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We have applied isovector and isoscalar tensor current to evaluate the tensor form factors of the
Nð1535Þ → N transition with the help of the light-cone QCD sum rule method. In numerical computations,
have used the most general forms of the interpolating current for the nucleon and the tensor current together
with two different sets of the input parameters in the distribution amplitudes (DAs) of the Nð1535Þ state.
We have obtained that the values of Nð1535Þ → N transition tensor form factors are very sensitive to the
input parameters of the DAs of the Nð1535Þ state. We have acquired that theQ2 dependence of Nð1535Þ →
transition tensor form factors is well defined by a p-pole fit function.
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I. INTRODUCTION

The essential subject of QCD is to understand the
internal structure of hadrons and their features in terms
of degrees of freedom of quark gluons. Hadron charges
described as matrix elements of tensor, axial, and vector
currents between hadron states include complete knowl-
edge about the internal structure of the hadron. At the twist-
two level, the corresponding charges are characterized by
the helicity distribution g1ðxÞ, transversity distribution
h1ðxÞ, and unpolarized distribution f1ðxÞ function of the
quark. More generally, at the leading twist, eight general-
ized parton distributions (GPDs) encompass full knowl-
edge on the internal structure of hadrons: four chiral-odd
spin-dependent GPDs HTðx; ξ; tÞ, ETðx; ξ; tÞ, H̃Tðx; ξ; tÞ,
and ẼTðx; ξ; tÞ; two chiral-even spin-dependent GPDs
H̃ðx; ξ; tÞ and Ẽðx; ξ; tÞ; and two chiral-even spin-
independent GPDs Hðx; ξ; tÞ and Eðx; ξ; tÞ, where ξ is
the skewness and t ¼ −Q2 is the squared momentum
transfer [1–4]. These observables include important
knowledge about the internal structure of the hadron.
They characterize, e.g., how partons are distributed in
the transverse plane according to motion of the hadron
or the contribution of quark orbital angular momentum to
total angular momentum of the hadron. The helicity and
unpolarized distribution functions can be extracted from
inclusive deep-inelastic scattering data because of their

chiral-even nature. In the forward limit, they are related to
the electromagnetic, axial, and pseudoscalar form factors
[5]. However, the transversity distribution function, which
is related to the tensor form factors in the forward limit, has
chiral-odd nature, so there is a big experimental problem
to measure it. It can be acquired Drell-Yan processes
and semi-inclusive deep inelastic scattering, as distributions
of transversity do appear at leading twist in the cross
section. Photo- and electroproduction of mesons off the
polarized nucleons and the transversely polarized Drell-
Yan process are recommended as suitable ways to measure
transversity distribution. In Ref. [6], transversity distribu-
tion of the nucleon was extracted using the experimental
data from the COMPASS [7], HERMES [8], and Belle [9]
Collaborations. Afterward, in Ref. [10], the tensor charge
of the nucleon was extracted in the framework of the
covariant quark-diquark model. Moreover, tensor form
factors of the nucleon have been investigated by the help
of QCD sum rule [11,12], axial vector meson dominance
model [13], quark model [14,15], chiral quark soliton
model [16,17], light-cone QCD sum rule [18,19], dihadron
production [20], lattice QCD [21–23], relativistic confined
quark model [24], and Skyrme model [25]. Besides, the
tensor form factors of the octet hyperons are investigated in
the framework of the chiral quark soliton model [17] and
light-cone QCD sum rule [26].
Form factors play a crucial role in our comprehension of

the tomography of baryons. The tensor form factors are
missing part of this tomography. Recently, the measure-
ments of exclusive electroproduction of pseudoscalar
mesons (π and η mesons) has demonstrated that these
processes are responsive to chiral-odd GPDs [27–30].
Photo- and electroproduction of pseudoscalar mesons
can be used to extract the tensor form factors of baryons
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[27]. In the short run, remarkably more accurate measure-
ments of the nucleon tensor form factors are expected at
Jefferson Laboratory (JLab) by the CLAS Collaboration.
Besides, the experiments designed at CLAS Collaboration
have been aimed to investigate features of electroexcitation
of nucleon resonances in photo- and electroproduction
reactions [31]. Inspired by the future experiments at JLab,
we aim to investigate the isovector and isoscalar tensor
form factor Nð1535Þ → N transition up to a momentum
transfer of Q2 ≤ 10 GeV2 with the help of the light-cone
QCD sum rule. To our knowledge, this is the first study in
the literature committed to the examination of the
Nð1535Þ → N transition tensor form factors. In the light-
cone QCD sum rule method, the hadronic observables are
described in connection with the properties of the vacuum
and distribution amplitudes (DAs) of the hadrons under
investigation [32–34]. Since the hadronic observables are
described in connection with the features of the QCD
vacuum and the DAs, any ambiguity in these variables
reflects the ambiguity of the predictions of the hadronic
observables. Note that the electromagnetic [35], axial [36],
and gravitational [37] form factors for Nð1535Þ → N
transition have been evaluated with the help of light-cone
QCD sum rule.
This article is organized in the following manner: In

Sec. II, we present the details of our light-cone QCD sum
rule calculations. In Sec. III, we analyze the obtained
results and give our conclusions.

II. ISOVECTOR AND ISOSCALAR TENSOR FORM
FACTORS OF Nð1535Þ → N TRANSITION

The matrix element of the isovector and isoscalar tensor
current between nucleon and Nð1535Þ baryons is defined
by three dimensionless invariant form factors as presented
[38,39]:

hNðp0ÞjJμνjNð1535ÞðpÞi

¼ ūðp0Þ
�
iσμνH

I¼0;1
T ðQ2Þ þ γμqν − γνqμ

2m̄
EI¼0;1
T ðQ2Þ

þ P̃μqν − P̃νqμ
2m̄2

H̃I¼0;1
T ðQ2Þ

�
γ5uðpÞ; ð1Þ

where m̄ ¼ ðmN þmNð1535ÞÞ=2, σμν ¼ i
2
½γμ; γν�, q ¼

p − p0, P̃ ¼ p0 þ p, and FI¼1 ¼ Fu − Fd and FI¼0 ¼
Fu þ Fd for any of the form factors, F ¼ ET , HT , or H̃T.
To derive the light-cone QCD sum rules for isovector and

isoscalar tensor form factors of Nð1535Þ → N transition,
we consider the subsequent correlator for our analysis:

Πμνðp; qÞ ¼ i
Z

d4xeiqxh0jT ½JNð0ÞJμνðxÞ�jNð1535ÞðpÞi;

ð2Þ

where JμνðxÞ is the tensor current and JNð0Þ are interpolat-
ing currents for nucleon states. The explicit forms of JNð0Þ
and JμνðxÞ are given as

JNð0Þ ¼ 2ϵabc
X2
l¼1

ðuaTðxÞCJl1ubðxÞÞJl2dcðxÞ;

JμνðxÞ ¼ ūdðxÞiσμνudðxÞ � d̄eðxÞiσμνdeðxÞ; ð3Þ

respectively, where J11 ¼ I, J21 ¼ J12 ¼ γ5, and J22 ¼ t,
which is an arbitrary parameter that fixes the mixing of
two local operators, and C denotes charge conjugation.
To acquire the sum rules for isovector and isoscalar tensor

form factors of theNð1535Þ → N transition, the correlator in
Eq. (2) is obtained from the subsequent three steps:

(i) The correlator is saturated by a complete set of had-
ronic states, which have the same quantum numbers
as interpolating currents (hadronic representation).

(ii) The correlator is obtained in connection with quark
and gluon degrees of freedom interacting with non-
perturbative QCD vacuum (QCD representation).

(iii) Then match these two independent representations
of the correlator to one another employing the quark-
hadron duality ansatz. To keep under control un-
desirable contributions coming from the higher and
excited states, we perform a Borel transformation, in
addition to continuum subtraction to both represen-
tations of the obtained corresponding sum rules.

As we mentioned above, in order to evaluate the
correlator in connection with hadron features, a complete
hadronic set with the same quantum numbers as the
interpolation currents is inserted. After that, the correlation
function becomes

ΠHad
μν ðp; qÞ ¼

X
s0

h0jJNð0ÞjNðp0; s0Þi
m2

N − p02

× hNðp0; s0ÞjJμνðxÞjNð1535Þðp; sÞi þ � � � ;
ð4Þ

where

h0jJNð0ÞjNðp0; s0Þi ¼ λNuNðp0; s0Þ; ð5Þ

with λN and uNðp0; s0Þ being the residue and Dirac spinor of
nucleon, respectively. Summation over the spins of the
nucleon is performed as

X
s0
uNðp0; s0ÞūNðp0; s0Þ ¼ =p0 þmN: ð6Þ

Substituting Eqs. (1), (5), and (6) into Eq. (4), we acquire
the correlator in the way of the hadronic features as
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ΠHad
μν ðp; qÞ ¼ λN

m2
N − p02 ð=p0 þmNÞ

�
iσμνH

I¼0;1
T ðQ2Þ þ γμqν − γνqμ

2m̄
EI¼0;1
T ðQ2Þ þ P̃μqν − P̃νqμ

2m̄2
H̃I¼0;1

T ðQ2Þ
�
γ5uðpÞ: ð7Þ

The next step is to evaluate the correlator in Eq. (2) with respect to quarks and gluon properties in the deep Euclidean
region. Employing the expression for JNð0Þ and JμνðxÞ and Wick’s theorem, the QCD representation of the correlator is
obtained as

ΠQCD
μν ðp; qÞ ¼ −

Z
d4xeiqx½fðγ5ÞγδCαβðiσμνÞωρ þ tðIÞγδðCγ5ÞαβðiσμνÞωρg

× fh0jϵabcuaσð0ÞubθðxÞdcϕð0ÞjNð1535ÞðpÞiðδασδρθδβϕSuð−xÞδω þ δδσδ
ρ
θδ

β
ϕSuð−xÞαωÞ

� h0jϵabcuaσð0Þubθð0ÞdcϕðxÞjNð1535ÞðpÞiδασδδθδρϕSdð−xÞβωg�; ð8Þ

where SqðxÞ is the light-quark propagator and it is given as (mq ¼ 0)

SqðxÞ ¼ i
=x

2π2x4
−
hq̄qi
12

−
hq̄σ:Gqi
192

x2 −
igs

32π2x2
GμνðxÞ½=xσμν þ σμν=x�: ð9Þ

The h0jϵabcuaσðx1Þubθðx2Þdcϕðx3ÞjNð1535ÞðpÞi matrix ele-
ment in Eq. (8) is can be written in terms of the DAs of the
Nð1535Þ state, and it is necessary for further computations.
The comprehensive expression of this matrix elements are
presented in Ref. [40]. After employing the explicit forms
of the above matrix elements and the light-quark propa-
gator, we acquire expressions in x space. Then we apply
Fourier transforms to transfer these expressions into the
momentum space.

The desired light-cone sum rules are obtained by match-
ing both representations of the correlation function. In order
to do this, we have to choose different and independent
Lorentz structures. For this purpose, we choose pμqνγ5,
pμγνγ5, and pμqνq=γ structures for E

I¼0;1
T ðQ2Þ, HI¼0;1

T ðQ2Þ,
and H̃I¼0;1

T ðQ2Þ form factors, respectively. As a result, we
get the light-cone sum rules

EI¼1
T ðQ2Þ λN

m2
N − p02 ¼ m̄ΠQCD

1 ; EI¼0
T ðQ2Þ λN

m2
N − p02 ¼ m̄ΠQCD

2 ; ð10Þ

HI¼1
T ðQ2Þ λN

m2
N − p02 ¼ −

1

2
ΠQCD

3 ; HI¼0
T ðQ2Þ λN

m2
N − p02 ¼ −

1

2
ΠQCD

4 ; ð11Þ

H̃I¼1
T ðQ2Þ λN

m2
N − p02 ¼ −m̄2ΠQCD

5 ; H̃I¼0
T ðQ2Þ λN

m2
N − p02 ¼ −m̄2ΠQCD

6 : ð12Þ

TheΠQCD
i functions appearing in Eqs. (10)–(12) are quite long and not illuminating. However, as an example, we give the

result of the ΠQCD
1 . The remaining five of these functions have more or less similar forms:

ΠQCD
1 ¼ 2m2

Nð1535Þ

�Z
1

0

dα
α

ðq − pαÞ4
Z

1

α
dx2

Z
1−x2

0

dx1½ð1 − tÞ½2A1 − 2A2 − A3 þ 3A4 þ 2V1 þ 2V2 − 4V3

þ 2V4 − 4V5� þ ð1þ tÞ½2P1 − 2P2 þ 2S1 − 2S2 þ 2T2 þ 4T3 − 6T5 − 4T7��ðx1; x2; 1 − x1 − x2Þ

þ 2

Z
1

0

dα
α

ðq − pαÞ4
Z

1

α
dx3

Z
1−x3

0

dx1½ð1þ tÞ½−P1 þ P2 − S1 þ S2 − T1 þ T5 þ T7 þ T8��

× ðx1; 1 − x1 − x3; x3Þ
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þ 2

Z
1

0

dβ
Z

1

β
dα

1

ðq − pβÞ4
Z

1

α
dx2

Z
1−x2

0

dx1½ð1þ tÞ½−T2 þ T3 þ T4 − T5 − T7 − T8��

× ðx1; x2; 1 − x1 − x2Þ

− 2

Z
1

0

dβ
Z

1

β
dα

1

ðq − pβÞ4
Z

1

α
dx3

Z
1−x3

0

dx1½ð1þ tÞ½T2 − T3 − T4 þ T5 þ T7 þ T8��

× ðx1; 1 − x1 − x3; x3Þ

þ 8m2
Nð1535Þ

Z
1

0

dβ
Z

1

β
dα

β2

ðq − pβÞ6
Z

1

α
dx2

Z
1−x2

0

dx1½ð1þ tÞ½−T2 þ T3 þ T4 − T5 − T7 − T8��

× ðx1; x2; 1 − x1 − x2Þ

− 8m2
Nð1535Þ

Z
1

0

dβ
Z

1

β
dα

β2

ðq − pβÞ6
Z

1

α
dx3

Z
1−x3

0

dx1½ð1þ tÞ½T2 − T3 − T4 þ T5 þ T7 þ T8��

× ðx1; 1 − x1 − x3; x3Þ
�
; ð13Þ

where Ai, Pi, Vi, Si, and Ti are distribution amplitudes of different twists. They have been expressed with respect to
Nð1535Þ state wave functions. The explicit forms of these wave functions are presented in Ref. [40]. To eliminate
contributions coming from the excited and continuum states, the Borel transformation and continuum subtraction are
performed. The suppression of the excited and continuum states can be accomplished by means of the subsequent
subtraction rules [41]:Z

dz
ρðzÞ

ðq − zpÞ2 → −
Z

1

x0

dz
z
ρðzÞe−sðzÞ=M2

;

Z
dz

ρðzÞ
ðq − zpÞ4 →

1

M2

Z
1

x0

dz
z2

ρðzÞe−sðzÞ=M2 þ ρðx0Þ
Q2 þ x20m

2
N
e−s0=M

2

;

Z
dz

ρðzÞ
ðq − zpÞ6 → −

1

2M4

Z
1

x0

dz
z3

ρðzÞe−sðzÞ=M2 −
1

2M2

ρðx0Þ
x0ðQ2 þ x20m

2
NÞ

e−s0=M
2

þ 1

2

x20e
−s0=M2

Q2 þ x20m
2
N

�
d
dx0

ρðx0Þ
x0ðQ2 þ x20m

2
NÞ
�
; ð14Þ

where

sðzÞ ¼ ð1 − zÞm2
N þ 1 − z

z
Q2;

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ s0 −m2

NÞ2 þ 4m2
NQ

2
p

− ðQ2 þ s0 −m2
NÞ

2m2
N

: ð15Þ

The residue of the nucleon, λN , is needed for the numerical computation of Nð1535Þ → N transition tensor form factors.
The λN is specified from two-point QCD sum rules [19]:

λN ¼
�
em

2
N=M

2

�
M6

256π4
ð5þ 2tþ t2ÞE2ðyÞ −

hq̄qi2
6

�
6ð1 − t2Þ − ð1 − tÞ2 − m2

0

4M2
½12ð1 − t2Þ − ð1 − tÞ2�

���
1=2

; ð16Þ

where

y ¼ s0=M2

and

EnðyÞ ¼ 1 − e−y
Xn
i¼0

yi

i!
:

ULAŞ ÖZDEM PHYS. REV. D 102, 014001 (2020)

014001-4



TABLE I. Input parameters of the Nð1535Þ state DAs for the two different sets.

Model jλNð1535Þ
1 =λN1 j fNð1535Þ=λ

Nð1535Þ
1 φ10 φ11 φ20 φ21 φ22 η10 η11

LCSR-I 0.633 0.027 0.36 −0.95 0 0 0 0 0.94
LCSR-II 0.633 0.027 0.37 −0.96 0 0 0 −0.29 0.23
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FIG. 1. The dependence of the isovector tensor form factors of the Nð1535Þ → N transition on M2 at Q2 ¼ 2.0 GeV2 and different
values of s0 and t at their working windows. (a),(c),(e) for LCSR-I and (b),(d),(f) for LCSR-II.
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III. NUMERICAL ANALYSIS AND CONCLUSION

In this section, we have obtained the numerical analysis of
Nð1535Þ → N transition tensor form factors. The DAs of
Nð1535Þ state have been evaluated bymeans of the light-cone
QCD sum rule in Ref. [40]. The numerical values of the input
parameters inside the DAs of the Nð1535Þ state are given in
Table I, which are obtained at renormalization scale μ2 ¼
2.0 GeV2. Furthermore, we use λN1 mN ¼ −3.88ð2Þð19Þ ×
10−2 GeV3 and λNð1535Þ

2 mNð1535Þ ¼ 8.97ð45Þ × 10−2 GeV3,
given in Ref. [42] at renormalization μ2 ¼ 4.0 GeV2, by
rescaling to μ2 ¼ 2.0 GeV2. Beside these values, we use
mNð1535Þ ¼ 1.51� 0.01 GeV, mN ¼ 0.94 GeV [43], m2

0 ¼
0.8� 0.1 GeV2, and hq̄qi ¼ ð−0.24� 0.01Þ3 GeV3 [44].
The predictions for the isovector and isoscalar tensor

form factors depend on three auxiliary parameters: the
Borel mass parameterM2, arbitrary mixing parameter t, and
continuum threshold s0. For the quality of the numerical
values of the physical observables, we should minimize the
dependence of the results on these parameters. The M2 can
change in the interval that the results relatively weakly
depend on it with respect to the standard definition. The

upper limit of it is acquired by demanding the maximum
pole contributions, and its lower limit is acquired from the
convergence of the operator product expansion and exceed-
ing of the perturbative part over nonperturbative contribu-
tions. The t is chosen such that the estimations of the
isovector and isoscalar tensor form factors are reasonably
insensitive of the values of t. The working region for the s0
is chosen such that the maximum pole contribution is
obtained, and the results relatively weakly depend on its
choices. These constraints lead to the working intervals for
auxiliary parameters as

2.50 GeV2 ≤ M2 ≤ 3.50 GeV2;

2.50 GeV2 ≤ s0 ≤ 3.00 GeV2;

−3.00 ≤ t ≤ −5.00:

In Figs. 1 and 2, we show dependency of isovector and
isoscalar tensor form factors with respect to the Borel mass
parameter at three fixed values of the continuum threshold
and two fixed values of the arbitrary mixing parameter in
their working interval. The results show good stability
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FIG. 2. The dependence of the isoscalar tensor form factors of the Nð1535Þ → N transition on M2 at Q2 ¼ 2.0 GeV2 and different
values of s0 and t at their working windows. (a),(c) for LCSR-I and (b),(d) for LCSR-II.
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against the variations of the Borel mass parameters, as
desired. In Figs. 3 and 4, we plot the dependence of the
isovector and isoscalar tensor form factors on Q2 for
various values of s0 and t in their working regions and
at the fixed values of M2 ¼ 3.00 GeV2 for LCSR-I and
LCSR-II values of input parameters entering the DAs. All
the form factors taken into account show a similar depend-
ence onQ2 for LCSR-I and LCSR-II except the form factor
H̃I¼0

T (Q2). This form factor changes its sign in the region

under consideration, so its results are not given in the text.
We should note here that the light-cone QCD sum rule
approach is trustworthy only for Q2 > 1.0 GeV2. On the
other hand, the baryon mass corrections of the DAs
∼m2=Q2 become very large for Q2 < 2.0 GeV2; in other
words, the light-cone QCD sum rules turn out to be
untrustworthy. Thus, we expect the light-cone QCD sum
rule to be more reliable and effective in the region
of 2.0 GeV2 ≤ Q2 ≤ 10.0 GeV2.
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FIG. 3. The dependence of the isovector tensor form factors of Nð1535Þ → N transition on Q2 at M2 ¼ 3.00 GeV2 and different
values of s0 and t at their working windows. (a),(c),(e) for LCSR-I and (b),(d),(f) for LCSR-II.
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As we mentioned above, our sum rules work only for
Q2 ≥ 2.0 GeV2. However, we want to extend our analysis
to the region 0 ≤ Q2 < 2. To do this, some fit parameters
need to be used. Our numerical investigations indicate
that the isovector and isoscalar tensor form factors of
Nð1535Þ → N transition are nicely defined by employing
the p-pole fit function:

F ðQ2Þ ¼ F ð0Þ
ð1þQ2=ðpm2

pÞÞp
: ð17Þ

The numerical results obtained for Nð1535Þ → N tran-
sition isovector and isoscalar tensor form factors are given in
Table II. The results obtained by employing LCSR-I and
LCSR-II parameters were found to be quite different from
each other. The numerical values of the form factors EI¼0;1

T

(Q2 ¼ 0), HI¼0;1
T (Q2 ¼ 0), and H̃I¼0;1

T (Q2 ¼ 0) for the
LCSR-II numerical values are smaller than those for
the LCSR-I parameters. As one can see from Table I, the
essential difference between input parameters of the DAs is
the numerical values for the η10 and η11, which are related to
the p-wave three-quark wave functions of the Nð1535Þ state
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FIG. 4. The dependence of the isoscalar tensor form factors of Nð1535Þ → N transition on Q2 at M2 ¼ 3.00 GeV2 and different
values of s0 and t at their working windows. (a),(c) for LCSR-I and (b),(d) for LCSR-II.

TABLE II. The obtained numerical values for the parameters of the isovector and isoscalar tensor form factors by employing the
p-pole fit functions.

LCSR-I LCSR-II

Form factors F ð0Þ mp (GeV) p F ð0Þ mp (GeV) p

EI¼1
T (Q2) 7.54� 1.26 1.10� 0.05 3.6–4.0 3.48� 0.84 1.07� 0.07 3.8–4.2

EI¼0
T (Q2) 5.05� 1.01 1.13� 0.08 3.6–4.0 3.00� 0.66 1.14� 0.10 3.6–4.0

HI¼1
T (Q2) 5.22� 0.27 1.30� 0.10 3.0–3.4 1.51� 0.20 1.28� 0.10 3.0–3.4

HI¼0
T (Q2) 3.37� 0.47 1.28� 0.11 3.0–3.4 1.10� 0.20 1.32� 0.10 3.0–3.4

H̄I¼1
T (Q2) 14.51� 4.43 1.02� 0.10 3.6–4.0 1.30� 0.39 1.18� 0.14 3.6–4.0

H̄I¼0
T (Q2) � � � � � � � � � � � � � � � � � �
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and, therefore, to the distribution of orbital angular momen-
tum. This means these form factors are very sensitive to the
shape parameters of the DAs of the Nð1535Þ state that
parametrize relative orbital angular momentum of the quarks.
In summary, we have applied isovector and isoscalar

tensor current to evaluate the tensor form factors of the
Nð1535Þ → N transition with the help of the light-cone
QCD sum rule method. In numerical computations, we
have used the most general forms of the interpolating
current for the nucleon and the tensor current together with
two different sets of the input parameters in the DAs of the
Nð1535Þ state. We have obtained that the values of
Nð1535Þ → N transition tensor form factors are very
sensitive to the input parameters of the DAs of the
Nð1535Þ state. We have acquired that the Q2 dependence

of Nð1535Þ → transition tensor form factors are well
defined by a p-pole fit function. To our knowledge, this
is the first study in the literature committed to the
examination of the Nð1535Þ → N transition tensor form
factors. Thus, experimental data or theoretical predictions
are not yet available to compare our numerical results with
them. A comparison of the results acquired with the
estimations of other theoretical approximations, such as
the quark model, chiral perturbation theory, lattice QCD,
etc., would also be interesting.
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