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We study a large class of supersymmetric solutions in four-dimensional N = 5 gauged supergravity with
the SO(5) gauge group. There is only one N = 5 supersymmetric AdS, vacuum preserving the full SO(5)
symmetry dual to an N = 5 superconformal field theory (SCFT) in three dimensions. We give a number of
domain walls interpolating between this AdS, fixed point and singular geometries in the IR with SO(4) and
SO(3) symmetries. These solutions describe RG flows from the N =5 SCFT to nonconformal field
theories driven by mass deformations. The SO(4) solutions are precisely in agreement with the previously
known mass deformations within the dual N =5 SCFT. We also find supersymmetric Janus solutions
describing two-dimensional conformal defects in the N =5 SCFT with N = (4,1) and N = (1,1)
supersymmetries on the defects. Finally, we study supersymmetric solutions of the form AdS, x X2, with
>? = 82, H? being a Riemann surface, corresponding to near horizon geometries of AdS, black holes. We
consider both magnetic and dyonic solutions and find that there exists a class of magnetic AdS, x H?
solutions with SO(2) symmetry. It is rather remarkable that a complete analytic solution interpolating
between AdS, and AdS, x H? with a running scalar can be obtained. The solution corresponds to a twisted
compactification of N =5 SCFT to superconformal quantum mechanics. We also show that no purely
magnetic or dyonic black holes with AdS, x X? horizon from SO(2) x SO(2) twist existin N = 5, SO(5)

gauged supergravity.

DOI: 10.1103/PhysRevD.101.126015

I. INTRODUCTION

Over the past twenty years, the AdS/CFT correspon-
dence, originally proposed in [1] (see also [2,3]), has
provided holographic descriptions of various strongly
coupled systems ranging from (non)conformal field theo-
ries, conformal defects, AdS-black holes, and condensed
matter physics systems. Although the complete AdS/CFT
duality is achieved only in the context of string/M-theory,
a large number of remarkable results has been obtained
from solutions of lower-dimensional gauged supergravities.

In many cases, the gauged supergravities under consid-
eration are known to be consistently embedded in 10- or
11-dimensional supergravities which are low energy
effective theories of string/M-theory. The resulting solu-
tions can accordingly be uplifted to string/M-theory and
can be interpreted as D- and M-brane configurations.
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Solutions of gauged supergravities with presently unknown
higher-dimensional origins are also interesting in the sense
that they can provide a bottom-up approach to the AdS/
CFT duality and still give some insight to the dynamics of
the dual field theories at strong coupling limits. These make
studying solutions of gauged supergravities in various
spacetime dimensions and different numbers of super-
symmetries worth considering.

Most of the previous studies are concerned with finding a
particular class of solutions that preserve some amount of
supersymmetry. These supersymmetric or Bogomol'nyi-
Prasad-Sommerfield (BPS) solutions play an important role
in different aspects of the AdS/CFT correspondence.
Gauged supergravities including possible massive defor-
mations are known to exist in dimensions from two to ten.
Among these theories, four-dimensional gauged super-
gravities are of particular interest since they give rise to
holographic duals of three-dimensional superconformal
field theories (SCFTs) and possible deformations thereof.
These SCFTs describe low energy dynamics of the world-
volume theory on M2-branes which are fundamental
objects in M-theory. The SCFTs in three dimensions take
the form of Chern-Simons-Matter (CSM) theories since the
usual gauge theories with Yang-Mills gauge kinetic terms
are not conformal. Up to now, many of these SCFTs with
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different numbers of supersymmetries have been con-
structed (see [4-24] for an incomplete list).

In this paper, we are interested in supersymmetric
solutions of N =5 gauged supergravity with the SO(5)
gauge group constructed long ago in [25]. According to the
AdS/CFT duality, these solutions could describe various
aspects of strongly coupled N = 5 SCFTs in three dimen-
sions. There are ten scalars described by SU(5,1)/U(5)
coset. The scalar potential of this gauged supergravity has
been analyzed in [26]. There is only one supersymmetric
AdS, vacuum preserving the full N =5 supersymmetry
with unbroken SO(5) symmetry (see also a general dis-
cussion in [27]). According to the AdS/CFT duality,
this AdS, critical point is dual to an N = 5 SCFT in three
dimensions. There is also another nonsupersymmetric
AdS, vacuum with unbroken SO(3) gauge symmetry.
This critical point is perturbatively stable as pointed out
in [28] and has been extensively studied in the context of
holographic superconductors in [29]. To the best of our
knowledge, no supersymmetric solutions of N = 5 gauged
supergravity have previously been considered. The present
work will hopefully fill this gap in the existing literature.

We will look for various types of supersymmetric
solutions of the aforementioned N = 5 gauged supergrav-
ity. First, we will study supersymmetric domain walls
interpolating between the supersymmetric AdS; vacuum
and singular geometries. These solutions describe holo-
graphic renormalization group (RG) flows from the dual
N =5 SCFT in the UV to nonconformal field theories in
the IR obtained from mass deformations of the N =5
SCFT. Similar solutions have been extensively studied in
N = 8 and N = 2 four-dimensional gauged supergravities
(see, for example, [30-38]). In addition, solutions in
gauged supergravities with N = 3, 4 supersymmetries have
been considered recently in [39-43].

We will also find Janus solutions described by AdS;-
sliced domain walls interpolating between asymptotically
AdS, spaces. These solutions are holographically dual
to two-dimensional conformal defects within the N =5
SCFT that break the superconformal symmetry in the three-
dimensional bulk to a smaller superconformal symmetry on
the two-dimensional surfaces. Supersymmetric Janus sol-
utions in other four-dimensional gauged supergravities
have previously been studied in [41,42,44-47].

We finally look for solutions interpolating between the
supersymmetric AdS, and AdS, x X? geometries with X2
being a Riemann surface. These solutions describe super-
symmetric black holes in an asymptotically AdS, space.
Solutions of this type in other gauged supergravities can be
found in [48-57]. In the dual field theory, the solutions
are dual to RG flows from the N = 5 SCFT to another SCFT
in one dimension or superconformal quantum mechanics.
The latter is obtained from the former via twisted compacti-
fications on 2. This type of solution plays an important role
in microscopic computation of black hole entropy in

asymptotically AdS,; space (see, for example, [58-60]).
We finally note that the N =5 gauged supergravity with
the SO(5) gauge group is a subsector of the SO(8) N =8
gauged supergravity arising from a consistent truncation of
M-theory on S’. Solutions given in this paper are also
solutions of the maximal gauged supergravity and can
accordingly be embedded in M-theory. On the other hand,
it has been pointed out in [13] that the N =5 SCFT with
the SO(2N) x Sp(2N) gauge group can be obtained from
the Aharony-Bergman-Jafferis-Maldacena theory with the
U(2N) x U(2N) gauge group via orientifolds. We then
expect this N =5 SCFT to be dual to the N =5 AdS,
vacuum.

The paper is organized as follows. In Sec. II, we review
the construction of four-dimensional N = 5 gauged super-
gravity with the SO(5) gauge group. In Sec. III, we will
look for supersymmetric AdS, vacua and domain wall
solutions describing RG flows in the dual N = 5 SCFTs in
three dimensions. We then study supersymmetric Janus
solutions in Sec. IV, and finally look for possible super-
symmetric AdS, black holes for both magnetic and dyonic
solutions in Sec. V. Conclusions and comments on the
results are given in Sec. VL.

II. N=5 GAUGED SUPERGRAVITY WITH
SO(5) GAUGE GROUP

We begin with a review of N =5 gauged supergravity
constructed in [25]. We also follow most of the convention
in [25] (see more detail on the convention in [61]) but with
some slightly modified notations to match with the modern
notation reviewed in [62]. N = 5 supersymmetry does not
allow for any matter multiplets, so the only supermultiplet
in N =5 supergravity is the gravity multiplet with the
following field content:

(et Wi Ad 7 2. @), (1)
The component fields correspond to the graviton ey,
five gravitini y/, ten vectors A/ = —Aj/, 11 spin-} fields
7k = 4k and y together with five complex scalars ¢'.

Spacetime and tangent space indices are denoted by
u,v,...=0,1,2,3and a,b,... =0, 1, 2, 3, respectively.
The N = 5 supergravity admits global SU(5, 1) and local
composite U(5) ~ SU(5) x U(1) symmetries. The latter is
the R-symmetry for N =35 supersymmetry. Indices
i,j,k,...=1,2,...,5 denote fundamental representation
of SU(5). The ten scalars are described by the SU(5,1)/
U(5) coset manifold with the coset representative

- (D Loy,
€1¢j ‘ €]

with A,B=1,2,...,6 being indices of the SU(5,1)
fundamental representation. The quantities e; and e, are
defined by
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1 1 1
AT Toer ¢|2< V1- |¢|2> )
with |¢|? = ¢i¢p; = ¢'(¢')*. Tt should be noted that the

notation ¢; denotes the complex conjugate of ¢'. In
addition, in this parametrization, ¢’ satisfy the condition
|$|> < 1. Being an element of SU(5, 1), T4 satisfies the
following identity:

T =2y (4)

in which 5 = diag(1,1,1,1,1,
ant tensor. -

The ten vector fields A,/ can be used to gauge SO(5) C
SU(5) c SU(5,1) symmetry resulting in N =5 gauged
supergravity with SO(5) gauge group. The corresponding
bosonic Lagrangian is given by

—1) is the SU(5, 1) invari-

- 1 1 i 1 ij i +uv
e’'L = SR- 2P”P’l’ g[(zs%’d S*SIVF L i F
+(28;0 — 5ik5jl)F;lij_Wkl] -V (5)

with the 10 x 10 matrix S;;; = (SY*)*. As usual, the
vielbein P}, and SU(5) x U(1) composite connection Q,,';
on the scalar manifold are obtained from the relation

loi _lsiok L pi
50, . —28.0 ’ —-—>=P
_ [ 2%e T 6% %Nk Nl
leﬂz_< T ip ‘ le>. (6)
V27§ M 3=k
Explicitly, we can write
:—\/_31( i — e 45]) ¢ (7)

1
Q - 262¢ D[l¢j ( 261 i 2€2¢ ¢ )¢kD ¢ (8)

with the gauge covariant derivative given by
Dﬂd)i = aﬂd)i - gAllljd)j (9)

and D,¢" = (D,¢;)*. We also note the properties of 0, ,

Q;tij = _Qﬂji = _(Q[lij)*' (10)

We now come to the gauge field part. The (anti-)self-dual
field strength tensors are defined as

1/ . i .

Fli= 5 <F,’/,, + §€#UP0FIJPG> and
—ij 1 ij I ijpo

F;w = 5 F/u/ 2 ;w/mF (11)

with the gauge field strengths defined by

Fii, = 20,,A]] = 2gA% Al (12)

We also note the convention (F/ )" =F ;,7 . The matrix

e
uvij
Si s defined by the relation
T Knn _ sl
O +§€/ Pep, | SEM = Gun (13)

with 8, = 1 (6,6) — 8i8]). The explicit form of S/ can be
found in [63] in which black hole attractors in ungauged
N = 5 supergravity have been studied. In our notation, this
matrix reads

) g1
S = TG {6’ ze’fklm¢m—25[i[k¢z]¢ﬂ} (14)

Finally, the scalar potential is given by
1 .
V== |24t - SelloP - 2] (5)

with the notation (¢;)*> = ¢;¢b;.

We also need supersymmetry transformation rules for
fermions. In the chiral notation, the fermionic fields are
subject to the chirality projection
ijk :)(ijk (16)

YsWh =W YsSK =X VsK

with
YsWin = ~Wiu» VsXijk = —Xijk- (17)

The corresponding supersymmetry transformations read

Oyryi = 2Dy€i = Q€ = 22! 1 Gy Cif"!
+ \/Eg}’ﬂSijej, (18)
3 v rs I
6%1]]( - lfklm H }, € + 2G l./rsy” C[ ek] ng ijkel’
(19)
oy = Pur'e' —2gN'e; (20)

in which the fermion-shift matrices are defined by
$ = e84+ 3 AP, + ) =28, (1)

ij ijklm ijklmn n ik n
N = e elimgy,, + e, e, " py + 3367, )",
(22)

N' = —etp; — ejes ()’ (23)
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with

Sk — 5} 8hn. (24)
We emphasize that raising and lowering of SU(5) indices
i,Jj,k, ... correspond to taking the complex conjugate. The
field strengths G,,;; are obtained from F, .. by dressing
with scalars

G;z/ij = Sij’le;;kl. (25)
Finally, the tensor C;;*' is given by
1 e
Kl okl A €2 (k4]
Cyft = ol =220 (26)

with 87 = lis!.

At this point, we note that we have corrected a typo in the
sign of the second term in (22) as given in [25]. This sign
change is also required by the supersymmetric Ward
identity according to which the scalar potential can be
written in terms of the fermion-shift matrices as

1 - 1 .. .
V= —ggz <6S11Sij - gNll']kNl ijk — 2N1Nl> . (27)

As already mentioned, this scalar potential has been studied
in [26]. There are two AdS, vacua, one with N =35
supersymmetry and the other one with completely broken
supersymmetry. These two vacua are given, respectively, by

. 1
¢1 =0, Vo, = —692’ L =—— (28)
0 \/Zg
and
) 2
¢'=0, i=1,23, Pt = —ig® = 5
3
Vo=—l4¢>, L= %g. (29)

We have denoted the cosmological constant by V(. The
supersymmetric critical point preserves the full SO(5)
gauge symmetry while the nonsupersymmetric one is
only invariant under SO(3) C SO(5). The AdS, radius L
is related to the cosmological constant by

3

[2=——.
Vo

(30)
We have also taken g > 0 for definiteness. At the super-
symmetric AdS, vacuum, all scalars have masses m?L? =

—2 corresponding to operators of dimensions A =1, 2 in
the dual N =5 SCFT. These operators are given by scalar

and fermion bilinears (mass terms), respectively. Although
we will not further consider the nonsupersymmetric vac-
uum, it is useful to emphasize that it is stable in the sense
that all scalar masses are above the BF bound m*L? = —3.
The full mass spectrum can be read off from the SO(3) x
SO(3) AdS, critical point of the maximal N = 8 gauged
supergravity given in [28] keeping only SO(3) singlet
scalars.

In subsequent sections, we will look for various types
of supersymmetric solutions which are asymptotic to the
N = 5 supersymmetric AdS, vacuum.

III. HOLOGRAPHIC RG FLOWS

We begin with holographic RG flow solutions in the
form of domain walls interpolating between the super-
symmetric AdS, vacuum in the UV and singular geometries
in the IR. The metric ansatz is given by

ds® = A dx3 , + dr? (31)

with dx7, being the flat metric on three-dimensional
Minkowski space. Scalar fields will depend only on the
radial coordinate r, and all the other fields will be set to
zero. We will also use Majorana representation for gamma
matrices in which all y# are real, but y5 is purely imaginary.

A. RG flows with SO(4) symmetry

We first consider solutions with SO(4) symmetry.
Among the five complex scalars, only one scalar is an
SO(4) c SO(5) singlet. We will choose this singlet to be
¢ and set

=g =gt =0,

with real scalars ¢ and ¢. In this case, the tensor S” is real
and given by

i=1.234 (32)

__ 9 s Wi
VI—lgE V2

in which we have introduced the “superpotential” WV for

convenience. In general, the function V is complex and, in

the present case of N =5 gauged supergravity, related to

the eigenvalue s of S” corresponding to the unbroken
supersymmetry by

S

(33)

W = V2s. (34)

The form of S¥ being proportional to the identity matrix
indicates that the entire flow will preserve N =5 super-
symmetry with all ¢/ nonvanishing.

Since there is an r-dependence in both the warped factor
A and scalar ¢, the gamma matrix y; will appear in the
resulting BPS conditions. We then impose the following
projector:
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yie, = eitel (35)

with A being a real function of r. Note that this projector
relates the two chiralities of €', so the flow solutions will
preserve only half of the original supersymmetry or ten
supercharges. It is also possible that ¢ in different
representations of the residual symmetry can have different
phases.

With all these, the conditions Sy, = 0 for y =0, 1, 2
give

eMA W =0. (36)

Throughout this paper, we use ’ to denote r derivatives.
This equation leads to

e =F w (37)

A =4+W = £\ d
[W| an W

In what follows, we will make a definite sign choice by
choosing the upper signs in order to bring the super-
symmetric AdS, critical point at r — .

The variations y"/¥ and 8y lead to two equations of the
form

e =29\ 1~ ¢l

eI = 29\ [1 = |2, (38)

In the present case, WV is real leading to e == 1, and we
simply have the BPS equations

w2 (39)

VI-|pP
ow

¢ =(- |¢|2)2875*_

The scalar potential can also be written in terms of W as

V2gp\/1 - |9

oW oW 4
“apop W _92(“ - |¢|2>‘
(41)

V=4(1-¢])

In terms of the real scalars ¢ and ¢, we simply have

¢ ==V2p\[1- ¢,

' =0.
(42)
It is straightforward to verify that these equations are

compatible with the corresponding field equations. The
last equation together with the fact that { does not appear in

any equations imply that { can be any constant without
affecting the resulting solutions. We will choose ¢ = 0 for
definiteness. We also note that the condition Sy, = 0 gives
the usual form of the Killing spinors for domain walls

€(0) (43)

for spinors 620) satisfying the projector (35).

i

4
€ 2

=e€

The flow solution can readily be obtained:

A= %ln(l —¢*) —Ing, (44)
26\/§gr—C

=— 45

¢ 2(V29r-0) 4 | (45)

with C being an integration constant. It should be noted that
C can be set to zero by shifting the coordinate r. We have
also neglected an irrelevant additive integration constant in
A since this can be removed by rescaling coordinates on
dx},. We now consider asymptotic behaviors of the

1 — 1
solution. As r — oo, we find (recall that L = ﬁg)’
p~e VW et oand A~V2gr~ % (46)

This is the N = 5 supersymmetric AdS, configuration.

Furthermore, there is a singularity as r — \/_ng at which
the solution becomes

p~1- % (V2gr—C)?> and A~In(v2gr—C). (47)

Near the singularity, we find that ¢ - 1, A - —o0, and

4q° 4q°
—1_(p2~— - —o0. (48)

" (Vagr = OF

According to the criterion given in [64], the singularity is then
physically acceptable. Therefore, the above solution
describes an RG flow from the N =5 SCFT in the UV to
an N = 5 nonconformal field theory in the IR. The flow
breaks conformal symmetry but preserves the full N =5
Poincare supersymmetry in three dimensions. We identify
this flow with the mass deformation pointed out in [13] in
which the explicit form of relevant mass terms have also been
given. The deformation preserves N = 5 supersymmetry but
breaks the SO(5) R-symmetry to an SO(4) subgroup in
agreement with the supergravity result obtained here.

B. RG flows with SO(3) symmetry
We now repeat the analysis for a smaller residual
symmetry SO(3) C SO(5). There are two scalars that are
SO(3) singlets. We will choose these scalars to be ¢* and
¢°. It is more convenient to use the scalars in the form of
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¢* = tanh@cosde“’ and ¢° = tanhgsinde®2. (49)

The variations dy"/* = 0 along €', i = 1, 2, 3, lead to the
condition

sin(¢, — &) =0, (50)

which implies
G =0 +nn (51)

for an integer n. With this, the matrix S% is real as in the
SO(4) case and given by

S = gcosh 8", (52)
which leads to the superpotential

W = V2gcosh g. (53)
The resulting BPS equations read

A’ = \/2gcosh g, ¢ = —V2gsinh g,
9 =0, {=¢=0. (54)

The solutions for A and ¢ are the same as in the SO(4) case,
up to some field redefinition, with constant values of 9 and
{1, that can be chosen to be zero. Therefore, if we keep
supersymmetry corresponding to €'>3 unbroken, we nec-
essarily find N = 5 supersymmetric solutions with SO(4)
symmetry.

We now consider another possibility obtained by setting
e =0 for i =1, 2, 3. The condition (50) is then not
needed. The remaining two eigenvalues of S*/ are given by

g 2
W, =—"=|2(3 + cos2n) cosh @ + (3 + cosh 2¢)sin
W { ( n) cosh g + ( @)siny
—8sinh* % (cos 49sin?y + il")] (55)
with

I = sinysin 28\/3 +c0s 25 + 2cos49sin’y.  (56)

The corresponding Killing spinors are given by

sin2ysin®29 - T
=es+ . 57
TG < sin# sin44d ) “ (57)

We have redefined the scalars {,, by writing {; =y
and §H =y —1.

Since I' is real, both YW, and W_ give the same real
superpotential W = |[W_.| in terms of which the scalar
potential can be written as

Y (WY, 1 fowy:
-~ \ g sinh?¢p \ 09

4 oW\ 2
| —3W?
+ sin?29sinh?¢p ( on )
1
= Egz(—S —4cosh2¢ +sin?ysin®29sinh*gp).  (58)
For general nonvanishing e, the solutions will preserve
N = 2 supersymmetry.
By imposing the following projectors:

yier = e, (59)

we obtain the BPS equations
’_ _ 9 .49
Al=W= 3 67 + cosh4p — 16c0s2#(3 4+ 4 coshp)sinh 5

+cosh2¢ <60 — 16 cos2ysinh* %)

1/2
—16cos 419sin2nsinh4go} . (60)
oW
&
=W [8 cosh ¢(cos 217 + 2 cos 49sin’)sinh’p
—305sinh 2¢ — sinh 4¢], (61)
1 ow ?
9 = Py R 2g_W sin?ysin4dsinh?p,  (62)
sinh?¢
4 ow g
/ = - = - 2 h2
== 29smhig oy winZisinite.  (63)

y' =0. (64)

As in the previous case, we can set y = 0 for convenience.

We are not able to completely solve these equations in an
analytic form. However, by combining Eqgs. (62) and (63),
we obtain

cot28 = C; cosy (65)

with an integration constant C;. Similarly, combining
Egs. (61) and (63) gives

2v/2sech?p = 32(1 + C2)C,

x \/(1 +cos2n)(2 + C3 + C? cos 27)
—3—4C3cosn —cos2y (66)
with another integration constant C,. In addition, for a

particular value of C, = 0, we find the solution for A as
follows:
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Out[293]=

2 4 6 8 10 — A

(a) Flow I: An RG flow solution with 9 = 0

along the flow.

FIG. 1.
the behavior of the scalar potential.

Out[299]=

(a) Flow II: An RG flow solution with
¥ # 0 and ¢ — oo in the IR.

-6.00

-6.05

Out[389]= — Flow |

_6.10}

6.5}

2 4 6 8 10
(b) The behavior of the scalar potential

along flow I.

An RG flow from the N = 5 AdS, critical point as r — oo to a nonconformal field theory in the IR with 9 = 0 together with

1500

1000
— Flow Il

500

(b) The behavior of the scalar potential

along flow II.

FIG. 2. AnRG flow from the N = 5 AdS, critical point as » — oo to a nonconformal field theory in the IR with 9 # 0 and ¢ — oo in

the IR together with the behavior of the scalar potential.

A =2In(2+ C? + C3cos2n) —21In(3 + 2C2 cos 27).
(67)

The complete solution can be obtained numerically.
Examples of these solutions are given in Figs. 1, 2,
and 3 with g= 1. For convenience, we will call the
solutions shown in these figures flow I, flow II, and flow
I, respectively. For flow I, d vanishes along the entire
flow. This is nothing but the SO(4) symmetric flow
solution given in the previous section. From the behavior
of the scalar potential, it is clearly seen that the IR singularity
is physical in agreement with the previous result.

For flow II and flow III with 9 # O along the flows, we
find that near the singularities, ¢ — o0 and ¢ — —oo,
respectively. Both of these flows are unphysical by the
criterion of [64] since the scalar potential goes to infinity
near the singularities. This behavior can also be seen from
the potential given in (58). For ¢ — +o0, we find that

V ~ sin? 5y sin® 9 — oo (68)

unless sin® =0 or siny =0 which give the SO(4)
symmetric solution.

We end this section by giving a solution for particular
values of 7 =7 and 9 =%. The resulting BPS equations
become

9 g .
A’ = ——-(2 4+ cosh2¢p), ! = ——~_ginh ¢,

5 \/E( ®) @ 5 inhe
H=9=y =0. (69)
The solution can readily be obtained:

tanh g = e~ V29(r=10), (70)

(71)

Although this is very similar to the SO(4) symmetric
solution, it should be noted that this solution only preserves
N =2 supersymmetry in three dimensions and breaks
SO(5) to SO(3). We recall that when 5 = 0, the unbroken

1
A= Eln cosh@ —In sinh ¢.
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(a) Flow IIT: An RG flow solution with
¥ # 0 and ¢ — —oo in the IR.

FIG. 3.
the IR together with the behavior of the scalar potential.

supersymmetry is enhanced to N = 5 as previously men-
tioned. However, the values 7 =7 and 9 =7 lead to
V — oo near the singularities as ¢ — £oco. It would be
interesting to find an uplift of this solution to M-theory
using the S§7 truncation to the maximal N = 8 gauged
supergravity and check whether the singularities are
acceptable. If this is the case, identifying the analogue
of nonvanishing # and 9 in the dual N =5 SCFT that
breaks N =35 supersymmetry to N =2 also deserves
further study.

C. RG flows with SO(2) symmetry

We finally consider the smallest possible residual sym-
metry SO(2) C SO(5). There are three singlet scalars that
are chosen to be

¢ =g, i=23,4,5. (72)
Similar to the SO(3) case, the BPS conditions along ¢! and
€? lead to the conditions
i—¢ j=nr (73)
for any integer n and i # j. If we impose this condition, the
solutions will preserve N = 5 supersymmetry subject to the
7+ projector. On the other hand, we can, as in the previous
case, set /2 = 0 and look for solutions with at most N = 3
supersymmetry. The BPS equations in this case are much
more complicated than the SO(3) case due to more scalars
involved. Therefore, we will only consider the simpler
situation of setting {; = ¢ for i =3, 4, 5.

By the same analysis as in the previous cases together
with {; = ¢, = {3 = ¢, we find that {’ = 0. We can again
set { = 0 and find the following BPS equations:

V2g

A=
J1-03 -0t -

, (74)

5.0 5.2 5.4 5.6 5.8

-10f+

Out[416]= — Flow llI

(b) The behavior of the scalar potential

along flow III.

An RG flow from the N = 5 AdS, critical point as r — oo to a nonconformal field theory in the IR with § # 0 and ¢ - —c0 in

v = V2ol -3 - i g2 i=3.45 (75)

These equations imply @3 = ags and ¢, = p¢s for con-
stants a and f. Using this fact and rewriting ¢> = ¢, we end
up with only two equations for A’ and ¢’. The correspond-
ing solution is given by

A=V2gr+ [l = (1 +a® 4 p2)eXV2) (76)

2eC-V20r
= 2 2\ ,2(C—v2gr) (77)
1+ (14 a? + p*)e?( V2

The singularity when 2+v/2gr ~In[e*C(1 +a® + f%)] at
which A - —o0 and

1
V1t + %)
is also physically acceptable since
4 2
Vo~ J —oo (79)

_)
1— (14 a*+p%)¢?

near the singularity.

If we redefine the scalar to ¢ = \/1 + o + ¢, we find
exactly the same SO(4) symmetric solution given previ-
ously. Therefore, it appears that the only physical RG flow
within the framework of N = 5 gauged supergravity is the
SO(4) symmetric one preserving N =5 supersymmetry.
Note also that from SO(3) and SO(2) symmetric solutions,
we see that the solutions with only real scalars nonvanish-
ing reduce to the SO(4) symmetric solution preserving half
of the original supersymmetry. We will show below that
this result is indeed valid in general.
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D. Comment on general supersymmetric
domain wall solutions

Since there are only five complex scalars in N =5
gauged supergravity, we can generalize the results obtained
in the previous cases to the full SU(5, 1) /U(5) scalar coset.
We first consider solutions with a residual symmetry SO(n)
for 1 <n < 5. For n =15, no scalars can be turned on
because there is no SO(5) singlet among the five scalars.

To proceed further, we recall that, with only scalar fields
nonvanishing, the conditions 8y’ =0 from (19) can be
written as

5)(,']'/( — —€ijklm}/”Pﬂm€/ _ nglijkel =0 (80)
with

NE = e M7, + e1e2e7" " i + 3€16 )0, "
(81)
It turns out that some of these conditions do not involve
derivatives of scalars from P,,. In particular, this can happen
when indices / and i are equal among other possibilities.

We then write ¢ = ¢,,¢*» and consider the conditions
8y'’* = 0, for | = i, which reduce to

el62€ljkmn(ﬂ,n§0n¢1€i(_¢”’+c"_gl)
ljk i(—
=+ 36%5lipzn(pnz(pne (=) = 0 (82)

without summing over /. By antisymmetrizing the products
of ¢,,’s, we arrive at the result

ljkmn¢l¢n(pme—iC, sin (é’n - Cm)

+ 66%%% sin ({; = &) = 0. (83)

e1e,€

Since the two terms on the left-hand side are independent of
each other, this condition implies

sin({; — fj) =0, (84)

which gives the previously obtained result {; = {; + nx.

By splitting indices i, j,... = 1,2,...,5 into f,f', —
1,2,...,n and ;] ...=n-+1,...,5 with scalars (p7 and ¢f
being, respectively, singlets and nonsinglets of SO(n), we
can summarize possible cases as follows:

(i) For n =4, there is only one SO(4) singlet scalar,
and in this case N, automatically vanish.

(i) For 1 < n < 4, there are 5 — n singlet scalars de-
noted by ¢7. The relevant nonvanishing components
of N/ are N;l/k which lead to the conditions
sin({; — ¢3) = 0. Accordingly, we need to set {; =
¢ i+ mmore; = 0. In the former case, all the phases
are equivalent up to an additive constant mz and lead

to the tensor S*/ proportional to the identity matrix,
possibly after a diagonalization. The latter case gives
N =5 — n supersymmetric solutions with the cor-
responding Killing spinors €.
In particular, this result implies that domain wall solutions
with all five scalars nonvanishing are possible only when all
the complex phases of the scalars are equal up to an additive
constant ms. In addition, for scalar fields of the form

O = (@1, 92, 3. Q4. @5) € (85)

with m = 0 for convenience, we can verify from the
definition (21) that the S¥ tensor is real and independent
of {. This leads to the BPS equation {’ = 0 according to
which ¢ can be set to zero.

Furthermore, by using the parametrization of the form

@1 = @coséy,

@y = @sing; cos &y,

¢3 = @sin&; sing, cos &3,

@4 = @siné; sin&, sin &3 cos &y,

®s = @sin&; sing, sin gy sin gy, (86)

we readily find

SV = ——= 87
s (87)
with the scalar potential
2473 - ¢?
yo 20 7) (88)
I-¢

Therefore, the resulting BPS equations will give & =0
for all i =1, 2, 3, 4. Since only ¢ depends on the radial
coordinate r, the solution effectively reduces to that of the
SO(4) case. We can then conclude that the most general
half-supersymmetric domain wall solutions of N =5
gauged supergravity can only involve nonvanishing real
scalars with SO(4) symmetry. However, we note here that
this conclusion is valid only for half-BPS solutions. More
general flow solutions with less supersymmetry are pos-
sible but these solutions necessarily involve nonvanishing
pseudoscalars.

IV. SUPERSYMMETRIC JANUS SOLUTIONS

We now move to supersymmetric Janus solutions
obtained from an AdS;-sliced domain wall ansatz

ds® = 4 (e?dxd, + d&2) + dr. (89)

The analysis is essentially the same as that given in [44]
(see also [45]). Therefore, in this paper, we will mainly
review relevant results for deriving the BPS equations.
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In this case, the BPS equations will get modified
compared to the RG flow case due to the curvature of
the three-dimensional slices. The conditions 61;/;'2 =0 for
A=0,1 give

1 )
A/]/,cé‘,' -+ ?E_A}’{Eei + Wel = O, (90)

which leads to the following equation:

1
A? = W? —Ze‘“ (91)
with W = |W| as usual.
We then impose the y; projection of the form

vee; = ixee! (92)

with k2 = 1. The constant k = 4-1 defines the chirality of
the Killing spinors on the two-dimensional conformal
defects described by the AdS; slices. Using the projector
(92) in Eq. (90) leads to the y; projector given in (35) with
the phase factor

, A ke ™
ino 2 e 93
¢ W/ w (93)
for real YV and
. 4%
iV 94
¢ A’—i—%e‘A (94)

for complex W. It should be noted that the terms involving
the superpotential have opposite signs to those given in
[44,45] due to the different definitions of the superpotential
in terms of the eigenvalue of S%.

Taking into account the conditions coming from 51;/{’;2 =0

and Sy’ = 0, we can derive the explicit form of the Killing
spinors (see more detail in [44]) as follows:

€ = e%%”%ef()), (95)
where the constant spinors 850) satisfy
yfego) = ¢ and ygeel(-o) = ke, (96)

After using the y; projector in the variations 8y and &y"/*,
we obtain the full set of BPS equations. We emphasize
again that different phases e® for ¢’ in different represen-
tations under a given residual symmetry are possible as also
pointed out in [44].

A. Janus solutions with SO(4) symmetry

We first give Janus solutions with SO(4) symmetry
under which ¢ transform as 4 + 1. In order to obtain a

consistent set of BPS equations, we need to impose the
following projectors:

yie; = eNel, i=1,2,3,4, —iNgS

Vi€s = €

yee; = ixee, yees = —ike e, (97)

Using the superpotential

V2g
V1 —¢?

and the phase (93), we find the following BPS equations:

W = (98)

2g2f2(0A/€2A

=Ty AanA 59)
2¢°kt et
= Traar e (100)
—2A 2 252 2A 2 -1
Prc St ) (101)

(1 - ¢?)

It should be noted that, in this case, the phase { is not
constant along the flow. Furthermore, these equations
reduce to those of the RG flow studied in the previous
section in the limit £ — co for which the AdS; slices
become flat.

By combining Egs. (99) and (101), we find

dA 1
—=- 3 (102)
dp  ¢o—¢
which gives
1
A=-In(1-¢*) —Ing. (103)

2

Using the solution for A in Eq. (99), we obtain the solution
for ¢ given by

2V2gr =2Ingp —In [2ﬁgf\/(1 — ) (2g** — ¢?) — ¢*

+29*6*(2 - (pz)} . (104)
Finally, combining Eqgs. (99) and (100), we find
_ -1 4
{ = ktan +C (105)

for an integration constant C. We point out here that by
redefining the scalar ¢ as
@ = tanh @, (106)

we obtain the same solution as given in [44,45] in N = 8
and N = 3 gauged supergravities. Therefore, this solution
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¢ o

1.5F

A

(a) ¢ solution.

(b) ¥ solution.

(c) A solution.

FIG. 4. A Janus solution with SO(3) symmetry and N = (1, 1) supersymmetry on the two-dimensional conformal defect within the

N =5 SCFT.

could be just the known solution of N = 8 theory that
survives the truncation to the N =5 theory.

We end this section by giving a comment on the unbroken
supersymmetry on the conformal defect. Since WV is real,
e™ and e~ are related by a sign change in k. This implies
that ¢’ and €° are subject to the y ¢ projector with opposite sign
of k, so the two-dimensional defect preserves N = (4, 1) or
N = (1,4) supersymmetry depending on the values of x = 1
or k = —1, respectively. It is also useful to note the numbers
of unbroken supersymmetries on the defect for solutions in
N = 8 and N = 3 theories. These are given, respectively, by
N=(4,4)and N = (2,1).

B. Janus solutions with SO(3) symmetry

We now move to Janus solutions with SO(3) symmetry
with the corresponding singlet scalars given by

¢* = tanh ¢ cos ¢’ and ¢ = tanh ¢ sinde!€7.
(107)

For 1 = 0, we find that the BPS conditions give ' = 0, and
the resulting BPS equations as well as the solution are the
same as the N = (4, 1) Janus solution given in the previous
section.

As in the RG flow case, we look for different solutions
with 7 # 0 by setting €'?® = 0. It turns out that the BPS
equations for general values of # are highly complicated.
Therefore, we proceed by taking n = 7 for simplicity. In
this case, the superpotentials obtained from the eigenvalues
of the S¥ tensor are given by

W, =V2g (cosh“% — eT4sinh* %) (108)

corresponding to the Killing spinors ey = €4 £ e€5. By
repeating the same analysis as in the previous case and
imposing the following projectors on €..:

yer = etihe* and  yfe, = diketihet, (109)

we obtain the phase factor

+iA _ Wy

=—— 110
At ike™ (110)

e

With this result, the conditions §y"/¥ = 0 and §y = 0 lead to
the BPS equations

/ — A_/ a_w + ke™ 1 a_W
P=7"\w)ap T \'wé ) sinhg 99
2 -A
N g Ke . - 1.3
= 1en? [8 (—f > sin 49sinh” ¢

+ A’(8 cos 48 cosh gsinh®p — 14 sinh 2¢ — sinh4¢) |,

(111)
g__ L (aow ke 1 0w
~ sinh?p \W) 09 W¢ ) sinhg O
7
= ————— | -8A’sin49sinh’p
16W~ sinh ¢
ke ™
+ <7> (8 cos 49 cosh gsinh’g
— 14sinh2¢ — sinh4(p)} (112)
with
W= |W.|

g .4
=——1/354 28cosh2¢ + cosh4¢ — 8 cos 49sinh*¢.
N \/ @ % Z
(113)

Together with the equation

A2 - (114)
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we now have the full set of BPS equations for super-
symmetric Janus with N = (1, 1) supersymmetry on the
defect. As in all of the previous cases, it can be directly
verified that these equations imply the second-ordered field
equations. We also point out that this solution is genuinely
new since known supersymmetric Janus solutions within
N = 8 gauged supergravity preserve (4,4), (0,2), and (0,1)
supersymmetries on the defect.

In this case, we are not able to find an analytic solution to
the above equations. We will instead give an example of
numerical solutions as shown in Fig. 4. In this solution, we
have setg:%, k=1,and £ = 1.

V. SUPERSYMMETRIC AdS; BLACK HOLES

In this section, we consider supersymmetric AdS, black
hole solutions by looking for solutions interpolating
between AdS, and AdS, x X? geometries. The former is
the asymptotic spacetime at a large distance from the black
holes while the latter describes near horizon geometries
with 2? being two-dimensional Riemann surfaces. In this
work, we are only interested in the cases of X2 being a two-
sphere (S?) and a hyperbolic space (H?).

We begin with the metric ansatz

ds? = —e¥")di> + dr? + &2 (d6? + F*(0)d¢*) (115)
with the function F(6) defined by
sing, X*=§2
F(0) = . 116
©) {sinhé?, ¥ =H? (116)

It is useful to collect all the nonvanishing components of
the spin connection

o' = fle, " =ne,

- . . F .
w?" =He?, @’ = —ehe? (117)

with F'(6) = 4L,

In this case, we need to include gauge fields to the
solutions. This is also required by the existence of Killing
spinors associated with unbroken supersymmetry. The

gauge fields are chosen such that the spin connection,

wl? given above, on X? is canceled. This procedure is
called a topological twist. We will consider two possibil-
ities with SO(2) x SO(2) and SO(2) twists.

A. Solutions with SO(2) x SO(2) twist

We first consider SO(2) x SO(2) twist by turning on
SO(2) x SO(2) gauge fields. We will separately consider
magnetic and dyonic solutions.

1. Magnetic solutions

We begin with the ansatz for SO(2) x SO(2) gauge
fields of the form

A =—p F'(0)dp and A* = -p,F'()dp (118)

with the field strength tensors

F2=kp,F(0)d0 Adp and F3* = kp,F(0)dO A dep.
(119)

We have written F”(0) = —«xF(6) by introducing the
parameter k = 1 and k = —1 for S? and H?, respectively.
We also note that p; and p, are identified with magnetic
charges of the solutions.

Among the five scalars ¢/, the SO(2) x SO(2) singlet
scalar coincides with the SO(4) singlet ¢° = ¢. With ¢/ =
0 for i =1, 2, 3, 4, it is now straightforward to compute
relevant components of the composite connection

2162 020 0ny
022 P202 Opg
01><2 01><2 0

F'(0)

6 (120)

0 A
Q¢j 2ge

From this result, we immediately see that the supersym-
metry corresponding to € cannot be preserved since it is
not possible to perform a twist along €>. We then set > = 0
and split , j, ... indices as (5,5), (f,S),

The twist is implemented by imposing the twist con-
ditions

2gp; = -1 and 2gp, = -1 (121)
and the following projector on the Killing spinors:
Yogei = (io2 ® ]Iz),'jej- (122)

The twist conditions imply that p, = p; which means the
twist is performed by the SO(2)g,, C SO(2) x SO(2)
gauge field. This is very similar to the solution with a
universal twist in pure N = 4 gauged supergravity studied
in [65]. It is convenient in the analysis of the BPS equations
to note that the chirality condition yse; = —e; implies that

r'e; = —iy’?e; = (0, @ L) e;. (123)
To analyze the BPS equations, it is also useful to define the
matrix

1 R
+ C¢Ak1(i62 ®]I2)mj

Zij=5GspuCin (124)

whose eigenvalues give the “central charges” Z;; = Z;6;;
with no summation on 7. For the SO(2) x SO(2) singlet
scalarand A)> = A}}* gauge fields, the matrix Z; is given by
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1 e_2h V I- |¢|25M

Zoa:—— e
i \/z kp 1_|_¢* i]

for 7, J—l 2,3,4and p; = p, =
the central charge as

Z = —ie‘Zthi' - |¢|2
V2 1+¢°

We hope the same notation ¢ for both scalar ¢ and the X?
coordinate will not give rise to any confusion. The two
meanings rarely appear together in the same equation.

With the twist conditions in (121) and the projector
(122), the variations 51// and 61// lead to the same BPS
equation of the form

(125)

p. We can then identify

(126)

Hye; + (W + Z)el = 0. (127)
We again impose the projector (35) and arrive at
We* + W+ Z =0, (128)
which gives
=+W+Z| and e =7F % (129)
Similarly, the condition dyj; = 0 gives
fle® +W—-2=0. (130)

Using the phase e from the previous result, we find

W= Z)W* + Z¥)
W+ Z|

= i( (131)
Finally, as in the case of domain walls and Janus solutions,
using the phase ¢’ in the §y/* = 0 and y = 0 conditions
give the BPS equation for the scalar ¢. Before giving the
explicit form of the resulting BPS equations, we first note
that, with € =0, the §y =0 equation is identically
satisfied since this equation has nonvanishing components
only along €.

Since in this case W is real and Z is also real for real ¢,
we first consider a simple case of ¢p = ¢ for real ¢. It can
readily be verified that setting the phase or equivalently the
imaginary part of ¢ to zero is a consistent truncation. This
leads to e¢® =F 1, and the resulting BPS equations, with
the upper sign choice chosen, are given by

1
¢ ==\ 1= p(2ge™ —xp) +xpl. (132)

W = —z——=—==[2ge" —kp(1 - @),  (133)

f=-t & 4 kp(1 - ).

o—2h
Dy
V21— @*

In order to find AdS, x X? fixed points we impose the
conditions ¢’ = 4’ =0 and f’ = ——. The first two con-

(134)

ditions give

1. [(kp
@=-1 and h:—ln<—>, 135
3in(* (135)
and using this result in the last condition gives
-9 2
"2 ~ - 136
ST, ITTe 130

Therefore, no AdS, x X2 solutions exist in this case. Note
also that the scalar ¢ cannot be truncated out since setting
@ =0 does not satisfy the corresponding flow equation
unless p = 0. We can extend this analysis by including
the imaginary part of ¢. This will be given in the next
subsection.

2. Dyonic solutions

We now consider dyonic solutions with both magnetic
and electric charges. First of all, we review the definition of
electric and magnetic charges

1

| y
. H d p¥Y=— [ FY (137
4= - and - pt = ) (137)
with H;; defined by
5Sgauge

Seauge denotes the gauge field part of the gauged super-
gravity action.

In the present case, we can rewrite the gauge field part of
the Lagrangian by expanding the Lagrangian given in (5).
The result is

1 L 1 ..
Loauge = _ZRij.kl * Fii A FK 4 Zlij,leu AFH(139)
with
Rij i = Re(28UH — 5ksil)  and
Iij,kl = Im(ZS’Jkl - 5ik5ﬂ). (140)

Using all these results, we can write the ansatz for various
components of the gauge field strengths as follows:

; Ui ] mn
FY = —— e 2hRijK <§1kl.mn’cp +qk1>’

=3 (141)

Fi. = xpiie2h, (142)

0
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The matrix RY*! is the inverse of R;;;. Note also that
1;; 11 18 not required to be invertible. Indeed, for real scalars,
I vanishes identically. In a subsequent analysis, we
will denote the charges simply by p'> = p;, p* = p,,
g2 = q1, and q34 = q5.

We are now in a position to analyze the BPS conditions.
The twist can be performed as in the magnetic case since
the components Aﬁ/f are the same. However, the central
charge matrix is now given by

1
Zc\c\ = —
Y2

All together, we obtain the same form of BPS equations
from &y, and 51//;;:

(G}, —iGt

kl(; m
9(27/(1 l Gfkl)cflﬁ (162 ®]12)j . (143)

in_ W+2)

hW=W+2Z2 d =— ,
W+2| and e W Z|

(144)

With the time component of the composite connection

Q57 = 2ige™ Ag(ic, ® L), (145)

the condition 61//(’; =0 gives

flyie: + 2ige T Ay (ic, ® Hz)ﬁej + Wel — Zel = 0.
(146)

We also recall that the twist conditions require A, =
A3* =A,. Since p, = p, = p, consistency also requires
9 =49 =49 _ . -

Using the " and y” projectors, we can derive the y°
projector

f/

e = —e7MNoy ® I) ;. (147)
We emphasize here that this is not an independent projec-
tor, so the number of unbroken supercharges along the
entire flow solution is still four due to the two projector
or and y;. Using this result in Eq. (146) and setting the real
and imaginary parts to zero separately, we find the BPS
equations

f' = —Rele 7MW - Z)], (148)

Ay = —ziefIm[e—fA(w ~2)), (149)

9

in which the second equation determines the form of the
time component of the gauge fields.

In the present case, it turns out that using the complex
scalar ¢ in terms of real and imaginary parts is slightly
more convenient. Therefore, we will write

b=0p+iC. (150)

With the explicit form of the superpotential and the central
charge given by

o V2
/1 —(P2 _CZ
Le—% kp +2ig+ (2ig—xkp)(p + iQ)

% Ve Er

W= (151)

and Z =-—

(152)
we find the following BPS equations:
V1 -9 =V 2q(1+ ¢) = kpl + (29¢® — kp + kpop + 24¢)?
2 2 _ 2 2 2h _ 2 2
W= W+ 2| :e_Zh\/( q + 299 — kpl)* + (29¢™ — kp + kpo + 24¢) (154)

0
@ :(1—¢2—§2)2%|W+Z|, (155)

0
< :(1—¢2—C2)28—CIW+ZI- (156)
Setting ¢ = 0, we obtain the BPS equations for magnetic
solutions with nonvanishing imaginary parts of ¢ as
previously mentioned. However, even with nonvanishing

2(1 - = %) ’

¢ and ¢, no AdS, x X? solutions exist in these equations.
Therefore, we conclude that there are no AdS, black holes
with SO(2) x SO(2) symmetry in N =5 gauged super-
gravity with the SO(5) gauge group.

B. Solutions with SO(2) twist

We now consider AdS, x X2 solutions with the SO(2)
twist by turning on only A,‘f. The same analysis as in the
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SO(2) x SO(2) case can be repeated with F3; =0 and
three SO(2) singlet scalars ¢p' = @'/, i = 3,4, 5. We will
omit some detail to avoid a repetition. The composite
connection Q 43/' now has nonvanishing components only
for i,j= fj =1, 2. In this case, the supersymmetry
corresponding to e**3 is broken since it is not possible to
perform the twist along these directions. We will accordingly
set €+ = 0 from now on. With this, §y = 0 conditions are
identically satisfied as in the SO(2) x SO(2) case.

As in the case of RG flow solutions, the supersymmetry
transformations &y”/* along €' give rise to the following
conditions:

§i=¢j+tnm i#],

for an integer n. In the case of RG flows, there is a possibility

(157)

to avoid these constraints by setting e/ = 0. However, this is
not the case in the present analysis due to the vanishing of
e3*> implied by the twist procedure. Therefore, in order to
obtain supersymmetric solutions, we need to set

s =4, o =C+mr, {3=C+nx  (158)
for m,n € Z. It turns out that the BPS conditions give
=0, (159)

so ( is constant and can be set to zero.
We finally end up with real scalars ¢;. The variations 51//;3

and Gy} give
o — Le—Zh (2ge*" — kp — 2iq)

V2 \/1—¢§—¢i—<p§

We can immediately see that the condition for AdS, x X2
fixed points to exist, i’ = 0, requires ¢ = 0. Therefore, the
black hole solutions (if they exist) must be purely magnetic.
Since we are mainly interested in AdS, black holes, we will
set ¢ = 0 in the following analysis.

For g = 0, we have real W + Z which leads to the phase
e = 1. With the upper sign choice, the resulting BPS
equations read

(160)

29+ kpe™?"
/: ) 161
f 2(1 = 3_ .2 _ 2 ( )
(1 -3 — 95— o3)
20 — —2h
=W+ 2| = =22 . (162)
\/2(1—40%—(/&—(/)?)
R R R R o o
' > Op;
1 .
== R kpe N I- g gi— g5, =345

(163)

There is an AdS, x X? fixed point at

1. |kp
@i = Pi0)> h——ln{—},
(0) 2 |29
2 2 2
L V! T %0 " %0 ~ %o (164
AdS, = 22y
for constant @;(). By the twist condition 2gp = —1, we

find that the AdS, fixed point exists only for k = —1 giving
rise to an AdS, x H? geometry.

Unlike the previous case with the SO(2) x SO(2) twist,
it is possible to truncate all the scalars ¢; out resulting in the
BPS solution, with k = —1,

1 2V2gr+C _
f—Zﬁgr—Eln[%], (165)
1 2V2gr+C _

As r — o0, we find f ~h~+/2gr which gives asymp-
totically AdS, space, while for r - —co the solution
becomes

! P
h~3ln [—2—9] and f ~2V2gr, (167)

which is the AdS, x H? fixed point. Accordingly, the
full solution interpolates between the supersymmetric
AdS, and AdS, x H? geometries. Therefore, this solution
describes a black hole in asymptotically AdS, space with
AdS, x H? near horizon geometry. From the holographic
point of view, the solution describes twisted compacti-
fication of N =5 SCFT in three dimensions to super-
conformal quantum mechanics.

We can also find an analytic solution in the case of
nonvanishing scalars ¢;. We first note that the BPS
equations imply, as in the RG flow case, that ¢; = ag;
and ¢, = fes for constants a and f. With ¢5; = ¢, the
solution is given by

f=Mm2g—pep* =2g(1 +a* + f*)¢’]
—%ln[l—(l+a2+ﬁ2)(p2]—ln(p, (168)

1
h==lng—3hn[l-(1+a + ), (169)
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2\/§gr: —2Ing+2In [1 + \/1 -1 +a? —l—ﬁz)(pz}

p
B \/p+2g(1 T2+ )

{ [,,3[ 8¢°[p +29(1 + o + §)] ]

29— pg* —29(1 + o + )]

+In [(1 +a* + ) (pe* — 29+ 29(1 + &® + *)9?)

+2(\/p[p +2g(1+ o + p)][1 = (1 + a® + 2)¢’] ‘p)} }

From this solution, we can see that as ¢ — 0, Ing ~ —/2gr
or ¢~ e~V29 and

f~h~=Ing~+\2gr. (171)

Therefore, the solution is asymptotically AdS, as in the
previous case.

In order to have a flow to the AdS, x H? fixed point, we
require that ¢ flows to the value

_ 29
Po = \/29(1 g p—— (172)

which precisely gives h = 1In (— %) at the end of the flow.
As ¢ — ¢y, we find that the above solution gives

p+2g(1+a2+2)

R (173)

@~@y+ Ce

and f~2\/§gr\/p+29(1;ra2+ﬁ2). (174)

Therefore, the solution becomes the supersymmetric
AdS, x H? fixed point (164) in the limit » — —co. This
solution then describes an AdS, black hole with an
AdS, x H? horizon in the presence of a running scalar.
We end this section by noting that in this case, the flow
solution preserves two supercharges due to the y;; and y;
projectors imposed on €'2. However, the supersymmetry is
enhanced to four supercharges at the AdS, x H? horizon.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied supersymmetric sol-
utions of N =5 gauged supergravity in four dimensions
with the SO(5) gauge group. For all scalars vanishing, the
gauged supergravity admits an N =5 supersymmetric
AdS, vacuum dual to an N =5 SCFT in the form of
CSM theory in three dimensions. For holographic RG
flows describing mass deformations of the N =5 SCFT
to nonconformal field theories in the IR, we have found
analytic solutions preserving N = 5 supersymmetry, but
the SO(5) R-symmetry is broken to an SO(4) subgroup.

(170)

This is in agreement with the field theory result given in
[13]. All of the IR singularities are physical by the
criterion given in [64]. Accordingly, these solutions could
be useful in the context of the AdS/CFT correspondence
regarding the gravity dual of N =5 CSM theory in three
dimensions. For SO(3) symmetric solutions preserving
N =2 supersymmetry, we have given numerical flow
solutions, but the IR singularities turn out to be unphysical.

For supersymmetric Janus solutions describing two-
dimensional conformal defects within the N =35 SCFT,
we have studied solutions with SO(4) and SO(3) symmetries
and N = (4,1) and N = (1, 1) unbroken supersymmetries
on the defects, respectively. The former can be found
analytically and turns out to be the same as the solutions
in N = 8 and N = 3 gauged supergravities given in [44,45].
This might suggest some universal property of the solution,
and if this is indeed the case, there would be a universal
surface defect in the dual three-dimensional SCFTs with
N =3, 5, 8 supersymmetries. Further investigation along
this direction in both gauged supergravities and dual CSM
theories might be worth considering. The N = (1, 1) sol-
ution with SO(3) symmetry appears to be new and can be
obtained only numerically. Both of these solutions could be
interesting in the holographic study of strongly coupled N =
5 SCFT in the presence of conformal defects.

We have also considered supersymmetric black holes
in asymptotically AdS, space with SO(2) x SO(2) and
SO(2) twists. It turns out that only the case of the SO(2)
twist leads to a supersymmetric black hole preserving two
supercharges with the horizon geometry AdS, x H?. In the
dual N = 5 SCFT, the solution describes an RG flow across
dimensions from three-dimensional SCFT to superconfor-
mal quantum mechanics. This could be used to compute
microscopic entropy of the black hole using the formalism
initiated in [58—60]. It is remarkable that we have found the
analytic solution with a running scalar unlike most of the
previous analytic solutions that only involve the metric. We
accordingly hope our solution would be of particular interest
in black hole physics and AdS,/CFT; correspondence.

Since the N =5 gauged supergravity with the SO(5)
gauge group considered here is a truncation of the N = 8
gauged supergravity with the SO(8) gauge group, it would
be interesting to explicitly find an uplift of these solutions
to M-theory using the consistent S truncation of the
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11-dimensional supergravity. The uplifted solutions could
give rise to a complete holograhic description of N =5
CSM theory and possible deformations. In particular, the
time component g, of the resulting 11-dimensional metric
can be used to determine whether the aforementioned
singular flow solutions are physically acceptable in M-theory
by the criterion given in [66].

In this work, we have only considered gauged supergravity
with the so-called electric SO(5) gauge group. It could also be
interesting to perform a similar study for other gauge groups
such as noncompact and nonsemisimple ones. In addition,
working out the complete embedding tensor formalism of
N =5 gauged supergravity to incorporate magnetic and
dyonic gaugings as initiated in [67-69] (see also review

[62]) would be useful in various applications. In particular, the
quadratic constraint of N =5 theory is generally less
stringent than that of the maximal theory. This implies that
there are N = 5 gauged supergravities with certain gauge
groups that cannot be obtained from the maximal theory; see a
similar analysis for the N = 6 gauged supergravity in [70]. It
is then interesting to study these gauged supergravities which
would give rise to genuine solutions of N =5 gauged
supergravity with no N = 8 counterparts.
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