Inc., Hoboken, New Jersey, 1984).

[27] A. Le Yaouanc, L. Oliver, O. Pene, and J. Raynal, Hadron
Transitions in the Quark Model (Gordon and Breach
Science Publishers, New York, 1988).

[28] CLAS Collaboration, https://doi.org/10.17182/hepdata.
74824.v1/t121 to https://doi.org/10.17182/hepdata.74824
.v1/t127.

[29] V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A.
Jackura, M. Mikhasenko, A. Pilloni, and A. Szczepaniak
(JPAC Collaboration), Phys. Rev. D 100, 054017 (2019).

EXCLUSIVE TENSOR MESON PHOTOPRODUCTION PHYS. REV. D 102, 014003 (2020)

014003-13

https://doi.org/10.1140/epja/i2015-15111-3
https://doi.org/10.1103/PhysRevC.93.025202
https://doi.org/10.1103/PhysRevC.93.025202
https://doi.org/10.1103/PhysRevD.47.1043
https://doi.org/10.1103/PhysRevD.72.114021
https://doi.org/10.1103/PhysRevD.72.114021
https://doi.org/10.1016/0550-3213(74)90508-2
https://doi.org/10.1103/PhysRevD.92.074004
https://doi.org/10.1103/PhysRevD.92.074004
https://doi.org/10.1103/PhysRevD.98.014041
https://ceem.indiana.edu/jpac
https://ceem.indiana.edu/jpac
https://ceem.indiana.edu/jpac
https://doi.org/10.1103/PhysRevD.13.2662
https://doi.org/10.1103/PhysRevD.13.2662
https://doi.org/10.17182/hepdata.74824.v1/t121
https://doi.org/10.17182/hepdata.74824.v1/t121
https://doi.org/10.17182/hepdata.74824.v1/t121
https://doi.org/10.1103/PhysRevD.100.054017

