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Horizons of black branes have an associated entropy current with non-negative divergence. We compute
this divergence in a late-time transseries expansion for an inhomogeneous system evolving toward a
maximally symmetric asymptotically anti–de Sitter black brane. The horizon area equilibrates on half the
time scale set by the dominant quasinormal mode and we find a simple analytic expression for this
evolution purely in terms of the background and the quasinormal mode frequencies. This computation does
not require a gradient expansion and is thus nonperturbative in momenta. We generalize this to include
scalar and gauge field matter in any number of dimensions. Restricting to homogeneous evolution we
match and prove earlier numerical work showing that the apparent horizon entropy saturates the area
theorem, in that its time derivative periodically vanishes. The same is true for spherically symmetric
evolution toward the Schwarzschild black hole.
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I. INTRODUCTION

Black holes are some of the most fascinating objects in
physics. They have implications for astrophysics, informa-
tion theory, quantum gravity, and can be used to study
holographic theories at strong coupling [1,2]. Recently,
their behavior out of equilibrium has become experimen-
tally accessible through the detection of gravitational waves
from black hole binary collisions [3]. While this is arguably
the most interesting regime of general relativity, it remains
difficult to study. Analytic results are scarce and one often
has to resort to intensive numerics. Any analytic inroads we
can make into this regime are therefore valuable.
In this paper, we present analytic results on the out of

equilibrium behavior of the horizon, which was recently
imaged for the first time [4]. It has long been known that the
horizon area cannot decrease [5]; here we show exactly
how it increases as a function of its quasinormal modes
(QNMs). While we focus on black branes in anti–de Sitter
spacetime, the results presented here apply as well to

spherical evolution of the Schwarzschild black hole and
could potentially be extended beyond spherical symmetry.
A black hole in equilibrium has entropy given by its area

[6,7]. Out of equilibrium this identification is less clear, but
analogous to the second law of thermodynamics the black
hole area still cannot decrease [5]. In this context, one can
define various horizons satisfying this law, all of which
coincide with the event horizon in equilibrium. Notions of
nonequilibrium entropy have been explored holographi-
cally for the apparent [8] and event horizon [9].
Dynamical horizons have been studied previously

through the fluid gravity correspondence [10]. In these
inhomogeneous systems, one can define a local entropy
current at either the apparent or event horizon with non-
negative divergence [11–13]. Such approaches necessarily
neglect the contributions of gapped QNMs, which we
include in our analysis.
In [14], the area of spatially homogeneous horizons was

studied numerically, and an analytic form was inferred for
their late time behavior,

δSðtÞ ∝ e2ω
I tðcos ð2ωRtÞ þ BÞ; ð1Þ

where ω is the QNM that gives the dominant damped
oscillation, and superscripts indicate real and imagi-
nary parts.
Curiously, the apparent horizon was found to saturate the

area theorem, in that the area never decreases but at times is
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instantaneously constant, periodically reaching δS0ðtÞ ¼ 0.
The value of the parameter B for this to happen is

BAH ¼ jωj
−ωI : ð2Þ

In contrast, the event horizon did not show a similar
saturation and instead always increased.
We build on this previous work by analytically studying

the divergence of entropy currents through a transseries
expansion. Transseries expansions have been explored in
the context of general relativity explicitly in [15,16] and
indirectly in [17,18]. This is an expansion about a static
solution in the parameter e−iωt, where ω is a stable QNM
frequency with negative imaginary part. As the expansion
parameter becomes smaller at later times, we also refer to
this series as a late time expansion. The first order in this
series contains precisely all the QNMs, and from the second
order on their contribution to the backreaction can be seen.
In this paradigm, the amplitude of these modes need not be
small; instead, the expansion is sensible provided ImðωÞ is
an order one negative number.
We obtain the divergence of the entropy current at

second order in this late time expansion, proving the
numerical results mentioned above and further finding that
the event horizon entropy will obey Eq. (1) with

BEH ¼ jωj
−ωI ×

jω − iπTj
−ðω − iπTÞI ; ð3Þ

where T is the Hawking temperature in equilibrium.
For homogenous perturbations, Eq. (1) gives the QNM

contribution to the entropy even for the other maximally
symmetric horizons, the sphere and hyperboloid. Our result
does not depend explicitly on the asymptotics of the
spacetime. However, in these cases, one may include
further contributions to the transseries ansatz, such as late
time polynomial tails in asymptotically flat spacetime.
Our computation will focus on evolution of black brane

solutions in asymptotically anti–de Sitter spacetime and
break spatial homogeneity by allowing fluctuations at any
finite momentum. We include contributions from all
fluctuation channels, namely, sound, shear, and tensor
fluctuations. The results we find for the divergence of
the entropy current are very simple and fully determined by
the QNM frequencies and properties of the equilibrium
solution.
We compute the late time expansion to second order,

where the first nontrivial contribution to the entropy current
occurs. The third order contribution is expected to vanish
because it by itself cannot be non-negative, but we did not
prove this. Therefore, our approximation in principle
breaks down at times t≲ j3Imðω0Þj−1, where ω0 is the
dominant QNM. However, it is often the case that even the
first order QNM approximation can describe nonlinear

general relativity well beyond its expected regime of
validity, even with large perturbations [18–20]. We stress
that while the numerical work in [14] only identified the
contribution of the dominant QNM, the analytic compu-
tation we provide holds for QNMs of any order; they will
all contribute in the same way.
We organize this paper as follows. In Sec. II, we set up

the problem and define the metric, entropy current, and
transseries expansion. In Sec. III, we show our main result
Eq. (13) for the divergence of the entropy current due to
QNM perturbations in the case of Einstein gravity with
negative cosmological constant. We explain how the
entropy density can be obtained from this expression in
the case of homogeneous perturbations. In Sec. IV, we
generalize our result to Einstein-Maxwell-scalar theory
with arbitrary potential and gauge coupling. We give the
divergences in full detail in Appendix A. Finally, in Sec. V,
we discuss the implications and extensions of our analysis.

II. SETUP

For simplicity, we start with a black brane in anti–de
Sitter in (4þ 1) dimensions. Later, we will generalize to
arbitrary dimension and also include matter.
We take the ansatz for the metric,

ds2 ¼ −fdt2 þ 2dtðdrþ FðxÞdxþ FðyÞdyÞ þ Σ2gij;

gij ¼

0
BB@

e−2B coshG e−
1
2
ðB−HÞ sinhG 0

e−
1
2
ðB−HÞ sinhG eBþH coshG 0

0 0 eB−H

1
CCA; ð4Þ

where all functions depend on ðt; r; xÞ but not on the
remaining coordinates ðy; zÞ. To simplify the resulting
equations of motion, we choose a particular ansatz such
that the determinant of the metric is given by a single
function

ffiffiffiffiffiffi−gp ¼ Σ3.
We further restrict to solutions evolving to a static and

homogeneous equilibrium, so that at infinite t the only
nonzero functions will be f and Σ which will depend only
on r. The equilibrium solution is then simply the
Schwarzschild–(anti)de Sitter black brane,

f0 ¼ r2
�
1 −

�
rh
r

�
4
�
; Σ0ðrÞ ¼ r;

FðxÞ
0 ¼ FðyÞ

0 ¼ B0 ¼ G0 ¼ H0 ¼ 0; ð5Þ

with equilibrium temperature given by T ¼ f00ðrhÞ=ð4πÞ.
This temperature can be expressed purely in terms of rh but
to facilitate an easy generalization we do not use Eq. (5)
explicitly, using instead the definition of T along with the
fact that f0ðrhÞ ¼ 0 at the horizon. Away from equilibrium,
this ansatz contains a tensor fluctuation throughH, a vector
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or shear fluctuation through FðyÞ, and a scalar or sound
fluctuation through FðxÞ.

A. Entropy currents

Out of equilibrium, the identification of entropy with a
horizon surface becomes ambiguous as multiple distinct
codimension-2 surfaces exist on which to define one. We
will consider two such surfaces, the event horizon (EH) and
the apparent horizon (AH). The event horizon is a null
surface defined by its normal vector nM, whereM runs over
all the coordinates, while the apparent horizon is a space-
like surface on which the geodesic expansion θ vanishes,1

AH∶θjrAH ¼ 0; EH∶nMnMjrEH ¼ 0: ð6Þ

In the infinite t limit, these surfaces align and are given
radially by the zero of the blackening function f.
Our ansatz Eq. (4) preserves the residual gauge freedom

associated with a choice of radial shift r → rþ ξðt; xÞ. This
is routinely used in numerical evolution schemes to fix the
position of a locally determined apparent horizon, while
doing the same for a globally determined event horizon is
usually not possible. In our setup, however, this is no issue
as we assume knowledge of our final state and expand
our solution backward in time in a controlled way. We will
fix this gauge implicitly by imposing either condition of
Eq. (6) at a fixed constant radius rAH or rEH which is
independent of the other coordinates.
For each horizon, we can define an entropy current,

following [11], through its normal vector vM, which
through our chosen radial gauge is simply v ¼ ∂r. The
entropy current is then given by

Sμ ¼ s
vμ

vt
; ð7Þ

where s ¼ ffiffiffiffiffiffi−gp
=4 is the entropy density evaluated at the

appropriate horizon, and μ runs over all but the radial
coordinate [10,21]. The divergence of this entropy
current is constrained to be non-negative through the area
theorems [11],

∂μSμ ≥ 0; ð8Þ

which is true for both the event and apparent horizon.
To map this current from the horizon to the boundary, we

simply map the radial coordinate, leaving the others fixed,
as was done in [10,11].

B. Late time expansion

Following [15], we write the late time expansion as a
transseries in t, or a power series in

enðt; xÞ ¼ e−iðωnt−knxÞ: ð9Þ

In this work, we only go to second order and use a
simplified notation. We expand any function in the metric
as follows:

gðr;t;xÞ¼ gðrÞþ
X∞
n¼0

fgnðrÞenðt;xÞþgn̄ðrÞen̄ðt;xÞg

þ
�X∞
n¼0

fgnne2nþðgnn̄þgn̄nÞenen̄þgn̄n̄e2n̄g

þ
X∞

n≠m¼0

X
a∈fn;n̄g

X
b∈fm;m̄g

gabeaeb

�
þOðe3Þ; ð10Þ

where the coefficients g depend only on r, we suppress the
ðt; xÞ dependence of e, and define kn̄ ≡ −kn, ωn̄ ≡ −ω̄n,
where ω̄n is the complex conjugate of ωn.

2 With this
convention of using the same symbol g without indices for
the equilibrium value, the number of indices is equal to the
order in the expansion. Higher order contributions can be
included in a similar fashion to [15].
The first term gðrÞ is simply the infinite time equilibrium

solution; note that in what follows we will suppress the
subscript 0 as given in Eq. (5). The first order correction
gives linearized perturbations about equilibrium, contribu-
tions which are identical to quasinormal modes. To
preserve the reality of the solution, we must include each
mode in complex conjugate pairs.
These QNMs come in three decoupled channels, tensor,

shear, and sound with helicities 2, 1, and 0, respectively. It
is convenient to work with gauge-invariant combinations of
these perturbations given, respectively, by

Xn ≡Hn;

Yn ≡ knF
ðyÞ
n þ ωnΣ2Gn;

Zn ≡ 4knωnF
ðxÞ
n þ 2k2n

�
f0

Σ0 Σn − fn

�

þ Σ
�
k2n

f0

Σ0 − 6ω2
nΣ

�
Bn: ð11Þ

The modes in Eq. (11) each satisfy their own decoupled
QNM equation. Under simple coordinate redefinitions,
these equations are found to be the same as those studied

1There is a subtlety here in that this definition depends on how
the full spacetime is foliated by spacelike surfaces; however, here
the late time expansion clearly singles out constant time slices
as the natural foliation.

2Both ωn and −ω̄n are QNMs. To avoid double counting in
Eq. (10), we take the indices n and m to sum over only QNMs
with ωR > 0. We could have equally chosen to sum over only the
ωR < 0 modes.
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in [22]. The usual physical boundary conditions, where the
fluctuations die off at infinity and are ingoing at the
horizon, allow for a countably infinite set of frequencies
ωn, which are all included at first order in en.
As linear perturbations around equilibrium, these only

depend on the equilibrium solution where the horizons
coincide, rAH ¼ rEH ¼ rh. The amplitude and phase of a
given mode at the horizon remain undetermined by the
QNM equations and can be considered initial data. We
parametrize these constants as

XnðrhÞ ¼ Xneiα
X
n =2; ð12Þ

where by the reality of the solution Xn̄ ¼ X̄n with analo-
gous definitions holding for Y and Z.
Finally, and most crucially, we include second order

contributions in en. These terms can be thought of as the
interactions of pairs of QNMs and give the leading back-
reaction due to the perturbations. On the second line of
Eq. (10), we see the contribution of a single mode, which
interacts with its complex conjugate. If we had artificially
excited only a single mode, we could collapse the sum over
n and stop here. Generically, however, an ensemble of
modes are excited and this sum will include interactions
between every different pair, given on the last line in
Eq. (10). In this analysis, we neglect interactions of three
and higher modes, which can in principle be included in a
similar way.
An important point in the calculation that follows is that

the exponentials en are linearly independent. From this
property, we will be able to separate the equations of
motion out into independent ordinary differential equations
in r for the coefficients gnmðrÞ, sourced by the first order
contributions. These equations further reduce to algebraic
relations when evaluated on either the event or apparent
horizon, which allows us to write the divergence of the
entropy currents purely in terms of the horizon values
defined in Eq. (12).

III. RESULTS

We now wish to compute the divergence of the entropy
current, which as mentioned above has been shown to be
non-negative [11]. Before presenting the explicit result, we
can use this fact to constrain the first order contributions,
which from Eq. (10) take the form of damped oscillations.
These oscillating functions cannot be non-negative, so that
any non-negative quantity built from them must vanish to
preserve this feature. Therefore, at first order, there is no
contribution to the divergence of the entropy current. As
shown below, the interaction of modes can cancel out this
oscillation at second order to allow a nontrivial correction.
Following the procedure outlined in Sec. II, we can write

the second order contribution to the divergence of the
entropy current into the following form:

∂μSμ ¼
X

H∈fX ;Y;Zg

X∞
n;m¼0

AnmeðωnþωmÞI t½cosðΩþ
nm þ δþnmÞ

þ Cnm cosðΩ−
nm þ δ−nmÞ� þOðe3Þ; ð13Þ

with

Ω�
nm ¼ ðkn � kmÞx − ðωn � ωmÞRt: ð14Þ

The first sum runs over the different fluctuation channels,
then within each channel indices m and n sum over QNMs
with ωR > 0. While we have simultaneously included all
the channels, we observe that each channel in Eq. (13)
decouples completely with no interactions between differ-
ent channels at this order. The parameters Anm and δ�nm and
the frequencies ωn depend on the channel, but for nota-
tional simplicity we suppress the indices of X , Y, and Z.
Each term in this sum has an amplitude Anm and phases

δ�nm that depend on the initial condition through the
corresponding QNMs. The more interesting parameter is
Cnm, which is related to what was called the damping shift
in [14]. In the simplest case of n ¼ m, the cosine that
multiplies it simplifies to one, and this parameter gives a
constant term that suppresses the other oscillatory term.
This suppression of the oscillation is crucial to having a
positive definite quantity, in particular in the diagonal terms
it has to be greater or equal to one. To distinguish it from the
slightly differently defined damping shift in homogeneous
scenarios [14], we will refer to the parameter Cnm as the
oscillation suppression.
All parameters in Eq. (13) are determined from the

equations of motion. By imposing either horizon condition
Eq. (6) order by order, the Einstein equations Eμν ¼ 0 give
relations between the various metric functions at the
horizon that allow us to express Eq. (13) fully in terms
of the QNM frequencies and the horizon values Eq. (12). In
particular, the only necessary second order constraint
comes from solving the unexpanded Err for ∂2

rΣ, inserting
that into Er

t and expanding the result to second order.
To present the results compactly, we define

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1ÞπTrh=2

p
qn; ωn ¼ πTλn;

q� ¼ 1=2ðqn � qmÞ; λ� ¼ 1=2ðλn � λmÞ; ð15Þ

where d ¼ 4 is the number of dimensions in the boundary,
which we keep for later generalization. For notational
simplicity, we do not explicitly write the n, m dependence
of λ� and q�.
The oscillation suppression Cnm is universal across the

different channels of fluctuations,
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Cnm ¼

8>><
>>:

1þq2þ
1þq2−

ðAHÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλRþÞ2þðλIþ−1Þ2
ðλR−Þ2þðλIþ−1Þ2

r
ðEHÞ:

ð16Þ

Note that Cnn ≥ 1, since then q− ¼ λ− ¼ 0, which directly
implies positivity of the diagonal contributions to the
divergence of the entropy current. Including the mixed
terms checking positivity is more involved, see Appendix B
for a proof of positivity of the divergence of the entropy
current due to tensor fluctuations. For other cases, we have
done extensive numerical checks showing that they are
indeed always positive.
At zero momentum, Cnn ¼ 1 for the apparent horizon,

which then saturates the area theorem. Interestingly, Cnm
for the event horizon is momentum independent while for
the apparent horizon it is frequency independent.
We recover the previous numerical results of Eqs. (2) and

(3) by setting m ¼ n, setting the momenta to zero, and
integrating Eq. (13) to go from ∂S to S itself (this gives an
extra factor jωj=ð−ωIÞ).
The amplitude and phase of each mode will depend on

initial data, but for a given mode the ratio of the amplitudes
and the difference of the phases associated with the
apparent and event horizon will be independent of these
choices. For the amplitudes, we have the general form

Anm ¼ rd−5h

8πT
cncm

( 1
ð1þq2þÞ ðAHÞ;

1
jλþ−ij ðEHÞ;

ð17Þ

where cn depend on the channel as

cn ¼

8>><
>>:

πTr2hjλnjXn tensor;

Yn shear;ffiffiffiffiffiffiffiffiffiffiffi
d−2

8ðd−1Þ
q jλnjZn

πTjλ2n−q2nj sound:

ð18Þ

We stress again that there is no mixing between the
channels.
The phases δ�nm are somewhat complicated and given in

Appendix A, but the difference between the phases
evaluated at the event and apparent horizons for all
channels is simple and given by

δ�EH
nm − δ�AH

nm ¼ arctan

�
λR�

λIþ − 1

�
: ð19Þ

IV. GENERALIZATIONS

While in the previous section we have worked in
specifically d ¼ 4, the results are given above for arbitrary
dimension.3 The only dependence occurs in the rescaled

momentum, the overall power of rh in Eq. (17) (which can
be obtained from dimensional analysis), and a numerical
prefactor in ci for sound.
We further generalize our analysis to a broad class of

Einstein-Maxwell-scalar theories with action,4

S¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
R−2Λ−

1

2
ð∂ϕÞ2−ZðϕÞ

4
F2−VðϕÞ

�
;

ð20Þ

with the same metric as defined in Eq. (4) and where the
gauge field F ¼ da has nonzero ðt; r; x; yÞ components.
The matter fields give rise to one more gauge invariant in

the shear channel and two more in the sound channel given,
respectively, by

Un ≡ aðyÞn ;

Vn ≡ kaðtÞn þ ωaðxÞn − k
aðtÞ0

2Σ0 ðΣBn þ 2ΣnÞ;

Wn ≡ ϕn −
ϕ0

2Σ0 ðΣBn þ 2ΣnÞ; ð21Þ

the matter gauge invariants of Eq. (11) remain unchanged.
We define the horizon values ofUn, Vn, andWn in a similar
way to Eq. (12). Following the same steps as outlined in
Secs. II and III, the same calculation can be performed. The
different channels still decouple in Eq. (13); however, we
will now have multiple gauge invariants in each channel
and cross terms between these gauge-invariant modes
do exist.
For clarity, the new form of the divergence of the entropy

current, including explicit forms for the amplitudes and
apparent horizon phases, is given Appendix A. Here we
give a more qualitative overview.
Instead of Eq. (15), we now rescale the momentum as

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1ÞπTΣhΣ0

h=2
p

qn and replace rh in Eqs. (17)
and (18) by Σh, where the subscript h indicates evaluation
at rh.
After these trivial changes, the oscillation suppression as

given in Eq. (16) remains identical for all channels with the
exception of the ZnZm contribution. Furthermore, both
the ratio of amplitudes and difference in phases between the
event and apparent horizon, as given in Eqs. (17) and
(A12), remain the same without exception.
Outside of the replacements mentioned above, the tensor

channel contribution XnXm remains identical.
The shear channel contribution from YnYm remains

similarly unchanged; however, we find an additional and
near identical contribution from the gauge-invariant Un
proportional to UnUm. There is no cross term in ∂μSμ

proportional to YnUm.

3We have done the computations for d ¼ 4;…; 10 and
extrapolated the results.

4For a derivation of master equations in exactly this setting,
which are ideal to compute QNMs; see [23].
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The sound channel is more involved. In addition to two
new quadratic contributions from gauge-invariants Vn and
Wn, we find additional cross terms proportional to VnZm
and WnZm. There is no cross term due to interactions
between the Vn and Wn modes.
The oscillation suppression Cnm of the ZnZm contribu-

tion is enhanced by a multiplicative correction Cc
nm ≥ 1 due

to the time component of the gauge field. The amplitude of
this contribution also changes; see Appendix A for this
and all other details. We have verified numerically that
∂μSμ ≥ 0 for both horizons in all channels.
We finally remark that while the QNM equations all

decouple at zero momentum, the cross term between the
scalar field and the metric, proportional toWnZm, does not
vanish in this limit, as can be seen in the Appendix A.

V. DISCUSSION

We have obtained explicit expressions for the divergence
of the entropy currents associated with the event and
apparent horizon to second order in a late time transseries
expansion, allowing for the interactions of two differ-
ent modes.
At first order, no contribution is allowed due to the non-

negativity of entropy growth, meaning that the entropy will
equilibrate at half the time scale set by the dominant QNM.
At third order, we expect no contributions by the same

argument, although it is not strictly necessary for the third
order contribution to be non-negative by itself. For tensor
perturbations, we have checked explicitly that ∂μSμ has no
Oðe3nÞ correction at third order.
We find in this case that the second order tensor

fluctuation satisfies the same equation as the first order
tensor QNM equation, but with twice the frequency. Since
this is not generically a QNM frequency itself, there will be
no nontrivial solution to this equation with physical
boundary conditions. This second order fluctuation then
gives a vanishing contribution to the divergence of the
entropy current, setting the third order contribution to zero.
Optimistically, our expansion would only receive nontrivial
corrections at Oðe4nÞ more generally but this warrants an
explicit check.
In contrast to the analysis performed in [10,12], our use

of the transseries expansion allowed use to avoid explicitly
truncating our expansion in gradients. Therefore, our result
is accurate to all orders of momenta provided one is able to
computeωðkÞ. Furthermore, our expressions can be applied
equally to hydrodynamic and gapped QNMs.
In our setup, we have only allowed for spatial depend-

ence along the x coordinate. While one can do this at linear
level without loss of generality, this is not the case at second
order and it remains to be seen what the contribution of
modes with momenta along the other directions would be.
We have focused on asymptotically anti–de Sitter black

branes, but similar results can be obtained for spherical or
hyperbolic black objects, or for de Sitter or flat asymptotics.
In fact, the homogeneous, zero momentum, vacuum limit
of the results presented here apply directly to those cases.

We do not expect significant changes in the presence of
matter fields. In asymptotically flat spacetimes, there is the
complication of late time tails, or polynomial decays which
are present on top of the QNMs. These we have not treated,
but our result still applies to the entropy generated by the
interaction of QNMs separately. A further analysis could in
principle include these effects for a more reliable descrip-
tion of the evolution of the horizon.
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APPENDIX A: SOLUTION IN FULL DETAIL

In this section, we give our most general result in a self-
contained and fully explicit form for a theory given by
Eq. (20). The complete expression for the divergence of the
entropy current is given by

∂μSμ ¼
X
n;m

AXnX 0
m
þ

X
H;H0∈fU;Yg

X
n;m

AHnH0
m

þ
X

H;H0∈fV;W;Zg

X
n;m

AHnH0
m
; ðA1Þ

where we have expanded the sum over channels and
defined

AHnH0
m
¼ eðωHnþωH0

m
ÞI tAHnH0

m
½cos ðΩþ

HnH0
m
þ δþHnH0

m
Þ

þ CHnH0
m
cos ðΩ−

HnH0
m
þ δ−HnH0

m
Þ� ðA2Þ

and

Ω�
HnH0

m
¼ ðkHn

� kH0
m
Þx − ðωHn

� ωH0
m
ÞRt: ðA3Þ

Two of the cross terms vanish,

AYnU 0
m
¼ AVnW 0

m
¼ 0; ðA4Þ

the other contributions are all nonzero.
We have computed this expression for the event and

apparent horizon, which we denote by EH and AH,
respectively. The difference between the two is identical
for each contribution and summarized as5

5All functions of the form arctanða=bÞ, where a and b refer
strictly to the numerator and denominator, respectively, should be
interpreted as Mathematica’s ArcTan½b; a�. This function can
differ by �π depending on the signs of each argument, which is
why we have preserved the signs in Eq. (A12).
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CHnH0
m
¼ Cc

HnH0
m
×

8>><
>>:

1þq2þ
1þq2−

ðAHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλRþÞ2þðλIþ−1Þ2
ðλR−Þ2þðλIþ−1Þ2

r
ðEHÞ

AHnH0
m
¼ Σd−5

h

8πT
cHnH0

m

� 1
ð1þq2þÞ ðAHÞ

1
jλþ−ij ðEHÞ

δ�;EH
HnH0

m
− δ�;AH

HnH0
m
¼ arctan

�
λR�

λIþ − 1

�
: ðA5Þ

Here, we have defined

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1ÞπTΣhΣ0

h=2
q

qn; ωn ¼ πTλn;

q� ¼ 1=2ðqn � qmÞ; λ� ¼ 1=2ðλn � λmÞ; ðA6Þ

and we have omitted the dependence of the frequency and
momenta on the corresponding gauge invariant purely for
notational simplicity.
The oscillation suppressions are almost fully universal,

with

Cc
HnH0

m
¼ 1; H;H0 ≠ Z;Z;

Cc
ZnZ0

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2jλnj2jλmj2 þ qnqmQðqnqmQþ 2RνþnmÞ
R2jλnj2jλmj2 þ qnqmQðqnqmQþ 2Rν−nmÞ

s
;

ðA7Þ

where Q and R depend on the background as

Q ¼ 32ðd − 1ÞπTΣhΣ0
hZhðaðtÞ0h Þ2;

R ¼ Σ2
hð−2V 0

h þ Z0
hðaðtÞ0h Þ2Þ2

þ 128ðd − 1Þðd − 2ÞðπTΣ0
hÞ2; ðA8Þ

and we further define several combinations of frequencies
νi and of frequencies and momenta κi as

ν�nm ¼ λRnλ
R
m � λInλ

I
m; μ�nm ¼ λRmλ

I
n � λRnλ

I
m;

κ�nm ¼ jλnj2jλmj2 � q2nq2m; ξ�nm ¼ q2njλmj2 � q2mjλnj2;
χn ¼ q2n þ ðλInÞ2 − ðλRn Þ2; ρn ¼ 2λRnλ

I
n: ðA9Þ

We can write the phases for the apparent horizon as

δ�HnH0
m
≡ αHn

� αH0
m

2
− Δ�

HnH0
m
; ðA10Þ

where α’s are the phases of the gauge invariants at the
horizon

HnðrhÞ ¼ HneiαHn =2; ðA11Þ

and Δ’s are as follows:

Tensor∶ Δ�
XnXm

¼ arctan
�μ�nm
∓ ν∓nm

;

Shear∶ Δþ
YnYm

¼ π; Δ−
YnYm

¼ 0; Δ�
UnUm

¼ arctan
�μ�nm
∓ ν∓nm

;

Sound∶ Δþ
UnUm

¼ π; Δ−
UnUm

¼ 0; Δ�
WnWm

¼ arctan
�μ�nm
∓ ν∓nm

; Δ�
ZnVm

¼ arctan
�ρn
∓ χn

;

Δ�
ZnWm

¼ arctan
�½jλnj2μ∓nm þ q2nμ�nm�
�½jλnj2ν�nm − q2nν

∓
nm� ; Δ�

ZnZm
¼ arctan

∓ ½Rðμ�nmκ−nm þ μ∓nmξ−nmÞ −Qqnqmðρnχm � ρmχnÞ�
�½Rð−ν∓nmκþnm þ ν�nmξþnmÞ −Qqnqmðχnχm ∓ ρnρmÞ�

:

ðA12Þ

Note that in the vacuum limit Q ¼ 0 and the last expression reduces to

Vacuum∶ Δ�
ZnZm

¼ arctan
∓ ½μ�nmκ−nm þ μ∓nmξ−nm�
�½−ν∓nmκþnm þ ν�nmξþnm�

: ðA13Þ

Finally, the amplitudes usually factorize as cHnH0
m
¼ cHn

cH0
m
with

cXn
¼ jλnjπTΣ2

hXn; cYn
¼ Yn; cUn

¼ jλnjπTΣh

ffiffiffiffiffiffi
Zh

p
Un;

cVn
¼ 1=2Σh

ffiffiffiffiffiffi
Zh

p
Vn; cWn

¼ 1=2jλnjπTΣ2
hWn; cZn

¼ Zn

32ðd − 1ÞðπTÞ2Σ0
hjq2n − λ2nj

; ðA14Þ

except in the following three cases:
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cZnVm
¼ 2qn

ffiffiffiffi
Q

p
cZn

cVm
; cZnWm

¼ 2jλnjΣhð2V 0
h − Z0

hðaðtÞ0h Þ2ÞcZn
cWm

;

cZnZm
¼ cZn

cZm
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2jλnj2jλmj2 þQqnqmðQqnqm þ 2Rν−nmÞ

q
: ðA15Þ

APPENDIX B: POSITIVITY

In this section, we show explicitly that the divergence of
the entropy current for the apparent horizon given by the
lowest two tensor perturbations will be positive definite.
We have checked numerically that this statement holds in
every other channel as well as for the event horizon.
To begin, we rewrite the tensor mode contribution of

Eq. (13) in the form of Eq. (B3). For clarity, we introduce
the following notation:

Ωn ¼ knx − ωR
n tþ αn=2;

Θn ¼ λRn cosðΩnÞ − λIn sinðΩnÞ;
Ξn ¼ λIn cosðΩnÞ þ λRn sinðΩnÞ;
gn ¼

cnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8rhπTjλnj2ð1þ q2nÞ

p : ðB1Þ

The contribution of a pair of modes ωn, ωm is given by

∂μSμjnm ¼ Ann þAmm þAnm þAmn; ðB2Þ

using A from Eq. (A1). Using the above notation, we can
recast this contribution in the following form:

∂μSμjnm ¼ þg2ne2ω
I
ntðq2nΘ2

n þ ð2þ q2nÞΞ2
nÞ

þ g2me2ω
I
mtðq2mΘ2

m þ ð2þ q2mÞΞ2
mÞ

þ 2gngmeðω
I
nþωI

mÞt½f1ðqnqmΘnΘmÞ
þ f2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ qn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ qm

p
ΞnΞmÞ�; ðB3Þ

with functions f1 and f2 defined as

f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2m

p
ð1þ q2þÞð1þ q2−Þ

; ðB4Þ

f2 ¼
ðq2þ þ q2− þ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þq2nÞð1þq2mÞ
ð2þq2nÞð2þq2mÞ

q
ð1þ q2−Þð1þ q2þÞ

: ðB5Þ

We can note that f1 and f2 are bounded as
0 ≤ f1 ≤ f2 ≤ 1. The first two terms of Eq. (B3) are
positive definite, meaning that ∂μSμ will attain its minimum
value when the last two terms have the largest negative
contribution. Setting f1 ¼ f2 ¼ 1, we find that Eq. (B3)
can be written as the sum of two squares,

∂μSμjnm ≥ ðgneωI
ntqnΘn þ gmeω

I
mtqmΘmÞ2

þ
�
gneω

I
nt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2n

q
Ξn

þ gmeω
I
mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2m

q
Ξm

�
2

≥ 0: ðB6Þ

This argument readily generalizes to an arbitrary number of
modes ω0;…;ωN , where Eq. (B6) becomes

∂μSμ ≥
�XN

i¼0

gieω
I
i tqiΘi

�
2

þ
�XN

i¼0

gieω
I
i t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2i

q
Ξn

�
2

≥ 0;

showing positivity at second order in the general case.
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