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It is argued that in the paper by A. A. Garcia-Diaz and G. Gutierrez-Cano [Phys. Rev. D 100, 064068
(2019)] on nonlinear electrodynamics coupled to general relativity, along with some interesting results and
useful observations, many statements are either inaccurate or incomplete. In particular, the authors only
consider solutions with an electric charge, whereas their magnetic counterparts have features of equal
interest, both similar to and different from those of electric ones. Moreover, it is not mentioned that in
electric solutions with a regular center the Lagrangian function LðfÞ (f ¼ FμνFμν) cannot have a Maxwell
weak-field limit. The observation on superpositions of regular solutions suffers some inaccuracies.
The present Comment tries to fill these gaps and to provide necessary corrections.
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In their paper [1], A. A. Garcia-Diaz and G. Gutierrez-
Cano focused on the properties of static, spherically,
planarly and pseudospherically symmetric metrics of gen-
eral relativity (GR) coupled to nonlinear electrodynamics
(NED) that, in their opinion, had been previously unnoticed.
In particular:
(1) Extension of the Birkhoff theorem to Einstein-NED

space-times.
(2) Determination of the algebraic types of the NED

stress-energy tensor (SET) Tν
μ, hence of the Einstein

tensor Gν
μ.

(3) A formulation of the inverse integration method.
(4) The existence of linear superpositions of Einstein-

NED solutions with given metric functions.
(5) A generating technique for obtaining multiparamet-

ric and asymptotically Reissner-Nordström (RN)
solutions.

(6) A description of a class of regular black hole
solutions.

Also, the authors consider only solutions with an electric
field, which is important since, in general, there is no electric-
magnetic duality in NED.
Let us briefly discuss all these points. For better trans-

parency, let us restrict ourselves to static, spherically
symmetric metrics (an extension to the planar and pseu-
dospherical symmetries is simple and evident) and apply
more usual notations than those in [1]. On the other hand,
for completeness, systems with both electric and magnetic
charges will be considered.

It makes sense, for further discussion, to begin with
reproducing some well-known facts on the static, spheri-
cally symmetric Einstein-NED system according to [2–5]
(and many others) in the presence of both electric and
magnetic charges. We consider the action

S ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
d4x½R − LðfÞ�; f ¼ FμνFμν; ð1Þ

where Fμν is the electromagnetic tensor, LðfÞ is an
arbitrary function, and we use units in which c ¼ 8πG ¼ 1.
In the general static, spherically symmetric metric

ds2 ¼ AðrÞdt2 − dr2

BðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

the only possible nonzero components of Fμν are Ftr ¼
−Frt (a radial electric field) and Fθϕ ¼ −Fϕθ (a radial
magnetic field). The electromagnetic field equations
∇μðLfFμνÞ ¼ 0 and ∇μ

�Fμν ¼ 0 (the asterisk denotes
duality) imply

r2LfFtr ¼ qe; Fθϕ ¼ qm sin θ; ð3Þ

where Lf ≡ dL=df, and the constants qe and qm are the
electric and magnetic charges, respectively. The only
nonzero SET components are

Tt
t ¼ Tr

r ¼
L
2
þ feLf; Tθ

θ ¼ Tϕ
ϕ ¼ L

2
− fmLf; ð4Þ
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fe ¼ 2FtrFrt ¼ 2q2e
L2
fr

4
; fm ¼ 2FθϕFθϕ ¼ 2q2m

r4
; ð5Þ

so that f ¼ fm − fe. The equality Tt
t ¼ Tr

r, through the
Einstein equations, leads without loss of generality to
AðrÞ≡ BðrÞ, so that

ds2 ¼ AðrÞdt2 − dr2

AðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ; ð6Þ

with only one unknown metric function AðrÞ. From the
Einstein equation Gt

t ¼ −Tt
t it follows

AðrÞ ¼ 1 −
2MðrÞ

r
; MðrÞ ¼ 1

2

Z
Tt
tðrÞr2dr; ð7Þ

where MðrÞ is called the mass function. This relation
involves both electric and magnetic charges according to
(3) and (4) [3,4]. A possible inclusion of the cosmological
constant Λ adds the term −Λr2=3 to the expression (7) for
AðrÞ, the corresponding solutions are discussed, e.g.,
in [6–9].
Now we can pass on to discussing items 1–6.
(1) The Birkhoff theorem. There was no need to prove

this theorem anew for the system in question
because it is a special case of the extended Birkhoff
theorem proved in [10,11], where sufficient con-
ditions for its validity were formulated as require-
ments to the SET components, and these conditions
(Tr

t ¼ 0 and that some combination Tr
r þ const · Tt

t
should not depend on A if, in the metric (2), both A
and B are allowed to depend on both r and t) are
manifestly fulfilled for the tensor (4). Particularly,
the Birkhoff theorem for systems with Tr

r ¼ Tt
t

(“Dymnikova’s vacuum”) was discussed in [12].
Another, more geometric formulation of the ex-

tended Birkhoff theorem was presented in [13,14],
and it includes, in particular, systems with SETs of
Segre types [(111,1)] and [(11) (1,1)] that correspond
to a cosmological constant and NED, respectively.
One should note that the meaning of the (extended)

Birkhoff theorem is not that a certain kind of matter
in space-times of given (here, spherical) symmetry
necessarily creates a static metric, but that this metric,
due to the field equations, necessarily contains an
additional symmetry, not initially postulated. The
corresponding Killing vector may be timelike (then
the metric is static), spacelike (as happens in time-
dependent black hole interiors) or null (see examples,
e.g., in [15]). This important circumstance was not
mentioned in [1].

(2) Algebraic types of Tν
μ and Gν

μ. As already said,
having the structure (4), the SET of NED with
spherical symmetry belongs to the Segre type
[(11) (1,1)] that corresponds to two different pairs

of eigenvalues. This is certainly well known and
cannot be regarded a result. However, of certain
interest is the observation that in the Einstein-NED
system the traceless Ricci tensor Sνμ ≔ Rν

μ − 1
4
δνμR

has the form Sνμ ¼ S diagð1;−1; 1;−1Þ.
What the authors of [1] call a theorem (top of

the right column on page 4), sounds really strange:
“Besides the vacuum with Λ solutions, static
Schwarzschild-like metrics only allow electromag-
netic solutions to the Einstein (linear or nonlinear)
electrodynamics equations.” First, the authors re-
peatedly use the words “Schwarzschild-like metrics”
but nowhere define what they mean by them. Even if
this term is used somewhere else, it is not widely
known and must be clearly defined. Second, very
probably “Schwarzschild-like” means the metric (6)
with any AðrÞ. But anyway, the algebraic type of
the SET certainly does not uniquely prescribe the
kind of matter it belongs to. For example, the Segre
type [(11) (1,1)] of SET pertains not only to NED
but also to non-Abelian Yang-Mills fields.

(3) The inverse integration method. For electric solutions
(qe ≠ 0, qm ¼ 0), the inverse integration method is
formulated in [1], presentingFrt and LðfÞ in terms of
the “structure function” QðrÞ ¼ AðrÞ=r2 in Eqs. (18)
and (19). In our notations, in terms of the metric
function AðrÞ, we have equivalently

2qeFtrðrÞ ¼ −1þ A −
1

2
r2A00; ð8Þ

LðrÞ ¼ −Λ − A00 − 2
A0

r
ð9Þ

(the prime stands for d=dr). This gives the quantities
Ftr (hence f ¼ −fe ¼ −2F2

tr) andL as functions of r.
It is, however, important but ignored in [1], that with
chosen AðrÞ [or QðrÞ], the function fðrÞ will not
always bemonotonic, and thus it is not always possible
to obtain an unambiguous Lagrangian function LðfÞ.
Unlike that, for systems with pure magnetic charge

(qe ¼ 0, qm ≠ 0), the function fðrÞ ¼ fm ¼ 2q2m=r4

is monotonic, hence for givenAðrÞwe always obtain a
well-defined Lagrangian functionLðfÞ [3]: as follows
from (7) with possible Λ ≠ 0,

LðrÞ ¼ 4M0

r2
¼ −2Λþ 2

r2
ð1 − A − rA0Þ: ð10Þ

In the dyonic casewith both nonzero qe and qm, the
situation is more complicated [5,16,17]: given AðrÞ,
there is no direct expression for LðrÞ; instead of (10),
we obtain from (7)

4M0

r2
¼ −2Λþ 2

r2
ð1 − A − rA0Þ ¼ Lþ 4q2e

Lfr4
: ð11Þ
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(4) Linear superpositions of solutions. As noticed in [1],
Eqs. (18) and (19) (equivalent to (8) and (9) in the
present Comment) are linear in the structure function
QðyÞ or, equivalently, in the metric function AðrÞ in
the present notations. It then directly follows that if
each of the functions QiðyÞ (or AiðrÞ) describes a
solution to the NED-Einstein equations with electric
charges qei and the quantities qeiFtrðrÞ, LiðrÞ and
Λi, then their linear combinations (with constant
coefficients ci) also describe electric solutions, in
which the quantities qeFtrðrÞ, LðrÞ and Λ are linear
combinations of the constituent quantities with the
same coefficients.
The authors have formulated this result as a

theorem: “For static Schwarzschild metrics coupled
to electrodynamics (linear and nonlinear) and a Λ
term (if any), any linear superposition of structural
functions leads to linear superpositions of Lagran-
gian functions and the corresponding electromag-
netic field functions.”
This formulation, as well as the unnumbered

equation after it, are not precise, even forgetting
that the term “Schwarzschild metric” is used here in
an unusual manner. The following points are miss-
ing: (i) For

P
i ciAiðrÞ to satisfy (8), it is requiredP

i ci ¼ 1; (ii) not Ftr but qeFtr is a subject of
superposition (the statement on Ftr in [1] is correct
only if the charge qe is the same in all constituent
solutions), and (iii) the resulting Λ is

P
i ciΛi.

One should add that, as before, in all thus obtained
electric solutions one should take care of the
monotonicity of fðrÞ ¼ −2F2

tr, otherwise LðfÞ is
ill defined.
In the magnetic case, Eq. (10) is also linear with

respect to AðrÞ, therefore emerges a similar super-
position method of constructing new solutions from
known ones, but the magnetic charge values are not
directly related to (10), and this issue should be
analyzed separately.

(5) Multiparametric and asymptotically RN solutions.
The above-described superpositions are character-
ized in [1] as a generating technique for obtaining
multiparametric solutions. Indeed, it allows for
obtaining new solutions from known ones. Though,
concerning the number of parameters, let us recall
that actually, if LðfÞ is not specified, we have an
arbitrary function AðrÞ (or QðyÞ in [1]), which can
be endowed with any number of parameters. As to
solutions with RN asymptotic behavior, it is clear
that if AðrÞ is specified with a proper large r
behavior, the whole solution will also behave prop-
erly at large r. The example of a multiparametric

electric solution discussed in [1] confirms that.
Similar examples of magnetic solutions can also
be constructed.

(6) Regular black holes and solitons. It is correctly said
[1] that regularity at the center r ¼ 0 (as at any other
location) requires finiteness of all curvature invar-
iants. However, there is no need to calculate them for
each particular solution since it is well known that
the metric (6) is regular at r ¼ 0 if and only if
AðrÞ ¼ 1þ const · r2 þ oðr2Þ as r → 0 (see, e.g.,
[18]). Any such function provides a regular center,
both in the electric and magnetic cases. Moreover,
a superposition of solutions regular at r ¼ 0 is
also regular at r ¼ 0 under the evident conditionP

i ci ¼ 1.
However, a well-known important property of electric

solutions, not mentioned in [1], is that a Lagrangian
function LðfÞ providing a solution with a regular center
cannot have a Maxwell weak field limit (L ∼ f as f → 0)
[19]. At such a center the electric field should be zero, so
that f → 0, but it then follows from the field equations that
Lf → ∞ as r → 0, which means a strongly non-Maxwell
behavior at small f. In dyonic solutions (qe ≠ 0, qm ≠ 0), a
regular center also requires a non-Maxwell weak field limit
of LðfÞ [3]. Only pure magnetic solutions are compatible
with a correct weak-field limit of LðfÞ: in this case, at a
regular center, f ¼ 2q2m=r4 → ∞ but LðfÞ → const < ∞,
providing finite limits of both the SET components and the
curvature invariants.
An electric solution can have a regular center (it

describes a black hole if there are zeros of AðrÞ at r > 0
or a solitonic particlelike object if AðrÞ > 0 at all r), where
Lf → ∞ as f → 0, and a RN asymptotic behavior at large
r, where L ∝ f at small f, which, however, means that
these are different functions LðfÞ. In other words, different
NED theories are acting in different parts of space. It is an
example of what happens if, in a particular solution, fðrÞ in
not monotonic. Pure magnetic solutions are free from this
shortcoming. A more detailed discussion of such situations
can be found in [3,5,20].
To conclude, the paper [1], containing some interesting

results and observations, is not free from significant gaps
and inaccuracies which I tried to fill or correct in this
Comment.
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