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We try to introduce heavy flavors to Sakai-Sugimoto model by regarding higher dimensional
components of gauge fields as heavy mesons. Using the Forgács and Manton approach, we obtain a
theory composed of heavy mesons and the instanton of light flavors. Applying the collective coordinate
quantization method, we derived a mass formula of heavy baryons. In the leading order of 1=mH expansion
(mH the mass of a heavy quark), we find singlet and doublet states in the heavy quark symmetry (HQS).
Also, we obtain the degenerate Roper like and odd parity excitations. By virtue of heavy meson degrees of
freedom, our mass formula reproduces the mass ordering of Σ�

c and Λ�
c correctly.
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I. INTRODUCTION

In the past decades, hadron physics has experienced
many new findings of exotic phenomena mostly containing
charm and bottom (heavy) quarks that are not easily
explained by conventional approaches, which is telling
that we need new ideas [1,2], and references there in [3–6].
Due to the nonperturbative nature of the strong interaction
dynamics, there still remains the problem of a missing link
from quarks to hadrons. Holographic view of QCD has
attracted much attention as one of guiding principle to fill
that link. Among several alternatives, Sakai and Sugimoto
proposed a D4-D8 brane construction that has lead to low
energy effective actions for hadrons, where the model
reproduces important features of spontaneous breaking
of chiral symmetry including hadron resonances such as
ρ and a1 mesons with a few parameters [1,2].
The Sakai-Sugimoto model is a nine-dimensional gauge

theory of flavor SU(2) on the D8-brane in the D4-brane
background. Our model is an SUð2þ 1Þ extension of the
Sakai-Sugimoto model. The gauge fields are denoted as Aa

M
where a ¼ 1;…; 8 are for the flavor index and M ¼
0;…; 3; z; 6;…; 9 for gauge field components. In compari-
son with actual QCD, Sakai and Sugimoto have utilized
five components, Aa

M¼0;…;3;z, while the other four were

ignored when they derived a five-dimensional gauge theory
[1]. Then the fifth-dimensional degrees of freedom play a
role of generating various hadron resonances of light
flavors of u, d quarks in the four-dimensional space-time.
In this paper, using the extra-dimensional degrees of

freedom, we attempt to construct a model with heavy
flavors for the study of heavy baryons. The gauge field
living in the extra higher dimensional space-time is trans-
formed into heavy mesons by the method of dimensional
reduction by Forgács and Manton [7,8]. The method leads
to the field components that correspond to heavy mesons
and light flavor instantons. Supplemented by a mass term,
we propose a set of actions for heavy hadrons.
Once we establish the model in five-dimensional space-

time, we apply the standard method to the quantization of
instantons for heavy baryons, from which we compute
various physical quantities. We estimate masses of heavy
baryons that are compared with existing experimental data.
We would then like to study whether such a construction
provides a reasonable description for not only conventional
but also exotic states such as Pc states.
This paper is organized as follows. In Sec. II, we outline

our method of dimensional reduction applied to the Sakai-
Sugimoto model with extra-dimensional components of the
gauge fields identified with heavy mesons. In Sec. III, we
apply the semiclassical method of collective coordinates to
obtain physical baryons. Results are compared with exper-
imental data.

II. ACTION

The SUð2þ 1Þ (lightþ heavy flavors) gauge fields on
the probed D8 brane in the D4 brane background R4 × S5

have nine components, AMðM ¼ 0 − 3; U; αÞ, where U is a
radial coordinate of S5 and α ¼ ψ ;φ; θ1; θ2 angular
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coordinates of S5. The gauge fields have also flavor com-
ponents denoted by the index a, where AM ¼ Aa

Mλ
a=2 and

λa are the Gell-Mann matrices. In Refs. [1,2], the gauge
field components on S4, Aα, were ignored. In the present
work, by regarding A4−7

α among Aa
α as heavy mesons, we try

to introduce heavy flavors in the Sakai-Sugimoto (SS)
model. When one reduces the dimensions of S4, we will see
that the vector fields A4−7

α are transformed into scalar heavy
meson fields. We should remark that in embedding the light
and heavy mesons in the flavor SU(3) parametrization it is
assumed that the SU(3) symmetry is not badly broken for
the interaction among them and only their mass difference
is the major source of the SU(3) breaking. The applicability
of such an approach was discussed carefully in Ref. [9] in
the bound state approach for hyperons. Our approach here
is also based on the same argument.
Since there are two types of terms in our action, this

section is divided into two subsections. First, in Sec. II A
we explain how to reduce the dimensions of the higher
dimensional Yang-Mills gauge theory. Second, in Sec. II B,
we discuss the Chern-Simons term that we will need.

A. The Yang-Mills part

In our model, we treat Aψ and Aφ components as heavy
meson fields, and try to discuss a system of heavy mesons
and nucleons. Aθ1 and Aθ2 components are ignored for the
minimal use of the extra-dimensional degrees of freedom.
The nucleons are described by instantons of A1−3;z com-
ponents [10–12]. To reduce the nine-dimensional theory
into a five-dimensional theory, we employ the method
proposed by Forgács and Manton [7].
The Yang-Mills (YM) action that we use is given by the

leading term of the DBI action of the SS model [1],

SDBID8 ≃ T8ð2π2α0Þ2
Z

d9xe−ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gMNgPQ

× tr

�
1

4
FSUð3Þ
MP FSUð3Þ

NQ

�
; ð1Þ

where T8 ¼ ð2πÞ−8l−9s is the tension of the D8-brane,
α0 ¼ l2s , ls the string length, and ϕ the dilaton field.

FSUð3Þ
MN is the field strength of flavor SU(3) gauge

fields, and FSUð3Þ
MN ¼ ∂MAN − ∂NAM þ i½AM; AN �. Using

the Minkowski metric, diagðημνÞ ¼ ð−1;þ1;þ1;þ1Þ,
the metric of the D4 black brane is represented by the
following 9 × 9 matrix:

gMN ¼

0
BBBBBB@

�
R
U

�
3=2

ημν 0 0

0
�
U
R

�
3=2

f 0

0 0
�
U
R

�
3=2

U−2gαβðΩ4Þ

1
CCCCCCA
; ð2Þ

where U is the radial coordinate of S5, R and UKK

characterize the structure of S5 and f ¼ 1 − U3
KK=U

3.
Now, we assume that the gauge field has an SO(3)

spherical symmetry in the ðU;ψ ;φÞ space. It means that
under SO(3) rotational transformations a variation of the
gauge (vector) field is absorbed into a gauge transforma-
tion. To see this point let us first introduce the generators of
SO(3) transformations ξm:

ξ1 ¼ ξM1 ∂M ¼ cosφ
∂
∂ψ − cotψ sinφ

∂
∂φ ;

ξ2 ¼ ξM2 ∂M ¼ − sinφ
∂
∂ψ − cotψ cosφ

∂
∂φ ;

ξ3 ¼ ξM3 ∂M ¼ ∂
∂φ : ð3Þ

When one represents the ðU;ψ ;φÞ space as Cartesian
coordinate, ξm are generators that causes rotations around
each axis. Applying them to the gauge (vector) field, an
infinitesimal variation is computed by

δξmAM ¼ ϵLξmAM ð4Þ

where Lξm denotes the Lie derivative associated with ξm,
and ϵ is an infinitesimal parameter.
Naively, we consider a symmetric field configuration

satisfies δξmAM ¼ 0. However, in the case of gauge fields, it
is possible to consider a weaker condition, by relating the
variation δξmAM with a gauge transformation, g ¼ eiϵWm

with Wm being an su(3) Lie algebra corresponding to ξm,

δWm
AM ¼ ϵDMWm ð5Þ

where DM ≡ ∂M þ i½AM; � is a covariant derivative. If an
SO(3) infinitesimal transformation (4) equals an infinitesi-
mal gauge transformation, i.e.,

δξmAM ¼ δWm
AM; ð6Þ

we can make the right-hand side zero by a gauge trans-
formation. Explicitly, this equation can be written as

ð∂Mξ
N
mÞAN þ ξNm∂NAM ¼ ∂MWm þ i½AM;Wm�: ð7Þ

It is important that for the dimensional reduction, the SO(3)
space-time symmetry is related to the flavor SU(3) gauge
symmetry through (7) [7].
In order to perform the dimensional reduction for

our purpose, we employ a set of ansatze for field configu-
rations [7,8],

Wm ¼
�
Φ3

sinφ
sinψ

;Φ3

cosφ
sinψ

; 0

�
; ð8Þ
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Aμ;U ¼ Aμ;Uðxν; UÞ;
Aψ ¼ −Φ1ðxμ; UÞ;
Aφ ¼ Φ2ðxμ; UÞ sinψ −Φ3 cosψ ; ð9Þ

where Φ1;2 are a function of ðxμ; UÞ and Φ3 a constant.
Then the constraint (7) becomes

½Φ3;Φ1� ¼ −iΦ2;

½Φ3;Φ2� ¼ iΦ1;

½Φ3; Aμ;U� ¼ 0: ð10Þ

If we substitute (8) and (9) for (1), we can perform the
integration of the higher dimensional manifold S4, resulting
in a five-dimensional action. The result for the YM part (1)
becomes [7,8]:

SYM ¼ κ

Z
d4xdztr

�
−
1

2
K−1=3F2

μν − KF2
μz

−
4

9
ðDμΦmÞ2 −

4

9
K4=3ðDzΦmÞ2

−
16

81
K1=3ðiϵrstΦt þ ½Φr;Φs�Þ2

�
; ð11Þ

where κ ¼ Ncλ=216π3 ¼ aNcλ, Nc is a color number, and
λ the t’Hooft coupling constant. We use the change of
variables between U and z by U3=U3

KK ¼ 1þ z2 ¼ K. R
and UKK are expressed by Kaluza-Klein mass MKK [2]. In
the following we set MKK ¼ 1. We can recover an MKK
dependence by dimensional analysis when needed.
Now, let us provide a solution for the symmetry relations

(7) or (10). A derivation is given in the Appendix in some
detail. The results are,

Aμ;z ¼ A1
μ;z

λ1
2
þ A2

μ;z
λ2
2
þ A3

μ;z
λ3
2
þ A8

μ;z
λ8
2
; ð12Þ

Φ ¼ 1

2

0
B@

0 0 ϕ1

0 0 ϕ2

0 0 0

1
CA; Φ̃ ¼ 1

2

0
B@

0 0 0

0 0 0

ϕ�
1 ϕ�

2 0

1
CA; ð13Þ

whereΦ ¼ Φ1 þ iΦ2; Φ̃ ¼ Φ1 − iΦ2 and ϕ1;2 are complex
scaler fields [8]. These expressions imply that the gauge
fields Aμ;z correspond to light mesons and ϕi to heavy
mesons. In fact, conceptually, this is in accordance with a
brane picture where one heavy brane is separated from two
light branes. The ϕ field correspond to the string connect-
ing light and heavy brane, and hence is regarded as a
heavy meson.
Substituting the light-heavy decomposed fields (12) and

(13) for the Yang-Mills action (11), we find

SYM ¼ κ

Z
d4xdz

	
tr

�
−
1

2
K−1=3F2

μν − KF2
μz

�

−
4

9
ðDμϕÞ†ðDμϕÞ −

4

9
K4=3ðDzϕÞ†ðDzϕÞ

−
16

81
K1=3

�
12

9
− 2ϕ†ϕþ ðϕ†ϕÞ2

�
2


: ð14Þ

where ϕ† ¼ ðϕ�
1;ϕ

�
2Þ is a two component isospinor [8].

Fμν;z is the field strength of the SUð2Þ × Uð1Þ gauge fields
(12), and Dμ;z a covariant derivative.

B. The Chern-Simons part

It is known that the Wess-Zumino-Witten (WZW)
term plays a characteristic role for heavy baryon dyna-
mics, providing an attraction (repulsion) between a (anti)
heavy meson and soliton background [9]. To introduce the
relevant term, we follow the argument of Ref. [13] and start
from the following Chern-Simons (CS) term[14],

SCS ¼
Nc

24π2

Z
trF 3

trF 3 ¼ dω5ðAÞ

¼ d

�
tr

�
AF 2 −

i
2
A3F −

1

10
A5

��
; ð15Þ

where F is the field strength of A, and the 1-form A is
A¼AMdxM ¼AMdxMþ ÂMdxMðM¼ 0;1;2;3;z;sÞ. Here
in (16), we have included the U(1) gauge field ÂM that did
not appear in (14) to stabilize the instanton solution at a
finite size as discussed in Ref. [12,13]. Physically, it
corresponds to the ω meson and has been known to play
an important role in stabilizing the Skyrmion also [15].
The U(1) term of (15) decomposes

SCS ¼
Nc

24π2

Z
trF3

þ Nc

24π2
1ffiffiffiffiffiffiffiffiffi
2Nf

p Z �
3ÂtrF2 þ 1

2
ÂF̂2

�
; ð16Þ

where in the second term we have used the Stokes’s
theorem to reduce the six-dimensional integral to the
five-dimensional one. If we choose Az ¼ 0 gauge, omit
massive modes, and integrate over z, the first term is

Nc

24π2

Z
trF3 ≃ −

iNc

240π2

Z
trðUdU−1Þ5; ð17Þ

which is nothing but the WZW term [13].
If we use a hedgehog solution for baryons in

Refs. [12,13], the chiral field U has the following form:

HEAVY BARYONS IN HOLOGRAPHIC QCD WITH HIGHER … PHYS. REV. D 101, 126008 (2020)

126008-3



Ujs¼0 ¼ exp

�
iHðxÞx̂ · τ=fπ 0

0 0

�
; ð18Þ

where x̂ is a unit vector, τ a Pauli matrix and fπ the decay
constant of the pion. The choice of s ¼ 0 corresponds to
the boundary of the six-dimensional manifold on which the
WZW term is defined. Using the instanton solution, the
function HðxÞ is given asZ þ∞

−∞
dz0Acl

z ðx; z0Þ ¼ HðxÞx̂ · τ: ð19Þ

Since the WZW term is identically zero for flavor SU(2),
this term (17) vanishes without heavy mesons correspond-
ing to λ4−7. Keeping these components φðxÞwewrite as the
chiral field:

Ujs¼0 ¼ exp

�
iHðxÞx̂ · τ=fπ φðxÞ=fH
φ†ðxÞ=fH 0

�
; ð20Þ

where fH is the decay constant of heavy mesons. As we
will discuss later, the function φðxÞ corresponds to the
lowest eigenmode of the heavy meson fields ϕ when
expanded in the fifth z-dimension.
Substituting (20) for (17) we find

− i
Nc

240π2

Z
trðUdU−1Þ5

¼ iNc

f2H

Z
d4xBμðφ†Dμφ − ðDμφÞ†φÞ; ð21Þ

where Bμ is the baryon number current by the soliton,

Bμ ¼ ϵμναβ

24π2
tr½ðUπ∂νU−1

π ÞðUπ∂αU−1
π ÞðUπ∂βU−1

π Þ�; ð22Þ

with Uπ ¼ exp ðiHðxÞx̂ · τ=fπÞ [16].

C. The model action

To complete our program, we need to introduce a mass
term in the action, which is not easily done in the holo-
graphic method of Sakai-Sugimoto. Supplementing a mass
term our model action is

S ¼ SYM þ SCS −m2K1=3ϕ†ϕ ð23Þ

where the function K1=3 is introduced in accordance with
(14) in consideration of the curved nature of the fifth-
dimension.

III. CLASSICAL SOLUTIONS

A. The instanton solutions

To discuss baryon properties, we follow the semiclass-
ical method, that is first we find a time-independent

classical solution and then quantize it by introducing slowly
moving time-dependent variables. Because the direction z
is curved and the time component is coupled, in Ref. [12]
they performed the 1=λ expansion and obtained a solution
for the gauge configuration order by order. In the leading
order, the SUð2Þ ∈ SUð3Þ part of the gauge field Acl

Mðx; zÞ
and the U(1) part Âcl

Mðx; zÞ are obtained as,

Acl
Mðx; zÞ ¼ −ifðξÞg∂Mg−1; ð24Þ

gðx; zÞ ¼ ðz − ZÞ − iðx −XÞ · τ
ξ

;

Âcl
M ¼ 0; ð25Þ

where M ¼ 1; 2; 3; z, and

fðξÞ ¼ ξ2=ðξ2 þ ρ2Þ;
ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx −XÞ2 þ ðz − ZÞ2

q
:

Here the parameters ðX; ZÞ and ρ are the collective
coordinates for the position (center) and size of the
instanton, respectively. In the next to leading order, the
time-components of the SU(2) and U(1) gauge field are
obtained as,

Acl
0 ¼ 0; ð26Þ

Âcl
0 ¼ 1

8π2a
1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
: ð27Þ

B. The solution of ϕ

In the present model, we have a heavy meson field
ϕðx; zÞ that also posses a time-independent classical
solution. To find it, we first employ a mode expansion
[1] by a complete set fψnðzÞg,

ϕðx; zÞ ¼
X
n¼0

φnðxÞψnðzÞ; ð28Þ

where φn are two component isospinors. We can choose an
arbitrary complete set fψnðzÞg, and therefore, we choose
the one to diagonalize the kinetic and mass terms in the
four-dimensional space-time. Such a complete set fψnðzÞg
satisfies the following eigenvalue equation:

−∂zðK4=3∂zψnðzÞÞ þm2K1=3ψnðzÞ ¼ λnψnðzÞ: ð29Þ

These eigenstates ψnðzÞ correspond to various meson
resonances with their eigenvalues regarded as their squared
masses. If we consider only the lowest eigenmode, the
quadratic terms in ϕ of (14) become
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κ

Z
d4x½−∂μφ

†ðxÞ∂μφðxÞ −m2
Hφ

†ðxÞφðxÞ�; ð30Þ

where M ¼ 0; 1; 2; 3; z, mH ¼ ffiffiffiffiffi
λ0

p
, and we redefine

ψ ¼ ψ0, φ ¼ 2=3φ0. The mass parameter m is deter-
mined such that mH becomes the heavy meson mass
ðDð1870Þ; Bð5279ÞÞ.
To proceed further, we apply again the 1=λ expansion.

For this purpose, first we rescale the fields as follows [12]:

x̃0 ¼ x0; x̃M ¼ λ1=2xM;

Ã0 ¼ A0; ÃM ¼ λ−1=2AM; φ̃ ¼ λ−1=2φ; ð31Þ

whereM ¼ 1; 2; 3; z. In the following calculations, we omit
the tilde for simplicity. Then, the action for φ, Sφ becomes
to the leading order of 1=λ expansion

Sφ ∼ aNcλ
1

Z
d4x

�
−∂iφ

†∂iφ − φ†
�Z

dzψ2A2
M

�
φ

�
:

ð32Þ

Using the solution (24), A2
M is proportional to identity

matrix. Therefore, to solve the equation of motion for φðxÞ
we can decompose the two component SU(2) spinor φðxÞ
into fðxÞχ, where χ is a two component spinor. Then, the
resulting equation of motion for φ is given as

∂2
rf þ 2

r
∂rf −

�
3

Z
dz

ψ2ðz2 þ r2Þ
ðz2 þ r2 þ ρ2Þ2

�
f ¼ 0: ð33Þ

To solve this equation, it is convenient to rescale the
variable ξ → ρξ. First, we should discuss the asymptotic
behavior. At r → 0, the third term of (33) approaches zero,
so we note that the asymptotic behavior of f is f ∼ r−1.
Next, to see this at r → ∞, we multiply (33) by r2. Then,
(33) becomes

r2∂2
rf þ r∂rf −

�
3

Z
dzψ2

ðz2=r2 þ 1Þ
ðz2=r2 þ 1þ 1=r2Þ2

�
f ¼ 0:

ð34Þ

If z is small, the integrand of the third term of (34) is

ðz2=r2 þ 1Þ
ðz2=r2 þ 1þ 1=r2Þ2 ∼ 1:

Also if z is large, that term becomes smaller than 1.
However, in this case ψ becomes almost zero, so in this
region, the third term does not contribute to the equation of
motion (34). Therefore, we can set the third term equals 3f.
After all, fjr→∞ satisfy

r2∂2
rf þ r∂rf − 3f ¼ 0:

Therefore, the asymptotic behavior at r → ∞ is

f ∼ r
−1−

ffiffiffi
13

p
2 :

We have solved Eq. (33) numerically satisfying the above
asymptotic behaviors. This solution will be used when
quantizing the classical solution and obtaining the mass
formula for physical baryons.

IV. QUANTIZATION

In Sec. III, we have solved the static classical solutions of
an instanton and ϕ. In the collective quantization method,
we consider the dynamics of a soliton in a moduli space
parametrized collective coordinates, and by regarding them
as canonical variables.

A. Collective coordinates

In our model, collective coordinates are as follows [12]:
(i) Position of the instanton ðX; ZÞ
(ii) Size of the instanton ρ
(iii) SU(2) orientation V
(iv) Two component SU(2) spinor χ

where ðX; ZÞ and ρ are the position and size of the
instanton, respectively, and V the SU(2) matrix correspond-
ing to soliton rotations. In addition to these coordinates, we
need the two component SU(2) spinor χ corresponding to
the vibration of heavy mesons:

ϕ ¼ fðxÞψðzÞ
�
χ1

χ2

�
¼ fðxÞψðzÞχ: ð35Þ

These collective coordinates describe time-dependent
collective motions of the classical solutions. Since the
present theory is based on a gauge theory, we need to be a
bit careful [17]. The collective coordinates introduce
motions along the gauge orbits that cannot be physical
motions. These unphysical motions can be removed by the
following prescription [12],

AMðt; xNÞ ¼ VAcl
MðxN ;XNðtÞ; ρðtÞÞV−1 − iV∂MV−1; ð36Þ

ϕðt; xNÞ ¼ VϕclðxN ; ρðtÞ; χðtÞÞ; ð37Þ

where V¼Vðt;xNÞ is an element of the gauge group SU(2).
In the A0 ¼ 0 gauge with imposing the Gauss’s law:

Dcl
M

�
_XN ∂

∂XN Acl
M þ _ρ

∂
∂ρA

cl
M −Dcl

MΦ
�

¼ 0; ð38Þ

whereM;N¼1;2;3;z,Φ¼−iV−1 _V andDcl
M¼∂Mþi½Acl

M;�.
By having the solution of Φ to (38) [12], spurious motions
along the gauge orbits are removed in the collective
motions of (36).
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B. Heavy meson field

The action for the heavy meson field φ, Sφ, is

Sφ ¼ aNc

Z
d4x

�
λ1
�
−∂iφ

†∂iφ − φ†
�Z

dzψ2A2
M

�
φ

�

þ λ0
�Z

dzψ2ðD0φÞ†D0φ −m2
Hφ

†φ

��

þ λ0
iNc

f2H

Z
d4xBμðφ†Dμφ − ðDμφÞ†φÞ; ð39Þ

where the covariant derivative D0 is defined as D0φ ¼
∂0φþ iA0φ.
It is convenient to introduce the heavy meson field

as [18]

ϕ ¼ e∓imHtϕ̃ ¼ fðxÞψðzÞe∓imHtχ̃ðtÞ; ð40Þ

where −=þ correspond to heavy/antiheavy mesons. Then,
if we only consider the leading terms of 1=mH expansion
and substitute the solutions (37) for (39), the first line of
(39) is zero and the second line becomesZ

d4xdzf2ψ2½ðD0ðVχÞÞ†D0ðVχÞ −m2
Hχ

†χ�

≃ 2mH

Z
d4xdzf2ψ2χ̃†D0χ̃: ð41Þ

C. Quantization

By employing the normalization aNc

R
d3xdzf2ψ2 ¼ 1,

absorbing the coefficient of the kinetic term of χ̃ and
integrating over the space of ðxμ; zÞ, finally we obtain the
action of collective motions as follows [12]:Z

dt½LX þ LZ þ Ly� þOðλ−1; m−1
H Þ;

LX ¼ −M0 þ
mX

2
_X2;

LZ ¼ MZ

2
_Z2 −

mZω
2
Z

2
Z2;

Ly ¼
my

2
_y2I −

myω
2
ρ

2
ρ2 −

Q
ρ2

;

Lχ ¼ �iχ̃†∂tχ̃ � A
Nc

ρ2
χ̃†χ̃; ð42Þ

with

M0 ¼ 8π2κ;

mX ¼ mZ ¼ 8π2aNc; my ¼ 16π2aNc;

ω2
Z ¼ 2

3
; ω2

ρ ¼
1

6
; Q ¼ N2

c

40π2a
: ð43Þ

Also if we consider only the leading terms of 1=mH
expansion, then only the time component contributes
and therefore Bμ becomes

B0 ¼ 1

2π2
sin2H
r2

dH
dr

: ð44Þ

Therefore, A is written as

A ¼ 4

πf2H

Z
drsin2H

dH
dr

f2 − a
Z

d3xdzÂcl
0 ψ

2f2; ð45Þ

where using the rescale xM → ρxM, Âcl
0 is

Âcl
0 ¼ 1

8π2a
1

ξ2

�
1 −

1

ðξ2 þ 1Þ2
�
: ð46Þ

Therefore, we quantize the system with the canonical
variables of these collective coordinates.
Before deriving the mass formula, we consider quantum

numbers of the heavy mesons [9]. In the classical solution,
the heavy meson fields have the spin 0 and the isospin 1=2.
First, we consider the isospin rotation. By the isospin
rotation gI ¼ eiθ·I, the gauge fields are transformed into

AM → gIAMg−1I − igI∂Mg−1I

¼ ðgIVÞAcl
MðgIVÞ−1 − iðgIVÞ∂MðgIVÞ−1: ð47Þ

On the other hand, the heavy meson field transforms

Vχ̃ → gIVχ̃: ð48Þ

Therefore, V carries the isospin, and V and χ̃ have the
following transformation properties:

	
V → gIV

χ̃ → χ̃:
ð49Þ

Second, we consider the spatial rotation. When the gauge
transformation which is equivalent to the spatial rotation is
written as gJ ¼ eiθ·J, spatial rotation act the gauge field as
follows:

AMðt; RNPxPÞ ¼ VAcl
MðRNPxP;RNPXPÞV−1 − iVV−1

¼ ðVe−iθ·IÞAcl
MðxN ;XNÞðVeiθ·IÞ−1

− iðVe−iθ·IÞ∂MðVeiθ·IÞ−1; ð50Þ

where the hedgehog like structure relates the spatial
rotation to isospin rotation, and so the spatial rotation is
expressed by gI. Also, the scalar field is transformed into

Vϕ̃ðt; xÞ → Vϕ̃ðt; RMNxNÞ ¼ Veiθ·Jϕ̃

¼ Ve−iθ·Ifψeiθ·Tχ̃ðtÞ; ð51Þ
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where T ¼ Jþ I is the grand spin operator. Therefore, V
and χ have the following transformation properties:

	
V → Ve−iθ·I

χ̃ → eiθ·Tχ̃:
ð52Þ

From the above, after doing the collective rotation, χ̃ has
the spin 1=2 and the isospin 0. Thus, we should quantize χ̃
as fermions:

fχ̃i; χ̃†jg ¼ χ̃iχ̃
†
j þ χ̃†j χ̃i ¼ δij: ð53Þ

D. Mass formula

By collecting the terms proportional to 1=ρ2 in (42), our
collective Hamiltonian takes essentially the same form as
that of Ref. [12]. Therefore, we can follow the same
quantization procedure, resulting in the mass formula as
follows,

M ¼ M0 þ ðNQ þ NQ̄ÞmH

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2

6
þ 2N2

c

15

�
1 −

40aπ2A
Nc

ðNQ − NQ̄Þ
�s
MKK

þ 2ðnρ þ nZÞ þ 2ffiffiffi
6

p MKK; ð54Þ

where M0 is the instanton mass, NQ=Q̄ the number of
heavy/antiheavy mesons. We emphasize that our mass
formula contains a numerical constant A in the second
line. This is a unique feature of our model construction. As
we will see shortly, this term plays a crucial role in
reproducing the mass ordering of Σc and Λ�

c correctly as
in experimental data.
We find that the spin J and the isospin I of the instanton

are both l=2. The spin of the baryons is the sum of spins of
the instanton and heavy mesons. In the SS model, parity
transformation is defined by xM → −xM. Also, when nZ is
even or odd, the wave function of nZ has parity even or odd.
Therefore, the quantum numbers ðnρ; nzÞ correspond to
radial excitations and those which flip parity, respectively.
Note that ϕ̃ ¼ fψχ̃ has parity even.
Parameters in or mass are ðM0;MKK;m; fπÞ and are

shown in Table I. As explained in Sec. III, m is deter-
mined such that mH becomes the heavy meson mass
ðDð1870Þ; Bð5279ÞÞ. Also, we use fD=fπ ¼ 1.7 and
fB=fπ ¼ 1.6 as in Ref. [19], and the pion decay constant
is fπ ¼ 61.2 MeV which is about 30% smaller than the
experimental value 93.2 MeV [19]. For the decay constants
of a heavy meson fH (H ¼ D or B), we have chosen it for
the charmed and bottomed baryons, separately. For the
Kalza-Klein mass, we use MKK ¼ 500 MeV which is the
same value as in Ref. [12]. Having these inputs, there is
only one free parameter M0 which is fixed to reproduced

the mass of Λcð2286Þ. We are then interested in mass
differences of baryons. We note that our mass formula (54)
differs from that of Ref. [20] in the term proportional to A.
In our model, the term depends on the heavy meson decay
constant fH, while that of Ref. [20] does not have such
parameter dependence. From (45) with the decay constant
values as in Table I, we find A ¼ 0.078 for charm and A ¼
3.7 for bottom sectors, respectively.
Results are summarized in Table II.
These results have some characteristic properties as

follows.
(i) The quantum numbers ðnρ; nzÞ physically corre-

spond to the Roper and the odd parity excitations.
As observed in the previous works [12], the mass
formula (54) indicates the degeneracy between them
which agrees well with experimental data for the
light flavor sector, the feature that is difficult to be
explained by a naive quark model. This feature
seems to be generalized to strange baryons [21].
Whether this also extends to charm and bottom
sectors is an interesting question. Possible candi-
dates are Λcð2765Þ and Λbð6072Þ, while their spin
and parity are to be determined.

(ii) If we expand the mass formula (54) by 1=Nc, the
mass splitting of Λc and Σc is proportional to 1=Nc.
This splitting is related to the spin-spin interaction,
and the Nc dependency is consistent to that of the
1=Nc expansion scheme.

(iii) Because we have included only the leading terms of
1=mH expansion, we have obtained the heavy quark
symmetry (HQS) singlet Λc;bð012þÞ and the degen-
erate doublet Σc;bð112þ; 132þÞ. On the other hand, the
lowest Λc;bð012−Þ and Λc;bð032−Þ in a quark model do
not exist in the present model, because this state is
considered to correspond to the λ mode. This is the
reason that we put the mass value 2595 in paren-
theses in Table II. In our mass formula the excited
states of baryons are described by excitations of the
instanton, which correspond to ρ modes in a quark
model language.

(iv) Empirically, the mass splitting of Λc and Λ�
c is about

twice larger than that of Λc and Σc. In the present
study, the value of A plays an important role to make
this order of baryon masses. In particular, for
ΔΣc−Λc

≡MðΣcÞ −MðΛcÞ and ΔΛ�
c−Λc

≡MðΛ�
cÞ−

MðΛcÞ, we have ΔΣc−Λc
< ΔΛ�

c−Λc
in accordance

with the experimental data, while the formula in
[20] results in the reversed relation. Let B be

TABLE I. Parameters in our model.

M0 (MeV) MKK (MeV) m=MKK m=MKK fπ=MKK

−572 500 4.385 10.62 0.122
(charm) (bottom)
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B ¼ 1 −
40aπ2A
Nc

: ð55Þ

For B ¼ 0, we find ΔΣc−Λc
¼ ΔΛ�

c−Λc
. As A becomes

smaller (i.e., B becomes larger), ΔΣc−Λc
becomes

larger, and at some point, ΔΛ�
c−Λc

equals 2ΔΣc−Λc
.

(v) Our model has hidden charmed pentaquark states
corresponding to Pcð4312=4380=4440; 4457Þ states
reported recently [22,23]. Similarly, we predicted
the mass of hidden bottomed pentaquark states not
yet observed, which we denote by Pb here. Since
the soliton has the same value of the spin and the
isospin which stems from the hedgehog structure,
our mass formula cannot generate the Pc state with
the spin 1

2
5
2

þ.

V. CONCLUSION

In this paper, we aimed to apply the holographic model
proposed by Sakai and Sugimoto to heavy flavor baryons,
and derive a mass formula. In our model, extra-dimensional
components of the gauge fields omitted in Ref. [1,2] have
been interpreted as heavy mesons. The gauge fields living
in S4 have been transformed into heavy mesons by the
Forgács-Manton method, and we have obtained the action

composed of light and heavy mesons. Then, heavy baryons
have represented as composite states of heavy mesons and
an instanton composed by light flavors. In addition to the
collective coordinates used in [12], our model has the
dynamical variable corresponding to the vibration of heavy
mesons. We have performed the collective coordinate
quantization of the system consisted of these coordinates,
and obtained the mass formula of heavy baryons. When
quantizing our model, as in Ref. [9], heavy mesons behave
as heavy quarks, which was referred to as transmutation of
quantum numbers in the intrinsic frame of the hedgehog
instanton [20]. The mass formula has given the mass
spectra that are compared with existing experimental data.
In our model, we have considered the limit of the

large Nc and the t’Hooft coupling λ as in [12], and also
took the limit of largemH. We have treated the only leading
terms of 1=mH, so we have obtained the HQS singlet
Λc;bð012þÞ and the doublet Σc;bð112þ; 132þÞ. Also, our mass
formula has yielded the degenerate Roper like and odd
parity excitations. Moreover, we have realized the mass
ordering ΔΣc−Λc

< ΔΛ�
c−Λc

in accordance with the exper-
imental data. Furthermore, our model has hidden charmed
pentaquark states Pcð4312=4380=4440; 4457Þ reported
recently [22,23]. Similarly, we have predicted the masses
of hidden bottomed pentaquark states not yet observed.

TABLE II. Predictions of our mass formula for the charmed and bottomed baryons in comparison with experimental data where
available. Masses of heavy quark doublet, for instance Σc and Σ�

c, are degenerate in the heavy meson limit mH → ∞.

B IJP l nρ nz NQ NQ̄ Our model/MeV exp./MeV

Λc 01
2
þ 0 0 0 1 0 [2286] 2286

Σc 11
2
þ 2 0 0 1 0 2523 2453

13
2
þ 2 0 0 1 0 2523 2520

Λ�
c 01

2
− 0 0 1 1 0 2694 (2595)

01
2
þ 0 1 0 1 0 2694 (2765)

Σ�
c 11

2
−; 13

2
− 2 0 1 1 0 2931 …

11
2
þ; 13

2
þ 2 1 0 1 0 2931 …

Pc
1
2
1
2
−; 1

2
3
2
− 1 0 0 1 1 4255 4312=4380=4440,4457

P�
c

1
2
1
2
−; 1

2
3
2
− 1 0 1 1 1 4664 …

1
2
1
2
þ; 1

2
3
2
þ 1 1 0 1 1 4663 …

Λb 01
2
þ 0 0 0 1 0 5676 5620

Σb 11
2
þ 2 0 0 1 0 5919 5810

13
2
þ 2 0 0 1 0 5919 5830

Λ�
b 01

2
− 0 0 1 1 0 6084 5912

01
2
þ 0 1 0 1 0 6084 (6072)

Σ�
b 11

2
−; 13

2
− 2 0 1 1 0 6327 …

11
2
þ; 13

2
þ 2 1 0 1 0 6327 …

Pb
1
2
1
2
−; 1

2
3
2
− 1 0 0 1 1 11070 …

P�
b

1
2
1
2
−; 1

2
3
2
− 1 0 1 1 1 11480 …

1
2
1
2
þ; 1

2
3
2
þ 1 1 0 1 1 11480 …
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APPENDIX: SOLVING CONSTRAINTS

In this Appendix, we will solve following constraints:

½Φ3;Φ� ¼ −Φ; ðA1Þ

½Φ3; Φ̃� ¼ Φ̃; ðA2Þ

½Φ3; Aμ;z� ¼ 0; ðA3Þ

where Φ ¼ Φ1 þ iΦ2, Φ̃ ¼ Φ1 − iΦ2. By using the Gell-
mann matrices λa, we can define the Cartan’s standard
form:

H1 ¼
λ3
2
; H2 ¼

λ8
2
;

E�γ ¼
1

2

�
λ1
2
� i

λ2
2

�
;

E�α ¼ 1

2

�
λ4
2
� i

λ5
2

�
;

E�β ¼
1

2

�
λ6
2
� i

λ7
2

�
; ðA4Þ

where roots ðα; β; γÞ are given as

�α ¼
�
� 1

2
;�

ffiffiffi
3

p

2

�
;

�β ¼
�
∓ 1

2
;�

ffiffiffi
3

p

2

�
;

�γ ¼ ð�1; 0Þ: ðA5Þ

Furthermore, we define hω:

hω ¼ ωiHi: ðA6Þ

In order to solve (A3), if we write Φ3 ¼ Φi
3Hi, then we

have

½Φ3; Eω� ¼ Φi
3ωiEω: ðA7Þ

Therefore, when one chooses Φi
3 appropriately, Φ3 com-

mutes with Eω for a root ω. We choose Φi
3 as to commute

with Eγ here. Then, all generators commuting with Φ3

are Eγ; E−γ; hγ; h, where h satisfies trðhγhÞ ¼ 0 and
trðhhÞ ¼ 1=2. Therefore, if Aμ;z are written as the linear
combination of those generators, (A3) is satisfied. This is
the gauge field on the subgroup SUð2Þ × Uð1Þ, we can
written as

Aμ;z ¼ A1
μ;z

λ1
2
þ A2

μ;z
λ2
2
þ A3

μ;z
λ3
2
þ A8

μ;z
λ8
2
: ðA8Þ

Next, to solve (A1) and (A2), we chooseΦi
3 such that we

have

½Φ3; Eα� ¼ Φi
3αiEα ¼ −Eα: ðA9Þ

Due to β ¼ α − γ, if we write the form,

Φ ¼ ϕ1Eα þ ϕ2Eβ;

Φ̃ ¼ ϕ̃1E−α þ ϕ̃2E−β; ðA10Þ

(A1) and (A2) are satisfied, where since Φ1;2 is Hermitian
matrices, we can show ϕ̃1 ¼ ϕ�

1 and ϕ̃2 ¼ ϕ�
2.
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