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In the family grand unification theory (GUT) models, we propose that gauge U(1)’s beyond the minimal
GUT gauge group are family gauge symmetries. For the symmetry L, — L, i.e., Q> — Q3 in our case, to
be useful for the LHC anomaly, we discuss an SU(9) family GUT and also present an example in Georgi’s

SU(11) family GUT.
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I. INTRODUCTION

The most interesting problem remaining in the Standard
Model (SM) is the flavor or family problem. The family
problem forces the symmetry of all of the massless chiral
fields surviving below the grand unification theory (GUT)
scale Mgyr or the Planck scale Mp. Chiral fields with
quantum numbers consistent with the observed weak and
electromagnetic phenomena were a crucial achievement
of the SM. With electromagnetic and charged currents,
leptons need representations which are a doublet or bigger.
A left-handed lepton doublet (v,,e) alone is not free of
gauge anomalies because the observed electromagnetic
charges are not j:%. The anomalies from the fractional
electromagnetic charges of the u and d quarks add up to
make the total anomaly from the first family vanish [1,2]. In
view of the necessity to jointly use both leptons and quarks
to cancel gauge anomalies in the SM, we can see that GUTs
are fundamentally needed beyond other aesthetic view-
points. It is very difficult to obtain another kind of chiral
model free of gauge anomalies. If another chiral model is
found consistently with some observed fact, that model
should hold some truth. The same gauge structures of the
first family, {v,, e, u, d}, repeat two more times in the y
family and the 7z family.

A correct treatment of flavors is necessary not only in the
familiar fields of particle theory and high-energy physics
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but also in astronomy and, especially, cosmology. Big bang
nucleosynthesis calculations can place upper limits on the
number of active neutrinos. The mixings of six flavors of
quark allow a CP violating phase which is successful in
agreeing precisely with data on CP violation in K and B
decays, yet the correct derivation of baryogenesis which
itself needs CP violation and the tiny ratio n = (Ang/n,) ~
9 x 107! remains challenging, especially as to whether the
CP violation known in quark flavor mixing can suffice to
explain the matter-antimatter asymmetry of the Universe.
These are merely two examples of cosmological applica-
tions of flavor theory.

Recent phenomenological studies on the flavor problem
have centered around two questions: (i) Why are there three
families? (ii)) What are the symmetries giving the observed
Cabibbo-Kobayashi-Maskawa (CKM) and the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrices?

For family unification, the first attempts were to use
spinors of SO(10) in extended SO(4n +2) [3.4], as a
product of GUT unification of families [5], and in higher
dimensions [6]. None of these examples belong to the
chiral class of SO(4n + 2) gauge theories in four spacetime
dimensions (4D): models in [3,4] decompose to vectorlike
spinors of SO(10) in 4D, the model of [5] uses discrete
factor groups in addition to the gauge symmetry, and
Refs. [6,7] worked in higher dimensions. The chiral class
in 4D was formulated in simple gauge groups 40 years
ago by Georgi [8]. Along with the scheme of [§8], some
interesting models appeared in SO(14) [9] and in SU(N)
gauge groups [10,11].

The second part was discussed recently in [12-15] in
relation to the CKM and PMNS matrices. Until recently, no
significant deviation from the CKM and PMNS matrices
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has appeared. If some deviation were to be observed, then it
might predict beyond the SM (BSM) physics, probably in
fourth family sterile neutrinos or in the important scalar
interactions presented in this paper.

The obvious family dependences are in the masses and
the CKM and PMNS matrices. Given these, the next level is
to check lepton family universality in the decays of mesons.
With hundreds of millions of B decays having already been
found at the LHC, it is possible to check the universality of
a ratio of the type

_B(B— Hy'y™)
RH_B(B%He*e‘)’ (m)

where H represents a hadron. In the last few years,
observation of an anomaly in Ry with a 2.5¢ level
significance [16,17] (see also [18]) attracted a great deal
of attention [19-25]. In the leptonic sector, the lepton
family dependence was used to make the BNL (g-—2),
observation draw near the SM prediction. This required an
additional interaction for the muon family. If it is a gauge
U(1) interaction, cancellation of anomalies necessitates
contributions from other family members, for example,
in the form of a quantum number such as L, — L..

Within family GUT models, L, — L, symmetry can affect
the prediction of Ry phenomenology since the quantum
number L, — L, applies also to the quark members in the
same family.

II. GRAND UNIFICATION OF FAMILIES

We use a grand unified theory with gauge group
SU(N > 8), focusing on SU(9) and SU(11). The conven-
tional SU(5) will be naturally embedded into SU(N) in the
sense that the defining representation is N O 5+ (N —5)
singlets. This is what was used in the models of [8—11].
Here we shall generalize the idea to include flavor lepton
numbers L,, L,, L, as the sixth, seventh, and eighth

|

components of the defining representation of SU(N ), while
the further (N — 8) components will be treated as before.
This will enable the special combination (L, — L) to play
a special role. We name this type of model a family GUT,
which is our main subject.

It will be necessary to introduce a few new states at the
TeV scale and these will have a small effect on the
logarithmic running of the gauge couplings. However,
since this is a nonsupersymmetric family GUT the gauge
coupling unification at the GUT scale is expected to be
good but not precise. Precise unification has in our opinion
been overemphasized because unless and until proton
decay is discovered we cannot know what the GUT scale
is, and precise unification by itself is insufficient unless
the GUT scale fits with the proton lifetime. The effects of
additional light states on the logarithmic running were
studied in detail in [26], and from there one can deduce that
in the present case there is only a small change and the
precision of the unification will, in general, not be very
different in family GUTSs than in GUTs.

Let us use tensor notation such that the index A =
{1,2,...,N} is split into the GUT index a = {1,2,...,5},
family indices I={6=-electronfamily, 7= muonfamily,
8 = taufamily}, and {9, ..., N} for dummy numbers. We
will use only the completely antisymmetric representations
so that higher-dimensional quarks such as 6,6 do not
appear.

Consider the three family indices, I = 6, 7, 8, for U(3)
representations, which are equivalently used as I —» {e=1,
u=2,7=3}. The upper (X'/") and lower indices (X;;...)
are distinguished. The Levi-Civita symbols, €//X and €;,x
for the U(3) group, will be used to raise and lower the
indices. Thus, X' = X, o), etc. Note also that com-
plex conjugation corresponds to taking the Hermitian
conjugate, X'* = X_,.

Now we consider the following completely antisymmet-
ric representations, which split into

lPA — l//a ® 1(1,0,0) o) 1(0,1.0) I 1(0.0,1) ® 1(0,0,0) D --- ,
PAB — ab(0.0.0) gy ,a(1.00) @y ,a(0.10) @y 1,a(00.1) @y 1a(000) gy ..
o) 1(1,1,0) ® 1(1.0,1) o) 1(0,1.1) ® 1(1,0,0) o) 1(0,1,0) fa) 1(0.0,1) ® 1(0,0,0) @D - ,
1IJABC _ U/aﬁy @ waﬂ(l,OVO) ® ll/ozﬂ(OVL,O) ® ll,otﬁ'(OVO,l) @ ll/ocﬂ(O,O,O) @D
o) l//a(l,l,O) ® l/ja(l,O,l) ® Wa(O,l.l) ® ll/a(l,0,0) e lllot(O,l,O) o) l//a(0,0,l) @ l//a(0,0,0) ® -
o) 1(1,1,1) fa) 1(1,1,0) ® 1(1,0,1) fa) 1(1,0,0) ® 1(0,1,0) fa) 1(0,0,1) o) 1(0,0,0) ®--- ,
lIJABCD _ Wa/iy& o) y/aﬁy(l.0,0) ® Wa/iy(O,l,O) ® thﬂy(0,0,l) o) llloc,lf}/(O,O,O) .
@ yB10) @ yaB10.1) @ yaf0.11) gy yap(1.00) gy ,@b(0.1.0) @y 1,aB00.1) @ 1af(000) gy ...
o) l//a(l,l,l) @ Wa(l.lﬂ) ® Wa(l,O,l) ® ll/a(l,0,0) o) llloc(O,l.O) o) l/]a(0,0,l) o) Wa(O,O,O)
o) 1(1.],1) ® 1(1,1.0) o) 1(1.0,1) ® 1(0,1.]) o) l(l.OA,O) ® 1(0,1.0) o) 1(0.0,1) @ etc. (2)
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The example for SU(9) given in [11] thus becomes, after removing vectorlike representations,

PABC @ o, — Wap @ pP(10.0) @y ,@P(0.1.0) @y ,aB0.0.1) gy 1,ap(0.0.0)
@® w110 @ yall0.1) g yaO.L1) @ a(1.00) @y 1a(0.10) gy ,a(00.1)
® 1(1,1,1) o) 1(1,1.0) fa) 1(1.0,1) ® 1(0,1,1)
D Wy @9 1100 B9 110 ®9-1p0-1) ®9-1000
— yP(1.00) @ 1 B0.10) gy ,ap(0.0.1)
® l//a(l,l,()) D wa(l,O,l) o) y/a(o.l,l) ® y/a(l,0,0) ® ll/a(o,l,()) ® l//a(0,0,l) D 91/111(0.0,0)
D8-1_100) D8 1p_10) D8 1gg_1) ® 101000 (3)
The remaining three lepton (doublet) families, out of the second line from the bottom of Eq. (3), will be 3Wa(0,0,0)5 which

do not carry L, — L,. To avoid confusion, we will always write quantum numbers of L, — L, as subscripts within

square brackets.
Georgi’s family GUT model is for N = 11 [8],

PABED L b+ Wyup + Py (4)
Defining the first three slots for
U(1)g x U(1); x U(1)g, orrenamed as U(1); x U(1), x U(1)5, (5)
we obtain
\PABCD N ll/aﬂyé o) waﬂy(l,0.0) ® ll/aﬂy(O,l,O) ® waﬁy(0.0,l) P 3. Waﬁy(O,O.O)
@ yP110) @ yP(10.1) @ @011 @ 3. @B(100) @ 3.y ap0.10) @y 3. @h(001) gy 3. ‘l’((l([;o.o)
® l//a(]‘l’l> D3 Wa(l,l,O) D3 ll/a(l,O,l) D3 ll/a(O.l,l) D3 Wa(l,O,O) D3 ll/a(O.l,()) D3 W((IO,O,I) [ Wa(O.OA,O)
® 3. 1(1,1,1) e 3. 1(1,1,0) o) 3. 1(1,0,1) ® 3. 1(0,1,1) ® 1(1,0.0) o) 1(0,1,0) ® 1(0,0,1) ) 1(0,0,0)’
PABC _y by @ yB1.0.0) @ yyB0.10) @y 1 ap00.1) @y 3 . 4y@h(0.00)
@® y(110) @ ya(10.0) @ ya011) @y 3. ya(100) @ 3. a(0.10) @y 3. e00.1) gy 3 . 1,@(0.00)
@ 1(1,1,1) @3- 1(1,1,0) ®3- 1(1.0,1) D3 1(0,1,1) D3 1(1,0,0) D3 1(0.1,0) D3 1(0,0,1) ® 1(0,0.0)’
PAB b @ a(100) @ 1@(0.10) @ 1@(00.1) gy 3. y(0.0.0)
® 1(1,1,0) @ 1(1.0,1) ® l(OA,l,l) @ 3. 1(1,0,0) ® 3. 1(0.1,0) ® 3. 1(0,0,1) ® 3. 1(0,0.0)’
yA _, Wa o) 1(1,0.0) @ 1(0,1,0) @ 1(0,0.1) @3- 1(0.0,0), (6)

which, removing vectorlike representations, leads to

PAED @ Wape @ Wap @ Wa = 3 - Wap(0.00)(*) & 1/15,1/}0‘0)(*) @ WS;}LO)(*) @ l//((l%o’l)(*) @ 2 - y?P1.00) (xx)

®2- Waﬁ(O.l,O)(**) D2 Waﬁ(().o,l)(**) @ Waﬁ(l,O,O)(**) @ l//aﬁ(O.],O)(**)

0.-1,0)

~1,0,0) o W((x

® y 00N (x) @ v
® l//(()l(),O,—l) D6 Y a(0,0,0) ) Ya(-1,00) 5] Ya(0.-1.,0) D Ya(0.0.-1)
®3- ll/a(l,0,0) D3 .W(I(O,l,()) D3 ‘wa(0,0.l) @ 3-100-1

®3-10710 3. 10100 § 4.1 40 @ 41910 D4 101 (7)
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We want to define family numbers such that electron
carries electron number, muon carries muon number, and
tau carries tau number. Let S; be SU(5)-singlet scalars.

A. Notation for L, -L,

Since y, contains lepton doublets, it is better to define
lepton family number by w45 — ;- So, the lepton family
number is defined by the subscript I: an electron doublet
from y 46, a muon doublet from 7, and a tau doublet from
Wes. For the L™ =L, — L, quantum numbers, we have
W0 for the electron family, y ;) for the muon family, and
Wqf-1) for the tau family. We can use the U(3) Levi-Cevita
symbol to raise or lower the family indices. For example
w is % where K differs from I and J. Then S, (100)
Sefo» ete. Let L* be the L, + L, quantum number. Se[o]
does not break L™ and L~. But the vacuum expectation
value (VEV) of S(lo’l’l) breaks U(1), x U(1), to U(1),_,
With S, and S, the following couplings combine some
vectorlike pairs in the (**) lines of Eq. (7),

0.1,0) (1.0,0 0.0.1) o(1.0.0
‘l’((z/; )S<e )l//a/j((),().])’ fl/; ) Sf? )l//a/}((),l.O)’

0,0,0) o(0.1,1) 4
é/; )Sg )w/}(l,0,0)'

Therefore, from the (**) lines in Eq. (7) there remain, after
the U(1),_, preserving VEVs of <S§1’0'0)> and <S(10'1’1)>,

100 Q| Q)
ll/a[}' eazw/iOlO @2Wﬁ001) (8)

which gives three families and one vectorlike pair. With the
exact L, — L, conservation, there is no way to remove
the remaining vectorlike pair. We must break the gauge
symmetry U(1),_, to remove the vectorlike pair. Let us

introduce S 19 Such that (Sy) < (S¢), (Sy). The U(1),_

breaking effects to low energy physics are subdominant
compared to the U(1), . preserving interactions. The

coupling

1//5), zo,o) S,(lo’l'o)l//“ﬁ(o’o'l) 9)

removes the vectorlike pair. Thus, we finally obtain the
following three 10’s':

21//{1/}(—1.2.,—1) ® 1//“/’(_1~‘1'2). (10)

'If we use S0 instead of S,, we obtain w1251 g
2y/"/’<‘1“1’2). Here, we used the traceless family numbers as in
Sec. III.

B. Changing chirality

The BSM contributions to the magnetic moments
need a change of chirality [27]. The effective interaction
for changing the chirality of the leptons is through

Wo < w: [
QO.m = —1 leptons. If we consider only one Higgs doublet,
there is no BSM contribution to the magnetic moments. We
need more Higgs doublets. Let us denote this extra (inert)
Higgs doublet without a VEV as H/, and its coupling to the

“ﬂwaH ) 1n the SM, it gives masses to

muon family
op - 1,-2,1
h’y/ (-1.2. 1)z,//,(, )H;, (11)

introduces the BSM contribution to the magnetic moments.

Note that z//aﬁ 010 can be represented as W,p(0.-1,0).8
moving in the opposite direction. We used the muon
quantum number to have an additional contribution to
(9—2),-InEq. (7), pis in z//éo’_l % and U is in w010 =
Wap(0,-1,0)R> 1-€-, i, has muon number +1 and p also has
muon number +1. From Fig. 1, we estimate that

-2
aL:Maeh n

5 221123 (12)

Here, m, M, and M, can be superheavy, but m; must be
smaller than or at the electroweak scale.

The lhs and rhs contributions of Fig. 1 sandwiched
between #(p’) and u(p) are

&k
lhs m2m3eh/[22]h{23] / (27)4
X (%’+M1)7ﬂ(k+M1)(k+M2)
K7 = M) (K = M) (K — M) ((p — k) — i)
(13)

and we proceed similarly for the rhs. Here, we assumed
that m? is the H' of0] Mass and treated m5 as the mass of

Wapl+3) @ ‘I/[_3]» and

p = momentum of y; ,

K =k+q. (14)

p' = momentum of uf,

g=p -p,

Thus, from Fig. 1 the anomalous magnetic moment is
estimated as

el hmmnu/(h/‘@ b =x){-}. (15

F2 (0) 871’ M2

where the ellipsis is

013005-4
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m26°7
m!(577)
P ®&----_
e N
'I \\\ !
Hpy o 'y
M, M,
i (H) :
! 4 ; 4 \
i ; e i i
® ® — ® ~
wuL hi22] [ 3] Vastry T3 ) Yaf+3) hf32] LZL
Val+3] ¢[73] 1/}[]3]
AM

FIG. 1. A BSM contribution to (g — 2)

4+ M3 can be placed on the lhs (as here) or rhs of the A, vertex, and (H?) is a VEV of the SM

Higgs doublet giving mass to x. /7 is an SU(5) singlet field « 6.

{=MMy(x-y-1)=(1-=3y)(x-

LBy =2 =0)M] +y@y - M3 _

(L L1
YIONA A A, A

y(By = )M7 + (x = 1)(2 = 3y)M,1?

A Ay
LRety-1) —/3y(x —)IM3 2(x+y-1) —/3y(x —y)M (16)
AZ Al

The calculation through the Feynman parametrization is
sketched in the Appendix A.

For M|, My <m, Aj~Ay~ A ~A)~(x—y)m>. In
this case, the integral is simplified to

et

eh h msm,

[][23] 3 13
=2 2 (4 ne),
87°m <6+n€)

eh h 31371y,
Fa(0) = 871217]1

M? . M?
where € = {"n—zz}

For the other extreme, M|, M, > m, A} ~ (1 — x)M3+
(x = y)M3, Ay = yM7 + (1 = x)M3, A} = (1 = x + y)M7,
A} ~ (1 — x + y)M3. In this case, the integral is simplified
to give

+E+ 8
167[2M% >’ (18)

e

where { = M,/m and é = M,/M,. For the Rg phenom-
enology, we will need ~ 0(0.7 x 10° GeV). So,

22)"23)
suppose that m = 10° GeV,M, S M, M, =

~ 200 GeV, and h{zz
1.21 x 1077,

The BNL value of (g—2), minus the SM prediction
is [28]

10* GeV,
hiy3 ~ 1, which gives F(0) ~

Aa, = af® — aSM = 261(63)(48) x 1071, (19)
Thus, there is some region of the parameter space pulling
the (g—2), of the SM value to the BNL value with
m = 0(10%) GeV, with m5 at the electroweak scale with
heavy m, M, and M,.

If we consider the symmetry U(1),_,, the calculation is

the same.

C. Models for Ry -

For the family GUT interaction discussed in Sec. II B, let
us consider what can be its effect on Ry with the symmetry

013005-5
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U(1),_,. From Eq. (10), the L, — L, quantum numbers of
three families in the Georgi-Glashow model are

w‘[’_ﬁg] ® 2wf‘f3} ® 2w oi—3) ® Wofs3)» (20)

and the BSM Higgs field H' can be one from
(Vfﬁ)] ) l//a[o])’s. To have the coupling (11), H' must be

neutral in L, — L,. Thus, the H' couplings takes the form

aff
R W i Wl H ) (21)

From Eq. (21), we note that b; can decay to sg,

b, (from y/f‘f3]) — 57 (fromyrgp )
+ neutral Higgs (from Hfo] possible).
(22)

In the next section, we will use the following interaction,

h/

3 SRbLH" + Wy gy H” + Hee, (23)

where the h{l 1

their phases to quark or lepton fields.

couplings are set to real values by absorbing

III. PHENOMENOLOGY OF L, -L, FOR
QUARKS VIA FAMILY GUT

From the allowed coupling (23) with the L, —L,
conservation, we will estimate Rx. The following contri-
bution to Ry exists by the BSM neutral field H":

W
232
= 2[ ]/"L/"RSRbL +Hec.
my

(24)

We choose traceless combinations for the flavor indices.
Thus, note that w41y houses the muon doublet,
Wa(-12-1) = Wap3), Where the number in brackets is the
L, — L, quantum number. The tau doublet belongs to

Wa(-1,-12) = Wq-3]- The quark doublet of the second
|

B(BT — Ktu*u™)
Ry

—12-1) _ 'I/?{j,_z,n — W([ZfS]’ which is in

the L-handed notation. In terms of the right-handed
notation, the L, — L, quantum number is [3]. The quark

doublet of the third family is in y?(-1-1.2) =

aff _af
V-2 = ¥pp
b2 — y/?]ﬁ oy = l//?f3]. Thus, the fields participat-

ing in the b decay via the BSM field H" are

family is in w(

which houses b;. uf is contained in

KL W ol+3]s
by, Illfl[xf3],

priwly,

Sk Il//ff?’]. (25)
Thus, Eq. (24) preserves the U(1),,_, gauge symmetry. Note
also that the combination h/[23] h/[22] appeared in the BSM
contribution to (g —2),.

The lepton flavor universality from one-loop generated
coupling in the SM is given by [29]

GFaem Vlb V?s C9

V2

ey (1 —ys)€5.y,bL (26)

where £ = e, y, T and Cy = (—4 + sin? Oy ) (3 — 3 sin” Oyy)
times some factor arising from hadronic states.
The B™ meson decay rate with lifetime 1.638(1.000 +
0.003) x 10712 s is [30]
[ ~4.02 x 107% GeV, (27)
while the branching ratio for B — K£+¢~ (for £ = e, u)
is [29]

B(B —» K£t¢~) = 1.04 x 1077, (28)

The family dependence is studied with a double
ratio [16,17],

B(BT — KteTe™) (29)

The first report on the family dependence is the Run 1 result
of LHCb, Ry = 0.74570:97) +0.036 in the ¢? interval of
g*> = 1.1-6 GeV? [16], which gives a 2.6¢ level anomaly
from the SM prediction. The recent result from LHCD is
R = 0846109509016 [17], which is a 2.5¢ anomaly.
However, the recent Belle report is consistent with the

SM but with larger error bars, R = 0.987537 4 0.06 [18].

T BB K Jy(= ptu))

/B'(B+ = KT jy(— etem))

[
We will use the Run 1 result of LHCD since it covers a wide
range of g2,

Ry = 0.74570:99 4+ 0.036. (30)

There is a claim that new physics by scalar mediation
cannot explain the Rx phenomenology [31] (see also [32]).

013005-6
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But the assumptions deriving this conclusion do not include
our scenario. First, they assumed only the SM gauge group,
while our symmetry below the cutoff scale A is the SM
gauge group times U(1) u—- Second, the constraint, for
example, Eq. (15) of [31], is from purely leptonic data. But
our interaction, Eq. (24), is not related to the SM interaction
and hence the parameters in Eq. (24) are restricted only by
the (g — 2), phenomenology, whose allowed region will be
given together with the Rx bound.

Incorporating the new operator Cg,, jiusPgr)b, Ry is
given by

r e
Ry =t =1-—£_, 31
7T, M (31

where

1 [ 4w
M= [ TG () (G + Clolda’, (32

En(q) = 0.327 . M3 — M% (M% + M% — ¢%)
(1- }31_22)2 my, — my M>

(36)

In our model, the contribution of Cy,,,, relative to the one
in the SM is given by

2o (Y2 N Myt
o GFaem th V;Fs m(Z) ‘

From the experimental results, Eq. (30), we can deter-

(37)

. hi .k .
mine the values of -25%. For example, taking the central
0

value of Eq. (30), we obtain

(38)

FNP
‘ FSM

where we performed the ¢ integration in Eqs. (32) and (33).
With the known SM parameters, Mg, Mg, m;, mg; =

NP [T 3100 2 1272
L= /q _ FoBud’“Cp (g )|FS| Cil*dg™, (33) 5.2795, 0.89594, 4.8, 0.101 in GeV units, respectively,
" |V,| =0.999097 and |V| =0.04156, we obtain
: W H i,
with L~ 2.5 % 107 GeV™2. Determining % in this
0
) , . way, we can compare the (g—2), shift by Fig. 1 with
r, Grogy|V Vi B =1 4& ~1, (34) the measured value at the BNL. We note that there are more
5122°M5 q* ' unknown parameters for the expression on the muon
! h/
(9—2),: m3, My, M, for a given ==,
0
To glimpse the behavior for (g — 2),,, we choose M7 /mj
_ 4 422 2 2\ 2 o,
A= M+ M+ q" = 2AMpMi + (M + Mi)g™, - (35) to be 10 and look for the allowed region of Mz L up to the
0.998 i
0.996 i
m3
m; 0.994| | [ Upper bound on 10 Rk
| Lower bound on 10 Rk
0.992} i
0.990 o L e
500 1000 1500 2000
m3; GeV

FIG. 2. Allowed region of parameter space (

Z—%,mﬂ from Ry and (g —2), bounds for M7 =
1

lOmO.
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. . M>
lo region of experimental result of Rg. Then mj3 and 73 are
1

the only unknown parameters for the (g — 2) 4 €Xpression.
Imposing the experimental result, Eq. (19), we can get the

2
allowed region of parameter space (%
1
shown in Fig. 2. In Fig. 2, the blue and orange regions
correspond to the allowed regions of parameter space
obtained by taking Ry to be the lo upper limit of Ry

and the 1o lower limit of Rg.

m3), which is

IV. CONCLUSION

In a family grand unification model, we related the
BNL anomaly on the muon anomalous magnetic moment
and the LHC anomaly on Ry via the symmetry L, — L,.
As a family grand unification example, we used Georgi’s
SU(11).
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APPENDIX A: FEYNMAN PARAMETRIZATION
INTEGRAL

The useful Feynman parameter integration is

SISy S N R N G
ab’cd  Ob\abcd)  (d—c)0b\abc abd)’
(A1)

where

1 ! ) :

%:_2% dx/o PR P
(A2)

1 : * :

@:_2![) dx% dy[a+(b—a)x+(d—b)y]3‘
(A3)

Let us choose, for (the lhs of) Fig. 1,

a=k*-M3,b=(p—k)?—m?,c=k>-M3,d=k*- M3,
£=k+q(l-x)+p(y—x)=kK —gx+p(y—x). (A4)

Equations (A2) and (A3) have the following denominators:

Dy =a+ (b—a)x+ (c—b)y=12¢— A,

D, —a+(b-ax+(d=by—=,-A, (A5
where, neglecting O(m2),
Ay =Mi(1 =x) + M3y + m*(x = y),
A =Mi(1-x+y)+m?(x—y). (A6)

A similar consideration of (the rhs of) Fig. 1 leads to, for
Dy and DY,

Ay = M3(1 = x) + Miy + m*(x —y),

Ay =M3(1—x+y)+m?(x—y). (A7)
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