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We study a large class of supersymmetric solutions in four-dimensional N ¼ 5 gauged supergravity with
the SOð5Þ gauge group. There is only one N ¼ 5 supersymmetric AdS4 vacuum preserving the full SOð5Þ
symmetry dual to an N ¼ 5 superconformal field theory (SCFT) in three dimensions. We give a number of
domain walls interpolating between this AdS4 fixed point and singular geometries in the IR with SOð4Þ and
SOð3Þ symmetries. These solutions describe RG flows from the N ¼ 5 SCFT to nonconformal field
theories driven by mass deformations. The SOð4Þ solutions are precisely in agreement with the previously
known mass deformations within the dual N ¼ 5 SCFT. We also find supersymmetric Janus solutions
describing two-dimensional conformal defects in the N ¼ 5 SCFT with N ¼ ð4; 1Þ and N ¼ ð1; 1Þ
supersymmetries on the defects. Finally, we study supersymmetric solutions of the form AdS2 × Σ2, with
Σ2 ¼ S2; H2 being a Riemann surface, corresponding to near horizon geometries of AdS4 black holes. We
consider both magnetic and dyonic solutions and find that there exists a class of magnetic AdS2 ×H2

solutions with SOð2Þ symmetry. It is rather remarkable that a complete analytic solution interpolating
between AdS4 and AdS2 ×H2 with a running scalar can be obtained. The solution corresponds to a twisted
compactification of N ¼ 5 SCFT to superconformal quantum mechanics. We also show that no purely
magnetic or dyonic black holes with AdS2 × Σ2 horizon from SOð2Þ × SOð2Þ twist exist in N ¼ 5, SOð5Þ
gauged supergravity.

DOI: 10.1103/PhysRevD.101.126015

I. INTRODUCTION

Over the past twenty years, the AdS=CFT correspon-
dence, originally proposed in [1] (see also [2,3]), has
provided holographic descriptions of various strongly
coupled systems ranging from (non)conformal field theo-
ries, conformal defects, AdS-black holes, and condensed
matter physics systems. Although the complete AdS=CFT
duality is achieved only in the context of string/M-theory,
a large number of remarkable results has been obtained
from solutions of lower-dimensional gauged supergravities.
In many cases, the gauged supergravities under consid-

eration are known to be consistently embedded in 10- or
11-dimensional supergravities which are low energy
effective theories of string/M-theory. The resulting solu-
tions can accordingly be uplifted to string/M-theory and
can be interpreted as D- and M-brane configurations.

Solutions of gauged supergravities with presently unknown
higher-dimensional origins are also interesting in the sense
that they can provide a bottom-up approach to the AdS=
CFT duality and still give some insight to the dynamics of
the dual field theories at strong coupling limits. These make
studying solutions of gauged supergravities in various
spacetime dimensions and different numbers of super-
symmetries worth considering.
Most of the previous studies are concerned with finding a

particular class of solutions that preserve some amount of
supersymmetry. These supersymmetric or Bogomol'nyi-
Prasad-Sommerfield (BPS) solutions play an important role
in different aspects of the AdS=CFT correspondence.
Gauged supergravities including possible massive defor-
mations are known to exist in dimensions from two to ten.
Among these theories, four-dimensional gauged super-
gravities are of particular interest since they give rise to
holographic duals of three-dimensional superconformal
field theories (SCFTs) and possible deformations thereof.
These SCFTs describe low energy dynamics of the world-
volume theory on M2-branes which are fundamental
objects in M-theory. The SCFTs in three dimensions take
the form of Chern-Simons-Matter (CSM) theories since the
usual gauge theories with Yang-Mills gauge kinetic terms
are not conformal. Up to now, many of these SCFTs with
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different numbers of supersymmetries have been con-
structed (see [4–24] for an incomplete list).
In this paper, we are interested in supersymmetric

solutions of N ¼ 5 gauged supergravity with the SOð5Þ
gauge group constructed long ago in [25]. According to the
AdS=CFT duality, these solutions could describe various
aspects of strongly coupled N ¼ 5 SCFTs in three dimen-
sions. There are ten scalars described by SUð5; 1Þ=Uð5Þ
coset. The scalar potential of this gauged supergravity has
been analyzed in [26]. There is only one supersymmetric
AdS4 vacuum preserving the full N ¼ 5 supersymmetry
with unbroken SOð5Þ symmetry (see also a general dis-
cussion in [27]). According to the AdS=CFT duality,
this AdS4 critical point is dual to an N ¼ 5 SCFT in three
dimensions. There is also another nonsupersymmetric
AdS4 vacuum with unbroken SOð3Þ gauge symmetry.
This critical point is perturbatively stable as pointed out
in [28] and has been extensively studied in the context of
holographic superconductors in [29]. To the best of our
knowledge, no supersymmetric solutions of N ¼ 5 gauged
supergravity have previously been considered. The present
work will hopefully fill this gap in the existing literature.
We will look for various types of supersymmetric

solutions of the aforementioned N ¼ 5 gauged supergrav-
ity. First, we will study supersymmetric domain walls
interpolating between the supersymmetric AdS4 vacuum
and singular geometries. These solutions describe holo-
graphic renormalization group (RG) flows from the dual
N ¼ 5 SCFT in the UV to nonconformal field theories in
the IR obtained from mass deformations of the N ¼ 5
SCFT. Similar solutions have been extensively studied in
N ¼ 8 and N ¼ 2 four-dimensional gauged supergravities
(see, for example, [30–38]). In addition, solutions in
gauged supergravities with N ¼ 3, 4 supersymmetries have
been considered recently in [39–43].
We will also find Janus solutions described by AdS3-

sliced domain walls interpolating between asymptotically
AdS4 spaces. These solutions are holographically dual
to two-dimensional conformal defects within the N ¼ 5
SCFT that break the superconformal symmetry in the three-
dimensional bulk to a smaller superconformal symmetry on
the two-dimensional surfaces. Supersymmetric Janus sol-
utions in other four-dimensional gauged supergravities
have previously been studied in [41,42,44–47].
We finally look for solutions interpolating between the

supersymmetric AdS4 and AdS2 × Σ2 geometries with Σ2

being a Riemann surface. These solutions describe super-
symmetric black holes in an asymptotically AdS4 space.
Solutions of this type in other gauged supergravities can be
found in [48–57]. In the dual field theory, the solutions
are dual to RG flows from theN ¼ 5 SCFT to another SCFT
in one dimension or superconformal quantum mechanics.
The latter is obtained from the former via twisted compacti-
fications on Σ2. This type of solution plays an important role
in microscopic computation of black hole entropy in

asymptotically AdS4 space (see, for example, [58–60]).
We finally note that the N ¼ 5 gauged supergravity with
the SOð5Þ gauge group is a subsector of the SOð8Þ N ¼ 8
gauged supergravity arising from a consistent truncation of
M-theory on S7. Solutions given in this paper are also
solutions of the maximal gauged supergravity and can
accordingly be embedded in M-theory. On the other hand,
it has been pointed out in [13] that the N ¼ 5 SCFT with
the SOð2NÞ × Spð2NÞ gauge group can be obtained from
the Aharony-Bergman-Jafferis-Maldacena theory with the
Uð2NÞ ×Uð2NÞ gauge group via orientifolds. We then
expect this N ¼ 5 SCFT to be dual to the N ¼ 5 AdS4
vacuum.
The paper is organized as follows. In Sec. II, we review

the construction of four-dimensional N ¼ 5 gauged super-
gravity with the SOð5Þ gauge group. In Sec. III, we will
look for supersymmetric AdS4 vacua and domain wall
solutions describing RG flows in the dual N ¼ 5 SCFTs in
three dimensions. We then study supersymmetric Janus
solutions in Sec. IV, and finally look for possible super-
symmetric AdS4 black holes for both magnetic and dyonic
solutions in Sec. V. Conclusions and comments on the
results are given in Sec. VI.

II. N = 5 GAUGED SUPERGRAVITY WITH
SOð5Þ GAUGE GROUP

We begin with a review of N ¼ 5 gauged supergravity
constructed in [25]. We also follow most of the convention
in [25] (see more detail on the convention in [61]) but with
some slightly modified notations to match with the modern
notation reviewed in [62]. N ¼ 5 supersymmetry does not
allow for any matter multiplets, so the only supermultiplet
in N ¼ 5 supergravity is the gravity multiplet with the
following field content:

ðeaμ;ψ i
μ; A

ij
μ ; χijk; χ;ϕiÞ: ð1Þ

The component fields correspond to the graviton eaμ,

five gravitini ψ i
μ, ten vectors Aij

μ ¼ −Aji
μ , 11 spin-1

2
fields

χijk ¼ χ½ijk�, and χ together with five complex scalars ϕi.
Spacetime and tangent space indices are denoted by

μ; ν;… ¼ 0, 1, 2, 3 and a; b;… ¼ 0, 1, 2, 3, respectively.
The N ¼ 5 supergravity admits global SUð5; 1Þ and local
composite Uð5Þ ∼ SUð5Þ ×Uð1Þ symmetries. The latter is
the R-symmetry for N ¼ 5 supersymmetry. Indices
i; j; k;… ¼ 1; 2;…; 5 denote fundamental representation
of SUð5Þ. The ten scalars are described by the SUð5; 1Þ=
Uð5Þ coset manifold with the coset representative

ΣA
B ¼

� δij − e2ϕiϕj e1ϕi

e1ϕj e1

�
ð2Þ

with A;B ¼ 1; 2;…; 6 being indices of the SUð5; 1Þ
fundamental representation. The quantities e1 and e2 are
defined by
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e1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jϕj2
p and e2 ¼

1

jϕj2
�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

p �
ð3Þ

with jϕj2 ¼ ϕiϕi ¼ ϕiðϕiÞ�. It should be noted that the
notation ϕi denotes the complex conjugate of ϕi. In
addition, in this parametrization, ϕi satisfy the condition
jϕj2 < 1. Being an element of SUð5; 1Þ, ΣA

B satisfies the
following identity:

Σ−1 ¼ ηΣ†η ð4Þ

in which η ¼ diagð1; 1; 1; 1; 1;−1Þ is the SUð5; 1Þ invari-
ant tensor.
The ten vector fields Aij

μ can be used to gauge SOð5Þ ⊂
SUð5Þ ⊂ SUð5; 1Þ symmetry resulting in N ¼ 5 gauged
supergravity with SOð5Þ gauge group. The corresponding
bosonic Lagrangian is given by

e−1L ¼ 1

2
R −

1

2
Pi
μP

μ
i −

1

8
½ð2Sij;kl − δikδjlÞFþ

μνijF
þμν
kl

þð2Sij;kl − δikδjlÞF−ij
μν F−μνkl� − V ð5Þ

with the 10 × 10 matrix Sij;kl ¼ ðSij;klÞ�. As usual, the
vielbein Pi

μ and SUð5Þ ×Uð1Þ composite connection Qμ
i
j

on the scalar manifold are obtained from the relation

Σ−1DμΣ ¼
� 1

2
Qμ

i
j −

1
6
δijQμ

k
k − 1ffiffi

2
p Pi

μ

− 1ffiffi
2

p Pμj
1
3
Qμ

k
k

�
: ð6Þ

Explicitly, we can write

Pi
μ ¼ −

ffiffiffi
2

p
e1ðδij − e2ϕiϕjÞDμϕ

j; ð7Þ

Qμ
i
j ¼ 2e2ϕiD

↔

μϕj þ
1

2
ðe21δij − 2e22ϕ

iϕjÞϕkD
↔

μϕk ð8Þ

with the gauge covariant derivative given by

Dμϕi ¼ ∂μϕi − gAij
μ ϕj ð9Þ

and Dμϕ
i ¼ ðDμϕiÞ�. We also note the properties of Qμ

i
j,

Qμ
i
j ¼ −Qμj

i ¼ −ðQμ
i
jÞ�: ð10Þ

We now come to the gauge field part. The (anti-)self-dual
field strength tensors are defined as

Fþ
μνij ¼

1

2

�
Fij
μν þ i

2
ϵμνρσFijρσ

�
and

F−ij
μν ¼ 1

2

�
Fij
μν −

i
2
ϵμνρσFijρσ

�
ð11Þ

with the gauge field strengths defined by

Fij
μν ¼ 2∂ ½μA

ij
ν� − 2gAik

½μA
kj
ν� : ð12Þ

We also note the convention ðFþ
μνijÞ� ¼ F−ij

μν . The matrix
Sij;kl is defined by the relation�

δijkl þ
1

2
ϵijklpϕp

�
Skl;mn ¼ δijmn ð13Þ

with δijkl ¼ 1
2
ðδikδjl − δilδ

j
kÞ. The explicit form of Sij;kl can be

found in [63] in which black hole attractors in ungauged
N ¼ 5 supergravity have been studied. In our notation, this
matrix reads

Sij;kl ¼ 1

1 − ðϕnÞ2
�
δijkl −

1

2
ϵijklmϕm − 2δ½i½kϕl�ϕj�

�
: ð14Þ

Finally, the scalar potential is given by

V ¼ −g2
�
2þ 4e21 −

1

2
e41ðjϕj2 − ðϕiÞ2ðϕjÞ2Þ

�
ð15Þ

with the notation ðϕiÞ2 ¼ ϕiϕi.
We also need supersymmetry transformation rules for

fermions. In the chiral notation, the fermionic fields are
subject to the chirality projection

γ5ψ
i
μ ¼ ψ i

μ; γ5χ ¼ −χ; γ5χ
ijk ¼ χijk ð16Þ

with

γ5ψ iμ ¼ −ψ iμ; γ5χijk ¼ −χijk: ð17Þ

The corresponding supersymmetry transformations read

δψμi ¼ 2Dμϵi −Qμ
j
iϵj −

1

2
ffiffiffi
2

p γνργμG
þ
νρklCij

klϵj

þ
ffiffiffi
2

p
gγμSijϵj; ð18Þ

δχijk ¼ −ϵijklmPm
μ γ

μϵl þ 3

2
Gþ

μνrsγ
μνC½ijrsϵk� − 2gNl

ijkϵl;

ð19Þ

δχ ¼ Pμiγ
μϵi − 2gNiϵi ð20Þ

in which the fermion-shift matrices are defined by

Sij ¼ e1δij þ
1

2
e22½jϕj2ðϕiϕj þ ϕiϕ

jÞ − 2ðϕnÞ2ϕiϕj�; ð21Þ

Nl
ijk ¼ e1ϵijklmϕm þ e1e2ϵijklmnϕmϕ

nϕl þ 3e21δ
ijk
lmnϕmϕ

n;

ð22Þ

Ni ¼ −e21ϕi − e1e2ðϕjÞ2ϕi ð23Þ
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with

δijklnm ¼ δ½il δ
j
nδ

k�
m: ð24Þ

We emphasize that raising and lowering of SUð5Þ indices
i; j; k;… correspond to taking the complex conjugate. The
field strengths Gþ

μνij are obtained from Fþ
μνij by dressing

with scalars

Gþ
μνij ¼ Sij;klFþ

μνkl: ð25Þ

Finally, the tensor Cij
kl is given by

Cij
kl ¼ 1

e1
δklij − 2

e2
e1

δ½k½iϕ
l�
j� ð26Þ

with δijkl ¼ δ½ikδ
j�
l .

At this point, we note that we have corrected a typo in the
sign of the second term in (22) as given in [25]. This sign
change is also required by the supersymmetric Ward
identity according to which the scalar potential can be
written in terms of the fermion-shift matrices as

V ¼ −
1

5
g2
�
6SijSij −

1

3
Nl

ijkNl
ijk − 2NiNi

�
: ð27Þ

As already mentioned, this scalar potential has been studied
in [26]. There are two AdS4 vacua, one with N ¼ 5
supersymmetry and the other one with completely broken
supersymmetry. These two vacua are given, respectively, by

ϕi ¼ 0; V0 ¼ −6g2; L ¼ 1ffiffiffi
2

p
g

ð28Þ

and

ϕi ¼ 0; i ¼ 1; 2; 3; ϕ4 ¼ −iϕ5 ¼
ffiffiffi
2

5

r
;

V0 ¼ −14g2; L ¼
ffiffiffi
3

pffiffiffiffiffi
14

p
g
: ð29Þ

We have denoted the cosmological constant by V0. The
supersymmetric critical point preserves the full SOð5Þ
gauge symmetry while the nonsupersymmetric one is
only invariant under SOð3Þ ⊂ SOð5Þ. The AdS4 radius L
is related to the cosmological constant by

L2 ¼ −
3

V0

: ð30Þ

We have also taken g > 0 for definiteness. At the super-
symmetric AdS4 vacuum, all scalars have masses m2L2 ¼
−2 corresponding to operators of dimensions Δ ¼ 1, 2 in
the dual N ¼ 5 SCFT. These operators are given by scalar

and fermion bilinears (mass terms), respectively. Although
we will not further consider the nonsupersymmetric vac-
uum, it is useful to emphasize that it is stable in the sense
that all scalar masses are above the BF bound m2L2 ¼ − 9

4
.

The full mass spectrum can be read off from the SOð3Þ ×
SOð3Þ AdS4 critical point of the maximal N ¼ 8 gauged
supergravity given in [28] keeping only SOð3Þ singlet
scalars.
In subsequent sections, we will look for various types

of supersymmetric solutions which are asymptotic to the
N ¼ 5 supersymmetric AdS4 vacuum.

III. HOLOGRAPHIC RG FLOWS

We begin with holographic RG flow solutions in the
form of domain walls interpolating between the super-
symmetric AdS4 vacuum in the UVand singular geometries
in the IR. The metric ansatz is given by

ds2 ¼ e2AðrÞdx21;2 þ dr2 ð31Þ
with dx21;2 being the flat metric on three-dimensional
Minkowski space. Scalar fields will depend only on the
radial coordinate r, and all the other fields will be set to
zero. We will also use Majorana representation for gamma
matrices in which all γμ are real, but γ5 is purely imaginary.

A. RG flows with SOð4Þ symmetry

We first consider solutions with SOð4Þ symmetry.
Among the five complex scalars, only one scalar is an
SOð4Þ ⊂ SOð5Þ singlet. We will choose this singlet to be
ϕ5 and set

ϕ5 ¼ ϕ ¼ φeiζ; ϕi ¼ 0; i ¼ 1; 2; 3; 4 ð32Þ
with real scalars φ and ζ. In this case, the tensor Sij is real
and given by

Sij ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

p δij ¼ Wffiffiffi
2

p δij ð33Þ

in which we have introduced the “superpotential” W for
convenience. In general, the functionW is complex and, in
the present case of N ¼ 5 gauged supergravity, related to
the eigenvalue s of Sij corresponding to the unbroken
supersymmetry by

W ¼
ffiffiffi
2

p
s: ð34Þ

The form of Sij being proportional to the identity matrix
indicates that the entire flow will preserve N ¼ 5 super-
symmetry with all ϵi nonvanishing.
Since there is an r-dependence in both the warped factor

A and scalar ϕ, the gamma matrix γr̂ will appear in the
resulting BPS conditions. We then impose the following
projector:
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γr̂ϵi ¼ eiΛϵi ð35Þ

with Λ being a real function of r. Note that this projector
relates the two chiralities of ϵi, so the flow solutions will
preserve only half of the original supersymmetry or ten
supercharges. It is also possible that ϵi in different
representations of the residual symmetry can have different
phases.
With all these, the conditions δψ i

μ ¼ 0 for μ ¼ 0, 1, 2
give

eiΛA0 þW ¼ 0: ð36Þ

Throughout this paper, we use 0 to denote r derivatives.
This equation leads to

A0 ¼ �W ¼ �jWj and eiΛ ¼∓ W
W

: ð37Þ

In what follows, we will make a definite sign choice by
choosing the upper signs in order to bring the super-
symmetric AdS4 critical point at r → ∞.
The variations δχijk and δχ lead to two equations of the

form

e−iΛϕ0 ¼
ffiffiffi
2

p
gϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

q
and

e−iΛϕ�0 ¼
ffiffiffi
2

p
gϕ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

q
: ð38Þ

In the present case, W is real leading to eiΛ ¼∓ 1, and we
simply have the BPS equations

A0 ¼
ffiffiffi
2

p
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jϕj2
p ; ð39Þ

ϕ0 ¼ð1 − jϕj2Þ2 ∂W∂ϕ� ¼ −
ffiffiffi
2

p
gϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

q
: ð40Þ

The scalar potential can also be written in terms of W as

V ¼ 4ð1 − jϕj2Þ2 ∂W∂ϕ
∂W
∂ϕ� − 3W2 ¼ −g2

�
2þ 4

1 − jϕj2
�
:

ð41Þ

In terms of the real scalars φ and ζ, we simply have

A0 ¼
ffiffiffi
2

p
gffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ2
p ; φ0 ¼ −

ffiffiffi
2

p
gφ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

q
; ζ0 ¼ 0:

ð42Þ

It is straightforward to verify that these equations are
compatible with the corresponding field equations. The
last equation together with the fact that ζ does not appear in

any equations imply that ζ can be any constant without
affecting the resulting solutions. We will choose ζ ¼ 0 for
definiteness. We also note that the condition δψ i

r̂ ¼ 0 gives
the usual form of the Killing spinors for domain walls

ϵi ¼ e
A
2ϵið0Þ ð43Þ

for spinors ϵið0Þ satisfying the projector (35).
The flow solution can readily be obtained:

A ¼ 1

2
lnð1 − φ2Þ − lnφ; ð44Þ

φ ¼ 2e
ffiffi
2

p
gr−C

e2ð
ffiffi
2

p
gr−CÞ þ 1

ð45Þ

with C being an integration constant. It should be noted that
C can be set to zero by shifting the coordinate r. We have
also neglected an irrelevant additive integration constant in
A since this can be removed by rescaling coordinates on
dx21;2. We now consider asymptotic behaviors of the
solution. As r → ∞, we find (recall that L ¼ 1ffiffi

2
p

g
),

φ ∼ e−
ffiffi
2

p
gr ∼ e−

r
L and A ∼

ffiffiffi
2

p
gr ∼

r
L
: ð46Þ

This is the N ¼ 5 supersymmetric AdS4 configuration.
Furthermore, there is a singularity as r → Cffiffi

2
p

g
at which

the solution becomes

φ ∼ 1 −
1

2
ð

ffiffiffi
2

p
gr − CÞ2 and A ∼ lnð

ffiffiffi
2

p
gr − CÞ: ð47Þ

Near the singularity, we find that φ → 1, A → −∞, and

V ∼ −
4g2

1 − φ2
∼ −

4g2

ð ffiffiffi
2

p
gr − CÞ2 → −∞: ð48Þ

According to the criterion given in [64], the singularity is then
physically acceptable. Therefore, the above solution
describes an RG flow from the N ¼ 5 SCFT in the UV to
an N ¼ 5 nonconformal field theory in the IR. The flow
breaks conformal symmetry but preserves the full N ¼ 5
Poincare supersymmetry in three dimensions. We identify
this flow with the mass deformation pointed out in [13] in
which the explicit form of relevantmass terms have also been
given. The deformation preservesN ¼ 5 supersymmetry but
breaks the SOð5Þ R-symmetry to an SOð4Þ subgroup in
agreement with the supergravity result obtained here.

B. RG flows with SOð3Þ symmetry

We now repeat the analysis for a smaller residual
symmetry SOð3Þ ⊂ SOð5Þ. There are two scalars that are
SOð3Þ singlets. We will choose these scalars to be ϕ4 and
ϕ5. It is more convenient to use the scalars in the form of

SUPERSYMMETRIC SOLUTIONS FROM N ¼ 5 GAUGED … PHYS. REV. D 101, 126015 (2020)

126015-5



ϕ4 ¼ tanhφ cosϑeiζ1 and ϕ5 ¼ tanhφ sinϑeiζ2 : ð49Þ

The variations δχijk ¼ 0 along ϵi, i ¼ 1, 2, 3, lead to the
condition

sinðζ1 − ζ2Þ ¼ 0; ð50Þ

which implies

ζ1 ¼ ζ2 þ nπ ð51Þ

for an integer n. With this, the matrix Sij is real as in the
SOð4Þ case and given by

Sij ¼ g coshφδij; ð52Þ

which leads to the superpotential

W ¼
ffiffiffi
2

p
g coshφ: ð53Þ

The resulting BPS equations read

A0 ¼
ffiffiffi
2

p
g coshφ; φ0 ¼ −

ffiffiffi
2

p
g sinhφ;

ϑ0 ¼ 0; ζ01 ¼ ζ02 ¼ 0: ð54Þ

The solutions for A and φ are the same as in the SOð4Þ case,
up to some field redefinition, with constant values of ϑ and
ζ1;2 that can be chosen to be zero. Therefore, if we keep
supersymmetry corresponding to ϵ1;2;3 unbroken, we nec-
essarily find N ¼ 5 supersymmetric solutions with SOð4Þ
symmetry.
We now consider another possibility obtained by setting

ϵi ¼ 0 for i ¼ 1, 2, 3. The condition (50) is then not
needed. The remaining two eigenvalues of Sij are given by

W� ¼ g

4
ffiffiffi
2

p
�
2ð3þ cos 2ηÞ coshφþ ð3þ cosh 2φÞsin2η

−8sinh4
φ

2
ðcos 4ϑsin2η� iΓÞ

�
ð55Þ

with

Γ ¼ sin η sin 2ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos 2ηþ 2 cos 4ϑsin2η

q
: ð56Þ

The corresponding Killing spinors are given by

ϵ� ¼ ϵ5 �
�
sin 2η sin2 2ϑ − Γ

sin η sin 4ϑ

�
ϵ4: ð57Þ

We have redefined the scalars ζ1;2 by writing ζ1 ¼ ψ
and ζ2 ¼ ψ − η.
Since Γ is real, both Wþ and W− give the same real

superpotential W ¼ jW�j in terms of which the scalar
potential can be written as

V¼
�∂W
∂φ

�
2

þ 1

sinh2φ

�∂W
∂ϑ

�
2

þ 4

sin22ϑsinh2φ

�∂W
∂η

�
2

−3W2

¼1

2
g2ð−8−4cosh2φþsin2ηsin22ϑsinh4φÞ: ð58Þ

For general nonvanishing ϵ�, the solutions will preserve
N ¼ 2 supersymmetry.
By imposing the following projectors:

γr̂ϵ� ¼ e�iΛϵ�; ð59Þ
we obtain the BPS equations

A0 ¼W¼ g
8

�
67þ cosh4φ−16cos2ηð3þ4coshφÞsinh4φ

2

þ cosh2φ

�
60−16cos2ηsinh4

φ

2

�

−16cos4ϑsin2ηsinh4φ

�
1=2

; ð60Þ

φ0 ¼ −
∂W
∂φ

¼ g2

32W
½8 coshφðcos 2ηþ 2 cos 4ϑsin2ηÞsinh3φ

−30 sinh 2φ − sinh 4φ�; ð61Þ

ϑ0 ¼ −
1

sinh2φ
∂W
∂ϑ ¼ −

g2

2W
sin2η sin 4ϑsinh2φ; ð62Þ

η0 ¼ −
4

sin2 2ϑ sinh2 φ
∂W
∂η ¼ −

g2

W
sin 2η sinh2 φ; ð63Þ

ψ 0 ¼ 0: ð64Þ

As in the previous case, we can set ψ ¼ 0 for convenience.
We are not able to completely solve these equations in an

analytic form. However, by combining Eqs. (62) and (63),
we obtain

cot 2ϑ ¼ C1 cos η ð65Þ
with an integration constant C1. Similarly, combining
Eqs. (61) and (63) gives

2
ffiffiffi
2

p
sech2φ ¼ 32ð1þ C2

1ÞC2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos 2ηÞð2þ C2

1 þ C2
1 cos 2ηÞ

q
− 3 − 4C2

1 cos η − cos 2η ð66Þ
with another integration constant C2. In addition, for a
particular value of C2 ¼ 0, we find the solution for A as
follows:
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A ¼ 2 lnð2þ C2
1 þ C2

1 cos 2ηÞ − 2 lnð3þ 2C2
1 cos 2ηÞ:

ð67Þ

The complete solution can be obtained numerically.
Examples of these solutions are given in Figs. 1, 2,
and 3 with g ¼ 1. For convenience, we will call the
solutions shown in these figures flow I, flow II, and flow
III, respectively. For flow I, ϑ vanishes along the entire
flow. This is nothing but the SOð4Þ symmetric flow
solution given in the previous section. From the behavior
of the scalar potential, it is clearly seen that the IR singularity
is physical in agreement with the previous result.
For flow II and flow III with ϑ ≠ 0 along the flows, we

find that near the singularities, φ → ∞ and φ → −∞,
respectively. Both of these flows are unphysical by the
criterion of [64] since the scalar potential goes to infinity
near the singularities. This behavior can also be seen from
the potential given in (58). For φ → �∞, we find that

V ∼ sin2 η sin2 ϑe�4ϕ → ∞ ð68Þ

unless sin ϑ ¼ 0 or sin η ¼ 0 which give the SOð4Þ
symmetric solution.
We end this section by giving a solution for particular

values of η ¼ π
2
and ϑ ¼ π

4
. The resulting BPS equations

become

A0 ¼ g

2
ffiffiffi
2

p ð2þ cosh 2φÞ; φ0 ¼ −
gffiffiffi
2

p sinhφ;

η0 ¼ ϑ0 ¼ ψ 0 ¼ 0: ð69Þ

The solution can readily be obtained:

tanhφ ¼ e−
ffiffi
2

p
gðr−r0Þ; ð70Þ

A ¼ 1

2
ln coshφ − ln sinhφ: ð71Þ

Although this is very similar to the SOð4Þ symmetric
solution, it should be noted that this solution only preserves
N ¼ 2 supersymmetry in three dimensions and breaks
SOð5Þ to SOð3Þ. We recall that when η ¼ 0, the unbroken

(a) (b)

FIG. 1. An RG flow from the N ¼ 5 AdS4 critical point as r → ∞ to a nonconformal field theory in the IR with ϑ ¼ 0 together with
the behavior of the scalar potential.

(a) (b)

FIG. 2. An RG flow from the N ¼ 5 AdS4 critical point as r → ∞ to a nonconformal field theory in the IR with ϑ ≠ 0 and φ → ∞ in
the IR together with the behavior of the scalar potential.
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supersymmetry is enhanced to N ¼ 5 as previously men-
tioned. However, the values η ¼ π

2
and ϑ ¼ π

4
lead to

V → ∞ near the singularities as φ → �∞. It would be
interesting to find an uplift of this solution to M-theory
using the S7 truncation to the maximal N ¼ 8 gauged
supergravity and check whether the singularities are
acceptable. If this is the case, identifying the analogue
of nonvanishing η and ϑ in the dual N ¼ 5 SCFT that
breaks N ¼ 5 supersymmetry to N ¼ 2 also deserves
further study.

C. RG flows with SOð2Þ symmetry

We finally consider the smallest possible residual sym-
metry SOð2Þ ⊂ SOð5Þ. There are three singlet scalars that
are chosen to be

ϕi ¼ φieiζi ; i ¼ 3; 4; 5: ð72Þ

Similar to the SOð3Þ case, the BPS conditions along ϵ1 and
ϵ2 lead to the conditions

ζi − ζj ¼ nπ ð73Þ

for any integer n and i ≠ j. If we impose this condition, the
solutions will preserveN ¼ 5 supersymmetry subject to the
γr̂ projector. On the other hand, we can, as in the previous
case, set ϵ1;2 ¼ 0 and look for solutions with at most N ¼ 3
supersymmetry. The BPS equations in this case are much
more complicated than the SOð3Þ case due to more scalars
involved. Therefore, we will only consider the simpler
situation of setting ζi ¼ ζ for i ¼ 3, 4, 5.
By the same analysis as in the previous cases together

with ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ, we find that ζ0 ¼ 0. We can again
set ζ ¼ 0 and find the following BPS equations:

A0 ¼
ffiffiffi
2

p
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ2
3 − φ2

4 − φ2
5

q ; ð74Þ

φ0
i ¼ −

ffiffiffi
2

p
gφi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

3 − φ2
4 − φ2

5

q
; i ¼ 3; 4; 5: ð75Þ

These equations imply φ3 ¼ αφ5 and φ4 ¼ βφ5 for con-
stants α and β. Using this fact and rewriting ϕ5 ¼ φ, we end
up with only two equations for A0 and φ0. The correspond-
ing solution is given by

A ¼
ffiffiffi
2

p
grþ ln ½1 − ð1þ α2 þ β2Þe2ðC−

ffiffi
2

p
grÞ�; ð76Þ

φ ¼ 2eC−
ffiffi
2

p
gr

1þ ð1þ α2 þ β2Þe2ðC−
ffiffi
2

p
grÞ : ð77Þ

The singularity when 2
ffiffiffi
2

p
gr ∼ ln½e2Cð1þ α2 þ β2Þ� at

which A → −∞ and

φ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2 þ β2
p ð78Þ

is also physically acceptable since

V ∼ −
4g2

1 − ð1þ α2 þ β2Þφ2
→ −∞ ð79Þ

near the singularity.
If we redefine the scalar to φ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2 þ β2

p
φ, we find

exactly the same SOð4Þ symmetric solution given previ-
ously. Therefore, it appears that the only physical RG flow
within the framework of N ¼ 5 gauged supergravity is the
SOð4Þ symmetric one preserving N ¼ 5 supersymmetry.
Note also that from SOð3Þ and SOð2Þ symmetric solutions,
we see that the solutions with only real scalars nonvanish-
ing reduce to the SOð4Þ symmetric solution preserving half
of the original supersymmetry. We will show below that
this result is indeed valid in general.

(a) (b)

FIG. 3. An RG flow from the N ¼ 5AdS4 critical point as r → ∞ to a nonconformal field theory in the IR with ϑ ≠ 0 and φ → −∞ in
the IR together with the behavior of the scalar potential.
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D. Comment on general supersymmetric
domain wall solutions

Since there are only five complex scalars in N ¼ 5
gauged supergravity, we can generalize the results obtained
in the previous cases to the full SUð5; 1Þ=Uð5Þ scalar coset.
We first consider solutions with a residual symmetry SOðnÞ
for 1 < n < 5. For n ¼ 5, no scalars can be turned on
because there is no SOð5Þ singlet among the five scalars.
To proceed further, we recall that, with only scalar fields

nonvanishing, the conditions δχijk ¼ 0 from (19) can be
written as

δχijk ¼ −ϵijklmγμPμmϵl − 2gNl
ijkϵl ¼ 0 ð80Þ

with

Nl
ijk ¼ e1ϵijklmϕm þ e1e2ϵijkmnϕmϕ

nϕl þ 3e21δ
ijk
lmnϕmϕ

n:

ð81Þ

It turns out that some of these conditions do not involve
derivatives of scalars from Pi

μ. In particular, this can happen
when indices l and i are equal among other possibilities.
We then write ϕm ¼ φmeiζm and consider the conditions
δχijk ¼ 0, for l ¼ i, which reduce to

e1e2ϵljkmnφmφnφleið−ζmþζn−ζlÞ

þ 3e21δ
ljk
lmnφmφneið−ζmþζnÞ ¼ 0 ð82Þ

without summing over l. By antisymmetrizing the products
of φm ’s, we arrive at the result

e1e2ϵljkmnφlφnφme−iζl sin ðζn − ζmÞ
þ 6e21φjφk sin ðζj − ζkÞ ¼ 0: ð83Þ

Since the two terms on the left-hand side are independent of
each other, this condition implies

sinðζi − ζjÞ ¼ 0; ð84Þ

which gives the previously obtained result ζi ¼ ζj þ nπ.
By splitting indices i; j;… ¼ 1; 2;…; 5 into î; ĵ;… ¼

1; 2;…; n and ĩ; j̃;… ¼ nþ 1;…; 5 with scalars φĩ and ϕî

being, respectively, singlets and nonsinglets of SOðnÞ, we
can summarize possible cases as follows:

(i) For n ¼ 4, there is only one SOð4Þ singlet scalar,
and in this case Nl

ljk automatically vanish.
(ii) For 1 < n < 4, there are 5 − n singlet scalars de-

noted by ϕĩ. The relevant nonvanishing components
of Nl

ijk are Nl̂
l̂ j̃ k̃ which lead to the conditions

sinðζĩ − ζj̃Þ ¼ 0. Accordingly, we need to set ζĩ ¼
ζj̃ þmπ or ϵî ¼ 0. In the former case, all the phases
are equivalent up to an additive constantmπ and lead

to the tensor Sij proportional to the identity matrix,
possibly after a diagonalization. The latter case gives
N ¼ 5 − n supersymmetric solutions with the cor-
responding Killing spinors ϵĩ.

In particular, this result implies that domain wall solutions
with all five scalars nonvanishing are possible only when all
the complex phases of the scalars are equal up to an additive
constant mπ. In addition, for scalar fields of the form

ϕi ¼ ðφ1;φ2;φ3;φ4;φ5Þeiζ ð85Þ

with m ¼ 0 for convenience, we can verify from the
definition (21) that the Sij tensor is real and independent
of ζ. This leads to the BPS equation ζ0 ¼ 0 according to
which ζ can be set to zero.
Furthermore, by using the parametrization of the form

φ1 ¼ φ cos ξ1;

φ2 ¼ φ sin ξ1 cos ξ2;

φ3 ¼ φ sin ξ1 sin ξ2 cos ξ3;

φ4 ¼ φ sin ξ1 sin ξ2 sin ξ3 cos ξ4;

φ5 ¼ φ sin ξ1 sin ξ2 sin ξ3 sin ξ4; ð86Þ

we readily find

Sij ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

p ð87Þ

with the scalar potential

V ¼ −
2g2ð3 − φ2Þ

1 − φ2
: ð88Þ

Therefore, the resulting BPS equations will give ξ0i ¼ 0
for all i ¼ 1, 2, 3, 4. Since only φ depends on the radial
coordinate r, the solution effectively reduces to that of the
SOð4Þ case. We can then conclude that the most general
half-supersymmetric domain wall solutions of N ¼ 5
gauged supergravity can only involve nonvanishing real
scalars with SOð4Þ symmetry. However, we note here that
this conclusion is valid only for half-BPS solutions. More
general flow solutions with less supersymmetry are pos-
sible but these solutions necessarily involve nonvanishing
pseudoscalars.

IV. SUPERSYMMETRIC JANUS SOLUTIONS

We now move to supersymmetric Janus solutions
obtained from an AdS3-sliced domain wall ansatz

ds2 ¼ e2Aðe2ξ
ldx21;1 þ dξ2Þ þ dr2: ð89Þ

The analysis is essentially the same as that given in [44]
(see also [45]). Therefore, in this paper, we will mainly
review relevant results for deriving the BPS equations.
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In this case, the BPS equations will get modified
compared to the RG flow case due to the curvature of
the three-dimensional slices. The conditions δψ i

μ̂ ¼ 0 for
μ̂ ¼ 0, 1 give

A0γr̂ϵi þ
1

l
e−Aγξ̂ϵi þWϵi ¼ 0; ð90Þ

which leads to the following equation:

A02 ¼ W2 −
1

l2
e−2A ð91Þ

with W ¼ jWj as usual.
We then impose the γξ̂ projection of the form

γξ̂ϵi ¼ iκeiΛϵi ð92Þ

with κ2 ¼ 1. The constant κ ¼ �1 defines the chirality of
the Killing spinors on the two-dimensional conformal
defects described by the AdS3 slices. Using the projector
(92) in Eq. (90) leads to the γr̂ projector given in (35) with
the phase factor

eiΛ ¼ −
A0

W
−
iκ
l
e−A

W
ð93Þ

for real W and

eiΛ ¼ −
W

A0 þ iκ
l e

−A ð94Þ

for complexW. It should be noted that the terms involving
the superpotential have opposite signs to those given in
[44,45] due to the different definitions of the superpotential
in terms of the eigenvalue of Sij.
Taking into account the conditions coming from δψ i

ξ̂
¼ 0

and δψ i
r̂ ¼ 0, we can derive the explicit form of the Killing

spinors (see more detail in [44]) as follows:

ϵi ¼ e
A
2
þ ξ

2lþiΛ
2εð0Þi ; ð95Þ

where the constant spinors εð0Þi satisfy

γr̂ε
ð0Þ
i ¼ εð0Þi and γξ̂ε

ð0Þ
i ¼ iκεð0Þi: ð96Þ

After using the γr̂ projector in the variations δχ and δχijk,
we obtain the full set of BPS equations. We emphasize
again that different phases eiΛ for ϵi in different represen-
tations under a given residual symmetry are possible as also
pointed out in [44].

A. Janus solutions with SOð4Þ symmetry

We first give Janus solutions with SOð4Þ symmetry
under which ϵi transform as 4þ 1. In order to obtain a

consistent set of BPS equations, we need to impose the
following projectors:

γr̂ϵî ¼ eiΛϵî; î ¼ 1; 2; 3; 4; γr̂ϵ5 ¼ e−iΛϵ5;

γξ̂ϵî ¼ iκeiΛϵî; γξ̂ϵ5 ¼ −iκe−iΛϵ5: ð97Þ
Using the superpotential

W ¼
ffiffiffi
2

p
gffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ2
p ð98Þ

and the phase (93), we find the following BPS equations:

φ0 ¼ −
2g2l2φA0e2A

1þ l2A02e2A
; ð99Þ

ζ0 ¼ −
2g2κleA

1þ l2A02 þ e2A
; ð100Þ

A02 ¼ e−2Að2g2l2e2A þ φ2 − 1Þ
l2ð1 − φ2Þ : ð101Þ

It should be noted that, in this case, the phase ζ is not
constant along the flow. Furthermore, these equations
reduce to those of the RG flow studied in the previous
section in the limit l → ∞ for which the AdS3 slices
become flat.
By combining Eqs. (99) and (101), we find

dA
dφ

¼ −
1

φ − φ3
; ð102Þ

which gives

A ¼ 1

2
lnð1 − φ2Þ − lnφ: ð103Þ

Using the solution for A in Eq. (99), we obtain the solution
for φ given by

2
ffiffiffi
2

p
gr ¼ 2 lnφ − ln

�
2

ffiffiffi
2

p
gl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − φ2Þð2g2l2 − φ2Þ

q
− φ2

þ 2g2l2ð2 − φ2Þ
�
: ð104Þ

Finally, combining Eqs. (99) and (100), we find

ζ ¼ κ tan−1
φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g2l2 − φ2
p þ C ð105Þ

for an integration constant C. We point out here that by
redefining the scalar φ as

φ ¼ tanh φ̃; ð106Þ
we obtain the same solution as given in [44,45] in N ¼ 8
and N ¼ 3 gauged supergravities. Therefore, this solution
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could be just the known solution of N ¼ 8 theory that
survives the truncation to the N ¼ 5 theory.
We end this section by giving a comment on the unbroken

supersymmetry on the conformal defect. Since W is real,
eiΛ and e−iΛ are related by a sign change in κ. This implies
that ϵî and ϵ5 are subject to the γξ̂ projectorwith opposite sign
of κ, so the two-dimensional defect preserves N ¼ ð4; 1Þ or
N ¼ ð1; 4Þ supersymmetry depending on thevalues of κ ¼ 1
or κ ¼ −1, respectively. It is also useful to note the numbers
of unbroken supersymmetries on the defect for solutions in
N ¼ 8 andN ¼ 3 theories. These are given, respectively, by
N ¼ ð4; 4Þ and N ¼ ð2; 1Þ.

B. Janus solutions with SOð3Þ symmetry

We now move to Janus solutions with SOð3Þ symmetry
with the corresponding singlet scalars given by

ϕ4 ¼ tanh φ cosϑeiζ and ϕ5 ¼ tanh φ sin ϑeiðζ−ηÞ:

ð107Þ

For η ¼ 0, we find that the BPS conditions give ϑ0 ¼ 0, and
the resulting BPS equations as well as the solution are the
same as the N ¼ ð4; 1Þ Janus solution given in the previous
section.
As in the RG flow case, we look for different solutions

with η ≠ 0 by setting ϵ1;2;3 ¼ 0. It turns out that the BPS
equations for general values of η are highly complicated.
Therefore, we proceed by taking η ¼ π

2
for simplicity. In

this case, the superpotentials obtained from the eigenvalues
of the Sij tensor are given by

W� ¼
ffiffiffi
2

p
g

�
cosh4

φ

2
− e∓4iϑsinh4

φ

2

�
ð108Þ

corresponding to the Killing spinors ϵ� ¼ ϵ4 � ϵ5. By
repeating the same analysis as in the previous case and
imposing the following projectors on ϵ�:

γr̂ϵ� ¼ e�iΛϵ� and γξ̂ϵ� ¼ �iκe�iΛϵ�; ð109Þ

we obtain the phase factor

e�iΛ ¼ −
W�

A0 � i κl e
−A : ð110Þ

With this result, the conditions δχijk ¼ 0 and δχ ¼ 0 lead to
the BPS equations

φ0 ¼ −
�
A0

W

� ∂W
∂φ þ

�
κe−A

Wl

�
1

sinhφ
∂W
∂ϑ

¼ g2

16W2

�
8

�
κe−A

l

�
sin 4ϑsinh3φ

þ A0ð8 cos 4ϑ coshφsinh3φ − 14 sinh 2φ − sinh 4φÞ
�
;

ð111Þ

ϑ0 ¼ −
1

sinh2φ

�
A0

W

� ∂W
∂ϑ −

�
κe−A

Wl

�
1

sinhφ
∂W
∂φ

¼ g2

16W2 sinhφ

�
−8A0 sin 4ϑsinh3φ

þ
�
κe−A

l

�
ð8 cos 4ϑ coshφsinh3φ

− 14 sinh 2φ − sinh 4φÞ
�

ð112Þ

with

W ≡ jW�j

¼ g

4
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35þ 28 cosh 2φþ cosh 4φ − 8 cos 4ϑsinh4φ

q
:

ð113Þ

Together with the equation

A02 −W2 þ e−2A

l2
¼ 0; ð114Þ

(a) (b) (c)

FIG. 4. A Janus solution with SOð3Þ symmetry and N ¼ ð1; 1Þ supersymmetry on the two-dimensional conformal defect within the
N ¼ 5 SCFT.
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we now have the full set of BPS equations for super-
symmetric Janus with N ¼ ð1; 1Þ supersymmetry on the
defect. As in all of the previous cases, it can be directly
verified that these equations imply the second-ordered field
equations. We also point out that this solution is genuinely
new since known supersymmetric Janus solutions within
N ¼ 8 gauged supergravity preserve (4,4), (0,2), and (0,1)
supersymmetries on the defect.
In this case, we are not able to find an analytic solution to

the above equations. We will instead give an example of
numerical solutions as shown in Fig. 4. In this solution, we
have set g ¼ 1ffiffi

2
p , κ ¼ 1, and l ¼ 1.

V. SUPERSYMMETRIC AdS4 BLACK HOLES

In this section, we consider supersymmetric AdS4 black
hole solutions by looking for solutions interpolating
between AdS4 and AdS2 × Σ2 geometries. The former is
the asymptotic spacetime at a large distance from the black
holes while the latter describes near horizon geometries
with Σ2 being two-dimensional Riemann surfaces. In this
work, we are only interested in the cases of Σ2 being a two-
sphere ðS2Þ and a hyperbolic space ðH2Þ.
We begin with the metric ansatz

ds2 ¼ −e2fðrÞdt2 þ dr2 þ e2hðrÞðdθ2 þ F2ðθÞdϕ2Þ ð115Þ

with the function FðθÞ defined by

FðθÞ ¼
�
sin θ; Σ2 ¼ S2

sinh θ; Σ2 ¼ H2
: ð116Þ

It is useful to collect all the nonvanishing components of
the spin connection

ωt̂ r̂ ¼ f0et̂; ωθ̂ r̂ ¼ h0eθ̂;

ωϕ̂ r̂ ¼ h0eϕ̂; ωθ̂ ϕ̂ ¼ F0

F
e−heϕ̂ ð117Þ

with F0ðθÞ ¼ dF
dθ .

In this case, we need to include gauge fields to the
solutions. This is also required by the existence of Killing
spinors associated with unbroken supersymmetry. The
gauge fields are chosen such that the spin connection,
ωθ̂ ϕ̂ given above, on Σ2 is canceled. This procedure is
called a topological twist. We will consider two possibil-
ities with SOð2Þ × SOð2Þ and SOð2Þ twists.

A. Solutions with SOð2Þ × SOð2Þ twist
We first consider SOð2Þ × SOð2Þ twist by turning on

SOð2Þ × SOð2Þ gauge fields. We will separately consider
magnetic and dyonic solutions.

1. Magnetic solutions

We begin with the ansatz for SOð2Þ × SOð2Þ gauge
fields of the form

A12 ¼ −p1F0ðθÞdϕ and A34 ¼ −p2F0ðθÞdϕ ð118Þ

with the field strength tensors

F12 ¼ κp1FðθÞdθ ∧ dϕ and F34 ¼ κp2FðθÞdθ ∧ dϕ:

ð119Þ

We have written F00ðθÞ ¼ −κFðθÞ by introducing the
parameter κ ¼ 1 and κ ¼ −1 for S2 and H2, respectively.
We also note that p1 and p2 are identified with magnetic
charges of the solutions.
Among the five scalars ϕi, the SOð2Þ × SOð2Þ singlet

scalar coincides with the SOð4Þ singlet ϕ5 ¼ ϕ. With ϕi ¼
0 for i ¼ 1, 2, 3, 4, it is now straightforward to compute
relevant components of the composite connection

Qϕ̂
i
j
¼ −2ge−h

F0ðθÞ
FðθÞ

0
B@

p1σ2 02×2 02×1

02×2 p2σ2 02×1

01×2 01×2 0

1
CA: ð120Þ

From this result, we immediately see that the supersym-
metry corresponding to ϵ5 cannot be preserved since it is
not possible to perform a twist along ϵ5. We then set ϵ5 ¼ 0

and split i; j;… indices as ðî; 5Þ, ðĵ; 5Þ, ….
The twist is implemented by imposing the twist con-

ditions

2gp1 ¼ −1 and 2gp2 ¼ −1 ð121Þ
and the following projector on the Killing spinors:

γθ̂ ϕ̂ϵî ¼ ðiσ2 ⊗ I2Þî ĵϵĵ: ð122Þ

The twist conditions imply that p2 ¼ p1 which means the
twist is performed by the SOð2Þdiag ⊂ SOð2Þ × SOð2Þ
gauge field. This is very similar to the solution with a
universal twist in pure N ¼ 4 gauged supergravity studied
in [65]. It is convenient in the analysis of the BPS equations
to note that the chirality condition γ5ϵî ¼ −ϵî implies that

γ0̂ r̂ϵî ¼ −iγθ̂ ϕ̂ϵî ¼ ðσ2 ⊗ I2Þî ĵϵĵ: ð123Þ
To analyze the BPS equations, it is also useful to define the
matrix

Z î ĵ ¼
1ffiffiffi
2

p Gþ
θ̂ ϕ̂ kl

Cî m̂
klðiσ2 ⊗ I2Þm̂ĵ ð124Þ

whose eigenvalues give the “central charges” Z î ĵ ¼ Z îδî ĵ
with no summation on î. For the SOð2Þ × SOð2Þ singlet
scalar andA12

μ ¼ A34
μ gauge fields, thematrixZ î ĵ is given by
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Z î ĵ ¼ −
1ffiffiffi
2

p e−2hκp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

p
1þ ϕ� δî ĵ ð125Þ

for î; ĵ ¼ 1, 2, 3, 4 and p1 ¼ p2 ¼ p. We can then identify
the central charge as

Z ¼ −
1ffiffiffi
2

p e−2hκp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϕj2

p
1þ ϕ� : ð126Þ

We hope the same notation ϕ for both scalar ϕ5 and the Σ2

coordinate will not give rise to any confusion. The two
meanings rarely appear together in the same equation.
With the twist conditions in (121) and the projector

(122), the variations δψ i
θ̂
and δψ i

ϕ̂
lead to the same BPS

equation of the form

h0γr̂ϵî þ ðW þ ZÞϵî ¼ 0: ð127Þ
We again impose the projector (35) and arrive at

h0eiΛ þW þ Z ¼ 0; ð128Þ
which gives

h0 ¼ �jW þ Zj and eiΛ ¼∓ W þ Z
jW þ Zj : ð129Þ

Similarly, the condition δψ i
0̂
¼ 0 gives

f0eiΛ þW − Z ¼ 0: ð130Þ

Using the phase eiΛ from the previous result, we find

f0 ¼ � ðW − ZÞðW� þ Z�Þ
jW þ Zj : ð131Þ

Finally, as in the case of domain walls and Janus solutions,
using the phase eiΛ in the δχijk ¼ 0 and δχ ¼ 0 conditions
give the BPS equation for the scalar ϕ. Before giving the
explicit form of the resulting BPS equations, we first note
that, with ϵ5 ¼ 0, the δχ ¼ 0 equation is identically
satisfied since this equation has nonvanishing components
only along ϵ5.
Since in this case W is real and Z is also real for real ϕ,

we first consider a simple case of ϕ ¼ φ for real φ. It can
readily be verified that setting the phase or equivalently the
imaginary part of ϕ to zero is a consistent truncation. This
leads to eiΛ ¼∓ 1, and the resulting BPS equations, with
the upper sign choice chosen, are given by

φ0 ¼ −
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

q
e−2h½φð2ge2h − κpÞ þ κp�; ð132Þ

h0 ¼ 1ffiffiffi
2

p e−2hffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

p ½2ge2h − κpð1 − φÞ�; ð133Þ

f0 ¼ 1ffiffiffi
2

p e−2hffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

p ½2ge2h þ κpð1 − φÞ�: ð134Þ

In order to find AdS2 × Σ2 fixed points, we impose the
conditions φ0 ¼ h0 ¼ 0 and f0 ¼ 1

LAdS2
. The first two con-

ditions give

φ ¼ −1 and h ¼ 1

2
ln

�
κp
g

�
; ð135Þ

and using this result in the last condition gives

f0 ∼
ffiffiffi
2

p
g

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ

1þ φ

s
∼

2gffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ

p → ∞: ð136Þ

Therefore, no AdS2 × Σ2 solutions exist in this case. Note
also that the scalar φ cannot be truncated out since setting
φ ¼ 0 does not satisfy the corresponding flow equation
unless p ¼ 0. We can extend this analysis by including
the imaginary part of ϕ. This will be given in the next
subsection.

2. Dyonic solutions

We now consider dyonic solutions with both magnetic
and electric charges. First of all, we review the definition of
electric and magnetic charges

qij ¼
1

4π

Z
S2
Hij and pij ¼ 1

4π

Z
S2
Fij ð137Þ

with Hij defined by

Hij ¼
δSgauge
δFij : ð138Þ

Sgauge denotes the gauge field part of the gauged super-
gravity action.
In the present case, we can rewrite the gauge field part of

the Lagrangian by expanding the Lagrangian given in (5).
The result is

Lgauge ¼ −
1

4
Rij;kl � Fij ∧ Fkl þ 1

4
Iij;klFij ∧ Fkl ð139Þ

with

Rij;kl ¼ Reð2Sij;kl − δikδjlÞ and

Iij;kl ¼ Imð2Sij;kl − δikδjlÞ: ð140Þ
Using all these results, we can write the ansatz for various
components of the gauge field strengths as follows:

Fij
0̂ r̂

¼ −
1

2
e−2hRij;kl

�
1

2
Ikl;mnκpmn þ qkl

�
; ð141Þ

Fij
θ̂ ϕ̂

¼ κpije−2h: ð142Þ
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The matrix Rij;kl is the inverse of Rij;kl. Note also that
Iij;kl is not required to be invertible. Indeed, for real scalars,
Iij;kl vanishes identically. In a subsequent analysis, we
will denote the charges simply by p12 ¼ p1, p34 ¼ p2,
q12 ¼ q1, and q34 ¼ q2.
We are now in a position to analyze the BPS conditions.

The twist can be performed as in the magnetic case since
the components Aij

ϕ are the same. However, the central
charge matrix is now given by

Z î ĵ ¼
1ffiffiffi
2

p ðGþ
θ̂ ϕ̂ kl

− iGþ
0̂ r̂ kl

ÞCî m̂
klðiσ2 ⊗ I2Þĵm̂: ð143Þ

All together, we obtain the same form of BPS equations
from δψ i

θ̂
and δψ i

ϕ̂
:

h0 ¼ jW þ Zj and eiΛ ¼ −
ðW þ ZÞ
jW þ Zj : ð144Þ

With the time component of the composite connection

Q0̂ î
ĵ ¼ 2ige−fA0ðiσ2 ⊗ I2Þî ĵ; ð145Þ

the condition δψ î
0̂
¼ 0 gives

f0γr̂ϵî þ 2ige−fA0γ
0̂ðiσ2 ⊗ I2Þî ĵϵĵ þWϵî − Zϵî ¼ 0:

ð146Þ

We also recall that the twist conditions require A12
μ ¼

A34
μ ¼ Aμ. Since p1 ¼ p2 ¼ p, consistency also requires

q1 ¼ q2 ¼ q.
Using the γ0̂ r̂ and γr̂ projectors, we can derive the γ0̂

projector

γ0̂ϵî ¼ −e−iΛðσ2 ⊗ I2Þî ĵϵĵ: ð147Þ

We emphasize here that this is not an independent projec-
tor, so the number of unbroken supercharges along the
entire flow solution is still four due to the two projector
γθ̂ ϕ̂ and γr̂. Using this result in Eq. (146) and setting the real
and imaginary parts to zero separately, we find the BPS
equations

f0 ¼ −Re½e−iΛðW − ZÞ�; ð148Þ

A0 ¼ −
1

2g
efIm½e−iΛðW − ZÞ�; ð149Þ

in which the second equation determines the form of the
time component of the gauge fields.
In the present case, it turns out that using the complex

scalar ϕ in terms of real and imaginary parts is slightly
more convenient. Therefore, we will write

ϕ ¼ φþ iζ: ð150Þ

With the explicit form of the superpotential and the central
charge given by

W ¼
ffiffiffi
2

p
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ2 − ζ2
p ð151Þ

and Z ¼ −
1ffiffiffi
2

p e−2h
κpþ 2iqþ ð2iq − κpÞðφþ iζÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ2 − ζ2
p ;

ð152Þ

we find the following BPS equations:

f0 ¼ 2
ffiffiffi
2

p
g½2qð1þ φÞ − κpζ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ2 − ζ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½2qð1þ φÞ − κpζ�2 þ ð2ge2h − κpþ κpφþ 2qζÞ2
p ; ð153Þ

h0 ¼ jW þ Zj ¼ e−2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2qþ 2qφ − κpζÞ2 þ ð2ge2h − κpþ κpφþ 2qζÞ2

2ð1 − φ2 − ζ2Þ

s
; ð154Þ

φ0 ¼ð1 − φ2 − ζ2Þ2 ∂
∂φ jW þ Zj; ð155Þ

ζ0 ¼ð1 − φ2 − ζ2Þ2 ∂
∂ζ jW þ Zj: ð156Þ

Setting q ¼ 0, we obtain the BPS equations for magnetic
solutions with nonvanishing imaginary parts of ϕ as
previously mentioned. However, even with nonvanishing

ζ and q, no AdS2 × Σ2 solutions exist in these equations.
Therefore, we conclude that there are no AdS4 black holes
with SOð2Þ × SOð2Þ symmetry in N ¼ 5 gauged super-
gravity with the SOð5Þ gauge group.

B. Solutions with SOð2Þ twist
We now consider AdS2 × Σ2 solutions with the SOð2Þ

twist by turning on only A12
μ . The same analysis as in the
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SOð2Þ × SOð2Þ case can be repeated with F34
μν ¼ 0 and

three SOð2Þ singlet scalars ϕi ¼ φieiζi , i ¼ 3, 4, 5. We will
omit some detail to avoid a repetition. The composite
connection Qϕ̂i

j now has nonvanishing components only

for i; j ¼ î; ĵ ¼ 1, 2. In this case, the supersymmetry
corresponding to ϵ3;4;5 is broken since it is not possible to
perform the twist along these directions.Wewill accordingly
set ϵ3;4;5 ¼ 0 from now on. With this, δχ ¼ 0 conditions are
identically satisfied as in the SOð2Þ × SOð2Þ case.
As in the case of RG flow solutions, the supersymmetry

transformations δχijk along ϵî give rise to the following
conditions:

ζi ¼ ζj þ nπ; i ≠ j; ð157Þ
for an integer n. In the case of RG flows, there is a possibility
to avoid these constraints by setting ϵî ¼ 0. However, this is
not the case in the present analysis due to the vanishing of
ϵ3;4;5 implied by the twist procedure. Therefore, in order to
obtain supersymmetric solutions, we need to set

ζ5 ¼ ζ; ζ4 ¼ ζ þmπ; ζ3 ¼ ζ þ nπ ð158Þ
for m; n ∈ Z. It turns out that the BPS conditions give

ζ0 ¼ 0; ð159Þ
so ζ is constant and can be set to zero.
We finally end up with real scalars φi. The variations δψ i

ϕ̂
and δψ i

θ̂
give

eiΛh0 ¼ 1ffiffiffi
2

p e−2h
ð2ge2h − κp − 2iqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

3 − φ2
4 − φ2

5

q : ð160Þ

We can immediately see that the condition for AdS2 × Σ2

fixed points to exist, h0 ¼ 0, requires q ¼ 0. Therefore, the
black hole solutions (if they exist) must be purely magnetic.
Since we are mainly interested in AdS4 black holes, we will
set q ¼ 0 in the following analysis.
For q ¼ 0, we have realW þ Z which leads to the phase

eiΛ ¼∓ 1. With the upper sign choice, the resulting BPS
equations read

f0 ¼ 2gþ κpe−2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − φ3

3 − φ2
4 − φ2

5Þ
q ; ð161Þ

h0 ¼jW þ Zj ¼ 2g − κpe−2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − φ3

3 − φ2
4 − φ2

5Þ
q ; ð162Þ

φ0
i ¼−ð1−φ2

3−φ2
4 −φ2

5Þ2
∂
∂φi

jWþZj

¼−
1ffiffiffi
2

p φið2g− κpe−2hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−φ2

3−φ2
4−φ2

5

q
; i¼ 3;4;5:

ð163Þ

There is an AdS2 × Σ2 fixed point at

φi ¼ φið0Þ; h ¼ 1

2
ln

�
κp
2g

�
;

LAdS2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

3ð0Þ − φ2
4ð0Þ − φ2

5ð0Þ
q

2
ffiffiffi
2

p
g

ð164Þ

for constant φið0Þ. By the twist condition 2gp ¼ −1, we
find that the AdS2 fixed point exists only for κ ¼ −1 giving
rise to an AdS2 ×H2 geometry.
Unlike the previous case with the SOð2Þ × SOð2Þ twist,

it is possible to truncate all the scalars φi out resulting in the
BPS solution, with κ ¼ −1,

f ¼ 2
ffiffiffi
2

p
gr −

1

2
ln

�
e2

ffiffi
2

p
grþC − p
2g

�
; ð165Þ

and h ¼ 1

2
ln

�
e2

ffiffi
2

p
grþC − p
2g

�
: ð166Þ

As r → ∞, we find f ∼ h ∼
ffiffiffi
2

p
gr which gives asymp-

totically AdS4 space, while for r → −∞ the solution
becomes

h ∼
1

2
ln

�
−

p
2g

�
and f ∼ 2

ffiffiffi
2

p
gr; ð167Þ

which is the AdS2 ×H2 fixed point. Accordingly, the
full solution interpolates between the supersymmetric
AdS4 and AdS2 ×H2 geometries. Therefore, this solution
describes a black hole in asymptotically AdS4 space with
AdS2 ×H2 near horizon geometry. From the holographic
point of view, the solution describes twisted compacti-
fication of N ¼ 5 SCFT in three dimensions to super-
conformal quantum mechanics.
We can also find an analytic solution in the case of

nonvanishing scalars φi. We first note that the BPS
equations imply, as in the RG flow case, that φ3 ¼ αφ5

and φ4 ¼ βφ5 for constants α and β. With φ5 ¼ φ, the
solution is given by

f ¼ ln ½2g − pφ2 − 2gð1þ α2 þ β2Þφ2�

−
1

2
ln ½1 − ð1þ α2 þ β2Þφ2� − lnφ; ð168Þ

h ¼ − lnφ −
1

2
ln ½1 − ð1þ α2 þ β2Þφ2�; ð169Þ
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2
ffiffiffi
2

p
gr ¼ −2 lnφþ 2 ln

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ α2 þ β2Þφ2

q i
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

pþ 2gð1þ α2 þ β2Þ
r �

ln

�
8g2½pþ 2gð1þ α2 þ β2Þ�

p3½2g − pφ2 − 2gð1þ α2 þ β2Þφ2�
�

þ ln
h
ð1þ α2 þ β2Þðpφ2 − 2gþ 2gð1þ α2 þ β2Þφ2Þ

þ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p½pþ 2gð1þ α2 þ β2Þ�½1 − ð1þ α2 þ β2Þφ2�
q

− p
	i


: ð170Þ

From this solution, we can see that as φ → 0, lnφ ∼ −
ffiffiffi
2

p
gr

or φ ∼ e−
ffiffi
2

p
gr and

f ∼ h ∼ − lnφ ∼
ffiffiffi
2

p
gr: ð171Þ

Therefore, the solution is asymptotically AdS4 as in the
previous case.
In order to have a flow to the AdS2 ×H2 fixed point, we

require that φ flows to the value

φ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g
2gð1þ α2 þ β2Þ − p

s
; ð172Þ

which precisely gives h ¼ 1
2
ln ð− p

2gÞ at the end of the flow.
As φ → φ0, we find that the above solution gives

φ ∼ φ0 þ Ce
2
ffiffi
2

p
gr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ2gð1þα2þβ2Þ

p

q
ð173Þ

and f ∼ 2
ffiffiffi
2

p
gr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ 2gð1þ α2 þ β2Þ

p

s
: ð174Þ

Therefore, the solution becomes the supersymmetric
AdS2 ×H2 fixed point (164) in the limit r → −∞. This
solution then describes an AdS4 black hole with an
AdS2 ×H2 horizon in the presence of a running scalar.
We end this section by noting that in this case, the flow

solution preserves two supercharges due to the γθ̂ ϕ̂ and γr̂
projectors imposed on ϵ1;2. However, the supersymmetry is
enhanced to four supercharges at the AdS2 ×H2 horizon.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied supersymmetric sol-
utions of N ¼ 5 gauged supergravity in four dimensions
with the SOð5Þ gauge group. For all scalars vanishing, the
gauged supergravity admits an N ¼ 5 supersymmetric
AdS4 vacuum dual to an N ¼ 5 SCFT in the form of
CSM theory in three dimensions. For holographic RG
flows describing mass deformations of the N ¼ 5 SCFT
to nonconformal field theories in the IR, we have found
analytic solutions preserving N ¼ 5 supersymmetry, but
the SOð5Þ R-symmetry is broken to an SOð4Þ subgroup.

This is in agreement with the field theory result given in
[13]. All of the IR singularities are physical by the
criterion given in [64]. Accordingly, these solutions could
be useful in the context of the AdS=CFT correspondence
regarding the gravity dual of N ¼ 5 CSM theory in three
dimensions. For SOð3Þ symmetric solutions preserving
N ¼ 2 supersymmetry, we have given numerical flow
solutions, but the IR singularities turn out to be unphysical.
For supersymmetric Janus solutions describing two-

dimensional conformal defects within the N ¼ 5 SCFT,
wehave studied solutionswithSOð4Þ andSOð3Þ symmetries
and N ¼ ð4; 1Þ and N ¼ ð1; 1Þ unbroken supersymmetries
on the defects, respectively. The former can be found
analytically and turns out to be the same as the solutions
inN ¼ 8 andN ¼ 3 gauged supergravities given in [44,45].
This might suggest some universal property of the solution,
and if this is indeed the case, there would be a universal
surface defect in the dual three-dimensional SCFTs with
N ¼ 3, 5, 8 supersymmetries. Further investigation along
this direction in both gauged supergravities and dual CSM
theories might be worth considering. The N ¼ ð1; 1Þ sol-
ution with SOð3Þ symmetry appears to be new and can be
obtained only numerically. Both of these solutions could be
interesting in the holographic study of strongly coupledN ¼
5 SCFT in the presence of conformal defects.
We have also considered supersymmetric black holes

in asymptotically AdS4 space with SOð2Þ × SOð2Þ and
SOð2Þ twists. It turns out that only the case of the SOð2Þ
twist leads to a supersymmetric black hole preserving two
supercharges with the horizon geometry AdS2 ×H2. In the
dualN ¼ 5 SCFT, the solution describes an RG flow across
dimensions from three-dimensional SCFT to superconfor-
mal quantum mechanics. This could be used to compute
microscopic entropy of the black hole using the formalism
initiated in [58–60]. It is remarkable that we have found the
analytic solution with a running scalar unlike most of the
previous analytic solutions that only involve the metric. We
accordingly hope our solution would be of particular interest
in black hole physics and AdS4=CFT3 correspondence.
Since the N ¼ 5 gauged supergravity with the SOð5Þ

gauge group considered here is a truncation of the N ¼ 8
gauged supergravity with the SOð8Þ gauge group, it would
be interesting to explicitly find an uplift of these solutions
to M-theory using the consistent S7 truncation of the
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11-dimensional supergravity. The uplifted solutions could
give rise to a complete holograhic description of N ¼ 5
CSM theory and possible deformations. In particular, the
time component g00 of the resulting 11-dimensional metric
can be used to determine whether the aforementioned
singular flow solutions are physically acceptable inM-theory
by the criterion given in [66].
In thiswork, we have only considered gauged supergravity

with the so-called electricSOð5Þgaugegroup. It could alsobe
interesting to perform a similar study for other gauge groups
such as noncompact and nonsemisimple ones. In addition,
working out the complete embedding tensor formalism of
N ¼ 5 gauged supergravity to incorporate magnetic and
dyonic gaugings as initiated in [67–69] (see also review

[62])wouldbe useful invarious applications. Inparticular, the
quadratic constraint of N ¼ 5 theory is generally less
stringent than that of the maximal theory. This implies that
there are N ¼ 5 gauged supergravities with certain gauge
groups that cannot be obtained from themaximal theory; see a
similar analysis for theN ¼ 6 gauged supergravity in [70]. It
is then interesting to study these gauged supergravities which
would give rise to genuine solutions of N ¼ 5 gauged
supergravity with no N ¼ 8 counterparts.
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