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We dimensionally reduce the spacetime action of bosonic string theory, and that of the bosonic sector of
heterotic string theory after truncating the Yang-Mills gauge fields, on a d-dimensional torus including all
higher-derivative corrections to first order in «'. A systematic procedure is developed that brings this action
into a minimal form in which all fields except the metric carry only first-order derivatives. This action is
shown to be invariant under O(d, d,R) transformations that acquire o'-corrections through a Green-
Schwarz type mechanism. We prove that, up to a global prefactor, the first-order o’ -corrections are uniquely

determined by O(d, d,R) invariance.
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I. INTRODUCTION

String theory features the 7-duality property according
to which there is a nonlinear group action of O(d, d, Z) on
d-dimensional toroidal backgrounds such that all back-
grounds in one orbit are physically equivalent. When
restricting to the massless fields for compactifications on
tori, i.e., when performing dimensional reduction, this
duality implies invariance under the continuous symmetry
group O(d, d,R). For the two-derivative effective action
this symmetry was first shown explicitly for the (cosmo-
logical) reduction to one dimension by Veneziano and
Meissner in Refs. [1,2] and later generalized to arbitrary d
by Maharana and Schwarz [3].

It was proven by Sen, using closed string field theory,
that the O(d,d,R) symmetry of dimensionally reduced
theories is present to all orders in ' [4], but it remains as a
highly nontrivial problem to actually display this symmetry
when higher-derivative «-corrections are included. First
significant progress was due to Meissner who investigated
the dimensional reduction to one dimension including the
four-derivative terms that appear in string theory to first
order in o [5] (for earlier work on the heterotic string see
Ref. [6]). He uncovered the expected O(d, d, R) symmetry,
but this required a series of elaborate field redefinitions
(that in particular cannot all originate from covariant field
redefinitions before reduction). Subsequent work consid-
ered the reduction on a single circle [7] and reductions on a
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general torus but truncating out all “off-diagonal” field
components [8]. In all these truncations there is a choice of
field variables for which the O(d, d, R) transformations are
undeformed, as is also suggested by string field theory [9].
In particular, this fact was used to classify all higher-
derivative corrections in cosmology that, somewhat sur-
prisingly, only require (higher powers of) first-order time
derivatives [10,11].

Recently, the higher-derivative o'-corrections of string
theory have been the focus of attention in the framework of
double field theory. Double field theory is a formulation
featuring a manifest O(d, d, R) invariance before dimen-
sional reduction by virtue of a generalized spacetime
with doubled coordinates transforming covariantly under
O(d, d,R) [12-15]. While the two-derivative double field
theory can be written naturally in terms of a “generalized
metric” that encodes the metric and B-field [cf. Eq. (2.9)
below], there are obstacles when including higher deriv-
atives that require a deformation of the framework (see
Refs. [16-23]). It was proven in Refs. [24,25] that the
general o -corrections of bosonic and heterotic string theory
cannot be written in terms of the generalized metric, so that
in particular the O(d, d, R) transformations of double field
theory get o’-deformed. Alternatively, one may set up a
generalized frame formalism for which O(d, d, R) remains
undeformed while the local frame transformations receive
a'-corrections [19,24,25].

In this paper we complete the existing literature by
giving the complete dimensionally reduced action for
bosonic string theory to first order in o/, i.e., including
all four-derivative terms, and prove its O(d, d, R) invari-
ance, presenting results that have recently been announced
in Ref. [26]. In particular, we prove that the first-order
o/-corrections are uniquely determined by O(d,d,R)
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invariance, up to an overall constant whose value depends
on the string theory under consideration. While this
O(d, d,R) invariance is also implied by the existence of
a'-deformed double field theory, whose dimensional reduc-
tion has already been explored in Ref. [22], until now it has
not been systematically investigated whether some of the
unexpected new features arising in double field theory also
show up in the dimensional reduction of conventional
(nonextended) theories, nor has the dimensionally reduced
action been displayed in a sufficiently simplified form that
allows for applications (and comparison with some of the
earlier results cited above). To our surprise we find that
there is no choice of field variables so that the full
dimensionally reduced action can be written in terms of
familiar O(d, d,R) covariant variables (such as the gener-
alized metric); rather, a generalized Green-Schwarz mecha-
nism is required under which the (external) singlet B-field
acquires nontrivial transformations under O(d,d,R),
hence implying that the O(d,d,R) action gets o'-
deformed. This effect has been invisible in all truncations
investigated so far, but it does mimic the situation in
double field theory before reduction. Intriguingly, the
o' -deformations needed in double field theory can thus
not be blamed entirely on its novel geometric structure,
but such deformations also emerge in completely conven-
tional dimensional reductions.

On a technical level, the present investigation requires
full control over all possible field redefinitions, both
redefinitions that are covariant in the usual sense [i.e.,
GL(d) covariant] and covariant with respect to O(d, d, R).
As one of the main technical results of this paper we present
a fully systematic procedure to test O(d, d, R) invariance,
generalizing that of Refs. [10,11] to higher dimensions.
One first dimensionally reduces the action as usual and then
uses GL(d) covariant field redefinitions to bring the action
into a form in which all fields apart from the metric appear
only with first-order derivatives. Next, one employs
O(d,d,R) covariant redefinitions in order to find the
minimal set of O(d, d, R) invariant four-derivative terms,
which then are decomposed under GL(d) with the aim to
match with the dimensionally reduced terms. Our analysis
applies to bosonic string theory but also to the bosonic
sector of heterotic string theory after truncating out the
Yang-Mills gauge fields, which still features a gravitational
Chern-Simons form (due to the original Green-Schwarz
mechanism).

The rest of the paper is organized as follows. In Sec. II,
we review the dimensional reduction of the leading two-
derivative action of the bosonic string, and its manifestly
O(d, d, R) symmetric formulation revealed in Ref. [3]. In
order to set up a systematic analysis of its higher-order
corrections, we outline how to organize and fix the
ambiguities related to partial integration and higher-order
field redefinitions. In Sec. III, we present a general counting
of independent higher-derivative terms upon modding out

these ambiguities. At order o/, we construct an explicit
61-dimensional basis of independent O(d, d, R) invariant
four-derivative terms, which is algebraic in first-order
derivatives and the Riemann tensor. Section IV presents
the explicit torus reduction of the four-derivative action of
the bosonic string. In particular, we show how all second-
order derivatives in the reduced action can be eliminated by
suitable field redefinitions. Comparing the result to our
explicit basis, we show in Sec. V that apart from a single
term the entire reduced action can be rewritten in terms
of manifestly O(d,d,R) invariant terms. Restoring
O(d,d,R) invariance of the full action then requires a
Green-Schwarz type mechanism inducing a nontrivial
O(d, d,R) transformation of order o' of the 2-form B,,.
In Sec. VI, we embed this structure into a frame formalism
in which the O(d, d, R) symmetry remains undeformed,
while the local frame transformations acquire «' deforma-
tions. Finally, in Sec. VII, we extend the analysis to the
bosonic sector of heterotic supergravity and present its
dimensionally reduced action in manifestly O(d,d,R)
invariant form. The Appendixes collect a number of explicit
technical results.

II. TWO-DERIVATIVE ACTION AND
SYSTEMATICS OF FIELD REDEFINITIONS

A main goal of this paper is to compute the dimensional
reduction of the bosonic string on a d-dimensional torus
including the first order in o and to make the resulting
O(d, d,R) symmetry manifest. In this section, we review
the reduction of the two-derivative action and its manifestly
O(d,d,R) symmetric formulation first exhibited in
Ref. [3]. We then discuss its field equations and the
systematics of nonlinear field redefinitions as a starting
point for the subsequent systematic analysis of the higher-
order corrections.

A. Reduction and O(d.d,R) symmetry

Let us start from the two-derivative effective action for
the bosonic string in D + d dimensions, with metric g,

antisymmetric Kalb-Ramond field E’ﬁ s, and dilaton q@:
. A PO A
10 = /dD+dX\/ —gA€_¢(R+aﬂ¢aﬂ¢—EH2>, (21)

where indices fi run over the (D + d)-dimensional space

and H?> = ﬁﬁﬁﬁlflﬁﬁﬁ with the field strength FIW/; =
38[,;3,; 5 To compactify on the spatial torus T4, we use
the index split X# = (x*,y™), with u € [[1, D[], m € [1,d]]
for curved indices, and {&} = {a,a}, with a € [1,D],
a € [1,d] for flat indices, and drop the dependence of all
fields on the internal coordinates y™. For the metric gy,
we use the vielbein formalism and consider the standard

Kaluza-Klein ansatz
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a Dnp q
Aﬂf — (eﬂ Aﬂ En )’ (22)
0 E,°

in terms of the D-dimensional vielbein e,”, Kaluza-Klein

)m

vector fields Aff , and the internal vielbein E,,“. The

metric §;, = é,%n, ﬁég then takes the form

1 1 1

R g/u/ +A;(4 )pquAz(/ )a A/(4 >pGpn (2 3)

G A(l)P G ’ )
mp“iv mn

where g,, = ¢,*n5¢,” and G, = E,,“5,,E," denote the
D-dimensional metric and the internal metric, respectively.

Similarly, the 2-form éﬁ - 18 parametrized as [3]

e o) ()p ’
_Avm +BmpAu an

(2.4)

in terms of D-dimensional scalars B,,, = —B,,,, vector

fields A,(,%),, and a 2-form B/w. The lower-dimensional

components of H q0p are defined using the standard
Kaluza-Klein procedure [3]: first converting H to flat
indices, block decomposing, and finally converting back
to curved indices using the lower-dimensional blocks e,*
and E,,“. This amounts to converting a curved index /I to a
curved index p using a contraction with eﬂ“éaﬁ and to m
contracting with E,,%é,", such that the resulting fields
transform covariantly under internal diffeomorphisms.'
With Eq. (2.3), this leads to

— (m (2)
Hyyp = 3048y, — % (A, " F

(1)m 4 (2)
o Fupn T Flu 4,

) (Dn
H;wm - F;wm - anF;w ) (25)
Hymn = vﬂanv
H,,,=0,
where we have defined the Abelian field strengths
Fu)" = 0,a0" = 0,45, (2.6)
F ;(ti)m = 8MA1(/2r21 - ayAf,Z, .

In terms of these objects, after dimensional reduction, the
action (2.1) then takes the form [3]

'Note that it is not the procedure that is used on B, as pointed
out in Ref. [27].

1
Iy = / dPx,/=ge=® <R +0,90' — - H,,, H"
1 1
+4 T1(9,69'G™) + ; Tr(G™'9,BG™' ' B)

1)m vn 1 mn v
)" G, FO ~ 3 HunG""H™,, ). (2.7)

with the rescaled dilaton ® = ¢ — 1log(det(G,,,)). In this
form, the action features an explicit GL(d) symmetry, as
guaranteed by toroidal reduction. The symmetry enhance-
ment to O(d, d, R) can be made manifest upon regrouping

the vector fields A,(,l)m and A£,2,31 into a single O(d, d,R)
vector
(I)ym
A= (M
g A )
pum
and the scalar fields G,,,, B,,, into an O(d, d, R) matrix

HMN as
G,,— B, ,G"B,, B, G
Hun = ( ! ! Gpmn ) (2.9)

-G""B,,

(2.8)

Throughout, the fundamental O(d, d, R) indices are raised
and lowered using the constant O(d, d, R) invariant matrix

v ( 0o & )
5,° 0 )
so that H~" is defined as HMV = nMPH »,n9N . In terms of

the fields (2.8) and (2.9), the reduced action (2.7) may be
cast into the manifestly O(d, d, R) invariant form [3]

(2.10)

1
Iy = /de —ge™® (R + 0, P D + g@MHMNa”HMN

1 1
_7f;wMHMNfﬂDN_7H Hﬂvﬂ), (211)

4 12 7#F
where F WM = 26[}4.,4”]1"1 is the Abelian field-strength
associated with the vectors (2.8). In terms of the covariant
objects (2.8) and (2.9), the infinitesimal O(d, d, R) varia-
tions of the fields are given by

{ Orgu =0, { SrHuy =Tw" Hpy + Tn"Hup.
6FB/4V - 0, 5FF#DM - —FMDNFNM,
(2.12)

for 'Y € o(d,d,R). The action (2.11) is manifestly
invariant under these transformations. For later conven-
ience, we also rewrite the action in terms of the matrix
SMN = HMP”IPN,
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1
Iy = /de —ge™® <R + 0, DD + gTr(aﬂSa"S)

1 1
—— F MSyNFry — EHW,,H””/’> .

; (2.13)

Note that SS = 1, so that S is a constrained field.

B. GL(d) fields redefinitions

Our aim is an extension of the previous construction to
higher orders in o'. As usual, the study of higher-derivative
terms requires one to carefully handle the ambiguities due
to the possible nonlinear field redefinitions. In particular,
the symmetry enhancement to O(d, d, R) will be possible
only after identification of the proper field redefinitions.
In this section, we describe the systematics of higher-order
field redefinitions based on the two-derivative action
(2.11), inspired by Refs. [10,11].

We consider the « extension of Eq. (2.11) as a
perturbation series

I:IO—|—11 —|—(’)(a'2), (214)

with the first-order term I; ~ O(). In order to organize the
possible ambiguities in I;, we consider field redefinitions
of the form

@ — @+ dép, (2.15)

where ¢ denotes a generic field. Under such redefinitions of
its fields, the variation of I to order « arises exclusively
from the variation of I, and takes the form

510 = a’/de _ge—q) [5¢5¢+ (Sg);w(sgﬂy
+ <SB>IW63”D + (gG)mnéGmn + (8B)mn58mn

- (Eq0) A" + (Ege )AL (2.16)

proportional to the field equations associated with the two-
derivative action I

1 1 1
Ep = —2L0 - R + VﬂCI)Vl‘(I) + EHz - —Tr(vﬂSV/‘S) + Z-FWMSMN]:WM

8
[ I e w 1
(€g)w =Ry +V,V,® — ZH"” + gTr(VﬂSV,,S) - EF””SM Frly+ Eg,w&p,
1
(gB);u/ = E (va/J/w - qu)H/);u/)’
1
(EG)mn = 3 [—DGmn +V,®oV“G,,, - (V,GV*G™'G), + (V,BG'V¥B)
LG P pmag, Ly g
+5 mpt pv qn_i uvm nj»
1
(EB)mn — 5 [(G—IDBG—l)mn _ VﬂdD(G‘IVf‘BG‘l)’"" + (G—IV#BVﬂG—lynn

1
+(V,GT'VIBGT)™ + 5 G"PH,,,Fmn

—_ %F(IWUY"G”PHIWP ,

1
(EA(I))yn = vﬂF(l)}wm(;mn - VM(I)F(]W”men - 5 prH/d/m - (EA(ZJ)Dman

+ F(l)ﬂymvﬂGmn - Hﬂym(G_lvﬂB)mn + (EB)W/(A/(J%?) - BnmAl(ll)m)v

l m m
(Eao)™" = V,HI, G = T, OHW, G 4 9, N, G 42 HI7 F)" 4 (E5),, A"

2
Here, H,, = H ,,,

(2.17)

H,?,V, denotes the covariant derivative with respect to g,,, and accordingly [J = V,V¥. At order o/, the

action thus is unique up to contributions proportional to the lowest-order field equations. In the next section, we will show
that by field redefinitions (2.15), the transformation (2.16) together with partial integrations allows one to map all terms at
order o to a basis which carries only first derivatives of all fields (except for the two-derivative terms within the Riemann

tensor).

As an example, let us show how a term carrying the factor [J® can be replaced by terms carrying only products of first

derivatives. Consider a generic term of /; of the form
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Z:a'/de —ge~ X0,

1

where X is a function of ®, R H

U po>

(2.18)

wps Guns B Ffw)m, and H,,,, (and their derivatives) which carries exactly two

derivatives. Redefining the dilaton and the metric as Eq. (2.15) with g, = 1g,,, Eq. (2.16) yields the transformation

1 D
oly=do / dPx/=ge® [DCI)(—Z&D +AD+1)) + ER(—ZéqD +A(D +2)) +V,0oVFD <5CI> - 5/1)

+ 21—4H2(25c1> — (D +6)) - %Tr(vﬂSV”S)(—ZSCD + 4D +2)) + éfﬂ,,MSMN.P’”N(Z(S(D —AD + 4))} . (2.19)

With the particular choice

{5CI>:%(D+2)X,
1=X,

the new terms (2.19) cancel the term Z and replace it by

1 1
Z'=d / dPx\/=ge~®X (v,,cbvw - 6H2 - 4f,wMSMNPwN>,

(2.20)

(2.21)

which carries only products of first-order derivatives. In the same fashion, all the four-derivative terms carrying the leading
two-derivative contributions from the field equations (2.17) can be transformed into terms carrying only products of
first-order derivatives. We may summarize the resulting replacement rules as

1

1
O - Qp = V,OVFD — 6H2 - Z]:’%SMN]:W’

1
V@ Vi®+7

Ry = Qg = 4

Hp

1 1
I%” - §Tr(vﬂ$vy8) + EfMSMNfD/}N

1 1 | )

VFH,,; = Qp,; = VFOH,,,;,

1 1
|:l(;mn - QGmn = v;4(Dv”Gmn - vmepvﬂquan - EH/u/mlen + vmepquv#Bqn + 5 ;(l?pGme(l)lquqm

1 1
0B,.. = Qpn = V,@V¥B,,, -V B, VGG, - G,,,V*GV B, — EH FOwrG, +-G,, FmwrH

1
VMF(I);U/m N QA(])um _ VM¢F(1);wm 4 H’wnanvprqum +§Hﬂy/}HﬂpnGnm _ F(l)/,wnvﬂG

1
V,H", — Quut, = V,OH",, — H" Y, GG, + EH/W’F,S})"Gnm.

Double parenthesis ((---)) in the second line refer to
traceless symmetrization. The associated field redefinitions
are collected in Table 1. As we will show in Sec. IV, all
other four-derivative terms can be mapped into the terms
listed in Table I upon using partial integration and Bianchi
identities.

III. O(d.d,R) INVARIANT BASIS AT ORDER «’

In this section, we present the construction of an
explicit O(d, d, R) invariant basis for the four-derivative

pvm 9 mp pvn>s

m
anp ’

(2.22)

|
terms in D dimensions. We discuss the general counting
of independent terms for building an action upon modd-
ing out field redefinitions and partial integrations. At
order & we find that the number of independent terms is
61 and coincides with the number of terms that can be
built from products of first-order derivatives (and the
Riemann tensor). We confirm the number by an explicit
construction of a 61-dimensional basis which we use
subsequently in order to organize the result of the explicit
torus reduction.
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TABLE L

Replacement rules for the terms carrying the leading two-derivative contribution from the field

equations descending from the two-derivative action (2.7) and associated field redefinitions. The explicit

replacement rules are given in Eq. (2.22).

Term in the action Field redefinitions Replacement
odXOP { 50 =1 (D+2)X dXQq
5g/w = g;wX
dX"Ry, 0 = =X ) = %gﬂvxﬂp adX" Qg
50 =—-L X,/
o X*"NrPH ,, 0B, = =2X |, ad X" Qp,,
a xXmn DGmn S5GMn — zx(mn) o Xmn QGmn
aX"™ 0B, 8B,y = —2G,,,XIPG,, & X" Qg
aXW,V F (Dpvm 5A,(41)m _ _X’mGnm a/va QAU)”m
2 np
8A\) = —X,,G""B,,,
8B, = (A (M)mwa WG™ = By A} X1, G"P)
(x/XUmVMH’”’m 5A;<37): I nGnm Ol/X,,mQA(z)Dm
1 m
5Bﬂb = AE,,) u] mn

A. Counting independent terms

Following the general discussion of field redefinition
ambiguities of the last section, we first count the number
of independent terms modulo the two-derivative field
equations (2.22) and Bianchi identities. At this stage we
do not yet restrict to Lorentz scalars; i.e., we keep all
D-dimensional spacetime indices uncontracted. In a second
step we will restrict to Lorentz scalars and account for the
freedom of partial integration. We start by defining the
alphabet whose letters are the O(d, d, R) invariant building
blocks in the various matter sectors (dilaton, scalars,
vectors, 2-forms, metric) before identifying all possible
symmetric words in these letters. We only count manifestly
O(d, d,R) and gauge invariant terms, i.e., neglect possible
Chern-Simons and topological terms which we will have to
treat separately.

1. Dilaton

The independent building blocks carrying the dilaton are
given by powers of derivatives

Bait = {V(, -+ Vi ®ln € N* {ur. .op b
with the double parentheses ((---)) indicating traceless
symmetrization in order to divide out field equations. We
may encode the set of letters (3.1) into a partition function

(3.1)

1= 2
Zdil = u((l_iqq)vu_ 1), (32)
such that upon expanding (3.2) into a series in g every term
represents a letter with exponents counting the number of
derivatives. We have also added a factor u to keep track of
the dilaton power when combining (3.2) with the other
building blocks of the theory. We use the notation

(1-gq)» =1=gVp+¢*(Vp @ Vp )y — -+
1
(I—gq)*

with the SO(D) vectorial representation vp, in order
to describe the tower of traceless symmetrized vectors.
(Vp ® Vp),, is the antisymmetric tensor product of two
SO(D) vectors.

=1 +qu+q2(vD®vD)sym+”" (33)

2. Coset scalars

The scalar fields parametrize the SO(d,d)/(SO(d) x
SO(d)) matrix Hyy. In order to directly implement all
constraints deriving from the coset structure, it is conven-
ient to turn to the vielbeins

Hun = Ex*6a5EN®

= 9, HH' =2EP,E™', (3.4)
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with the coset currents defined by

E'O,E=0Q,+P,ct@®yp=230(dd), (35)
where f = 80(d) @ 80(d) and p is its (noncompact)
orthogonal complement. In terms of the currents Q, and
P,, global SO(d, d) invariance is ensured, and the counting
problem reduces to identifying combinations that are invari-
ant under local SO(d) x SO(d) transformations, i.e., built
from P,’s and covariant derivatives D, =0, + adQ#.
Moreover, we have integrability conditions

[D,.D,| = Q,, «[P,.P,], DyP, =0, (3.6)
and field equations with leading second-order term D¥P,
which implies that a basis of on-shell independent combi-
nations is given by

Be =V Vi, Py € PIm € NAurs ooty
(3.7)
counted by the partition function
1 -g?
Zp = p<—v— 1>, 3.8
P\ (38)

with the charge p introduced to count the power of P,’s.
It remains to count the independent SO(d) x SO(d) invari-
ant single-trace combinations in the letters (3.7). With P,
transforming in the (d, d) representation of SO(d) x SO(d),
this amounts to counting ordered monomials and dividing
out transpositions and cyclic shifts of even length.* The
result then follows from Polya’s counting theorem [28] as

Zpo
2(1=2p,)’

(3.9)

1 p(n
Zsing.trace = _zz%log (1 - Z%?n) +

with Euler’s totient function ¢(n) and Zp, = Zp(p", q").

3. Vectors

The (manifestly) gauge invariant building blocks in
terms of the vector field are obtained by derivatives of
its field strength subtracting Bianchi identities and con-
tractions proportional to the field equations

Br ={Vu - VunFu.," — traces & Bianchi |n € N},
(3.10)

*In this counting, we neglect all the identities induced by the
finite size (2d) of the SO(d, d) matrices; i.e., formally we count
for d = oo.

counted by the partition function (see, e.g., Ref. [29])

Zr = Z < Z; I 2 traces>

n=0 o

_f<1_1—VDq(1—q2)—q4>
q q(L—q)vr ’

(3.11)

where f is a charge for the powers of F,,". However,
the letters (3.10) are not O(d,d,R) singlets but rather
carry a fundamental vector index. O(d,d,R) invariant
combinations are built from bilinears of Eq. (3.10) with
the two O(d, d,R) vector indices contracted by products
of the O(d,d,R) invariant 7,y, the scalar matrix Hy,
and its derivatives. This is most conveniently counted
by using the vielbeins (3.4) to convert the O(d,d,R)
indices of Eq. (3.10) into SO(d) x SO(d) indices, such
that the flattened field strength F,, E)* decomposes into
(d,1) @ (1,d) contributions which we denote by F; and
Fr, respectively. The flattened letters (3.10) are then
contracted out by arbitrary chains of letters from
Eq. (3.7). This gives rise to three different types of terms:

(V---VF;)(even chain of V---VP)(V...VF,),
(V---VFg)(even chain of V..-VP)(V-..VFy),
(V---VF;)(odd chain of V---VP)(V...VFp).

(3.12)
Upon taking into account the reflection symmetries of the

first two chains, the counting of O(d,d,R) invariant
building blocks in the vector sector yields

1/ Z z2 1/ Z zZ2
Z]:]:——< F2 f2>+_< F.2 + ]—'2>
2\1-2p, 1-23) 2\1-Z2p, 1-2
Zp

Z,—L 2z

+ F1=25°7

22 Z
=_—F 2 (3.13)
1-2p 1-2Zp,

4. Two-form

Similarly, the independent (manifestly gauge invariant)
building blocks carrying the 2-form B, are counted by
powers of derivatives on the field strength H,,, upon
subtracting Bianchi identities and contractions proportional
to the field equations

By =A{V((, -+ V,,)H""" — traces & Bianchi |n € N},
(3.14)

giving rise to a partition function
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</ 1 F
Zy = Z ( 2 — traces)

sl

:h(1_‘16—q(1—q4)VD+q2(1—qQ)(VD®VD)a1t

)
q '

where A is a charge for the powers of H,,.

(3.15)

5. Metric

For the external metric g,,, we count derivatives of its
Weyl tensor C, ,,,,,,, subtracting traces and Bianchi
identities, giving rise to the letters

Be =V Vi) Coryrp, — traces & Bianchi |n € N},

(3.16)
which are counted as
o0
Zo = Z ( Z; Zi ] | B traces)
n=0
_. <q (1-¢*) (vD @ VD)sym — (1 = ¢ VD
q(l—q)vr
1

+ (VD ® VD)alt + ;VD> ;

(3.17)

where ¢ is a charge for the powers of the Weyl tensor
(or equivalently, the Riemann tensor).

B. Spacetime singlets and partial integration

Putting everything together, we have identified the
manifestly O(d, d, R) and gauge invariant building blocks
in the various sectors,

ZO = Zdil + ZH + ZC + Zsing.trace + Z]-‘F’ (318)

with the different terms defined in Egs. (3.2), (3.15), (3.17),
(3.9), and (3.13), respectively. From these objects, we can
construct the most general O(d, d,R) and gauge invariant
terms as arbitrary polynomials in the letters of Eq. (3.18),
counted as

(3.19)

1
Ziny = eXp [Z P Zo,k] .

k

So far, we have been counting combinations in all
possible SO(D) representations, without restricting to
SO(D) Lorentz scalars. In order to count the independent
spacetime actions, we first project Z;,, to Lorentz scalars.
Next, in order to subtract the ambiguities from partial

integrations, we extract from Z;,, all possible SO(D)
vectors 7, each of which gives rise to an ambiguity
d* J of the spacetime Lagrangian. On the other hand,
currents with (off-shell) vanishing divergence d « 7 = 0 do
not define ambiguities; these are of the form J = *d x 7,
for a 2-form J,, unless %7, is of a vanishing divergence
thus defined by a 3-form 73, etc. To summarize, a basis of
independent spacetime Lagrangians, after dividing out the
freedom of partial integrations, is given by

ZLag = Zinv(]

- MQ)VD |SO(D)singlcts’ (320)

in the notation of Eq. (3.3).

C. Some examples

1. Evaluation in D=10

As a first test of the counting formula (3.20), we may
evaluate it to order  in D = 10 dimensions, i.e., for d = 0,
upon truncating out the vector and scalar sectors which do
not exist at d = 0. Then, in Eq. (3.18) only the contribu-
tions from metric, 2-form, and dilaton are taken into
account. Evaluating Eq. (3.20) gives rise to the following
types of terms at the four-derivative order

(R2[1], V2H2[1), RH2[1), H*[3), H2V20[1], V2OV20[1]},
(3.21)

where the multiplicities [#z] indicate the number of inde-
pendent terms of the same type. This precisely reproduces
the counting from Ref. [30] [cf. their Eq. (2.36)]. Let us
recall that our counting only includes manifestly gauge
invariant terms, so it does not account for the possible ten-
dimensional gravitational Chern-Simons couplings.

2. Evaluation in D=1
Upon reduction to only one dimension, we can evaluate
the counting formulas to all orders in closed form. In
particular Z5 = Z5 = 0, while

P’q*

Zdil = uq, ZP = rq, Zsing.traoe = szqza (322)

and

Zo=—cq®> - —p*q’, (3.23)
reflecting the fact that in D =1 the Einstein equations
pose a constraint on the energy-momentum tensor. For
Egs. (3.18) and (3.19), we thus find

3Here, we have inserted a dilaton charge u, since all terms
carry a global dilaton power e~® such that partial integration
brings in an extra dilaton derivative.
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z p'q* fug = 2, — H 1 % 1 independent manifestly O(d, d, R) invariant four-derivative
LR P*q* m - P 1 —uq’ terms. While the general counting only determines the

number of independent terms without selecting a particular

(3.24) basis, it turns out that at order o there is a distinguished

upon removing total derivatives (3.20) and thus expligit basis which is built from polynomials ig terms

carrying only first-order derivatives (and the Riemann

1 tensor). Indeed, truncating the partition functions (3.2)

Zlaw=01—-qu)Zp, = | ——— 3.25 ’ ; . LT

tag = (1= 1) Ziny }:[1 1= ping (3.25) (3.15), (3.17), (3.8), (3.11) to first order in derivatives, we

. . . may count from Eq. (3.19) the number of independent

which precisely reproduces the counting from Ref. [11]. terms that carry first derivatives only, and find precisely 61
) terms at order o.*

D. Basis at order o The basis at order  can thus be given in terms of

Evaluating the counting formula (3.20) in generic ~ polynomials in R, ,°, H,,,, F,", V,Sy", and V,®.
dimension D we infer that at order o there are 61 Schematically, its elements take the form
|

{R?[1]. H*[3]. (V@)*[1]. (VS)*[S]. F*[12]. RH?[1]. RF?[2]. H*(V@)*[2]. H*(VS)*[2]. H* F[8]. (VO)* (VS)*[2].
(VO)2F2[4], (VS)*F?[10], HVOF?[2], HVSF?[3], VOVSF?[3]}. (3.26)

We give the explicit expressions for all the basis elements in Appendix A. In the following we will exhibit the O(d, d, R)
invariance of the dimensionally reduced action by expanding the reduced action in the basis (3.26).

IV. COMPACTIFICATION OF THE FOUR-DERIVATIVE ACTION

The first-order « extension of the action of the bosonic string (2.1) has been known for some time [30] and is given up to
field redefinitions by

~ 1 7 A AAAAA IAAA”,\A,\A lA ANAA AA D AN A AN A
1 :Za//dDHiX’/_ge_¢<Rﬁﬁ/36R”yp6_EH”M poiRﬁﬁﬁrﬁ_g ,zjﬁHzﬂy"‘_Hﬁﬁ[ y&/lHuir pf6>- (4.1)

In this section, we compactify separately all of its terms on a d-torus, using the ansétze (2.3) and (2.4). We fix the freedom of
partial integration and possible field redefinitions by converting all terms into polynomials of first-order derivatives (and the
Riemann tensor). To do so, we systematically use partial integration and Bianchi identities to bring all terms carrying
second-order derivatives into a form corresponding to the first column of Table I, which can then be converted to the desired
form by means of field redefinitions as discussed in Sec. II B. In the next section, we then compare the result to the
0O(d, d,R) basis of Sec. IIID.
The reduction of the 3-form field strength A 405 18 given in Eq. (2.5). For the reduction of the Riemann tensor, we follow
the results of Ref. [31] and give the lower-dimensional components in flat indices as
R 1

_ (1)ym (1)
Raﬂy5 - Raﬂ}/& - E |:_GmnFa[7 F

n ()ym ~(1)n
ap T CmFog Fio ]

5 mp 1 app(m_ p(l)m 0
Rupra = [V[QF/),]? 5 (G VG Fy)" ~ FlY)" G, V,G P)}E,,d,

A L1 (yrm (1) mn
Raﬂcd = 5 |:Fa ! Fy/;’ ‘- vaG Gﬂpvﬁqu:| Em[CE“I‘d]’

N

1 m &
Ravya = 5 [2vavmeq —2V,G™G,,V,G" = V,G"G,,V,GP + Fi " F) q} EpyEqa

. 1 g
Rabyd = _5FJ(/é‘)mnganm[aE‘n‘b]Epd’

A

1
Rupea = _EveGmnngPquaEpbEn[CEWd]' (42)

*At order o’? this pattern breaks down. The general counting (3.20) reveals 1817 independent terms at order o>, whereas there
are only 1212 independent polynomials that can be constructed in terms of first-order derivatives. This general case differs from the
situation encountered in the reduction to D = 1 dimensions where one can always find a basis carrying no more than first-order time
derivatives [10].
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A. Reduction of the various terms

We reduce the action (4.1) term by term.

1. Reduction of ﬁﬁ SHHY

Upon compactification, we obtain

A ~

200 = H2 HP W+ AHD HY, HY" — 2H? H,,, H," + 4H,,,,H"*" H*"H,,,,
— 4H"PHY ) H yH™ 4 Hy H, HE L HYP + 2HY HP H
+ 8HMH,,,, H, " H® ,,, — 8H,,,,, H*""H",,,H /P + H,,,,H ;" H*"H",
—4H,,, H,"" H?,, H"*P + 4H ., H"P H , , , H*" + 4H,,,,.,H,,,, H"" H"P
+ 8H yp H,yy g H*P U HY™ + 2H ., H, o H¥" HP9" + 2H,,, . H"™H,,, " H*

+4H,,,,H" " H"""H ,y, + H,,, , H" H , HP". (4.3)

Using Eq. (2.5), this takes the form

A%, H*? = H2 H* " + 4Tr(V,BG™'V¥BG~'V,BG~'V*BG ™)
+ Tt(V,BG™'V,BG N Tr(V¥BG™'V*BG™") + H,,,,G™"H ., H* ,GP H” ,
+4H,,,,G"H" ,H ,,,GP"H* , — 2H* " Tr(V,BG~'V,BG™")
+4H**H,,,G"™H/, —ATt(V*BG"'V*BG"")H,,,,G""H,?’,
+2H"*H*H,,,,G"H ,,, — 8H,,,,,(G"'V*BG™'V,BG~ )" H"’,,

— 8H"’H,,,,,(G"'VBG™"Y"H ., — 4H,,,,(G"'V,BG~'V*BG™' "™ H*,, (4.4)

pvm (

where all terms carry first-order derivatives only, i.e., are already of the desired form.

A

2. Reduction of H;; ﬁﬁﬁ&if]‘? i% P .5
Upon compactification, we obtain
)2 A Iflﬁif ,5Tﬁ _ H/wp Hﬂaz HY,"H?.° + 6 V2l Hr, Hﬂ[)m H,"
- 12H"*H ,,,,H,""H ,° +4H"’H,,,,H " H,," +3H,,,H,,""H", H""
-12H,,,H,""H",,H""? +3H,,,,H " H" , H"’" +4H,,,,H",, H " H"P
+ 12H,,,,H*""*H" H,? + 6H,,,.H,,"H"" H"" + H,, H" "H" *HP 9. (4.5)

Using Eq. (2.5), this takes the form

O.. . [ii lflﬁf I-AI’;TA‘? =H,, H* *HY,"H’ ° + 3 H,,G™H ,,,H" ,GP1H"

+ 6H**H"";H,,,G™H,,, + 3Tr(V,BG™'V,BG~'V*BG~'V*BG™")
- 12H"*H,,,(G™'V,BG™"Y"H ° —12H,,,(G"'V,BG~'V*BG )" H,
+ 4H*’Tr(V,BG™'V,BG™'V ,BG™"), (4.6)

where again all terms carry first-order derivatives only, i.e., are already of the desired form.
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AAAAA

3. Reduction of Rﬁ,;A&R’““”"
Splitting the D + d indices 4 as 4 — {u, m}, we obtain

AAAAA

RIPPT = R R 4R, R+ 2R
+ 4R R+ AR

puvmn
RM vpé ;wmnR

R Ry R0, (47)

mnpp

Upon using Eq. (4.2), the reduction of the first term of the action (4.1) then yields
o 10/ 6
7 / dPHIX\/=Ge IRy 5 5 5RO
« dPx\/=ge ®|R,, . R""° 3R"’“f"’F(l)mG Fi 3T V,G'V*GV,G'V'G
- Z X/ —ge HUpo - 5 v mnt’ po + 5 I'( u v )

1
+ gTr(VﬂG‘lvyGV"G‘IV”G} + g Tr(V,G7V,6)Tr (V4G VA G)

3 pme phn (i oq o Lpme  p(hn vo
+§F;w G Fpo" FUH pquF(l)ﬂ q+§F’“’ G punF o F(l)#PPquF(l) q
1 1)m on (1 vo 1 - 1)m vpn
+§F,§J G FORP " FS) PG, FO) 1= TH(VG IV, G)F) "G,y FDV

3 1
—EF,W "(V,GV*G™\G), <>ﬂv”+2Fﬂy (V,GV*G'G), Fren

+Tr(V,V,G7'GV*V*G'G) + 3Te(V,V,G~ 'V GV*G~' G) — 6V, F\)) "V+G,,, F(ven

+F)"G GV*V,G™'G), Frn —2v F,,y Gy VFFvPn | (4.8)

Apart from the Riemann tensor, only the five last terms contain second-order derivatives. Using partial integration and
Bianchi identities, it is possible to transform those terms so that all second-order derivatives appear as the leading two-
derivative contribution from the field Eqgs. (2.17), i.e., appear within the first column of Table I. Details are given in
Appendix B. Specifically, the remaining second-order derivative terms combine into

/
% / dPx,/=ge™® [Tr(DG—l GOG™'G) -2V, @Tr(OG™'GV+G™)
1
+2Tr(G'GV,G7'V*G) + 5 Tr(GG™'V,GVG™) - %F,(,L) "0G,,, Fwn
+ (R, + V,V,®)(Te(V*G'V¥G) — 2F )" G, FS'"")
+ zv;tF’(lly) men (VI,F(I)/)V n_ v/)q)F(l)pu n)

+ (2VFOFL) "G,y + 3F0) VG, )V, FOrvn | (4.9)

and can be eliminated by field redefinitions according to the rules defined in Table I. The explicit induced field redefinitions
are collected in Eq. (B4). The final result of the reduction (4.8) then takes the form

/
%/dD+dX\/—ge ¢Rﬁﬁﬁ01’éﬁljﬁ5
! 1 m n 1
—>% / dPx\/=ge~ [RMGRW“—ERMGFLL) G F +5Tr(V,GV'G'V,BG™'V*BG™)
1
+ Tr(V,BG™'V*BG™'V,BG"'V*BG™!) + §Tr(VﬂG‘1VyGV”G‘1V”G)

1 1
=3 T(V,G7V,G)T(V*G™'V*G) —  Tr(V,BG™'V,BG™ ) Tr(V'G ' V*G)
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1 n o o 1pa ! :
4= 1 H,ynG""H 0, H* ,GPIH  + g F;<w) menF/(m) " E(Dpp pquF(l)Wq

L m n (1) vo i (1) vo
_EF’W GmnF(l)ﬂ/’ vapquF<1) 9—H,,,G HﬂﬂanapquF(l) q

1 _(1ym 1 1
+§F,§) H p FO HPO +4H2 wTr(V,G7'V,G) ——H2 Dupma  F()

1 1
+ 5Tr(v,,BG—lvDBG—l)FUWMG,MF(U £ 5Tr(VﬂG‘lvyG)H”ﬂme"H”fm
1 1
+5Tr(V, G V,G)FwmnG, FOv 5 H A H H G H
v — c —1\mn 1 v — c m n
= 2H"PHy, (G VOBG™ )" H =5 H¥P H, (G VG) F

1 1
2 Fw"(V,BGT'VB), Ot — 2 H,,, (V,GT' VP GG H,

1
— H,,,,(G™'V,BG~'V*BG~ )" HM —EFW "(V,GV'G™'G), Fmen

puvm (

-2H,,,(G'V*BG'V, BG~"y"H* , — H,,,,(G"'V*¥BG™'V,G)" Fwm |

AAAAAA

4. Reduction of R;,; AH’”“lH’M

Q0P 6

Let us finally consider the reduction of the term RHH. The index split gives

AAAAAA

wpo H”M Hpa + Rpw/m H;w /)o‘m 4 R u/l Hp m

- 41?”y,,mHﬂﬂmHﬂ" +2R

4Ry P A — AR
+ 2R AP AP+ 4R

R;Z 0pé ;wpm
v mn m v n
A+ pH + 4Rﬂml,,,H”P A P
Hrm g np yumn {1 pq
A, + R A" A,

Hﬂqunpq 4 R I:Imnrlflpqr'

;wmn

umnp mnpq

Then, using Egs. (2.5) and (4.2), the reduction of the corresponding term in the action (4.1) gives

1
> / de\/—e—¢[ 5 RuspoH"HI7, = 2 Ry o HP, G HP,

- %Tr(V”G‘]VZ,BV”G"V”B) —Tr(V,BV*G-'GV,G~'V*BG™)

1 _ _ _ v 1 1)m 1)n v o
~3T1(V,G™'GY,G™'V*BG'V*B) +—F§,J G Fly H™ ,GP1H",

1 1)m 1)n Vo 1 un o 1 v P 1)m I)n
+1F,(w) G P58 H ,GP1H q—EF() H ,p FOPo 1o, JHH F)" G LY

1 v. NG 1m 1n vp (1)m o npy v, n o
o H HY FW" Gy Fo)" = HP FL)"™ (GV°G™Y) " H = HPPFL)"™ (GV,G™Y),"H ,°

1 " 1
S H "V By = F) (9, BVGT), T H, 4 S F)" (9,BGTVAB),, FOben

_ FLL)m(vaG_lvaG_])mnlen _ FML m(vaG—lvyBG—l)mnHﬂpn
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1

— 2 ﬂzxm(v G—IVI/GG )mnHM/)n — V*G~ lv GG~ )mnHypn

W)m (

1
~ 3 H*Te(V,G'GV,G'V, B) + Tr(V,V,G™'V*BG™'V*B) — H" Y,V G""H" ,

— 2V, F\)"(VPBG), "H, + 2HMAY  Fl) " HP | (4.12)

Apart from the Riemann tensor, the four last terms contain second-order derivatives. Just as for the Riemann squared term
(4.8), upon partial integration, one can transform these terms such that all second-order derivatives appear as the leading
two-derivative contribution from the field Egs. (2.17). Details are given in Appendix B. Specifically, the remaining second-
order derivative terms combine into

/
1
/ dPx —ge“b% [ETr(DG‘IVI,BG‘IV”B) — Tr(OBG~'V,BV*G)

1 1
5 Fu"(OBG™), " HY, = L H, 006" Hy =V H Fig " H

vpn — HD/MF(I)/wm + Z(G_IVPB)mnFlE/l?) n)

1 v Y mn
— 5V H", 2V G H

1
- EvﬂF(l)Wm<2(vaG_l)mnvan - vaaHpam) ’ (413)

and can be eliminated by field redefinitions according to the rules defined in Table I. The explicit induced field redefinitions
are collected in Eq. (B9). The final result of the reduction (4.12) then takes the form

| R N e T PP SR
—ga//dD+dX / ge lf)R l?;&Hﬂl//IHprf

HUpo

g 1 1 1
- % / dPx,/=ge™® {—ERWMHWH/’“ =5 Rup " G H, + ZTr(VﬂG‘IVUBV”G‘IV”B)
1 1
- ETr(VﬂGV”G‘IVUBG”V”BG“) - ETr(V”BG‘IV”BG‘I V,BG~'V*BG™)

1 - - Avy/2 1 mn v c 1 1)m 1)n Vo
~3T1(V,G™'GY,G™ ' V*BG'V*B) ~ ¢ H,,, G"" H ppy H* , G H +ZF,(,,,) G Fly) "H ,GPTH",

1 1 1 1 1
+ E Fl<”/)meam F( )/wnH;mn _ g F;(w) Hpam F( )yynH/m + - 1 H;w/lH/)o' F< Jm GmnFl(/a>n _ Z H”MH/M/{Hyum Gmano’n

—1\70 mn 1 ) —1T6,\m 1)m
+ H™H,,, (G'V°BG™)"H + 5 H""Hyu (G oGy FG)

1 m on
— H ED™(GY,G),, "H,,”n+5HWF,SL> Vv,B,, F')

1
—|—4F,w "(V,BG™'V’B)

mn

1 - - —1\mn v
F(Dr +§HW,,(G 'V,BG~'V*BG )y HH,

1
+ 5 Hun(G'V,GVP G H, — F) " (GV,GT' V4 BG™), " HP”,

m 1
+ FW"(V,BVEGTY), H, —EF,,U "(V,BG~'V*B), Fken

1

=3 Hun(V,G7' VY GG )" HY , + H,,,(G™'V*BGT'V, BG! )" HYY,

FO"(V GGV, BG), "H", —%H””/)Tr(v G"'GV,G'V,B)|. (4.14)

In the next section, we will match the result of the explicit reduction against the basis (3.26) in order to establish the
O(d, d,R) invariance of the reduced action.
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B. Field redefinitions

By partial integration and suitable field redefinitions, we have thus cast the reduced action at order o' into a form which is
polynomial in first-order derivatives and the Riemann tensor. As an illustration and for potential applications requiring the
dictionary between the lower-dimensional fields and the fields featuring in the original action (2.1), let us list the full set of

induced field redefinitions, put together from Egs. (B4) and (B9):

1 m 1
o0 = —FW" G, FOmn 4 2Tr(VﬂG“V”G)} ,
1 ] m on
5g;w - Z [ZFI(J’) GmnFI(/l)[ - TI(V(”G_IVD)G)],
17 p p(1)m 7 (1)m 1 o m
6B, = 5 _(—2Vf Fpl" + 2V0 )" 2 o HP G

#

+ Fly’ (VPGG™)," + H pp(G—lvaG—l)Pm> (ASm = By A"

~AV"(GY,GY), "H,,, — AL"VPB,, )"+ 2F )" HP

L (tym
+§AI(41) HvﬂﬂGmnF(Up(m - (lu < V)?

uvp

1 1
6G" = 7 |-20G"™" +2V,OV'G™" ~ S G" H

3
Ganlqu - QFI(M

vm

l)mF(l)ﬂyn

- (G'V,GV*G)™ 4 (G7'V,BG™'VBG™ )™ |,

1 1
8B = ; (V,BV*G~'G),,, + (GV,G'V*B)
(m _ 1
5A, " = -
ﬂ 4 i
@ _1
SA;m = —
Mg

- H,,,(G'"V*BG™'B)",, + H,,,(V*G™'G)"

where we used the convention of Eq. (2.15).

V. O(d.d.R) INVARIANCE AND A
GREEN-SCHWARZ TYPE MECHANISM

We have now set up all the elements allowing one to
systematically exhibit the O(d,d,R) invariance of the
dimensionally reduced theory at order «. Having brought
the reduced action into a form that is polynomial in first
derivatives (and the Riemann tensor), we have fully fixed
the ambiguities due to field redefinitions and partial
integration. We can then compare the result to the dis-
tinguished manifestly O(d,d,R) invariant basis con-
structed in Sec. III D, after breaking up the latter under
GL(d).’ Different terms of the O(d,d,R) basis (3.26) do

>See Appendix C for the GL(d) expressions of the relevant
O(d,d,R) terms.

= FW"B,.

1
_ EHﬂymF(l)ﬂ rG,, +§Gm1)F(l)# prn} ,
[ v p()m v Dm 1 ) nm L)n v — m - v —1\nm
2V FD)™ 4 2V F) + 5 HyupH G + FL)" (VGG + H,,,(G"'V*BG™) ]

n n 1 n
OVF)"B,, — 2VVOF\)"B,,, — 5 HuupH,(G'B)",, — F)"(V*GG'B),,

1

- 5 H;wp

F(l)”f’"Gnm] , (4.15)

not share common terms in the decomposition under
GL(d); i.e., every GL(d) invariant term we have obtained
in the reduction in the previous section has a unique
ancestor within the O(d, d,R) basis (3.26). It becomes
thus a straightforward—albeit lengthy—task to recombine
(if possible) any collection of GL(d) terms into O(d, d, R)
invariant expressions.

The dimensionally reduced action is given by the sum of
Egs. (4.4), (4.6), (4.10), and (4.14). Upon combining these
terms into the O(d, d, R) invariant expressions of the basis
(3.26), we can bring it into the form

Iy =1, + 0Oy, (5.1)

where [; is the part of /; that can be organized into a linear
combination of manifestly O(d, d,R) invariant basis ele-
ments as
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1 1 1 1
L =gd / dPx,/—ge™® [RW,(,R””/’” - ERW,(,H””H/’” i gHi,,HZ w4+ —H

1
—-R

54 I“/I)H,MO_}»HDATH/)T(T

1

1
5 Rupo PP SN FPy 4 TV, SV, SVESVES) = = Tr(V, SV, 8)Tr(VASV2S)

1 1
g F M F porFINFy =3 FuMSy NI SO F g

1 1
+ gf”DMSMNf/meﬂﬂPSPQfMTQ =+ gHiDTI'(V’uSVDS) -

1 1
+ Z]:”pMSMN]:”pNTr(VﬂSV,,S) -+ ZHﬂMHpallf

1 1
_EHMJ: wo (SVL SN F Ty

whereas the remaining part of the action O is not manifestly O(d, d, R) invariant, but given by

This suggests the definition

1
3 H2, Fr M8 NFy
y/}M‘SMN-Fzm-N

- EfWM(SV,)SV”S)MNJ-"W’N , (5.2)

1 1
0, = —ga’ / dPx,/—ge"*H*’Tr |V, G"'GV,G"'V,B —gvﬂBG‘IV,,BG‘IVpBG‘I . (5.3)

3 1

Q,, = —ZTr(ﬁ[ﬂG‘lG&,G‘lap]B) + ZTr(ﬁ[ﬂBG‘la,,BG‘lap]BG‘l), (5.4)

such that O; takes the form

1
—a’/de —ge~®H,,, Q.

O:
76

(5.5)

The 3-form (5.4) descends from the nonvanishing coho-
mology H* of O(d, d,R)/(O(d) x O(d)) [32,33]; although
it is not O(d, d,R) invariant, its exterior derivative is®

40,2, = %Tr(sawsaysapsaglsy (5.6)

ForT" € o(d, d, R) this implies that d6rQ = 6-dQ = 0; i.e.,
the O(d. d, R) variation of Q,, , is closed and can locally be
integrated to a 2-form X, such that

or€y, = 30X, (5.7)
This observation together with the particular form of (5.5)
suggests a Green-Schwarz type mechanism in order to
restore O(d, d, R) invariance of the D-dimensional action.
Specifically, the term (5.5) can be absorbed into a defor-
mation of the two-derivative action (2.11) upon redefining

H,,=H,,—dQ,,, (5.8)

such that the kinetic term now produces

®See Appendix C for the GL(d) expression.

I - vp I 1 1% o v,
— g " Hyp = =3 P Hyy o HQ,,, + O(a?).

vp
(5.9)

In view of Eq. (5.7), the deformed field strength (5.8)
remains O(d,d.R) invariant, if we impose on B,, a
nontrivial O(d, d, R) transformation for I' € o(d, d, R) as
6rB,, = dX,, = 6H,, =0. (5.10)

The resulting theory is then fully O(d, d,R) invariant to
first order in . In order to compute an explicit expression
for X,,, we start from a general o(d,d,R) matrix para-

metrized as
n
F N o am bmn
M = .
cmn _anm

with ¢ and b,,, antisymmetric. Further defining the
o(d, d,R) matrices

amn () O an
2[(‘I)MN_( 0 —a’”)’ 23([’)MN_<O 0 >v

(5.12)

(5.11)

the o(d, d, R) algebra takes the form
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[2A(ay). Alay)] = A([ar.a5]). | [B(b,).B(b,)] =0.

[2(a), B(b)] = B(ab+bat), < [B(b),E(c)] = A(be),

[A(a).€(c)] = —C(ca+a'c), | [C(c)).C(c2)] =0.
(5.13)

The action of these generators on G,,, and B,,, is obtained
from Eq. (2.9) as

{

which, together with Eq.

O(d, d, R) variation of Q,,,,,

6rG = aG + Ga' — GeB — BcG,

(5.14)
SrB = aB + Ba' — BcB — G¢G + b,

(5.4), yields the general

5FQ;4yp -

=2 [T¥(c0,G0,6719,6)

+ Tr(ca[ﬂBayG*@p]B)]. (5.15)
Pulling out one derivative, we extract the explicit form of
X, from Eq. (5.7):

1
X = 5Tr(¢d},(G + B)G™'9,)(G + B)).

(5.16)
According to Eq. (5.10), the 2-form thus acquires new
transformations only along the nilpotent o(d,d,R) gen-
erators ¢””". This is consistent with the fact that all the
other o(d,d,R) generators have a geometric origin and
by construction represent manifest symmetries of the
dimensionally reduced action. Moreover, with the ex-
pression (5.16), one can verify that the algebra of
o(d,d,R) transformations (5.13) closes on B,,. Crucially,
the deformed o(d, d, R) action (5.10) cannot be absorbed
|

into a redefinition of the fields but represents a genuine
deformation of the O(d, d,R) transformation rules.

We may also consider the behavior of Eq. (5.5) under the
Z, invariance of bosonic string theory that sends B — —B.
On the O(d, d, R) matrix (2.9) this symmetry acts as [15]

)
-1/
The matrix Z is not O(d,d,R) valued since the metric
(2.10) transforms as

1

o (5.17)

H - ZTHZ, ZE(

n—->zZl=-n = §--Z8Z. (5.18)
Thus, the O(d, d,R) invariant defined by the right-hand
side of Eq. (5.6) is Z, odd. This ensures Z, invariance of
the action (5.5) since B,,, and its field strength H ,,, are also
Z2 odd.

Let us summarize the previous discussion. The
bosonic string effective action, including its first-order
o -corrections, upon compactification on a d-torus exhibits
a global O(d,d,R) symmetry, provided the O(d,d,R)
transformations of the two-derivative action acquire o'-
corrections according to Eq. (5.10). The full «’-corrected
transformations are given by

{
{

for '),V € o(d, d, R) parametrized as Eq. (5.11). To order
o, the O(d, d, R) invariant action is given by

5Fgﬂl/ = 05
&rB,, = %Tr(cd,(G + B)G™'0,(G + B)),
SrHun =T Hpy +Tn"Hyp.

5.19
5Ffsz = _fprFNMa ( )

[P 1 "
I= / dPxy/=ge™® [R + 0, 00D — = H,, A + S Tr(0,504S) = 3 FUSuNFy

HUpC

1 1
+ Za’ <RMW,GR’“’/’ - ER

1 1 1
HWHP?, + o7 H,,H" *H,"H’ ° — g HZ H* " + RTr(VﬂSVUSV”SV”S)

1 1 1
—ﬁTr(VﬂSVDS)Tr(V”SV”S) +gfyuMSMNFpaNFW)PSPwaQ _EFWMSMNFWNFWPSPQ‘FMQ

1 1 1 1
+ gfﬂvM}-/;aMfﬂprMN - ERMv/meMSMN]:mN + gH,szr(V”SV”S) - EH/%U‘;”!/)MSMNFW)N

1 1 1
+ ZH””/IH/M)L.FM/]MSMNFDO-N - E.F”DM<SV/)SVUS)MN]:”I)N + ZfﬂpMSMN‘FD[)NTr(vﬂSVDS)

1
- ZH”W’]-"WM(SVUS)MN}"/,”NH +O(a?),

with the deformed field-strength A uup

(5.20)

defined in Eq. (5.8). This constitutes the main result of this paper.

Let us comment on the relation to Ref. [8], where a similar analysis of the first-order o'-corrections is performed,

(1)m

however, restricted to the scalar sector, i.e., setting A, "~ = A

(2)

um =

B,, =0, g,, = n,,. Theirresultis given in their Eq. (74):
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1
8

1

I =-d / dPxe=® [—Tr(VﬂVDSV"V”S) + ETr(VﬂSV,,S)Tr(V”SV”S)

1
+Tr(V,SVASVY,SVAS) + gTr(V”SVySV”SV”S)] .

Upon partial integration, this can be rewritten as

(5.21)

I = éa’ / dPx,/=ge® {—Tr((DS VY, OVES) (TS - V,0VS)) + (R, + V,V,®)Tr(VASVAS)

16

L T(V,59,8)TH(THSVES) + TH(V,SVHSY,5V4S) + éTr(VﬂSVDSV”SV”S)] .

(5.22)

As discussed in Sec. II B, we can then remove the second-order derivative terms by performing the [O(d, d, R) covariant]

field redefinitions

5@ = ¢ Tr(V,SVLS),

89, = —3Tr(V,S8V,S),

(5.23)

88 = —1(0S - V,®dV+S) 418V, SV,

in the convention of Eq. (2.15), to bring the result into the equivalent form

1 1 1
I, = —a’/de —ge™® [BTr(V”SV,,SV”SV”S) —ﬁTr(VﬂSV,/S)Tr(V”SV”S) .

4

(5.24)

This precisely coincides with the truncation of Eq. (5.2) to the scalar fields. Our result reproduces also the first-order
expressions of Refs. [5,10] for the reduction to D = 1 dimensions.
Let us finally point out that considering the most generic manifestly diffeomorphism invariant four-derivative action’ [30]

I = a//dDerX\/ _ge_{;(ylléﬁﬁﬁ&iéﬂypﬂ + Yzﬂﬂmﬁ’jﬁjﬁM“ + },31:1%/3?],26}]:1&;[9 &

+ }’4161,221:1612” +ys(H*)? + 761:1,2w8’2f138ﬁ¢3 + 77ﬁ23ﬁ¢33’2(/3 + 785,2433’2&319&3%),

A ~

[AUp6

(5.25)

the only choice of coefficients that give rise to an O(d, d, R) invariant action after reduction on a generic d-dimensional

torus is

n 7 _n

Y2 = 27 y3:24v V4 = 87

corresponding to the action (4.1). Indeed, as the definition
of @ imposes

R 1
0y =0, + ETr(G‘lﬁﬂG), (5.27)
the terms proportional to y¢, 77, and yg, respectively, in
Eq. (5.25) produce terms carrying a factor Tr(G™'9,G).

However, there is no O(d, d, R) invariant term in the basis
(3.26) that contains such a factor, as shown in Appendix C.

"As in Eq. (3.21) above, we restrict to manifestly diffeo-
morphism invariant terms. The potential gravitational Chern-
Simons coupling which appears for the heterotic string is
discussed in detail in Sec. VII below.

ys =0,

r6=0, =0, yz3=0, (5.26)

|
Moreover, these terms cannot cancel each other, as they
come with different contraction structures. This imposes
76 = ¥7 = 3 = 0. The computations detailed in Secs. II
and IV finally imply the remaining coefficients of
Eq. (5.26). Only with this choice do the GL(d) terms
combine into the O(d, d, R) invariant terms of the basis
(3.26). Up to field redefinition, the action (4.1) thus is the
unique four-derivative correction exhibiting O(d,d,R)
invariance upon dimensional reduction.

VI. FRAME FORMULATION

In the previous section we have shown that invariance
under rigid O(d,d,R) transformations requires an o'-
deformation of the transformation rules that resembles a
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Green-Schwarz mechanism. We will now make this anal-
ogy more precise by introducing a frame formalism for
which the O(d, d, R) symmetry remains undeformed, while
the local frame transformations acquire o'-deformations.
This formulation uses the standard Green-Schwarz mecha-
nism, albeit with composite gauge fields.

We introduce a frame field E = (E)”) with inverse
E~!' = (E4M) from which the scalar matrix (2.9) encoding
G and B can be reconstructed via

Hun = Ex*En"kap, (6.1)
where flat indices are split as A = (a,a), and kup is a
block-diagonal matrix with components x,, and kgj.
Furthermore, we constrain the frame field by demanding
that the “flattened” O(d, d, R) metric is also block-diagonal
according to

Kab 0
A = EAMEBN’?MN = < 0 >, (6-2)
—Kab

with a relative sign in the space of barred indices reflecting
the signature of the O(d, d, R) metric. In this formalism «;,
and «;; need not be Kronecker deltas, and in particular can
be spacetime dependent, and so there is a local GL(d) x
GL(d) frame invariance, with transformation rules

AL 0

SAEAM = AAPEY,
We could partially gauge fix k45 = 645, which reduces the
frame transformations to SO(d) x SO(d), but in the fol-
lowing another gauge fixing is convenient: we identify the
components of k¥ with the metric G according to

(ZG 0 >
K= ,
0 2G

where we used matrix notation. A frame field satisfying the

constraint (6.2) and leading to the familiar form of H,,y is
then given by

A 1/1+BG!' 1-BG™!
E=(Eyt) == G G .

(6.4)

(6.5)

In order to derive composite connections from the frame
field we define the Maurer-Cartan forms

Oy’ P,J)
p b 7 b))
PﬂZl Qﬂ&

From this definition one finds that under GL(d) x GL(d)
transformations (6.3) the P, transform as tensors, and the
Q,, transform as connections:

(E10,E),* = < (6.6)

5Aleb =-D Agb» (67)

u SAQMﬁB = _Dﬂ/_\ﬁB’
with D,A,” = 8,A," + [Q,. A],” and a similar formula for
the barred expression. We can evaluate these connections
for the gauge choice (6.5),

B)G™,

0,=-10,G-
{ Lo 2 1 (6.8)

0,=-50,(G+B)G™,
using again matrix notation.

Having constructed composite gauge fields from the
frame field we can consider the familiar Chern-Simons 3-

forms built from them:

2
CS;wp(Q) = Tr<Q[ﬂal/Qp] + § Q[ﬂQlJQ/)]) . (69)
These Chern-Simons forms transform under Eq. (6.7) as

57CS,,,(Q) = 9, Tr(9,AQ,)), (6.10)
with the barred formulas being analogous. Evaluating the
Chern-Simons form with Eq. (6.8) one recovers precisely
the expression (5.4) encountered in the previous section, up
to a global factor of 3. Therefore, we can define a 3-form
curvature with the Chern-Simons modification,

3

FIW[, =H,, - Ea’(CSW,(Q) -CS,,(0). (6.11)

which then reproduces the term proportional to QH
encountered in the O(a’) action.

We have thus succeeded to find a formulation for which
the O(d,d,R) invariance is manifestly realized without
deformation. Rather, the GL(d) x GL(d) gauge symmetry
is deformed by having a 2-form transforming according to
the Green-Schwarz mechanism,

5B/w = %a’Tr(G[],AQD]) - %a’Tr(a[ﬂAQy]) (612)
Performing a partial gauge fixing to SO(d) x SO(d),
together with appropriate field redefinitions, this Green-
Schwarz mechanism relates to the reduction of o’ -deformed
double field theory [22]. This formulation is related to the
one of the previous section as follows: if one fully gauge
fixes GL(d) x GL(d), the O(d,d,R) transformations
acquire deformations through compensating frame trans-
formations, and hence the singlet B, starts transforming
nontrivially under O(d, d, R).

Let us close this section by discussing how the Z,
invariance (5.17) of bosonic string theory is realized in this
frame formulation. The Z, acts on the frame field as
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E—Z'EZ, (6.13)

~ 0 1
Z= .

(i o)
The matrix Z exchanges the two GL(d) factors and hence
exchanges the role of unbarred and barred indices. Indeed,
under the transformation (6.13) the Maurer-Cartan forms
(6.6) transform as P, <> P, and Q, <> Q,, as one may
verify by a quick computation and as is suggested by the
explicit form (6.8). Thus, the relative sign in Eq. (6.11)
implies that the total Chern-Simons form is Z, odd, which
together with B,, — —B,, implies Z, invariance of the
action.

VII. GRAVITATIONAL CHERN-SIMONS FORM
OF THE HETEROTIC SUPERGRAVITY

In this section, we repeat the above analysis of the first-
order o'-corrections for the case of the heterotic string. In
the absence of the Yang-Mills field in ten dimensions, the
bosonic part of the four-derivative effective action of the
heterotic string takes the form [30]

where D + d = 10. Apart from terms proportional to the o’

corrections of the bosonic string (4.1), the action features

the gravitational Chern-Simons form Lo

;i0p» defined as

in terms of the spin connection

(7.3)

With the O(d, d,R) invariant form of the bosonic string
discussed in Secs. IV and V above, it thus remains to reduce
the first term of Eq. (7.1). We follow the same systematics
outlined above.

In the flat basis, after dimensional reduction, the non-
vanishing components of the spin connection are given by

Bapy = Dapy

1
A o b ()m
WDy pa = ieaﬂeﬁynabEm FIU/ ’
Caa.uh = e(l” Qﬂacncbv

. 1 1
WDy ap = _EeaﬂeﬂyrlabEme/(u)ma

a,\)a,ba = ea”i);mcncb' (74)

Here, ?/w” and leb are, respectively, the symmetric and
antisymmetric parts of the GL(d) Maurer-Cartan form
Jui' =E/9,E," =P,,"+ 0,,” and verify the integra-
bility relatlons

A(®) N N 2 A Defining the low-dimensional components of Q) in the
o= Tr(w;,0 =Tr(dyo, , 7.2 . . .
wp H(@30507) + 3 H(ado07) (7.2) same way as we did for A in Eq. (2.5), we obtain
|
@) _ oo Lo 5y Lpomg g g L pngog  pon
Qp = Qup _§T (J[”J Jp]) _EFMU GV F " F[;4|a G, F\v/)]
1 ar()m (zn
ea V[ﬂ‘e F\V/’] GmnFU s
o 1 o L (1) IR I (1)pn _
Ql(w')ﬂ = ER}U.//)O'F(I)/ Gnm - EF/(H/) (V;GG lv/ G) - BF(D‘)/) (VD]GG IV,G)

1
_ ﬁ GmnF(l)pcmF/(li)Pqung

G F( )psz( )PG F(

mn

(1)
v[},lv GunF|))

[ulp

Pt e T

1 a1 on
+ _vamnv[yF,(/]lfz + _v[ﬂ(vv] eaaeapF/()l) Gnm)’

a1
Qfon = 12 Fi” G Vu(FC

+e L v,66-v,v+6)

1
Gq\n]) - EFMU

[mn]*

(1)
pvap[m Guq

FDpvg

(7.6)
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We can now focus on the reduction of the action. Splitting the ten-dimensional indices /4 into (u, m), we obtain

Navp A/(2 0 = g Q) 4+ 3EmmQe) 4 3EmnQ0) 4 e QL) (7.7)

op

Using the explicit expressions of Egs. (2.5) and (7.6), the reduced Chern-Simons form then takes the form

od _ v ® 1 v, T 7y 1 vpo pp(1)m
-7 / dPx/=ge ‘I’{—Hﬂ Q) + 3 BT, ,7,) =5 R FW"H g,
1 v, 1)ms4 1)n 1 1)m 1)n o v 1
_ZHM PFl(m) \V Gman/ﬂ) —|—§F,(,,,> GmnFé,,) FWpop gu ”+Z

1 1 m 1
- Mvm(v G- IVIJG)m F(Duwn _ZF/(‘L) (VPBG—lva)mn FMuen 2Hﬂym(va_lvﬂG)mnF(l)ypn

F;<w) H  FWup GMFU)wq

pom

1 1 m 1 o
+ 5 Fu"(V,GGTIVIB),, FUR 4 2 10,0V e F)" G o™ = 2 H GV (Vs e By 7 Gy

1 1 1
+ ETr(V,,VyGV"G“V”BG“) - EHW,,,(G"VPG)’"”V”F(‘)W’" + 5me(c—lva(;)mnp(wwm
1 7 1 L)m vn
+ 5 H PFR" GV, FY ZF,(,J V,B,,, VP F(Dwn | (7.8)

Only the last six terms carry second-order derivatives. Following the systematics of Sec. IV, these terms can be transformed
by means of partial integration and Bianchi identities such that all second-order derivatives appear as the leading two-
derivative contribution from the field Eqs. (2.17), i.e., appear within the first column of Table I. Details are given in
Appendix B 3. Specifically, the remaining second-order derivative terms combine into

/
%/de —ge™® {VﬂH/‘”mF,(,””mVye(,“eaP - Tr(OBG~'V,GV*G~! - OGV,G'V*BG™)

1

_ vﬂF(l)/,wm (V/)GG—I )mnHU/Jn _ EH;wm (G_l DG)mnF(l)m/n

1
=5 HupVoF MG FO0 — 9, O wmgpg  F"| (7.9)

and can be eliminated by field redefinitions according to the rules defined in Table 1. These take the explicit form [in the
convention of Eq. (2.15)]

1 Jm a, p (on 1 0 ymn 1 Wnsgp ~m
6B = gAY Ve, e GunFy '™ + ¢ A ) VP G™H ), w =g By VOGP,
1 1 1
_ (Dpom |~ (Hn (Dpom _ = A2 (-1 Fln
6A[;4|mH|V]/mF pomm 4 16anAb4 HU]/)UF ’ AM ( va) n \y]p

1 (Dn et m pp
+ g B, "(GT'VeB)" )Y,

1 —_ —_ mn 1 vim n)p
5G :Z(VMG 'VrBG—1)! >—8F< wmGMPH,, .
1 -
3By =7 (VuGVHG'G),,,.
(l)m 1 vmn 1 (Dvpm 1 —1gvpym pn
0A, SV G"H,,, + 16H”WF +§(G VYB)™ Fp)",

2 1 a, p on vn 1 vpn 1 —1Ix7v L)n
SAD) = —g Ve e G FV 8B V'G"’H,,, + 16H,M,anF( 42 (BGIY B),, FW".  (7.10)
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After applying these field redefinitions, the resulting reduced action no longer carries any second-order derivative (except
within the Riemann tensor) and turns into

1

-7 / dPHX \/=ge P AP QL)
/

a 1 -~ o~
-7 / dPx\/=ge=® {—H””/’Q,(ff} + 3 HTe(7,7,],)

1 1 , 1
h E RWPGF/(;’) mH pom + g Hﬂmeal F Eli) nH pom — 4 H”WF v(’GmrzF l(/ﬂ)

) m(VﬂBG—l )mnHu/)n

1
— _ [Hp
4

(o2 mn 1 0 1
Hon V" G"" H,, ~ 4 H" F,

1 m n
§FI(4L) GmnFﬁ’L') F(WMPH/WP

1 1 - m vn
+ 5 HuwnG H,,,FVrer e »T3 wm(V,G7IVPG)m FDn

1 1) m 1
-1 Fw " (V,BGVG), FOmn — 2 H,, (VG VP BGT ) H,

1

_ZH;wm(

1 ;
- H o (G VB)" FL)" 4

G'VMBG~IV,B)" Fllwn

;wm(

1
G™'V,BG™'VrB)" FOmr —H

1 1 1)m _ nIyy
+ 2F,w "(V*GG~'V,B) nF“)”/’”—zF,(w) (V*GV,G™), "H™,
1 1
+ 5 Hyun(GT' VB, G, — S TH(V, BYGTV,GVG)

+ %Tr(V,,BG‘lV”BVDG“V”BG”)] . (7.11)

The terms appearing in this expression can finally be compared to the GL(d) decompositions of the O(d, d, R) basis as
collected in Appendix C. This allows one to recast the result into the form

—Za/dD”X\/ —ge~hfivh /(4
/
1
N % / dPx\/=ge~® {—H””/’Q,(f,j,), +1¢ TSV, SVSV,5V+5)

1 1 1
g Fu FporFIESpOF g = L RIFUF oy 4 5 O F T s
1

1
FuM(V,SV08), N FHy = 2 F M VISV, 8), NFy

1 1 .
= 1 F MV SN F oy + 3 HTe(T,0,,) | (7.12)

manifestly O(d, d, R) invariant, except for the last term
which carries the GL(d) Chern-Simons form

o), = Te(7,7,7,). (7.13)
This form is closed by virtue of the integrability rela-

tions (7.5). It can thus locally be integrated into a Wess-
Zumino-Witten (WZW) 2-form

\WZW
Q) = 30,607V,

(7.14)

such that the last term in Eq. (7.12) can be absorbed into a
field redefinition

1 QWZW

0B, = > O

(7.15)

As QLQ, is O(d,d,R) invariant, this does not affect the
behavior of B, under O(d, d, R) transformations. Putting
everything together, the reduced action for the bosonic part
of heterotic supergravity (in the absence of the ten-dimen-
sional Yang-Mills field) is obtained by combining Egs. (5.2)
and (7.12) into
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1. 1 1
1= / dPx/=ge™® [R + 0,00 ® — 5 Hy H" + S Tr(9,50"S) = Zf%SMNf’fv”

1 o 1 1 -
T <H””/’Q,(w2, — 1g TSV, SVISV,SVAS) = FMF pou F1T Sp0F 70

1 1
R FbF pomt — T “HP?, F o,

16

1
oM + g]:,,DM(VpSV/’S)MNF‘”N

1 1
3 M (VASV,8), NF oy + H””f’]:#gMV”SMnypN)

HUPO

la’R RHvPO 1R
T e T3

8

1
HW P, 4 5 Hy B HY HY

1

e % Tr(V, SV, SVASV4S) = S Tr(V, SV, 8)Tr(VASV-S)

1 1
+gF”yMSMN.’F/mNF”pPSpQ]: GQ —Efm,MSMN.FW)N.F GPSPQFP,;Q

1

T3

1
F M F oy FHNF20\ — R

PoM 5 “upo

wM N c
FrMS,NFvo,

1 1 1
+ —Hl%DTI'(V’uSV”S) — —H2 FﬂpMSMNJ:DpN + ZH”UAHPG;L?MPMSMN.FDUN

8 2
1
2

1
PRE |

Let us finally note that one could have started equiv-
alently from the ten-dimensional action formulated in terms
of the gravitational Chern-Simons form built from the
Christoffel connection

SO _pe o pe o 2pe fep
Qs = VlpisOlol e + 3 o ol s (7-17)
This form is invariant under Lorentz transformations and

related to Eq. (7.2) by [17]

(7.18)

with the difference given by two closed terms that can be
absorbed by a ten-dimensional field redefinition. Dimen-
sional reduction of the resulting ten-dimensional action then
induces alower-dimensional action in which the Tr(J3) term
from Eq. (7.12) is no longer present. The field redefinition
required in order to absorb the closed terms of Eq. (7.18)
precisely corresponds to the lower-dimensional field redefi-
nition we have encountered in Eq. (7.15).

VIII. CONCLUSIONS

In this paper we have set up a systematic procedure for
analyzing the higher-derivative corrections of the bosonic

1
- *FﬂyM(SvaVVS)MNFW)N + ZF”ﬂMSMNfDPNTr(V#SVVS)

(7.16)

and the heterotic string upon toroidal compactification. In
particular, we have discussed how to control the ambigu-
ities that arise due to nonlinear field redefinitions and
partial integration. This establishes the basis for analyzing
the realization of O(d, d,R) invariance of the dimension-
ally reduced action. At first order in o, we have presented
the explicit reduction of the bosonic string and cast the
result into a manifestly O(d,d,R) invariant form upon
identification of the necessary field redefinitions. In par-
ticular, the analysis confirms that at order «, the O(d, d, R)
invariance of the dimensionally reduced action fixes all the
couplings in higher dimensions (up to an overall factor).
The analysis has revealed the need for a Green-Schwarz
type mechanism by which the lower-dimensional 2-form
[which is originally singlet under O(d, d,R)] acquires a
nontrivial transformation of order «. This is a genuine
deformation which cannot be eliminated by further field
redefinitions.

We have also extended the analysis to the bosonic sector
of the heterotic string (in the absence of the ten-dimensional
vector fields). In particular, we have given the complete set
of nonlinear field redefinitions (4.15) and (7.10) which
translate between the original ten-dimensional fields and
the O(d,d,R) -covariant lower-dimensional fields. This
dictionary allows one to exploit the O(d, d, R) symmetry as
a solution generating method for the heterotic string [34,35]
to first order in o/. Examples of such solutions have been
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constructed in Refs. [36-38]. It would be very interesting to
extend the analysis to also include the ten-dimensional
vector fields [39], resulting in an O(d, d + K, R) extension
of the present results with the larger group broken down by
the non-Abelian gauge couplings [27].

In principle, the method we have outlined is fully
systematic and could be applied to higher-order o’-correc-
tions. In practice, the number of terms quickly explodes and
calls for complementary techniques to be combined with
the present approach. As noted above, already at order >
the number of manifestly O(d,d, R) invariant terms in
lower dimensions amounts to 1817. Nevertheless, it
would be interesting to compare the resulting structures
to related work in Refs. [40,41]. It would also be interesting
to investigate the effect of «-corrections on the more
general Yang-Baxter type deformations recently explored
in Ref. [42].

Finally, it will be interesting to further study the
simplifications arising in the resulting actions upon reduc-
tion to particularly low dimensions D. For D = 1, all terms
other than the scalar couplings disappear from Eqs. (5.20)
and (7.16), and we recover the lowest-order result of
Refs. [5,10,11]. At D = 2, the 3-form couplings disappear
and the vector fields may be integrated out. Particularly
interesting is the three-dimensional case. At D = 3, the
2-form may be integrated out. With a field equation of
the type

|

V”(e“DHM,) =0(d), (8.1)
this introduces an integration constant which in particular
turns the coupling (5.4) into a three-dimensional analogue
of the Wess-Zumino-Witten model (cf. Ref. [32]).
Furthermore, in D = 3, the (Abelian) vector fields may
be dualized into scalars. While this dualization is still
possible in the presence of «-corrections, the symmetry
enhancement to O(d + 1,d + 1,R) encountered for the
two-derivative action breaks down at order o and is
replaced by the appearance of the relevant automorphic
forms [43,44].

ACKNOWLEDGMENTS

We thank J. Maharana and D. Marqués for helpful
discussions. The work of O. H. is supported by the ERC
Consolidator Grant “Symmetries & Cosmology.”

APPENDIX A: BASIS AT ORDER «'

In this Appendix, we explicitly spell out the O(d, d, R)
invariant basis schematically given in Eq. (3.26), whose
existence we have deduced in Sec. III D and which we have
used in order to bring the reduced action into manifestly
O(d, d, R) invariant form. The basis is built from 61 terms
which we list according to their different structures.

R?:
{R/wpaR!wlm } (A 1 )
H*:
{(H?)?, 0> H}, H,,, H PHY  HP ) (A2)
(Vo)
(V,0VF OV, 0V D} (A3)
(VS)*:
{TH(V,SVESV,SVES), Tr(V, SV, SVASVES), Tr(SV,SVFSV,SVS)
Tr(V, SVES)Tr(V,SV¥S), Tr(V,SV,S) Tr(VAS VA S) } (A4)
F+
{FvafﬂnypaprngfﬂyMSMNFMDN-FpUP-FpD-PvfﬂbMSMNFﬂDNFpUPSPQFPUQ’
F i F pgpg FN TP F oy M Sy F g FP TP b, F M Sy N T o FESpCFP
F i F pgpg FON 20 FuM Sy F o FOPF b, F M Sy N F o FHOPSpCF 0,
FuM Ty FoNE o FuM Sy N FH N FUoLF o Fu M Sy N Fro N FP SO F 0} (AS)
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RH?:
{R/wpaH”MHPG/I}
RF?:
{Rﬂypzf]:ﬂUpraM’ R/wpa}—ﬂyMSMprgN}
H?*(V®)?:
{H2 VOV O, H2V, OV O}
H2(VS)?:
{H2, Tr(VASV2S), H>Tr(V,SVAS) }

H>F?:

(H2F MWy HAF M8y N Fry, H2 FRoMF v H2 FroMS NF v
HﬂuiHﬁpafﬂnypnMv HﬂvllHlpO']:”DMSMNFPHN’ HﬂulHlpafﬂo—M]:pyM’
H#/nggfﬂﬁMSMNFﬂyN}

(V®)2(VS)*:
{V, 0V, 0Tr(VESVES), V,dVHOTr(V,SV*S) }
(V®)2F2:
(V, OV QF, MFm, VOV DF,MS,NFumw,,
VHOV, OF , MFr ) VOV, BF , MS)N Fry)
(VS)*F2:
(TH(V,SVPS)F M Fy, Tr(V SV S) F,, MSy N Fivy,
Tr(VESVYS)F M F P ar, Te(VESVES) F L M SN F Py
A N A RO X T
F VSNV, SyP Fi p, F o MVYS )NV, S\ S p0FH o,
F MV, Sy VESyE Frep, fMDMV,,SMNV”SNPSpQ}"”pQ}
HVOF?:
(HNoDF MF, HWNOOF, MSNF, 1
HVSF?:
{HﬂyﬂfﬂﬂnySMNSNPFpﬁp ’ Hﬂppfﬂqu(;SMNf/)o—N ’ Hﬂy/)fﬂqu”SMNSNPF/mP}
VoVSF?:

(VPOF, MV Sy N Fiy VHDF, MV, SN Fy, VHOF, MV, 8),NSyP Fp)
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APPENDIX B: PARTIAL INTEGRATION AND
EXPLICIT FIELD REDEFINITIONS

In this Appendix, we give some details about the compu-
tations of the dimensionally reduced actions presented in
Sec. IV A, and Sec. VII, respectively. We show explicitly how
to eliminate all second-order derivatives by partial integration
up to terms appearing in the first column of Table I, amenable
to subsequent elimination by field redefinitions.

/
%/de\/—ge_q’Tr(V”Vl,G_lGV"V”G“G)

1. R,“,l,,,y

Let us begin with the terms appearing in the reduction of
Rﬂy paRﬁ P4 as presented in Sec. IV A. We give the explicit
expression of the five last terms in Eq. (4.8) after integra-
tion by parts (and use of Bianchi identities). Up to
boundary terms (which we ignore), the first two terms

can be rewritten as

a/
=2 / dPx/=ge~®[Tr((OG™! = V,®V*G)G(OG™! - V,dV*G1)G)

+2Tr((OG™!
+ Tr(V,G™'V,GV*G™'V*G) +

and

/
3'TOC/de —ge~*Tr(V,V,G'V*GV*G™'G)

_ / a0 —ge‘q’gFTr((DG—VﬂQDV”G)G‘lvyGV”G‘l)—%Tr(VﬂG‘lvaV"G‘1V”G) ,

4 |2

~V,0VG )GV, G IVVG)

- Tr((0G - V,®V*G)G™'V,GV*G™)

respectively. The last three terms can be manipulated similarly and their sum takes the following form:

il / dPx,/=ge®[FW" (GV*V,G-1G) Fhwn — o F)"G, VrFOwn — 67 F"GkG,, FOwn]

o % 7 [z(VMF,(,L)"’ — VEOFW)"™)G

:/de —ge~

m on 5
_ 2(RMV 4 vﬂqu))Fl(lp GmnFE/l)/

+ F)"(V,GVG'G)

+3 F/w mvﬂGmn (vp F(Dpen _ v/)q) F(Dpvn ) + Ruwro F/(w) Gy F;(m)n],

Feon 4 FO™(V4GY,G71G)

(R + V9, 0)Te(VG 9G] ®1)
(82)
(V/)F(l)/’l/n _ vl)q)F(l)/wn)
_ ZF/(AL)m(DG v/ (I)VPG) nF(l);wn
F(Depn
(B3)

again up to boundary contributions. In the form (B1)-(B3), all the remaining second-order derivatives are of the form
appearing in the first column of Table I. They can thus be reabsorbed into field redefinitions as discussed in Sec. II B.

Explicitly, this induces the order o field redefinitions

1 m
50 = g [~2F3)" Gy FOM 4 Te(V,G7'VFG)],
5gﬂb = 4 [2Fl(4/)) GmnF( Jon Tr (v lv )]
1)m - m
0B, = L 2w E)" 2V E )" 4 B, H G EDP (VGG
+2H,,,(G'V?BG™)P") (AL = B, AL") = (u <> ),

mn 1 mn mn m n v 3 (L)m vn
8G"" = 2[-20G™ + 2V, @VIG™" = G"PH,,,, GMH" =2 Fpu Fw

— (G'V,GVHG Ty 4+ 2(G-

'V, BG~'V*BG™!)mm],
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SANM — : [—2VeFL)" + 2V OF,)" + H ) HY? ,G™ + Fl)" (V'GG™),"
+2H,,,(G'V*BG=1)m),

SAZ) = 2V FL)" By~ 2V'®FY)"B,,, — H,,,H”,(G'B)", — F\)"(V*GG'B)

- ZHW,,(G_IV”BG‘IB)”,”}. (B4)

AAAAAA

2. Ry p s PP

Avpé

Here, we consider the four last terms in the reduction (4.12) of RHH. After partial integration, they can be brought into
the form

/
%/de —ge~®Tr(V,V,G"'V¥BG~'V*B)

/
- % / dPx\/=ge™® [_Tr(VﬂBV”G‘lvyBV”G'l) + %Tr(VuBVDG‘IV”BV”G")

— Tr((OB - V,®V*B)G~'V,BV*G~!) + %Tr((DG‘l - VMGDV”G‘I)VDBG‘IV”B)] ,

(B5)
a/
_Z/de —-ge"®*H" ,V ,V,G"H" ,,
o — v v mn 1 1m - n v
=7 / dPx/=ge d’{—(vﬂHﬂ w =V, OH", VPG H,, —EF,SJ (V,BV’G™") "HM,
1
—ZH””,,,(DG‘I -V, ov*G-ymH,,, - F\)"(V,BV’G) ”H””n], (B6)
o ()ym
-5 / dPx\/=ge ®V, F,)" (V' BG™),"H",,
/
— % / dPx\/=ge~® [—(VﬂHﬂ"m —V,®H",)(G'V*B)" F})"
1
— (V FOwm -y, QFDmwm) (VP BG™Y), "H,,, + ZF,,,, "(V,BG~'VrB), FUwn
1 L (1)m
—EF,W "(V,BV*G), "HM, —EF,(}J (OB = V,®V’B)G™), "H™,
+ FY)"(VPBY,G™) nHW, — F)"(V,BVPGY) TH,
+ F)"(V,BG-'V*B) F! IW"] , (B7)
a (1)m
Z/ dPx,/—ge"*2H"*N ,F,,;)""H",,,
o - 1 v o vp pp(Dm Lon
=2 / dPx\/=ge ‘P[E(Vﬂm =V ®H,VH,, FOeom _ guep()my g FV
. 1
— (V,H"™ -V, OH")FW)"HC,,, + 5 (V FOwm — g oF g, HPo,
1 1
4 5 HHp F v B,, F,(oy) + F;(u/) H o Fpon o Z F;(u/) H o Fwn oo
1
_ZF/(W) H/m'mF( )p(mHﬂyn:| , (Bg)
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respectively. Again, all leftover terms carrying second-order derivatives can be converted to products of first-order
derivatives by means of the rules of Table I. This induces the explicit field redefinitions

5 1 ’ ’
0 m g —A£,1>m(G pG_l)m'l vpn — Af(})nvamnFl(/}))l 2F;(ti))meym
I . 1 : 5 1
E 4/(4 Ym meGm”F(l)ﬂ n o_ EHﬂ/’ff HP men(AI(m) _ BnpAz(J )p)

- Hyn GV BG (A5 = B, = 1 <> ),

mn 11 m n v - - —1\mn
8G"" = |2 G" H,,,,G"H", ~ (G™'V,BG'V*BG™) }
i
5an = Z (V”BVMG_lG)mn + (GVMG_IV”B)mn
1[-] FWOwr g 1 G. FOwprg
_5 pvm pn +5 mp pon |
(SA(l)m _1 [ H G—IVL/BG—I nm lH Hrre Gnm
H _Z - /41/”( ) _E uup n >
2 ! - vG— n Dy -7y — n
5‘41(4"2 :Z H/wn(v G IG) m _Ffw) \Y% B, +H,wn(G 'VYBG IB) m
Ly, Fwng Ly H (G B B9
_5 uvp nm +§ 74 n( ) m|- ( )

795 @)
3. AP0

Finally, we give the result for the last six terms in Eq. (7.8). After partial integration they are rewritten as

/ 1 ,
%/de —ge™® <— E) H’““mG’”"Vﬂ(Vl,e{;”’e,/’F,(,1> ’G,,)

/ 1 .
_ % / dPx,/=ge=® [5 (V,H", -V, ®H" , + H",V,G"™G,,)V, e, ¢, F) ”] , (B10)

/
% / dPx —ge“l’%Tr(VMVDGV”G‘IV”BG‘I)
/
1
:% / dPx\/=ge~® [—ETr((DB—Vﬂ)V"B)G‘lVDGV”G‘l)

+ %Tr((DG -V, 0V*G)V,G"'V*BG) - Tr(V”BV”G"VDGV”G")] , (B11)

o 1 1
T / dPx\/=ge~® [—EHW,,,(G‘IV,,G)'"HV"F“)”P" +5Hﬂym(G‘IV”VpG)mnF“)”/’"}

o 1
=7 / dPx\/=ge=® {—E(vﬂF“me -V, oF wmy(VrGG™),"H,,,
1
4
1 (im 1 (m i
—§F£},> (V,BG™'VrG), Fmn —~F\)"(V BG-'V’G) F“)’”’"}, (B12)

mn 4 mn

1
H,,,(G1(0G - V,0V’G + V,GV*G~'G))" , FDmn — 5Hy,,m(V,,G—lV/’G)mnFUW"
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o 1 m on
_/de\/__ge—CD_HMUpF/(lL) Gmnquf(’l)

- 1 oum oum Joup m n
:-/de ge¢[—4 H,p(V FNowm 7 @FWewm 1 F(Nowr (V,GG™) ™G, Fiy)

1
-2 F;(w) H p FORP G, Fod < FL?’" H o FORPG F(l)wq] , (B13)
1 Y
—/de —ge™® (— Z) "'V ,B,,, VP FLn
= % / dPx\/=ge=® [—5 (V, Fhmm _ V,,(I)Fm”””’)VPBm,,Fﬁ,I,)"}. (B14)

Again, the remaining terms carrying second-order derivatives can be eliminated by field redefinitions as discussed in Sec. II
B. The explicit form of the induced field redefinitions has been given in Eq. (7.10) in the main text.
APPENDIX C: GL(d) EXPRESSIONS OF SOME O(d.d,R) TERMS
In this Appendix, we present the GL(d) decomposition of some of the O(d, d, R) invariant terms that are relevant for the
identifications made in Secs. V and VII.

Tr(V,SV,S) = 2Tr(V(,GV,\G™") + 2Tr(V,BG™'V,BG™), (C1)

Tr(V,8V,SVESVAS) = 2Tr(V,G~'V,GVAG~ V¥ G) + 4Tr(V,BY, G~ V*BV*G 1)
+8Tr(G™'V,BG™'V,GV*G~V*B)
+2Tr(G"'V,BG-'V,BG~'V*BG-'V'B), (C2)

Tr(V,SV+SV,SV'S) = 2Tr(V, G~ 'V GV, G™'V*G) + 4Tr(G™'V,BG™'V,GV*G~'V¥B)
+4Tr(V,G'V¥BV,G™'V¥B) + 4Tr(G™'V,,BV*G~'V,GG'V*B)
+2Tr(G™'V,BG™'V*BG™'V,BG~'V*B), (C3)

Tr(8V,S8V,8V,8V,8) = 2[Tr(V,G"'V,GV,,G"'V,B) - Tr(V,G"'V,GV,G'V,,B)
+Tr(V,G"'V,GV,G'V,B) - Tr(V,G"'V,GV,G~'V,B)
- Tr(V,BG~'V,BG~'V,BV,G™") + Tr(V,BG~'V,BG~'V,BV,G™!)

~Tr(V,BG™'V,BG™'V,BV,G™") + Tr(V,BG™'V,BG™'V,BV,G™)), (C4)
SM poN — l<41/> GmnF/(m') +H/41/meanan7 (CS)
FuMF porr = Fi)" Foom + Fia" Fin. (C6)

fﬂuMSMvaSNPfaAP _ F;<49m<vaG_] )manM _ Fl(4L)mvamnF(()-]ﬁ)n

+ Hyum(G_lvaG_l)mnHmln + H/wm( lv G) z()'ﬂ) ’ (C7)
f v SM JT(;}LN = mv GmnF D +F/41/ (v BG~ )m pin
;wm(G_]v B)m F( ) +Huzzmv G" Hﬁ/ln’ (Cg)
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]:ﬂVMSMNV/,SNPV,;SprhQ -

FW"(GV,G'V,G),

"4 FO™(GV,GIV,BG™) "H,,

— FW"(V,BV,G™"), "H,y, +me<v G'V,B)" Fib"

(
+H,,,(G
+H,,,(G

Fu MV, Sy NV, S\ Frp = FW™(V,BGIV,G)

+F;w

G~'V,BG™'V,G)" F\V" + F\))"(V,BG~'V,B)
lvavo-G_ )mnH/lm + H/u/m(

mn FE»:.')"
-V,BG™'V,BG™")""H,,,,,

FO"— F)™v,6G'v,B) F\)"

mn

"(V,GV,G™), "H,,, + FW"(V,BG'V,BG™) "H,,,
+H,,,(V,G'V,G)" FV" + H,,,(G
+ H;wm (VpG_lvaBG_l )mnHim -

'V, ,BG™'V,B)" F\)"

Hﬂm(G‘1 VPBV,,G‘1 )" H (C10)
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