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We present a conjecture for the leading 1=N anomalous dimension of the scalar primary operator in
UðNÞk Chern-Simons theories coupled to a single fundamental field, to all orders in the t’Hooft coupling
λ ¼ N

k . Following this we compute the anomalous dimension of the scalar in a Regular Bosonic theory
perturbatively at two-loop order and demonstrate that matches exactly with the result predicted by our
conjecture. We also show that our proposed expression for the anomalous dimension is consistent with all
other existing two-loop perturbative results, which constrain its form at both weak and strong coupling
thanks to the bosonization duality. Furthermore, our conjecture passes a novel nontrivial all loop test which
provides a strong evidence for its consistency.
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I. INTRODUCTION

UðNÞk Chern-Simons theories coupled to a single
fundamental field are an important class of conformal field
theories that are solvable in the large N limit [1,2]. As
emphasized in [3–5] four such theories exist depending on
the choice of fundamental matter, which can be divided into
two classes: quasifermionic and quasibosonic. The quasi-
fermionic class includes the theory with one species of
fundamental fermions as matter and the theory with critical
(Wilson-Fisher) bosons as matter. Both these theories are
believed to be related by a strong-weak coupling duality
[3–11]. The quasibosonic class includes the theory with
matter as (noncritical) bosons and the theory with critical
(Gross-Neveu) fermions as matter. Again, both these
theories are related by strong-weak duality, discussed
extensively in [12]. See also, e.g., [13–21] for additional
tests and discussion of the bosonization duality.
An important feature of these theories is that they contain

a very sparse spectrum of single-trace primary operators.
There is exactly one single-trace primary operator for each
spin s, which we denote as js. When ’t Hooft coupling

λ ¼ 0, these currents are exactly conserved, and therefore
have scaling dimensions given by the unitarity bound Δs ¼
sþ 1 for nonzero s. As argued in [1,2], a simple argument
based on conformal representation theory implies that the
scaling dimensions of these currents are protected in the
large N limit, even when λ ≠ 0. The leading corrections
to the scaling dimensions are proportional to 1=N: Δs ¼
ðsþ 1Þ þ γsðλÞ þOð 1

N2Þ where γsðλÞ corresponds to the
anomalous dimension of spins-s primary operator at order
1=N. For operators with spin s ≠ 0, the scaling dimensions
can be determined from planar three-point functions
using the slightly broken higher-spin symmetry [3] of the
theory [22].
The results and methods of [22] rely on slightly-broken

higher-spin symmetry [23–25], and are valid only for s ≠ 0.
Although it is possible to analytically continue the formulas
derived in [22], this gives us a result that is inconsistent
with perturbative computations (which are possible at both
weak and strong coupling thanks to the bosonization
duality). Hence the leading 1=N correction to the anoma-
lous dimension of the scalar primary j0 remains unknown
at present. This quantity is interesting for a variety of
reasons. As argued in [12], it plays an important role in
determining the fixed point for the ϕ6 coupling in the
quasibosonic family of theories at 1=N.
Quite interestingly, in condensed matter physics, the

scaling dimension of j0 is extremely significant as it
determines an experimentally-measurable critical exponent
for certain quantum Hall phase transitions [26–29].
However, for comparison with experiments one would
require finite and small N. In this context, the anomalous
dimension of the scalar primary is one of the simplest
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physical observables for our theory, and it is rather striking
that it remains unknown.
In principle, an exact Feynman diagram calculation

could be performed to calculate the anomalous dimension
of j0 to all orders in λ using the light-cone gauge, (as
discussed in [30]) but this is not a possibility at present for
what appear to be insurmountable technical reasons. In
particular, one of the crucial ingredients, the exact ladder
diagram [4,9], is not known off-shell.
Here, motivated by the results [22] for γs, and perturba-

tive calculations, including a new a calculation of the two-
loop anomalous dimension of the scalar primary in the
theory coupled to fundamental bosons, we conjecture a
simple all-orders expression for the anomalous dimension
s ¼ 0. We will show that this conjecture passes several
nontrivial consistency checks.
The article is organized as follows. In Sec. II we briefly

discuss the parameters in the quasibosonic and quasi
fermionic theory and setup our notations for those param-
eters. In Sec. III we perform a perturbative computation of
the anomalous dimension for the scalar in the regular
bosonic theory and also describe the result for the critical
fermionic theory in the literature. Following this, in Sec. IV
we describe the results for the anomalous dimension in
quasi-fermionic theories. Following this, in Sec. V we
briefly review a result obtained in [12] which serves as an
all loop test for our proposal. In Sec. VI we demonstrate
that the naive analytic continuation of the spins-s operator
to s ¼ 0 fails to reproduced the correct anomalous dimen-
sion for all the theories. Subsequently in Sec. VII we
propose our conjecture for the anomalous dimension of the
scalar operators in both quasifermionic and quasibosonic
and demonstrate that our conjecture reproduces all known
perturbative results and also passes a nontrivial all loop test.
In Appendix we will argue that our conjecture can also be
thought of as a two-sided Padé approximation, which
makes use of perturbative data at both weak and strong
coupling, in the spirit of S-duality improved perturbation
theory [31]. Of course, this is only possible because of the
bosonization duality.

II. PARAMETERS AND THEORIES

Let us carefully review the theories under study and their
relations via RG flow and bosonization duality.
The quasibosonic family of theories flows to the qua-

sifermionic family of theories under RG flow. In [3], the
quasibosonic family is described by three parameters1 λ̃QB,

ÑQB and λ̃6;QB; and the quasifermionic family is described
by two parameters λ̃QF and ÑQF. The parameter Ñ is
defined via the two-point function of the stress-energy
tensor, and is a measure of the number of degrees of
freedom of each theory—we will only be interested in the
large Ñ limit and the first nontrivial 1=Ñ corrections. In this
limit, the spectrum is independent of the parameter λ̃6;QB so
we will ignore it in the discussion that follows.
The celebrated bosonization duality states that each

family of theories has two very different looking descrip-
tions. The quasibosonic family can be described as a theory
of Nb complex bosons transforming in the fundamental
representation of UðNbÞ, coupled to a level-κb Chern-
Simons gauge field. It can also be described as a theory of
Nf Dirac “critical” fermions, in the fundamental represen-
tation of UðNfÞ coupled to a level κf Chern-Simons gauge
field. The quasifermionic family can be described as a
theory of Nb critical complex bosons transforming in the
fundamental representation of UðNbÞ, coupled to a level-κb
Chern-Simons gauge field. It can also be described as a
theory of Nf Dirac fermions, in the fundamental repre-
sentation of UðNfÞ coupled to a level κf Chern-Simons
gauge field.
This duality is well-tested in the large Nb=f limit, with

λb=f ≡ Nb=f

kb=f
held fixed. In this limit we have the following

relation between the parameters:

ÑQB ¼ 2Nb
sinðπλbÞ
πλb

¼ 2Nf
sinðπλfÞ
πλf

ÑQF ¼ 2Nb
sinðπλbÞ
πλb

¼ 2Nf
sinðπλfÞ
πλf

λ̃QB ¼ tan

�
πλb
2

�
¼ cot

�
πλf
2

�

λ̃QF ¼ cot

�
πλb
2

�
¼ tan

�
πλf
2

�
: ð1Þ

Because Nb=f and κb=f are integers (or half-integers), the
parameters λb=f and Nb=f do not run under RG flow from
quasibosonic theory to quasifermionic theory. Under RG
flow, the quasibosonic theory defined by λ̃QB and ÑQB

flows to the quasifermionic theory described by:

λ̃QF ¼ 1

λ̃QB
ð2Þ

ÑQF ¼ ÑQB: ð3Þ

We henceforth use Ñ without any subscript.
Let us denote the scaling dimension of the scalar primary

j0 in the quasibosonic theory as Δ0, and the scaling

1The analysis of [3] is valid for theories with only even spins,
e.g., OðNÞ vector models. For the UðNÞ vector models which we
study here, the analysis of [3] has not been carried out, and there
may be additional parameter, corresponding to the strength of an
additional Chern-Simons Uð1Þ Chern-Simons field that could
couple to the spin-1 conserved current, which we assume is
turned off here.
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dimension of j̃0 in the QF theory as Δ̃0. We define the
anomalous dimension as:

Δ0 ¼ 1þ γ0; Δ̃0 ¼ 2þ γ̃0 ð4Þ

III. QUASIBOSONIC THEORIES

A. Perturbative computations in the regular
bosonic theory

In this section, we begin by computing the anomalous
dimension of j0 ¼ ϕ̄ϕ in the regular bosonic theory, i.e.,
SUðNÞk Chern Simons theory coupled to a single complex
scalar field, to two loops. (The leading 1=N correction to the
anomalous dimension is the same whether one considers the
UðNÞ or SUðNÞ theories, although subleading corrections
may differ.) This will serve as a nontrivial check for our
conjecture. Our computation closely follows the calculation
of the anomalous dimension of j0 in theOðNÞ theory carried
out in [2]. All our calculations in this Appendix are in the
bosonic theory, so we drop the subscript b in what follows.
We also refer to related perturbative computations in

Chern-Simons theory which appear in [32–35]. To this end,
we calculate the anomalous dimension of the operator j0 at
two loops. The diagrams which we need to evaluate are
given in Figs. 1–3. Our conventions, Feynman rules and
gauge choices are provided in the Appendix A.
The logarithmic divergences arising due to the loop

correction of the propagators depicted in the diagrams
(B1)-(B4) of the Fig. 1 are given by

ðB1Þ ¼ 2

3k2
C2C3 log½Λ� ¼ 1 − N2

3k2
log½Λ�

ðB2Þ ¼ 2

3k2

�
C2
3 þ

C2C3

4

�
log½Λ� ¼ N4 − 3N2 þ 2

12k2N2
log½Λ�

ðB3Þ ¼ 8

3k2

�
C2
3 þ

C2C3

2

�
log½Λ� ¼ 2

3k2

�
1

N2
− 1

�
log½Λ�

ðB4Þ ¼ 4

3k2
C1C3 log½Λ� ¼ 1

3k2

�
N −

1

N

�
log½Λ� ð5Þ

The logarithmic divergences arising from the corrections to
the vertex depicted in Fig. 1 are given by

ðV1Þ ¼ 4

k2

�
C2
3 þ

C2C3

4

�
log½Λ� ¼ N4 − 3N2 þ 2

2k2N2
log½Λ�

ðV2Þ ¼ 8

k2
C1C3 log½Λ� ¼

2

k2

�
N −

1

N

�
log½Λ�: ð6Þ

Following [30], we use these results, to compute the
Oð1NÞ logarithmic divergence of the two-point function
hj0j0i to be:

2ðB1þ B2þ B3þ B4Þ þ V1þ V2

¼ 8

3

λ2

N
log½Λ� þO

�
1

N2

�
; ð7Þ

FIG. 1. Diagrams (B1)-(B4) depict loop corrections to the
propagator. Diagrams (V1) and (V2) are loop corrections to the
vertex.

FIG. 2. All the diagrams appearing in this figure do not
contribute to the anomalous dimension at 1=N.
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where we have used reexpressed the result in terms of
λ≡ N

k . Note that the UðNÞ result is just the large-N limit of
the SUðNÞ result.
Note that the loop corrections to the propagator should

be taken on each of the two legs of the vertex diagrams
(B1)-(B4) depicted in Fig. 1 and hence they contribute
twice to the two-point function.
Now we briefly describe how to obtain the anomalous

dimension of operator j0 from two point function of the
same operator.The two-point correlation function of the
scalars in a d-dimensional CFT in momentum space is
given by

hj0ðpÞj0ð0Þi ¼
c1

p2Δ−d : ð8Þ

The scaling dimension Δ can be expressed in 1
N

expansion as

Δ ¼ Δ0 þ γ0 þO

�
1

N2

�
ð9Þ

where Δ0 is classical scaling dimension, γ0 is anomalous
dimension to order 1

N. Plugging (9) in (8) and expanding
to leading order around γ0 ¼ 0, we obtain

hj0ðpÞj0ð0Þi ¼
1

p2Δ0−d
ð1 − 2γ0 logpÞ� ð10Þ

Hence the anomalous dimension is given by −1=2 times
the logarithmic divergence we obtained earlier. Keeping
corrections in the anomalous dimension upto O½1N�, this
leads us to the following expression for the anomalous
dimension at O½λ2b�

γ0 ¼
1

Nb

�
−
4

3
λ2b þOðλ4bÞ

�
: ð11Þ

In a subsequent section, we will demonstrate that the
anomalous dimension in Eq. (11) matches exactly with
the perturbative expansion of our conjectured expression
in (52).

B. UV finite diagrams

Apart from the diagrams depicted in Fig. 1 there are
other two-loop diagrams which do not contribute to the
anomalous dimension at order 1=N. They are depicted
in Fig. 2.

C. Critical fermionic theory

The order λ2f correction anomalous dimension in the
critical fermionic theory was determined through a direct
Feynman diagram computation in [22,36] to be

γ0 ¼
1

Nf

�
−

16

3π2
þ 4

9
λ2f þOðλ4fÞ

�
: ð12Þ

The diagrams that contribute to the anomalous dimension at
order λ2f in the critical fermionic theory are depicted
in Fig. 4.

IV. QUASIFERMIONIC THEORY

The leading order 1=N anomalous dimension for the
critical bosonic theory appears in [37] (see also [23,25]).
We carried out a calculation of the order-λ2b correction to
this quantity to obtain:

γ̃0 ¼
1

Nb

�
−

16

3π2
þ 4

9
λ2b þOðλ4bÞ

�
: ð13Þ

FIG. 4. The Feynman diagrams that contribute in the critical
fermionic theory [22].

FIG. 5. The Feynman diagrams that contribute in the regular
fermionic theory [22].

FIG. 3. Diagram with a ghost loop which cancels the last
diagram in Fig. 2.
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To order λ2f, the anomalous dimension of j̃0 in the regular
fermionic theory was computed through a direct Feynman
diagram technique in [22,30]

γ̃0 ¼
1

Nf

�
−
4

3
λ2f þOðλ4fÞ

�
: ð14Þ

The diagrams that contribute to the anomalous dimension at
order λ2f in the regular fermionic theory are depicted
in Fig. 5.

V. ALL LOOP TEST

Here we briefly review the computation in [12]
where the authors determine the 1=N correction to the
sum of the anomalous dimension in the quasibosonic and
the quasifermionic theories which will later serve as a
highly nontrivial all loop consistency check for our
conjecture.
To this end, the authors begin by the action of critical

boson ðSCBðϕ; σÞÞ and the regular fermionic theories are
given by

SCBðϕ; σBÞ ¼
Z

d3x½iεμνρ κB
4π

Tr

�
Aμ∂νAρ −

2i
3
AμAνAρ

�

þ iεμνρ
NBκ

0
B

4π
Bμ∂νBρ þDμϕ̄Dμϕþ σBϕ̄ϕ�

ð15Þ

SRFðψÞ ¼
Z

d3x

�
iεμνρ

κF
4π

Tr

�
Aμ∂νAρ −

2i
3
AμAνAρ

�

þ ψ̄γμDμψ

�
ð16Þ

where kB corresponds to the level of SUðNBÞ gauge field
denoted above as Aμ and k0B corresponds to the level of
a UðNBÞ gauge field Bμ. These two combine to form
UðNBÞ ¼ ðSUðNBÞ ×Uð1ÞÞ=ZNB

.
The action for the regular bosonic and critical fermionic

theories may be obtained as a relevant deformation of the
critical bosonic and regular fermionic theories as follows

SRBðϕ; σ; ζÞ ¼ SCBðϕ; σÞ −
Z

J̃0ðxÞζðxÞ

þ ð2πÞ2
κ2B

ðxB6 þ 1Þ
Z

ζ3ðxÞ ð17Þ

SCFðψ ; ζÞ ¼ SRFðψÞ −
Z

JF0 ðxÞζðxÞr ð18Þ

þ ð2πÞ2
κ̃2F

xF6

Z
ζ3ðxÞ ð19Þ

where the subscripts RB;CB;RF, and CF denote the
regular bosonic theory, critical bosonic theory, regular
fermionic theory and critical fermionic theory respectively.
Note that J̃0 and JF0 are operators of scaling dimension 2
which act as sources for new dynamical field ζ. xB6 and xF6
are parameters.
The effective action for the critical fermionic and the

regular bosonic theories is obtained by integrating out the
appropriate fields as

Z
DϕDσe−SRBðϕ;σ;ζÞ ¼ e−S

eff
RBðζÞ ð20Þ

Z
Dψe−SCFðψ ;ζÞ ¼ e−S

ϵff
CF ðζÞ: ð21Þ

The authors observe that for xB6 ¼ xF6 the theories in
Eqs. (17) and (19) are identical and the conjectured duality
leads to

SeffRBðζ; κB; λBÞ ¼ SeffCFðζ;−κB; λB − sgnðλBÞÞ: ð22Þ

This in turn implies that 1PI quantum effective action for
both the theories are also identical as they are computed
through the path integral of the above effective actions

S1PIRB ðζÞ ¼ S1PICF ðζÞ ð23Þ

In order to extract the difference between the
anomalous dimensions of the two theories, the authors
first evaluate the UV cut-off (Λ) dependent quintic and
quartic terms in effective action SeffRBðζÞ at leading order in
1=N to be
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SeffRB ¼ g2
2κB

Z
d3q
ð2πÞ3 jqj

�jqj
Λ

�2δBðλBÞ
κB

ζðqÞζð−qÞ þ g3
6κ2B

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3

d3q3
ð2πÞ3 ð2πÞ

3δðq1 þ q3Þζðq1Þζðq2Þζðq3Þ

þ g̃3
6κ2B

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3

d3q3
ð2πÞ3 ð2πÞ

3
δB
κB

ln

�
Λ

jq1j þ jq2j þ jq3j
�
δðq1 þ q2 þ q3Þζðq1Þζðq2Þζðq3Þ

−
1

24κ3B

Z Y4
i¼1

d3qi
ð2πÞ3 ð2πÞ

3δðq1 þ q2 þ q4 þ q4Þκ3BG̃0
4ðq1; q2; q3; q4Þζðq1Þζðq2Þζðq3Þζðq4Þ

−
1

5!κ4B

Z Y5
i¼1

d3qi
ð2πÞ3 ð2πÞ

3δðq1 þ q2 þ q3 þ q4 þ q5Þκ4BG̃0
5ðq1; q2; q3; q4; q5Þζðq1Þζðq2Þζðq3Þζðq4Þζðq5Þ ð24Þ

where g2, g3 and g̃3 are functions of λB and xB6 (See [12] for
details). Following this the authors then compute the one
loop correction to the above

S1PIRB ðζÞ − SeffRBðζÞ ¼
1

2κ2D

Z
d3q
ð2πÞ3 δΓ2ðqÞζðqÞζð−qÞ ð25Þ

where

δΓ2ðqÞ ¼ −
32

3π sin πλB
jqj ln

�
Λ
jqj

�
: ð26Þ

Hence the 1PI quantum effective action for the regular
bosonic theory in the above equation is of the form

S1PIRB ¼ g2
2κB

Z
d3q
ð2πÞ3 jqj

�jqj
Λ

�2δ0
β
ðλBÞ
κB

ζðqÞζð−qÞ ð27Þ

Comparing Eqs. (24) and (27) we obtain the difference
between the anomalous dimension of the two theories to be

δ0B − δB ¼ 16

3π sin πλB
ð28Þ

These are related to the scaling dimension of the ζ and σ
operators Δζ ¼ Δj0 and Δσ ¼ Δj̃0 as

Δζ ¼ 1 −
δ0B
κB

Δσ ¼ 2þ δB
κB

: ð29Þ

Comparing the above equation and Eq. (28) we obtain

δ0B ¼ −γ0
δB ¼ γ̃0: ð30Þ

Hence, Eqs. (28) and (30) lead to the following relation
between the anomalous dimension of the quasibosonic and
quasifermionic theories

γ̃0 þ γ0 ¼ −
16λb

3π sin πλb

1

Nb
¼ −

16λf
3π sin πλf

1

Nf

¼ −
32

3π2
1

Ñ
: ð31Þ

Note the above relation at order λ2 becomes

γ̃0 þ γ0 ¼ −
16

3π2
−
8λ2b
9

þO½λ4b�: ð32Þ

Note that the above result is exactly satisfied by the two loop
perturbative expressions for the anomalous dimension of the
regular and critical bosonic theories given by Eq. (11) and
Eq. (13). Similarly its easy to check the above equation is
satisfied by the result for the regular and critical fermionic
theories in Eq. (14) and Eq. (12). In the subsequent sections
we will demonstrate that our conjectured expression for
the anomalous dimension satisfies (31) to all orders in λ.
This will provide strong evidence for the consistency of our
conjecture.

VI. TOWARD AN ALL LOOP RESULT

The authors in [22] utilized the nonconservation of the
higher spin currents to demonstrate that 1=N higher-spin
spectrum for the quasifermionic theory,to all orders in λ̃QF

for the spinning operator Js, is given by

γQF
s ¼ 1

Ñ

�
aQF
s

λ̃2QF

1þ λ̃2QF

þ bQF
s

λ̃2QF

ð1þ λ̃2QFÞ2
�
þO

�
1

N2

�
:

ð33Þ

Here γQF
s ¼ Δs − ðsþ 1Þ is the anomalous dimension of

the spin-s primary. A similar expression holds for the
quasibosonic theory.
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The expressions for the spin-dependent constants turn
out to be identical2 for both the quasibosonic and quasi-
fermionic theories and is

as ¼
(

16
3π2

s−2
2s−1 ; for even s;

32
3π2

s2−1
4s2−1 ; for odd s;

ð34Þ

bs ¼

8>>>>><
>>>>>:

2
3π2

�
3
P

s
n¼1

1
n−1

2

þ fðsÞ
�
;

for even s;
2
3π2

�
3
P

s
n¼1

1
n−1

2

þ gðsÞ
�
;

for odd s:

where fðsÞ ¼ −38s4 þ 24s3 þ 34s2 − 24s − 32

4s4 − 5s2 þ 1

and gðsÞ ¼ 20 − 38s2

4s2 − 1
ð35Þ

A. Failure of the naive analytic continuation

Note that unlike the higher spin operators the j0 operator
is not a conserved current at large-N and hence, the above
result does not apply to the case of spin-0. However, it
serves as an inspiration for our conjecture. Naively, one
might be tempted to “analytically continue” the expressions
for as and bs in [22], to s ¼ 0, using

Xs
n¼1

1

n−1=2
¼ γ−ψðsÞþ2ψð2sÞ¼Hs−1=2þ2 ln2 ð36Þ

resulting in

aAC0 →
32

3π2
; bAC0 → −

64

3π2
: ð37Þ

Hence, this so-called “analytic continuation” gives the
following answer for the value of γ0

γ0 ¼
32λ̃2QFðλ̃2QF − 1Þ
3π2ðλ̃2QF þ 1Þ2 ð38Þ

Substituting for λ̃QF and Ñ from Eq. (1) and expanding the
above to order λ2f we obtain the following expression

γ0 ¼ −
4

3
λ2f

1

Nf
þOðλ4fÞ ð39Þ

Interestingly, although the above term matches with the
result obtained from the two-loop calculation in the regular
fermionic (bosonic) theory given in Eqs. (14) and (11), it

leads to an incorrect prediction for γ0 and γ̃0 in the critical
bosonic (fermionic) theories given in Eqs. (12) and (13) at
λ̃ → ∞. This leads us to conclude that the naive analytic
continuation fails to determine 1=N correction for the
anomalous dimension of scalar operators in critical theories.

VII. OUR CONJECTURE

Here, we conjecture that the anomalous dimension of
the scalar still takes the form given by equation (33) for
s ¼ 0 however, with different constants a0 and b0 than
those obtained from the naive analytic continuation as
follows3

γ̃0 ¼
1

Ñ

�
aQF
0

λ̃2QF

1þ λ̃2QF

þ bQF
0

λ̃2QF

ð1þ λ̃2QFÞ2
�
þO

�
1

N2

�

γ0 ¼
1

Ñ

�
aQB
0

λ̃2QB

1þ λ̃2QB

þ bQB
0

λ̃2QB

ð1þ λ̃2QBÞ2
�
þO

�
1

N2

�

Here, we attempt to determine these constants by compar-
ing our proposed expressions above perturbatively with the
results listed in Sec. VI.

A. Conjecture in quasifermionic theory: The γ̃0
We can determine a0 and b0 in the quasifermionic theory,

by first expanding around λ̃QF ¼ ∞

γ̃0 ¼
1

Ñ

�
aQF
0 þ bQF

0 − aQF
0

λ̃2QF

þO

�
1

λ̃4QF

��
: ð40Þ

In terms of λb and Nb this is given by

γ̃0 ¼
1

Nb

�
aQF
0

2
−
ðaQF

0 − 3bQF
0 Þπ2λ2b

24
þOðλ4bÞ

�
: ð41Þ

We can now compare this the two-loop result from the
critical bosonic theory (13). This yields:

aQF
0 ¼ −

32

3π2
ð42Þ

bQF
0 ¼ 0: ð43Þ

We thus obtain the following expression for λ̃QF

γ̃0 ¼ −
32

3π2
λ̃2QF

1þ λ̃2QF

1

Ñ
ð44Þ

2This is an unexplained coincidence at present, and is not true
at order 1=N2, as can be seen from [38,39].

3Notice that there is a characteristic double pole at λ̃QB=QF ¼
�i. It would be interesting to perform the analysis analogous to
that in [30] near this pole and examine whether this would lead
toward a proof of our conjecture. We thank the anonymous
referee for making this interesting observation.
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Making a perturbative expansion around λ̃QF ¼ 0 which
corresponds to λf ¼ 0 for the regular fermionic theory
result, we find

γ̃0 ¼
1

Nf

�
−
4

3
λ2f þOðλ4fÞ

�
: ð45Þ

which precisely reproduces the two-loop result in the
regular fermionic theory (14), thus providing us a nontrivial
test of our conjecture.

B. Conjecture in quasibosonic theory: The γ0
Repeating this procedure in the quasibosonic theory, we

again find that

aQB
0 ¼ −

32

3π2
ð46Þ

bQB
0 ¼ 0: ð47Þ

so

γ0 ¼ −
32

3π2
λ̃2QB

1þ λ̃2QB

1

Ñ
: ð48Þ

Let us now expand the all loop expression above for γ0
from our conjecture around λ̃QB ¼ 0 and λ̃QB ¼ ∞ to
compare it with the results listed in Sec. III. Expanding
the expression in Eq. (48) around λ̃QB ¼ 0 reexpressed in
terms of λb yields

γ0 ¼
1

Nb

�
−
4

3
λ2b þOðλ4bÞ

�
: ð49Þ

Notice that the above expression matches precisely with the
anomalous dimension for regular bosonic theory we
computed in Sec. III given by Eq. (11). Similarly expanding
the expression in Eq. (48) around λ̃QB ¼ ∞ re-expressed in
terms of λf, we obtain

γ0 ¼
1

Nf

�
−

16

3π2
þ 4

9
λ2f þOðλ4fÞ

�
: ð50Þ

Once again this exactly matches with the result given by
Eq. (12) listed in Sec. III. Hence, our conjecture exactly
reproduces all known perturbative results for the anoma-
lous dimension of the scalar primaries in both quasibosonic
and quasi fermionic theories which are available in the
literature. Furthermore it also exactly reproduces the new
computation we performed for the anomalous dimension in
the regular bosonic theory. Having established our con-
jecture in the perturbative regime, in the following sub-
section we provide a highly nontrivial all loop check for our
conjecture.

C. All loop check of our conjecture

As a final nontrivial check of our conjecture we note that,
using our expressions for γ0 and γ̃0, we obtain

γ̃0 þ γ0 ¼ −
16λb

3π sin πλb

1

Nb
¼ −

16λf
3π sin πλf

1

Nf

¼ −
32

3π2
1

Ñ
; ð51Þ

which is exactly Eq. (31) and is satisfied to all orders
in λ.

D. Anomalous dimension in terms of λb and λf variables

Let us conclude by presenting the expression for γ̃0
and γ0 in terms of variables λb and λf variables. Using (1),
we have:

γ̃0 ¼ −
8λb
3πNb

cot

�
πλb
2

�
¼ −

8λf
3πNf

tan

�
πλf
2

�
ð52Þ

and

γ0 ¼ −
8λb
3πNb

tan
�
πλb
2

�
¼ −

8λf
3πNf

cot
�
πλf
2

�
: ð53Þ

Note that our conjecture also reproduces the all the known
results reported in Secs. I and II.

VIII. SUMMARY

To summarize, we have proposed a conjecture for the
leading 1=N anomalous dimension of the scalar primary
operator inUðNÞk Chern-Simons theories coupled to a single
fundamental field, to all orders in λ ¼ N

k . We demonstrated
that our conjecture is consistentwith all the existing two-loop
perturbative results. We also performed a two-loop calcu-
lation of the anomalous dimension of the scalar primary j0 in
the bosonic theory, which provides an additional test of our
conjecture. Furthermore, we showed that our conjectured
expression for the leading 1=N anomalous dimension for the
quasibosonic and quasifermionic theories satisfies an all-
loop relation that was previously derived in the literature.
This nontrivial consistency check gives further evidence for
our proposal.
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APPENDIX A: CONVENTIONS AND
FEYNMAN RULES

The Lagrangian is given by

S ¼ SCS þ SRB ðA1Þ

SRB ¼
Z

d3xjDμϕj2 þ
λ6

3!N2
ðϕ†ϕÞ3 ðA2Þ

SCS ¼
ik
4π

Z
d3x tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�

¼ ik
8π

Z
d3x ϵμνλ

�
Aa
μ∂νAa

λ −
i
3
fabcAa

μAb
νAc

λ

�
: ðA3Þ

In expanding the Chern-Simons action, we used trðTaTbÞ ¼
1
2
δab as our convention for group generators. We will

express all the divergent diagrams that contribute to the

anomalous dimension in terms of C1, C2, and C3 which
are defined by following relations

trðTaTbÞ ¼ δabC1 ðA4Þ

facdfbcd ¼ δabC2 ðA5Þ

TaTa ¼ IC3: ðA6Þ

In the normalization that we have chosen for SUðNÞ
generators,

C1 ¼
1

2
; C2 ¼ −N; C3 ¼

1

2

�
N −

1

N

�
: ðA7Þ

We obtain the Feynman rules depicted in Fig. 6. If wework
in the Landau gauge, as in [2], then we have the gluon
propagator to be as

Gμν ¼ −
4π

k
ϵμνδpδ

p2
: ðA8Þ

APPENDIX B: TWO-SIDED PADÉ
APPROXIMATION

Let us also observe that our conjecture can be thought of
as a two-sided Padé approximation. In this sense, even if
our conjecture turns out to be incorrect, it provides a good
estimate for the anomalous dimension of the scalar primary
that takes into account all known weak-coupling and
strong-coupling calculations.
Consider making an ðm; nÞ-Padé approximation of γ0 as

follows:

γðm;nÞ
0 ¼ A0 þ A2λ̃

2
QB þ � � � þ Amλ̃

m
QB

1þ B2λ̃
2
QB þ � � � þ Bnλ̃

n : ðB1Þ

We only include even powers of λ̃ as the anomalous
dimension must be parity-invariant.
The (2,2) Padé approximation has three unknowns. We

have four perturbative data to constrain it:
(i) The fact that γ0 vanishes when λ̃QB ¼ 0.
(ii) A two-loop calculation γ0 in the regular bosonic

theory.
(iii) The value of γ0 in the critical fermionic theory

at λb ¼ 0.
(iv) A two-loop (order λ2b) calculation of γ0 in the critical

fermionic theory.
Hence the Padé-approximation is overconstrained. Never-
theless, it is possible to fit all four results with following
choice of three coefficients.

A0 ¼ 0; A2 ¼ −
32

3π2
; B2 ¼ 1: ðB2Þ

FIG. 6. Feynman rules for regular bosonic theory.
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Repeating the calculation to obtain a (2,2) Padé approxi-
mation for the quasifermionic theory, we obtain the same
coefficients. However, we also have to impose the extra
constraint of Eq. (31), which turns out to be automatically
satisfied.
Hence, the simplest Padé approximation to the pertur-

bative data we have seems to work very well. Of course, it
is possible to obtain higher-order Padé approximations that

satisfy all these constraints, so our answer is not uniquely
determined by this procedure. But, it is an interesting
observation that, for a variety of physical quantities, such as
planar three-point functions [3], planar four-point function
of the scalar primary [40], and the 1=N higher-spin
spectrum [22], a relatively simple Padé approximation
defined using the variables λ̃ and Ñ, happens to coincide
with the exact answer.
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