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Cohen, Kaplan, and Nelson (CKN) conjectured that the UV and IR cutoffs of effective quantum field
theories coupled to gravity are not independent, but are connected by the physics of black holes. We
interpret the CKN bound as a scale-dependent depletion of the quantum field theory (QFT) density of states
and discuss various aspects of the bound on small and large scales. For laboratory experiments, we argue
that the bound provides small corrections to ordinary quantum field theory, which we estimate to be of
orderme=Mp for g − 2 of the electron. On large scales, we suggest a modification of the CKN bound due to
the presence of cosmological horizons and discuss the connection with entropy bounds.
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I. INTRODUCTION

Cohen, Kaplan, and Nelson [1] pointed out that UV and
IR cutoffs on local effective quantum field theory might be
correlated in the presence of gravity. Placing an ordinary
EFT in a box of size L, CKN suggested that the UV cutoff
ΛUV should be low enough that states of characteristic
energy density Λ4

UV are not black holes: the Schwarzschild
radius rb of the state should satisfy

rbðΛUV; LÞ < L ⇒ Λ4
UVL

3 < LM2
p ð1Þ

or

ΛUV <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mp=L

q
ð2Þ

up to order one numbers. This is an intrinsically gravita-
tional cutoff that disappears in the limit that the Planck
mass Mp is taken to infinity.
It is obvious that EFT becomes suspect whenever

gravitational backreaction is large enough to hide the
box behind an event horizon. However, merely excluding
“black hole states" from field theory has negligible impact
on ordinary perturbative processes with small numbers of
particles.1 The CKN bound is much stronger than this.

We will give a new interpretation of the bound as a
depletion of the EFT density of states. This interpretation
gives a general definition of the “IR cutoff” in the bound,
and provides a method to estimate the order of magnitude
of CKN effects on particle physics processes.
We also advocate for a more general bound [2], applicable

to the use of EFT in any space-time, which is independent
both of coordinates and processes. This is the bound

SEFT < cA
d−1
d ;

where A is the area of the maximal d − 2 volume of a
spacelike slice in a null foliation of any causal diamond in the
space-time and SEFT is an entropy, counting degrees of
freedom that can be well described by field theory. More
precisely, SEFT is to be interpreted as the logarithm of the
dimension of the gauge invariant Hilbert space of the field
theory in the causal diamond. This bound, like that of CKN,
determines a UV cutoff of field theory that is correlated with
a measure of the size of the region in which EFT is used.
However, it is phrased in terms of quantities that are
independent of particular processes and are geometric
invariants. c is an Oð1Þ number that is independent of the
diamond.2 This bound is satisfied in a large collection of
models that are well-defined, unitary, and causal, as well as
consistent with asymptotic invariance under spacetime trans-
lation and spatial rotation symmetries on the conformal
boundary of Minkowski space [3–6]. Of course, ultimately
the covariant bound has to be interpreted in particular
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1Apart from rendering the perturbative series somewhat better
defined. States of energy M in regions of size R with entropy
S > MR are problematic because eSe−MR > 1. The Bekenstein
bound excludes these states, but the CKN bound is even stronger,
amounting to SEFT < R3=2, where SEFT is the entropy that can be
well-described by quantum field degrees of freedom.

2It is plausible that it is also independent of the particular EFT
under consideration. Arguments involving black hole formation
are always subject to the caveat that we do not know, even in
classical general relativity, exactly which initial scattering states
lead to black holes.
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coordinates: we have to choose a time slicing in order to have
a Hamiltonian, Hilbert space formulation of the EFT. In the
rest of this paper wewill always work in the most symmetric
static coordinate system available.
Ordinarily, in a large box of volume V ¼ L3, the number

of states in a momentum space volume d3p is

dN ∼ Vd3p: ð3Þ

This leads, for example, to the “quartic divergence in the
vacuum energy density,”

ΔE=V ∼ V−1
Z

dϵ ϵDðϵÞ; DðϵÞ ∼ Vϵ2 ð4Þ

summing over zero-point energies of the single-particle
states. We will interpret the CKN bound as a conjecture that
the one-particle density of states that is well-described by
quantum field theory is depleted in a scale-dependent way,
as though at energy ϵ the modes are confined to a box of
size LðϵÞ < Mp=ϵ2, or

dN ∼M3
pϵ

−6d3p ð5Þ

saturating the inequality.
In an expanding universe of Hubble parameter H, the

“bare vacuum energy density” is of order H2M2
p. Modes of

energy lower than
ffiffiffiffiffiffiffiffiffiffiffi
HMp

p
appear to give a quantum

correction to the vacuum energy density which is of order
the bare value. Modes of energy ϵ >

ffiffiffiffiffiffiffiffiffiffiffi
HMp

p
contribute to

the usual fine-tuning problem. It is these modes that are
depleted by the CKN bound, since LðϵÞ < H−1, and it was
suggested in [1] that the low UV cutoff on ordinary QFT
might explain why the cosmological constant is not quarti-
cally sensitive to the highest energy scales through radiative
corrections. With the QFT density of states (5) we can
estimate that high energy modes contribute

ΔE=V ∼H3

Z
∞ffiffiffiffiffiffiffiffi
HMp

p dϵM3
pϵ

−3

∼H2M2
p: ð6Þ

Although this result does not explain the large size of the
universe, it might resolve the fine-tuning problem.
AdS=CFT arguments support a similar conclusion [7].
The goal of this paper is twofold. First, since CKN used

Schwarzschild black hole arguments to draw conclusions
about the cosmological constant, it is interesting to ask how
the conclusions are modified when Schwarzschild-de Sitter
(SdS) black holes are used instead. We investigate this
question in Secs. II and III. The modifications we suggest
imply that on cosmological scales the QFT degrees of
freedom are depleted even more rapidly than (5); however,
the CKN bound interpreted as an entropy bound is

qualitatively unchanged. Second, we revisit the implica-
tions of the CKN bound for particle physics. It is not
immediately clear how to impose (2): which L should be
used? What is the impact on IR-dominated processes,
where typical momenta are not of order ΛUV? We argue
that the depleted density of states gives a process-
independent prescription for estimating at least the order
of magnitude of CKN effects. In Sec. IV we apply this
prescription to g − 2 and find that the size of the effects
estimated this way is much smaller than the estimate in [1].
In Sec. V we conclude with brief comments about the
relevance of the CKN bound to scalar potentials, the
equivalence principle, and dS thermodynamics.

II. MODIFICATION ON COSMOLOGICAL
SCALES

The CKN bound as stated above requires some modi-
fication on cosmological scales. (In this section we set
Mp ¼ 1.) Exciting finite-energy states over large scales
changes the cosmological horizon. For example, in de Sitter
space with dS length l, there is a cosmological horizon at
rc ¼ l in static coordinates. Therefore one might like to
consider EFT in boxes as large as L ¼ rc and place a CKN-
type bound on the UV cutoff. However, there are no black
holes in this asymptotic spacetime with radius larger than
the Nariai size rN ¼ l=

ffiffiffi
3

p
.

To resolve this puzzle, we can extend the CKN bound to

rbðΛUV; L;lÞ < L < rcðΛUV; L;lÞ: ð7Þ

Here rb and rc are the black hole and cosmological
horizons of the SdS spacetime with dS length l and mass
m≡ Λ4

UVL
3. The SdS horizons are two of the three

solutions to 1 − 2m
r − r2

l2 ¼ 0. Therefore, both conditions
(7) can be imposed at once by requiring

1 −
2m
L

−
L2

l2
> 0; ð8Þ

which leads to

ΛUV <

�
1

2L2
−

1

2l2

�1
4

: ð9Þ

The bound (9) reduces to that of CKN for L ≪ rN.
On larger scales, it encodes the requirement that EFT
should not include states for which the cosmological
horizon is inside the box. In particular, for L → l, the
UV cutoff goes to zero.
We can give two interpretations of this result. We might

treat the bound (9) as an effective modification of the
density of states, as above. In this case we again obtain
a zero-point contribution of order the bare scale,
ΔE=V ∼ 1=l2. On the other hand, the vanishing UV cutoff
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may instead imply that there is no renormalization of the
cc from conventional EFT. This is consistent with sub-
stantial evidence accumulated by Banks and Fischler that
the cc should be thought of as a fixed parameter [8].
A similar conclusion was recently drawn by Bramante and
Gould [9]. We will mainly suggest an interpretation of (9)
in relation to entropy bounds.

III. RELATION TO ENTROPY BOUNDS

It was argued in [2] that the CKN bound arises from a
form of the covariant entropy principle [10,11] applied to
field-theoretic degrees of freedom,

S⋄;EFT < cA
3
4⋄; ð10Þ

where ⋄ denotes a causal diamond, S⋄;EFT is the entropy
associated with degrees of freedom that can be well-
approximated by local EFT inside the diamond, and A⋄
is the area of the holographic screen, the maximal-area
2-surface on the boundary of the diamond. c is a number of
order one. For small causal diamonds, the entropy in local
QFT degrees of freedom is of order ðLΛUVÞ3, so replacing
A⋄ → L2, we obtain

ðLΛUVÞ3 ≲ ðL2Þ34; ð11Þ

recovering the CKN bound (2). Our de Sitter space result
can also be viewed as an application of the general bound
on EFT entropy to a particular space-time and a particular
coordinate system.
More generally, in the static patch, the entropy in states

that can be well described by local QFT degrees of freedom
(at least over times of order l) increases with the box size as

dSEFT ≃ ðΛUVðLÞÞ3L2dL: ð12Þ

If the UV cutoff on states of characteristic size L does not
fall too quickly with L, we recover SEFT ≃ ðLΛUVðLÞÞ3.
This is the case for the ordinary CKN bound (2). However,
if ΛUVðLÞ is taken to saturate (9), the estimate SEFT ≃
ðLΛUVðLÞÞ3 is invalid for L of cosmological size. Indeed, it
predicts SEFT → 0. Instead, (12) indicates that dSEFT=dL is
peaked at L ¼ l=2 and goes to zero as L → l. dSEFT=dL is
shown in Fig. 1.
In other words, in the largest causal diamonds, most of

the entropy that can be well described by local QFT degrees
of freedom over times of order l corresponds to states that
are localized an Oð1Þ distance inside the diamond, rather
than roughly homogeneous and horizon-sized. This is
what we learn about field theory entropy from (9) and is
consistent with the arguments of [12].
Integrating Eq. (12) and replacing L2 → A⋄, we find

S⋄;EFT < fðL=lÞA3
4⋄; ð13Þ

where f is a function that always of order one for L
between zero and l. We find that the modified CKN bound
(9) still qualitatively saturates the S < A

3
4 bound on field

theory entropy.

IV. CKN AND PARTICLE PHYSICS

CKN argued that their bound is conceivably testable in
precision measurements, and they estimate the effects of
correlated UV and IR cutoffs on the one-loop contribution
to g − 2 of the electron,

δðg − 2Þ ∼ α

π

��
me

ΛUV

�
2

þ
�

1

meLðΛUVÞ
�

2
�

ð14Þ

with L and Λ related by Eq. (2). (See also the recent work
[13].) The estimate (14) comes from placing hard momen-
tum cutoffs on the usual Feynman integral and correlating
them as in (2). However, it is not clear that this is a
physically sensible way to estimate the effects of the bound.
An advantage of the density of states (5) is it provides a

conservative, process-independent method to estimate the
impact of CKN physics on QFT radiative corrections. For
UV-finite processes with a single characteristic energy scale
E, the physical interpretation of (5) is relatively simple: the
standard QFT description is modified as though the field
theory was placed in a finite volume ðLðEÞÞ3. The finite
volume depletes the density of states in the correct way
around the most relevant modes. Below we demonstrate the
application of this method to g − 2, finding that the impact
of the CKN-depleted density of states is much smaller than
Eq. (5) suggests.
Before we do so, however, we emphasize that this

prescription differs from an exact implementation of (5):
it will underestimate the depletion of states with energies
≫E and overestimates it for states with energies ≪E.
These errors can be neglected as long as the Feynman
integrands are sufficiently peaked around E that the CKN
corrections are also dominated by the depletion around E.
For g − 2 we will check this explicitly for modes of energy

FIG. 1. Most of the states that can be well-described by QFTare
localized well inside the cosmological horizon.
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Λ ≫ E: depleting these modes by the more appropriate box
size LðΛÞ corrects g − 2 by an amount parametrically
smaller than the depletion of the dominant modes around
E. Also, although Eq. (5) appears strongly infrared-
sensitive, it is actually reflecting the fact that IR physics
is very insensitive to the depletion: the box size is growing
faster than the scale 1=ϵ for low ϵ. Thus low energy physics
approaches the ordinary infinite volume behavior.
Physically, since the effective box size is much larger

than 1=E for all energies E satisfying H ≪ E ≪ Mp
(where H is the Hubble scale), the effects are small at
all such energies. For example, g − 2 is a process with
characteristic energy me. The effective finite volume is
the size of the sun. Since the momentum support of the
Feynman integrand is also of order me, the box size varies
by O(1) over this region of support. Therefore, we only
expect our prescription to work at the O(1) level.
With these caveats, we proceed to the estimate. The usual

one-loop correction to g − 2 is schematically

ðg − 2Þ ∼ e2m2
e

Z
1

0

dxdydzδðxþ yþ z − 1Þ

×
Z

dl0

2π

Z
d3l
ð2πÞ3

zð1 − zÞ
ðl2 þ Δ2Þ3 ;

Δ2 ≡ ð1 − zÞ2m2
e ð15Þ

(in Euclidean space, at leading order in the momentum of
the external photon, and omitting order-one numbers). The
integral is dominated by loop momenta of order me, so a
more appropriate estimate of the effects of the scale-
dependent density of states is to place the system in a
box of size LðmeÞ ¼ Mp=m2

e. (This scale is enormous, and
so the rest of the exercise is academic, showing only that
such corrections are negligibly small.) Finite volume effects
can then be estimated with standard techniques (see, e.g.,
[14]). We use an exponential representation of the propa-
gators and discretize spatial momenta,

1

ðl2 þ ΔÞ3 →
Z

dρ ρ2e−ρðl2
0
þΔÞe−ρl2i li

→
2πνi
L

Z
d3li →

1

L3

X
νi

: ð16Þ

Each of the spatial momentum sums can be reorganized
with Poisson summation,

X
ν

e−ρð2πν=LÞ2 →
Lffiffiffi
ρ

p
X
n

e−
1
ρðLn4πÞ2 ð17Þ

again dropping order one numbers. For large L the sum is
dominated by n ¼ 0;�1, where n ¼ 0 corresponds to the
infinite volume limit. We can then perform the integrals
over l0 and the Feynman parameters to obtain

δðg − 2ÞIR ≡ ðg − 2ÞjLme≫1 − ðg − 2ÞjL→∞

∼
α

π

Z
dρ

�
e
− L2

16π2ρ

meρ
3=2 þO

�
1

me
ffiffiffi
ρ

p
��

: ð18Þ

Since the integral is dominated by ρ ∼ L2, higher-order
terms in 1=ð ffiffiffi

ρ
p

meÞ can be dropped. Performing the ρ
integral we obtain the leading correction to g − 2 from a
finite box of size LðmeÞ,

δðg − 2ÞIR ∼
1

meLðmeÞ
∼

me

Mp
: ð19Þ

Another way to arrive at this result is to note that the
modification to g − 2 is the difference between doing an
ordinary integral in a momentum range around me and
approximating the integral with a Riemann sum with
momentum bins of size 2π=L. The “error” in the Riemann
sum approximation to this region of the integral is linear
in 1=L.
Including also an ordinary UV cutoff (without CKN

effects) for comparison, we obtain

δðg − 2Þ ∼ α

π

��
me

ΛUV

�
2

þ
�
me

Mp

��
: ð20Þ

We see that the depleted density of states gives results
comparable to ordinary UV contributions for Λ ≳ffiffiffiffiffiffiffiffiffiffiffiffiffi
meMp

p
∼ 107 GeV.

We can obtain a similar estimate from the effect of the
density of states on corrections to g − 2 from new physics
at ΛUV by putting this part of the momentum integral in a
box of size LðΛUVÞ,

δðg − 2ÞUV ∼
α

π

��
me

ΛUV

�
2
�
1þ 1

ΛUVLðΛUVÞ
��

∼
α

π

��
me

ΛUV

�
2

þ m2
e

MpΛUV

�
: ð21Þ

The first term is the typical contribution from a standard
UV cutoff, ignoring CKN corrections, and the second is the
typical CKN correction to this contribution as estimated
above. We see that the second term is of higher order
compared to the second term in Eq. (20); most of the
modifications from a CKN-type bound indeed arise from
momentum scales around me.
It is also possible to improve on this estimate in a

systematic way by depleting the modes according to Eq. (5)
at all scales. This requires some commitment to how the
modes are pruned. A more detailed analysis will be
presented elsewhere; here we simply sketch the idea. We
can, for example, take a cubic lattice with points labeled by
an integer 3-vector n⃗, and relate n⃗ to momentum states
via dni ∼ LðEpÞdpi. Then we can define modified field
operators as
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ϕðxÞ →
X
n

LðjpjÞ−3 1ffiffiffiffiffiffiffiffiffi
2jpjp ðapeip·x þ a†pe−ip·xÞ; ð22Þ

taking a massless scalar for simplicity. Here p⃗ is implicitly a
function of n⃗. If we impose ½ap; a†p0 � ¼ δn;n0LðjpjÞ3, we can
compute, for example, the real-space correlation function
DðxÞ ¼ h0jϕðxÞϕð0Þj0i. One finds that the usual result of
order 1=jxj2 is corrected to 1=jxj2ð1þOð1=xMpÞÞ. This is
consistent with our estimate above: a process dominated by
a momentum scale of order p will be corrected at order
p=Mp.

V. DISCUSSION

We have discussed an interpretation of the CKN bound
as a depletion of the QFT density of states, and argued
that the usual Schwarzschild black hole argument
requires modification on cosmological scales. This modi-
fication supports the idea that most field theory states in
dS space are localized well inside the cosmological
horizon. We have also estimated the effect of the CKN
bound on small scale physics and found that it is
negligibly small.
Let us conclude with several additional comments.
(i) The impact of the CKN bound on scalar fields is of

interest. The density of states (5) implies that the
effective potential for scalar fields computed in
ordinary quantum field theory [e.g., the field de-
pendent terms in the vacuum energy (6)] should not
be thought of as providing a correction to the
cosmological constant.
On the other hand, as our analysis of g − 2

indicates, the predictions of quantum field theory
for local measurements at SM energies are not
substantially modified by the CKN bound. In light
of this, the effective potential computed in ordinary
QFT without the density of states (5) should accu-
rately capture loop corrections to on-shell scalar
processes with loop momenta k and external mo-
menta kext satisfying

LðkÞ−1 ≪ kext ≪ k: ð23Þ

The first inequality is a CKN bound and the second
from the interpretation of the effective potential as
the leading term in a derivative expansion. Thus the
usual quadratic divergence in scalar masses is still a
problem. The extent of the electroweak hierarchy
problem that can be inferred from ordinary QFT is
characterized by the UV scale

Λ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mWMp

p
; ð24Þ

at which L becomes shorter than the weak scale and
the Higgs no longer fits into the CKN box.

We are quite uncertain about the extent to which
EFT calculations of an effective potential correspond
to any calculation in a true theory of quantum
gravity. String theory teaches us to extract effective
Lagrangians from scattering amplitudes. Sen et. al.
and Seiberg [15–17] have shown how to extract one-
loop on-shell mass renormalization in this manner,
while Kaplunovsky has done the same for gauge
coupling renormalization [18]. Our remarks above
about on-shell scalar mass renormalization are thus
on pretty safe grounds. Interpretation of the effective
potential as a calculable contribution to the cc,
however, is quite problematic, as illustrated by the
CKN bound and reinforced by a host of other more
rigorous evidence [8].

(ii) It is known from tests of the equivalence principle
that “vacuum loops gravitate” [19]. In brief, the
idea is that radiative corrections to the binding
energies of different nuclei A and B are much
larger than the precision with which mA

inertial=
mA

gravitational¼mB
inertial=m

B
gravitational has been tested.

Therefore, at least in the background fields of a
nucleus, loops couple to gravity [19]. This is not
inconsistent with the CKN bound, because the
relevant length scales in the radiative contributions
to nuclear binding energies are OðfmÞ. CKN effects
are expected to be of order GeV=Mp.

(iii) The thermodynamics of SdS black holes indicates
that general localized excitations in dS space are
low-entropy constrained states of the dS thermal
bath (see [12,20] and references therein; also more
recently [21–23].) Most of these states are black
holes that do not have a field-theoretic description.
In any case, the fact that localized states have low
entropy indicates that they are unstable over
sufficiently long times. All “field theory states”
are localized and the bounds above should be
understood to apply on timescales shorter than
the time over which they decay back into the dS
bath.

(iv) Finally, the ideas in this paper should certainly have
implications for field theory models of inflation and
inflationary fluctuations, but the authors do not yet
understand what they are. We hope to return to this
question in future work.

It would be interesting to study further the implications
of these sorts of bounds for other precision tests and scalar
field cosmology.
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