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We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs
bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect
the configurations of quarks and gluons at short distances. The algorithm’s inputs are features of the
reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet
shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to
learn a jet representation on which the classification problem is optimized. The algorithm is trained on
simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data
Portal. The interaction network achieves a drastic improvement in the identification performance with
respect to state-of-the-art algorithms.
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I. INTRODUCTION

Jets are collimated showers of hadrons that reflect the
configurations of quarks and gluons produced at particle
colliders. Each shower, consisting of quarks and gluons
emitted by the primary particle, results in an approximately
cone-shaped spray of hadrons, which are then observed in
particle detectors. Jet identification, or tagging, algorithms
are designed to identify the nature of the primary particle
that initiates a shower by studying the collective features of
the hadrons inside the jet.
Traditionally, jet tagging was limited to light-flavor

quarks (q), gluons (g), or b quarks. At the CERN Large
Hadron Collider (LHC), jet tagging becomes a more
complex task as new jet topologies are accessible (see
Fig. 1). Due to the large center-of-mass energy available in
LHC collisions, heavy particles, such as W, Z, and Higgs
bosons (H) and top quarks (t), may be produced with large
transverse momentum (pT). These particles can decay to
all-quark final states. Due to the large pT of the original

particle, these quarks are produced within a small solid
angle. The overlapping showers produced by these quarks
may be reconstructed as a single massive jet. As shown in
Fig. 1, the presence of b quarks in the jet gives rise to
unique experimental signatures. In particular, b hadrons are
characterized by a lifetime of approximately 1.5 ps, which
results in a detectable displacement between the proton-
collision point and the point where the b hadron decays.
The identification of jets from heavy resonances relies

on jet substructure techniques, designed to quantify the
number of clusters of energetic particles, or prongs, inside
the jet. The study of jet substructure was pioneered in the
1990s and early 2000s [1–4], but interest skyrocketed after
its proposed application to reconstruct Higgs bosons when
produced in association with a vector boson [5]. Extensive
reviews of these techniques are provided in Refs. [6,7].
Additional discrimination is provided by the reconstructed
jet mass, usually computed after a jet grooming algorithm.
A review of the techniques used to reconstruct jets and their
substructure at the LHC experiments can be found in
Ref. [8]. The jet mass plays a special role in physics
analyses exploiting jet substructure, as described for
instance in Ref. [9]. The jet mass distribution is typically
used to separate jets from boosted heavy particles, char-
acterized by a peaking distribution, from the smoothly
falling background, due to ordinary quark and gluon jets.
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For certain applications, it is desirable to avoid any
distortion of the jet mass distribution when applying a
jet-tagging selection.
Due to its lifetime, the presence of a b hadron inside of a

jet typically results in a reconstructed secondary vertex
(SV) that is displaced from the primary vertex (PV).
Modern particle detectors are equipped with a vertex
detector that can accurately determine SV positions and
their separation from the PV, even in a dense environment
like a high-pT jet. This feature is particularly important
for tagging a Higgs boson decaying to a bottom quark-
antiquark pair (H → bb̄) because all of the relevant jet
constituents originate from two displaced vertices.
Recently, several approaches based on deep learning

(DL) have been proposed to optimize jet tagging algorithms
(see Sec. II), both using expert features with dense layers or
raw data representations (e.g., images or lists of particle
properties) with more complex architectures. For instance,
the LHC collaborations and other researchers have inves-
tigated the optimal way to combine substructure, tracking,
and vertexing information to enhance the tagging efficiency
for high-pT H → bb̄ decays [10–15]. This is an important
task in particle physics because measurements of high-pT

H → bb̄ decays may help resolve the loop-induced and
tree-level contributions to the gluon fusion process, provid-
ing a complementary approach to study the t Yukawa
beyond the tt̄H process [16–19]. These measurements are
also sensitive probes for physics beyond the standard model
[17,18,20–26]. Finally, improving these measurements is
important for measuring the Higgs boson self-coupling
through the production of HH → bb̄bb̄ [27–30].
While existing DL approaches have been successfully

applied to jet tagging, particle jets involve multiple entities
with complex interactions that are not easily encoded as
images or lists. Graphs provide a natural representation for
such relational information. Traditional machine learning
methods use feature engineering and preprocessing to learn
from these graphs, which can be time consuming and

costly, and may miss important features present in the data.
Graph representation learning, including graph convolution
networks [31–34] and graph generative models [35,36],
leverages DL to learn directly from graph-structured data.
In contrast to other DL methods, graph representation
learning can (1) handle irregular grids with non-Euclidean
geometry [37], (2) encode physics knowledge via graph
construction [38], and (3) introduce relational inductive
bias into data-driven learning systems [39]. For example,
while convolutional neural networks (CNNs) are powerful
classifiers that work extremely well for data represented on
a grid [40,41], geometric DL algorithms, such as graph
neural networks (GNNs) [42,43], are applicable even
without an underlying grid structure. Because the data in
many scientific domains are not Euclidean, GNNs emerge
as a more natural choice.
In this work, we propose to identify H → bb̄ jets with

an interaction network (IN), a type of graph network.
In Ref. [44], INs were introduced to describe complex
physical systems and predict their evolution after a certain
amount of time. This was achieved by constructing graph
networks to learn the interactions between the physical
objects, represented as the nodes of the graph. Just as noted
jet substructure variables like Nβ¼1

2 and Dβ¼1
2 compute

2-point energy correlation functions between jet constitu-
ents to quantify the number of prongs in a jet [45,46], we
posit that the ability of INs to learn complex pairwise
relationships aids in identifying the patterns present in
H → bb̄ decays. Moreover, Ref. [47] showed that the
learned features of an IN correlate with known jet sub-
structure variables. It was further demonstrated that the
IN architecture outperformed other deep neural networks
(DNNs), such as dense, convolutional, and recurrent net-
works, for a jet-substructure classification task. However,
this study was limited because the simulation considered
was not fully realistic.
In this paper, we demonstrate that an interaction network

with an extended feature representation outperforms state
of the art methods forH → bb̄ tagging with GEANT4 -based
[48] realistic simulation, while relying on less parameters.
In particular, we investigate the use of INs to learn a
collective representation of the tracking, vertexing, and
substructure properties of the jet and employ this optimized
representation to enhance the tagging efficiency. By placing
charged particles and secondary vertices on a graph, the
network can learn a representation of each particle-to-
particle and particle-to-vertex interaction, and exploit this
information to categorize a given jet as signal (H → bb̄) or
background (QCD).
The study is carried out using a sample of fully simulated

LHC collision events, released by the CMS Collaboration
on the CERN Open Data portal [49]. Previously, many
machine learning studies were limited to studies based on
generator-level physics with simple detector emulation.
The released CMS full-simulation samples allow for a more

FIG. 1. Pictorial representation of ordinary quark and gluon jets
(top left), b jets (top center), and boosted-jet topologies, emerging
from high-pT W and Z bosons (top right), Higgs bosons (bottom
left), and top quarks (bottom right) decaying to all-quark final
states.
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in depth and realistic study of the efficacy of machine
learning methods on high-energy physics experiments. We
compare the performance to several different algorithms
that we trained with open simulation for H → bb̄ tagging
based on the architecture of the deep double-b (DDB)
tagger created by the CMS Collaboration [11].
The IN and DDB taggers only rely on information related

to charged particles, which (unlike neutral particles) can be
traced back to their point of origin: the PV of the high-pT
collision, any SV generated in the collision, or additional
PVs originating from simultaneous proton-proton inter-
actions (pileup). This choice makes the algorithm particu-
larly robust against the large pileup contamination expected
in future LHC runs since this contamination can be removed
via so-called charged hadron subtraction (CHS) [50]. For the
IN tagger, we consider an extended representation of each
charged particle (secondary vertex), with 22 (12) additional
features with respect to the nominal DDB tagger (as
discussed in Sec. III). To enable a fair comparison between
network architectures, we also report results for an extended
variant of the DDB tagger, the deep double-bþ ðDDBþÞ
tagger, which consumes the same information as the IN
tagger.
This paper is structured as follows: we discuss related

work in Sec. II. Section III gives a brief description of
the datasets used. Sections IV and V describe the IN
architecture and the algorithms used to decorrelate its
score from the jet mass distribution. Section VI describes
our reconstruction and training of the DDB and DDBþ
algorithms. Results are presented in Sec. VII and conclu-
sions are given in Sec. VIII.

II. RELATED WORK

The use of DNNs has recently found a great deal of
success in particle physics [6,51], especially jet tagging.
Driving this innovation are increasingly complex architec-
tures that are tailored to particular domains, including
CNNs [52–54], which are well suited to computer vision,
and recurrent neural networks (RNNs) [55,56] like long
short-term memory units (LSTMs) [57] and gated recurrent
units (GRUs) [58], which are appropriate for natural
language processing. Several classification algorithms have
been studied in the context of jet tagging at the LHC using
CNNs [59–63] and physics-inspired DNN models [63–66].
Recurrent and recursive layers have been used to define jet
classifiers starting from a list of reconstructed particle
momenta [67–70]. Recently, several different approaches,
applied to the specific case of t jet identification have been
compared [71] on a public t jet tagging dataset [72]. This
study found ParticleNet [73], a GNN based on the dynamic
graph CNN [34] to be the best performing for that task. In
Ref. [47], it was shown that the area under the receiver
operating characteristic (ROC) curve (AUC), accuracy, and
background rejection at a 30% true positive rate (TPR) of
a simple IN architecture trained with the same dataset is

within 1%, 0.5%, and 40% of those of ParticleNet, while
using 70% fewer parameters. Unsupervised, semisupervised,
and weakly supervised methods have also been proposed,
mainly to tag t jets or jets coming from postulated new
particles [74–84]. Finally, others have also explored the
CMS open data and simulation to study jet properties and jet
classification algorithms in a realistic setting [85–90].
For the task of identifying H → bb̄ specifically, several

machine learning approaches have been applied. In gen-
erator-level studies, Ref. [15] uses images, representing
both the H candidate jet and the full event, as inputs to a
CNN. In conditions more closely resembling real data, the
CMS Collaboration created a boosted decision tree based
on expert chosen features to identify the presence of two b
hadrons within a single anti-kT [91,92] R ¼ 0.8 jet
(AK8 jet) [10]. This approach was extended using a deep
neural network and additional particle-level and vertex
level information, the DDB tagger [11]. Other more generic
CMS algorithms, also based on deep neural networks and
known as the boosted event shape tagger (BEST) and the
DeepAK8 tagger, were created to classify the decays of
multiple heavy resonances, including H, Z, W, and t [13].
The ATLAS Collaboration has also designed an algorithm
to identify two b hadrons within an anti-kT R ¼ 1 jet using
b tagging of track-based subjets [14]. For the task of
H → bb̄ identification, the CMS DDB tagger, DeepAK8
algorithm, and the ATLAS tagger achieve similar state-of-
the-art performance.
Graph networks [47,71,73,93] and the related particle

flow networks [94] have recently been used for other kinds
of jet tagging, matching or exceeding the performances of
other DL approaches, for event classification [95,96], for
charged particle tracking in a silicon detector [97,98], for
mitigation of the effects pileup [99], and for particle
reconstruction in irregular calorimeters [98,100–102] and
the IceCube experiment [96].
While applying GNNs is natural for particle physics

data, one issue we confront in this paper is how to deal with
heterogeneous hierarchical data, i.e., data composed of
different sets of elements with different numbers and types
of features. The primary original contributions of this paper
are (1) designing an IN with data comprising a hetero-
geneous graph with two types of graph nodes: particles and
SVs), (2) demonstrating that an IN achieves competetive
performance on public, realistic simulation for the task of
H → bb̄ tagging with fewer trainable parameters in a way
that is robust to the effects of pileup, and (3) comparing and
evaluating mass decorrelation methods.

III. DATA SAMPLES

The CMS open data and simulation are available from
the CERN Open Data Portal [49], including releases of
2010, 2011, and 2012 CMS collision data as well as 2011,
2012, and 2016 CMS simulated data.

INTERACTION NETWORKS FOR THE IDENTIFICATION OF … PHYS. REV. D 102, 012010 (2020)

012010-3



Samples of H → bb̄ jets are available from simulated
events containing Randall-Sundrum gravitons [103]
decaying to two Higgs bosons, which subsequently decay
to bb̄ pairs. The event generation was done by the CMS
Collaboration with MADGRAPH5_aMCATNLO2.2.2 at leading
order, with graviton masses ranging between 0.6 and
4.5 TeV. Generation of this process enables better sampling
of events with large Higgs boson pT. The main source of
background originates from multijet events. The back-
ground dataset was generated with PYTHIA8.205 [104] in
different bins of the average pT of the final-state partons
(p̂T). The parton showering and hadronization was per-
formed with PYTHIA8.205 [104], using the CMS underlying
event tune CUETP8M1 [105] and the NNPDF 2.3 [106]
parton distribution functions. Pileup interactions are mod-
eled by overlaying each simulated event with additional
minimum bias collisions, also generated with PYTHIA8.205.
The CMS detector response is modeled by GEANT4 [48].
The outcome of the default CMS reconstruction work-

flow is provided in the open simulation [107]. In particular,
particle candidates are reconstructed using the particle-flow
(PF) algorithm [108]. Charged particles from pileup inter-
actions are removed using the CHS algorithm. Jets are
clustered from the remaining reconstructed particles using
the anti-kT algorithm [91,92] with a jet-size parameter
R ¼ 0.8. The standard CMS jet energy corrections are
applied to the jets. In order to remove soft, wide-angle
radiation from the jet, the soft-drop (SD) algorithm [5,109]
is applied, with angular exponent β ¼ 0, soft cutoff thresh-
old zcut < 0.1, and characteristic radius R0 ¼ 0.8 [110].
The SD mass (mSD) is then computed from the four-
momenta of the remaining constituents.
A signal H → bb̄ jet is defined as a jet geometrically

matched to the generator-level Higgs boson and both b
quark daughters. Jets from QCD multijet events are used to
define a sample of fake H → bb̄ candidates.
The dataset is reduced by requiring the AK8 jets to

have 300 < pT < 2400 GeV, jηj < 2.4, and 40 < mSD <
200 GeV. After this reduction, the dataset consists of
3.9 million H → bb̄ jets and 1.9 million inclusive QCD
jets. Charged particles are required to have pT > 0.95 GeV
and reconstructed secondary vertices (SVs) are associated
with the AK8 jet using ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δη2

p
< 0.8. The

dataset is divided into blocks of features, referring to
different objects. Different blocks are used as input by
the models described in the rest of the paper.
The IN uses 30 features related to charged particles (see

III in App. C). The IN also uses 14 SV features listed in
Table IV. The DDB tagger [11] uses a subset of the above
features (8 features for each particle and 2 features for
each SV), chosen to minimize the correlation with the jet
mass. In addition, the DDB tagger uses 27 high-level
features (HLF) listed in Table Vand first used in a previous
version of the algorithm, described in Ref. [10]. To isolate
the effects of the different architecture, the DDBþ tagger

uses the same inputs as the IN tagger, while retaining the
architecture of the DDB tagger. The charged particles (SVs)
are sorted in descending order of the 2D impact parameter
significance (2D flight distance significance) and only the
first 60 (5) are considered.

IV. THE INTERACTION NETWORK MODEL

The IN is based on two input collections comprising Np

particles, each represented by a feature vector of length P,
and Nv vertices, each represented by a feature vector of
length S. Although kinematic features of neutral particles
could also be taken into account with an additional input
graph, we verified that doing so does not significantly
improve the performance for this task as shown in Sec. VII.
Further, excluding neutral particles has the benefit of
improved robustness to pileup. For a single jet, the input
consists of an X and a Y matrix, with sizes P × Np and
S × Nv, respectively. The X matrix contains the input
features (columns) of the charged particles (rows), while
the Y matrix contains the input features of the SVs.
A particle graph Gp is constructed by connecting each

particle to every other particle through Npp ¼ NpðNp − 1Þ
directed edges. Similarly, a particle-vertex graph Gpv is
constructed by connecting each vertex to each particle
through Npv ¼ NpNv directed edges. As described below,
we only consider those edges that are received by particles

FIG. 2. Two example graphs with 3 particles and 2 vertices and
the corresponding edges.
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because the final aggregation is performed over the
particles. These graphs are pictorially represented in
Fig. 2 for the case of three particles and two vertices.
As shown in the figure, the graph nodes and edges are
arbitrarily enumerated. The result of the graph processing is
independent of the labeling order, as described below.
For the graph Gp, a receiving matrix (RR) and a sending

matrix (RS) are defined, both of size Np × Npp. The

element ðRRÞij is set to 1 when the ith particle receives
the jth edge and is 0 otherwise. Similarly, the element
ðRSÞij is set to 1 when the ith particle sends the jth edge and
is 0 otherwise. For the second graph, the corresponding
adjacency matrices RK (of size Np × Nvp) and RV (of size
Nv × Nvp) are defined. In the example of Fig. 2, the RR, RS,
RK , and RV matrices would be written as:

RR ¼

ðppÞ1 ðppÞ2 ðppÞ3 ðppÞ4 ðppÞ5 ðppÞ6
p1

p2

p3

0
B@

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1
CA ; ð1Þ

RS ¼

ðppÞ1 ðppÞ2 ðppÞ3 ðppÞ4 ðppÞ5 ðppÞ6
p1

p2

p3

0
B@
0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 1 0 0

1
CA ; ð2Þ

RK ¼

ðvpÞ1 ðvpÞ2 ðvpÞ3 ðvpÞ4 ðvpÞ5 ðvpÞ6
p1

p2

p3

0
B@

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1
CA ; ð3Þ

RV ¼
ðvpÞ1 ðvpÞ2 ðvpÞ3 ðvpÞ4 ðvpÞ5 ðvpÞ6

v1
v2

�
1 0 1 0 1 0

0 1 0 1 0 1

�
: ð4Þ

Each column of an adjacency matrix corresponds to a
directional connection from one particle to another, ðppÞi,
or from a vertex and to a particle, ðvpÞj. Column entries
that are 1 in a given row in the receiving matrix RR indicate
that the corresponding particle receives that connection.
Likewise, if a column entry is 1 in a given row in the
sending matrix RS, the corresponding particle is the sender
for that connection. Because the fully connected particle
graph we consider has no self-connections, i.e., no particle
sends and receives the same connection, the rows of RR and
RS do not share any of the same nonzero column entries.
For the RR and RV adjacency matrices, we only consider
those connections that are sent to particles because the final
aggregation is performed over the particles. We tested a
version of the IN architecture in which we considered
connections that are sent to vertices as well and aggregated
separately before being processed by the final network, but
found no significant improvement.
The data flow of the IN model is pictorially represented

in Fig. 3. The input processing starts by creating the
2P × Npp particle-particle interaction matrix Bpp and the

ðPþ SÞ × Nvp particle-vertex interaction matrix Bvp

defined as

Bpp ¼
�
X · RR

X · RS

�
; ð5Þ

Bvp ¼
�
X · RK

Y · RV

�
; ð6Þ

where · indicates the ordinary matrix product. Each column
of Bpp consists of the 2P features of the sending and
receiving nodes of each particle-particle interaction, while
each column of Bvp consists of the Pþ S features of each
particle-vertex one.
Processing each column of Bpp by the function fppR , one

builds an internal representation of the particle-particle
interaction with a function fppR ∶R2P ↦ RDE , where DE is
the size of the internal representation. This results in an
effect matrix Epp with dimensions DE × Npp. We similarly
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build the Evp matrix, with dimensions DE × Nvp, using a
function fvpR ∶RPþS ↦ RDE .
We then propagate the particle-particle interactions back

to the particles receiving them, by building Ēpp ¼ EppR⊤
R

with dimension DE × Np. We also build Ēvp ¼ EvpR⊤
V

with dimensionDE × Np, which collects the information of
the particle-vertex interactions for each particle and across
all of the vertices.
The next step consists of building the C matrix, with

dimensions ðPþ 2DEÞ × Np, by combining the input
information for each particle (X) with the learned repre-
sentation of the particle-particle (Ēpp) and particle-vertex
(Ēvp) interactions:

C ¼

0
B@

X

Ēpp

Ēvp

1
CA: ð7Þ

The final aggregator combines the input and interaction
information to build the post-interaction representation
of the graph, summarized by the matrix O, with dimen-
sions DO × Np. The aggregator consists of a function

fO∶RPþ2DE ↦ RDO , which computes the elements of
the O matrix The elements of the O matrix are computed
by a function fO∶RPþ2DE ↦ RDO , which returns the
post-interaction representation for each of the input
nodes. As is done for fppR and fvpR , fO is applied to each
column of C.
We stress the fact that the by-column processing applied

by the fppR , fvpR , and fO functions and the sum across
interactions by defining the Ēpp and Ēvp matrices are
essential ingredients to make the outcome of the IN tagger
independent of the order used to label theNp input particles
and Nv input vertices. In other words, while the represen-
tations of the RR, RS, RK , and RV matrices depend on the
adopted labeling convention, the final representation of
each particle does not.
The learned representation of the post-interaction graph,

given by the elements of the O matrix, can be used to solve
the specific task at hand. Depending on the task, the
final function that computes the classifier output may be
chosen to preserve the permutation invariance of the input
particles and vertices. In this case, we first sum along each
row (corresponding to a sum over particles) ofO to produce
a feature vector Ō with length DO for the jet as a whole.

 RR [Np  Npp]

 RS [Np  Npp]

Bpp [2P  Npp]

Rpp
Rpp

Rpp

Rpp
P

 fe
at

ur
es

Np particles

Epp [DE  Npp]

 RK [Np  Nvp,]

 RV [Nv  Nvp]

Bvp [(P+S)  Nvp]

S
 fe

at
ur

es

Nv vertices

Rvp
Rvp

Rvp

Rvp

Evp [DE  Nvp] Evp [DE  Np]

Epp [DE  Np]

 RR [Npp  Np]
T

 RK [Nvp  Np]
T

C [(P+2DE)  Np]

O

O

O

O [DO  Np]

O [DO]

Sum 
rowsH(bb)

C

QCD

X [P  Np]

Y [S  Nv]

FIG. 3. Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving and sending matrices RR and RS to
build the particle-particle interaction feature matrix Bpp. Similarly, the particle feature matrix X and the vertex feature matrix Y are
multiplied by the adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix Bvp. These pairs are
then processed by the interaction functions fppR and fvpR , and the postinteraction function fO, which are expressed as neural networks
and learned in the training process. This procedure creates a learned representation of each particle’s postinteraction features, given by
Np vectors of size DO. The Np vectors are summed, giving DO features for the entire jet, which is given as input to a classifier ϕC, also
represented by a neural network. More details on the various steps are given in the text.
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This is passed to a function ϕC∶RDO ↦ RN , which
produces the output of the classifier.
The training of the IN is performed with the CMS open

simulation with 2016 conditions. The input dataset is split
into training, validation, and test samples with percentages
of 80%, 10%, and 10%, respectively.
We use PyTorch [111,112] to implement and train the

classifier on one NVIDIA GeForce GTX 1080 GPU. We
also convert the interaction network into a TensorFlow model,
as discussed in Appendix B. The model is implemented
with each of fppR and fvpR expressed as a sequence of 3
dense layers of sizes (60,30,20) with a rectified linear unit
(ReLU) activation function after each layer. The function
fO is a similar sequence of dense layers of sizes (60,30,24)
with ReLU activations. We use up to Np ¼ 60 charged
particles and Nv ¼ 5 secondary vertices as inputs to the IN
tagger. Given the size of these layers, the total number of
trainable parameters is 18,144. We train the model using
the Adam optimizer [113] with an initial learning rate of
10−4 and a batch size of 128 for up to 200 epochs, enforcing
early stopping [114] on the validation loss with a patience
of 5 epochs. The size of the batch is constrained by the
required memory utilization of the GPU. The training takes
approximately 25 minutes per epoch on the GPU and
stopped after 110 epochs.
For the baseline algorithm, we minimize the categorical

cross-entropy loss function for this classification task LC
and let the network exploit all of the discriminating
information in the dataset.
To determine the impact of neutral particles, we also train

an augmented all-particle IN model, which consumes an
additional input set with 10 kinematic features for up to
100 charged or neutral particles, listed in Table VI. This
additional input set is processed by the model in a similar
way to the SV input set: the set of all particles is fully
connected to the set of charged particles. The effect matrix
for these interactions is computed by an independent neural
network and then appended to an enlargedCmatrix, now of
size ðPþ 3DEÞ × Np, before being processed by the net-
work fO. The remaining steps of the model proceed as
described above. The total number of trainable parameters
for this model is 24,254.

V. DECORRELATION WITH THE JET MASS

Many possible applications of a jet tagging algorithm
would require the final score to be uncorrelated from the jet
mass, so that a selection based on the tagger score does not
change the jet mass distribution. This is particularly
relevant for the background distribution, but is required
to some extent also for the signal one. Several techniques
exist to deliver a tagger with minimal effects on the jet mass
distribution. For taggers based on high-level features, one
could remove those features more correlated to the jet
mass or divide those correlated features by the jet mass.

For taggers based on a more raw representation of the jet
(as in this case), one could perform an adversarial training
[115–119]. One could also reweight or remove background
events such that the background mSD distribution is
indistinguishable from the signal mSD distribution [120].
Finally, one could also define a mass-dependent threshold
based on simulation as in the “designing decorrelated
taggers” (DDT) procedure proposed in Ref. [121]. We test
and compare all three methods in Appendix A. We found
the DDT method to be the most robust and performant
deocorrelation procedure. As such, we use it as the nominal
decorrelation method in the following results.

A. Designing decorrelated taggers

Following the DDT procedure [121], the tagger thresh-
old for a given false positive rate (FPR) or “working point”
is determined as a function of mSD. By creating a
mSD-dependent tagger threshold, the background jet mSD
distribution for events passing and failing this threshold can
be made identical. In practice, this is done by considering
the distribution of the network score versus the jet mSD for
the training dataset. A quantile regression was used to find
the threshold on the network score as a function of mSD
distribution that would correspond to a fixed quantile (the
chosen 1−FPR value). By construction, this procedure
results in near-perfect mass decorrelation.
In this case, a gradient boosted regressor [122,123] with

the following parameters was used:
(i) α-quantile of 1 − FPR,
(ii) number of estimators of 500,
(iii) minimum number of samples at a leaf node of 50,
(iv) minimum number of samples to split an internal

node of 2500,
(v) maximum depth of 5,
(vi) validation set of 20%,
(vii) early stopping with tolerance of 10.

VI. DEEP DOUBLE-B TAGGER MODELS

The DDB tagger is a convolutional and recurrent neural
network model developed by CMS [11] to identify boosted
H → bb̄ jets. We reconstruct this model based on publicly
available information from the CMS Collaboration as
follows. The model takes as input 27 HLFs used in
Ref. [10], as well as 8 particle-specific features of up to
60 charged particles, and 2 properties of up to 5 SVs
associated with the jet (see Appendix C). Each block of
inputs is treated as a one-dimensional list, with batch
normalization [124] applied directly to the input layers. For
each collection of charged particles and SVs, separate 1D
convolutional layers [125], with a kernel size of 1, are
applied: 2 hidden layers with 32 filters each and ReLU
[126] activation. The outputs are then separately fed into
two gated recurrent units (GRUs) with 50 output nodes
each and ReLU activations. Finally, the GRU outputs are
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concatenated with the HLFs and processed by a dense layer
with 100 nodes and ReLU activation, and another final
dense layer with 2 output nodes with softmax activation.
Dropout [127] (with a rate of 10%) is used in each layer to
prevent overfitting. The nominal DDB tagger model has
40,344 trainable parameters, 32% of which are found in the
fully connected layers.
We define a variant of this model, the DDBþ model,

which takes as input all 30 features of charged particles and
all 14 features of the SVs. In this variant, we do not
consider the HLFs. Thus, the final dense layer only receives
the GRU outputs from processing the low-level charged
particle and SV information. This extended DDBþ tagger
algorithm has 38,746 trainable parameters. The number of
parameters is less overall because the increase in the size of
the convolutional and recurrent layers is compensated by
the decrease in the size of the fully connected layers.
We train the DDB and DDBþ models using the CMS

open simulation dataset with Keras [128] over up to 200
epochs with an early stopping patience of 5 epochs and a
batch size of 4096 using the Adam optimizer with an initial
learning rate of 10−3. For both models, one training epoch
takes about 3 minutes and training stops after approx-
imately 50 epochs. In this case, the larger batch size is
possible due to the smaller GPU memory utilization of the
model during training. We find consistent performance for

different batch size choices with no evidence of overfitting
with larger batch sizes.
In order to decorrelate the tagger output from the jet

mass, we use the same DDT procedure described in
Sec. VA applied to both the DDB and DDBþ taggers.
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FIG. 4. Performance of the IN, all-particle IN, DDB, and
DDBþ algorithms quantified with a ROC curve of FPR (QCD
mistagging rate) versus TPR (H → bb̄ tagging efficiency). The
performance of each baseline algorithm is compared to that of
the algorithms after applying the DDT procedure to decorrelate
the tagger score from the jet mass. This decorrelation results in a
smaller TPR for a given FPR.
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FIG. 5. An illustration of the “sculpting” of the background
jet mass distribution (top) and the signal jet mass distribution
(bottom) after applying a threshold on the tagger score corre-
sponding to a 1% FPR for several different algorithms. The
unmodified interaction network is highly correlated with the jet
mass, but after applying the methods described in the text, the
correlation is reduced for the background while the peak of the
signal distribution is still retained.
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VII. RESULTS

In Fig. 4 the performance of the IN, all-particle IN, DDB,
and DDBþ algorithms are quantified in a ROC curve. The
axes are the TPR, or H → bb̄ tagging efficiency and the
false positive rate, or QCD mistagging rate. As shown in
Fig. 4, the IN provides an improved performance with
respect to the DDB and DDBþ taggers. At a 1% FPR, the
IN tagger outperforms the DDB and DDBþ taggers by
37% and 2% in TPR, respectively. Likewise, at a 50% TPR,
the IN tagger yields a factor of 6 or 1.2 better background
rejection (1/FPR) than the DDB or DDBþ tagger, respec-
tively. Thus, while the additional inputs provide a signifi-
cant improvement for the DDBþmodel, the IN architecture
is also important to achieve a better performance with
significantly less parameters than the DDBþ model.
We verified that one could match the performance

obtained by the IN with a DDB-inspired architecture and
expanding the model size. With 150,786 trainable param-
eters, a DDB architecture achieves the same performance as
the IN at the cost of 8 times more parameters. Because of
this the IN model holds an advantage in terms of memory
usage during inference over this alternative model.
Figure 4 also shows that there is only a modest improve-

ment in the AUC and accuracy by including information
in the IN model from neutral particles. For this reason and
to preserve robustness to increased pileup, in the following
results, we consider the original IN model that excludes
neutral particles.
Figure 5 shows an illustration of how the signal and

background jet mass distributions change after applying a
threshold on the different baseline and DDT-decorrelated
tagger scores. Following Ref. [119], we quantify the impact
of these algorithms on the mass decorrelation by computing
the Jensen-Shannon (JS) divergence:

DJSðPkQÞ ¼ 1

2
DKLðPkMÞ þ 1

2
DKLðQkMÞ; ð8Þ

where M ¼ 1
2
ðPþQÞ is the average of the normalized

mSD distributions of the background jets passing (P) and
failing (Q) a given tagger score and DKLðPkQÞ ¼P

i Pi logðPi=QiÞ is the Kullback-Leibler (KL) divergence.
Larger values of the metric 1=DJS correspond to a better
decorrelation.
After applying the mass decorrelation techniques, the

performance of each of the taggers worsens slightly but the

TABLE I. Performance metrics of the different baseline and decorrelated models, including accuracy, area under the ROC curve,
background rejection at a true positive rate of 30% an 50%, and true positive rate and mass decorrelation metric 1=DJS at a false positive
rate of 1%. For the DDT models, the corresponding accuracy is listed for the tagger after the decorrelation is performed for a FPR of
50%.

Model Parameters Accuracy AUC 1=εb 1=εb εs 1=DJS

@ εs ¼ 30% @ εs ¼ 50% @ εb ¼ 1% @ εb ¼ 1%

Baseline models

Interaction network 18,144 95.5% 99.0% 4616.9 1028.8 82.8% 4.5
Deep double-b 40,344 91.7% 97.2% 578.0 165.3 60.6% 75.3
Deep double-bþ 38,746 95.3% 98.8% 3863.1 852.7 81.5% 4.4

Decorrelated models
Interaction network, DDT 18,144 93.2% 98.5% 2258.7 540.0 75.6% 29,265.3
Deep double-b, DDT 40,344 86.8% 96.7% 456.6 136.8 55.9% 48,099.0
Deep double-bþ, DDT 38,746 92.9% 98.3% 1973.8 466.6 72.9% 15,171.2
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FIG. 6. The mass decorrelation metric 1=DJS as a function of
background rejection for the baseline and decorrelated IN, DDB,
and DDBþ taggers. The decorrelation is quantified as the inverse
of the JS divergence between the background mass distribution
passing and failing a given threshold cut on the classifier score.
Greater values of this metric correspond to better mass decorre-
lation. The background rejection is quantified as the inverse of the
FPR, while the signal efficiency is equal to the TPR.
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IN algorithm still significantly outperforms the DDB and
DDBþ taggers. Figure 6 displays the trade-off between the
background rejection and 1=DJS at different TPRs for the
baseline and DDT-decorrelated algorithms. At a 50% TPR,
the decorrelated IN algorithm achieves a significantly better
1=DJS by a factor of about 2,200 while the background
rejection decreases by a factor of about 3.3 compared to the
baseline IN algorithm. At a 1% FPR, the DDT-decorrelated
IN tagger has a TPR of 75.6% compared to the DDT-
decorrelated DDB (DDBþ) tagger with a 55.9% (72.9%)
TPR, corresponding to an improvement of 35% (4%).
Table I summarizes different performance metrics for the
three consideredmodels and their decorrelated versions. For
theDDTmodels, the corresponding accuracy is listed for the
tagger after the decorrelation is performed for a FPRof 50%.
To quantify the dependence on the number of pileup

interactions, Fig. 7 shows the performance of the different
algorithms as a function of the number of primary vertices
in the event, which scales linearly with the number of
pileup collisions. Using only charged particles and secon-
dary vertices as input, the IN tagger is robust against an
increasing number of pileup interactions, exhibiting behav-
ior similar to the DDB and DDBþ taggers.

VIII. CONCLUSIONS

We presented a novel technique using a graph represen-
tation of the jet’s constituents and secondary vertices based
on an interaction network to identify Higgs bosons decaying
to bottom quark-antiquark pairs (H → bb̄) in LHC colli-
sions. This model can operate on a variable number of jet

constituents and secondary vertices and does not depend on
the ordering schemes of these objects. The interaction
network was trained on an open simulation dataset released
by theCMSCollaboration in theCERNOpenData Portal. A
significant improvement in performance is observed with
respect to two alternative taggers based on the deep double-b
tagger created by the CMS Collaboration. By design, the
interaction network uses extended low-level input features
for particles and vertices, offers a more flexible representa-
tion of jet data, and is robust against the noise generated by
pileup collisions. Even when trained with the same set of
input features, the interaction network architecture outper-
forms the deep double-b architecture. Thus, while part of the
improvement is due to the extended input representation,
additional improvement comes from the interaction network
architecture, despite using on half as many parameters. The
interaction network algorithm implementation and its train-
ing code are available at Ref. [129].
Together with the best-performing models, we presented

additional models, obtained by applying different decorre-
lation techniques between the network score and the jet-
mass distribution. This was done to minimize the selection
bias of the classifier output towards any values of the jet
mass, which would make the algorithms suitable for
physics analyses relying on the jet mass as a discriminating
variable. As expected, the decorrelation procedure results
in a reduction of the H → bb̄ identification performance.
Nevertheless, the decorrelated interaction network model
outperforms the decorrelated deep double-b models.
Once applied to a full data analysis, this graph-based

tagging algorithm could contribute a substantial improve-
ment to the experimental precision of H → bb̄ measure-
ments, including those sensitive to beyond the standard
model physics and the Higgs boson self-coupling. These
results motivate further exploration of applications based
on interaction networks (and graph neural networks in
general) for object tagging and other similar tasks in
experimental high energy physics.
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APPENDIX A: ADDITIONAL MASS
DECORRELATION METHODS

In this appendix, we describe and compare two additional
mass decorrelation methods to the DDT procedure described
in Sec. V. In one method, we train two neural networks
simultaneously: the original classifier and an additional
network intended to regress the jet mass, known as the
adversary. The original classifier is trained to maximally
confuse the adversary. After training, the effect is the
classifier is not able to discriminate the jet mass. In the
other method, we train the classifier with sample weights,
such that the QCD background jet mass distribution is
reweighted to be identical to that of the H → bb̄ signal. We
then compare these procedures to the DDT method.

1. Adversarial training

The secondary adversary network is constructed that
consists of three hidden layers each with 64 nodes. The
adversary is trained simultaneously with the classifier
(interaction network) using the summed postinteraction
feature vector Ō as its input. From this input, the adversary
is trained to predict a one-hot encoding of the pivot feature
mSD, which we aim to decorrelate from the classifier output.
The chosen one-hot encoding corresponds to 40 mSD bins
from 40 to 200 GeV. The training begins by initializing the
weights from the best classifier training. The adversary is
then pretrained for 10 epochs using theAdamalgorithmwith
an initial learning rate of 10−4. During each epoch, the
classifier is first trained by minimizing the total loss

L ¼ LC − λLadversary: ðA1Þ
Subsequently, the adversary is trained by minimizing
Ladversary using only the background QCD samples. To
balance tagging performance and mSD correlation, λ ¼ 10
was chosen.

2. Sample reweighting

While adversarial training requires a complicated
tuning process, sample reweighting is a simpler way to
achieve the same goal. Individual QCD events are weighted
in the loss function based on their mass bin as to match
the signal jet mass distribution of the training sample.
Given a background event in certain mass bin, with the
number of background and signal events in that bin
denoted asNbin

b andNbin
s , respectively, the event is weighted

by wbin ¼ Nbin
s =Nbin

b .

3. Results

Figure 8 shows a comparison of the ROC curves for
the baseline IN algorithm and the versions that were
decorrelated using the DDT procedure, adversarial training,
and sample reweighting. Table II summarizes a variety of
performance metrics for the decorrelated algorithms
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FIG. 8. Performance of IN algorithm compared to the same
after applying the three techniques described in the text to
decrease the degree to which the tagger score is dependent on
the mass of the jet. This results in a lower performance
because the algorithm is forced to have reduced correlation
with the jet mass.

TABLE II. Performance metrics of the three decorrelated IN models, including accuracy, area under the ROC curve, background
rejection at a true positive rate of 30% and 50%, and true positive rate and mass decorrelation metric 1=DJS at a false positive rate of 1%.

Model Parameters Accuracy AUC

1=εb 1=εb εs 1=DJS

@ εs ¼ 30% @ εs ¼ 50% @ εb ¼ 1% @ εb ¼ 1%

Interaction network, adversarial 18,144 94.6% 98.6% 2381.0 540.1 76.5% 124.6
Interaction network, QCD reweight. 18,144 93.4% 98.3% 1864.9 436.2 73.2% 2051.0
Interaction network, DDT 18,144 93.2% 98.5% 2258.7 540.0 75.6% 29,265.3
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including 1=DJS, which quantifies the success of the
decorrelation procedure for a given FPR. As shown in
Fig. 8 and Table II, the DDT procedure provides the best
decorrelation in terms of 1=DJS, and comparable to the
best accuracy, AUC, background rejection, and tagging
efficiency.

APPENDIX B: MODEL IMPLEMENTED
IN ONNX AND TENSORFLOW

In order to integrate the IN algorithm into experimental
workflows, it is often necessary to provide the algorithm in
other formats. For example, the CMS experimental soft-
ware framework CMSSW [130] currently only supports
ONNX [131], TensorFlow [132], and MXNET [133] models.
To perform this conversion, we first translate the PyTorch

model into an ONNX representation using the built-in
exporter. Then the conversion to TensorFlow is performed
with the dedicated TensorFlow backend for ONNX [134]. The
trained model in all three formats is available at Ref. [129].

APPENDIX C: DATASET FEATURES

The charged particle features used by the IN and DDB
taggers are listed in Table III. The SV features used by both
taggers are listed in Table IV, and the high-level features
used only by the reconstructed DDB tagger are shown in
Table V. Finally, additional features of charged or neutral
particles are listed in Table VI to demonstrate the change in
the performance of the IN model by including neutral
particles.

TABLE III. Charged particle features. The IN and DDBþ models use all of the features, while the DDB algorithm uses the subset of
features indicated in bold.

Variable Description

track_ptrel pT of the charged particle divided by the pT of the AK8 jet
track_erel Energy of the charged particle divided by the energy of the AK8 jet
track_phirel Δϕ between the charged particle and the AK8 jet axis
track_etarel Δη between the charged particle and the AK8 jet axis
track_deltaR ΔR between the charged particle and the AK8 jet axis
track_drminsv ΔR between the associated SVs and the charged particle
track_drsubjet1 ΔR between the charged particle and the first soft drop subjet
track_drsubjet2 ΔR between the charged particle and the second soft drop subjet
track_dz Longitudinal impact parameter of the track, defined as the distance of closest approach of the track

trajectory to the PV projected on to the z direction
track_dzsig Longitudinal impact parameter significance of the track
track_dxy Transverse (2D) impact parameter of the track, defined as the distance of closest approach of the track

trajectory to the beam line in the transverse plane to the beam
track_dxysig Transverse (2D) impact parameter of the track
track_normchi2 Normalized χ2 of the track fit
track_quality Track quality: undefQuality ¼ −1, loose ¼ 0, tight ¼ 1, highPurity ¼ 2,

confirmed ¼ 3, looseSetWithPV ¼ 5, highPuritySetWithPV ¼ 6, discarded ¼ 7,
qualitySize ¼ 8

track_dptdpt Track covariance matrix entry (pT, pT)
track_detadeta Track covariance matrix entry (η, η)
track_dphidphi Track covariance matrix entry (ϕ, ϕ)
track_dxydxy Track covariance matrix entry (dxy, dxy)
track_dzdz Track covariance matrix entry (dz, dz)
track_dxydz Track covariance matrix entry (dxy, dz)
track_dphidz Track covariance matrix entry (dϕ, dz)
track_dlambdadz Track covariance matrix entry (λ, dz)
trackBTag_EtaRel Δη between the track and the AK8 jet axis
trackBTag_PtRatio Component of track momentum perpendicular to the AK8 jet axis,

normalized to the track momentum
trackBTag_PParRatio Component of track momentum parallel to the AK8 jet axis, normalized to the track momentum
trackBTag_Sip2dVal Transverse (2D) signed impact parameter of the track
trackBTag_Sip2dSig Transverse (2D) signed impact parameter significance of the track
trackBTag_Sip3dVal 3D signed impact parameter of the track
trackBTag_Sip3dSig 3D signed impact parameter significance of the track
trackBTag_JetDistVal Minimum track approach distance to the AK8 jet axis
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TABLE V. High-level features used by the DDB algorithm.

Variable Description

fj_jetNTracks Number of tracks associated with the AK8 jet
fj_nSV Number of SVs associated with the AK8 jet (ΔR < 0.7Þ
fj_tau0_trackEtaRel_0 Smallest track Δη relative to the jet axis, associated to the first N-subjettiness axis
fj_tau0_trackEtaRel_1 Second smallest track Δη relative to the jet axis, associated to the first N-subjettiness axis
fj_tau0_trackEtaRel_2 Third smallest track Δη relative to the jet axis,

associated to the first N-subjettiness axis
fj_tau1_trackEtaRel_0 Smallest track Δη relative to the jet axis, associated to the second N-subjettiness axis
fj_tau1_trackEtaRel_1 Second smallest track Δη relative to the jet axis, associated to the second N-subjettiness

axis
fj_tau1_trackEtaRel_2 Third smallest track Δη relative to the jet axis, associated to the second N-subjettiness

axis
fj_tau_flightDistance2dSig_0 Transverse (2D) flight distance significance between the PVand the SV with the smallest

uncertainty on the 3D flight distance associated to the first N-subjettiness axis
fj_tau_flightDistance2dSig_1 Transverse (2D) flight distance significance between the PVand the SV with the smallest

uncertainty on the 3D flight distance associated to the second N-subjettiness axis
fj_tau_vertexDeltaR_0 ΔR between the first N-subjettiness axis and SV direction
fj_tau_vertexEnergyRatio_0 SV energy ratio for the first N-subjettiness axis, defined as the total energy of all SVs

associated with the first N-subjettiness axis divided by the total energy of all the tracks
associated with the AK8 jet that are consistent with the PV

fj_tau_vertexEnergyRatio_1 SV energy ratio for the second N-subjettiness axis
fj_tau_vertexMass_0 SV mass for the first N-subjettiness axis, defined as the invariant mass of all tracks from

SVs associated with the first N-subjettiness axis
fj_tau_vertexMass_1 SV mass for the second N-subjettiness axis
fj_trackSip2dSigAboveBottom_0 Track 2D signed impact parameter significance of the first track lifting the combined

invariant mass of the tracks above the b hadron threshold mass (5.2 GeV)
fj_trackSip2dSigAboveBottom_1 Track 2D signed impact parameter significance of the second track lifting the combined

invariant mass of the tracks above the b hadron threshold mass (5.2 GeV)
fj_trackSip2dSigAboveCharm_0 Track 2D signed impact parameter significance of the first track lifting the combined

invariant mass of the tracks above the c hadron threshold mass (1.5 GeV)
fj_trackSipdSig_0 Largest track 3D signed impact parameter significance
fj_trackSipdSig_1 Second largest track 3D signed impact parameter significance
fj_trackSipdSig_2 Third largest track 3D signed impact parameter significance
fj_trackSipdSig_3 Fourth largest track 3D signed impact parameter significance
fj_trackSipdSig_0_0 Largest track 3D signed impact parameter significance associated to the first

N-subjettiness axis

(Table continued)

TABLE IV. Secondary vertex features. The IN and DDBþ models use all of the features, while the DDB algorithm uses the subset of
features indicated in bold.

Variable Description

sv_ptrel pT of the SV divided by the pT of the AK8 jet
sv_erel Energy of the SV divided by the energy of the AK8 jet
sv_phirel Δϕ between the SV and the AK8 jet axis
sv_etarel Δη between the SV and the AK8 jet axis
sv_deltaR ΔR between the SV and the AK8 jet axis
sv_pt pT of the SV
sv_mass Mass of the SV
sv_ntracks Number of tracks associated with the SV
sv_normchi2 Normalized χ2 of the SV fit
sv_costhetasvpv cos θ between the SV and the PV
sv_dxy Transverse (2D) flight distance of the SV
sv_dxysig Transverse (2D) flight distance significance of the SV
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