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We consider two quantum phase spaces which can be described by two Hopf algebroids linked with the
well-known θμν-deformed D ¼ 4 Poincaré-Hopf algebra H. The first algebroid describes θμν-deformed
relativistic phase space with canonical NC space-time (constant θμν parameters) and the second one
incorporates dual to H quantum θμν-deformed Poincaré-Hopf group algebra G, which contains non-
commutative space-time translations given by Λ-dependent Θμν parameters (Λ≡ Λμν parametrize classical
Lorentz group). The canonical θμν-deformed space-time algebra and its quantum phase space extension is
covariant under the quantum Poincaré transformations described by G. We will also comment on the use of
Hopf algebroids for the description of multiparticle structures in quantum phase spaces.
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I. INTRODUCTION

There have been proposed in recent years various models
of noncommutative (NC) space-times which characterizes
space-time geometry if the quantum gravity (QG) effects
are included (see e.g., [1–8]). In this paper we shall study
the canonical case of quantum space-times, with NC
counterparts x̂μ (μ ¼ 0, 1, 2, 3) of space-time coordinates
satisfying the well-known formula

½x̂μ; x̂ν� ¼ iλ2θμν; ð1Þ

where θμν ¼ −θνμ is a numerical 4 × 4matrix1 and ½λ� ¼ ½l�
describes an elementary length, which for QG-generated
noncommutativity is linked with Planck length

λP ¼ ℏ
mPc

¼
ffiffiffiffiffiffiffi
ℏG
c3

r
; ð2Þ

where mP is the Planck mass, and G describes the Newton
constant characterizing the gravitational interactions. If λ is
proportional to λP, from formula (2) due to the presence of
Planck constant ℏ, one can deduce the quantum-mechanical
and QG origin of relation (1) (λP ¼ 0 if ℏ → 0 or G → 0Þ.
Further, for simplicity we shall use the choice of
units ℏ ¼ c ¼ 1.

The well-known θμν-deformed quantum space-times [see
(1)] and associated quantum phase spaces are generated by
the following Abelian twist [9,10]:

F ≡ F ð1Þ ⊗ F ð2Þ ¼ exp

�
i
2
λ2θμνpμ ⊗ pν

�
: ð3Þ

It defines θμν-deformed quantum Poincaré-Hopf algebra H,
with nondeformed Poincaré algebra sectors, however, with
modified coproducts and antipodes [11]

ΔF ðhÞ ¼ F∘Δ0ðhÞ∘F−1; h ¼ fpμ;Mμνg; ð4Þ

SF ðhÞ ¼ US0ðhÞU−1; U ¼ F ð1ÞS0ðF ð2ÞÞ: ð5Þ

The twist (3) can be employed in two ways:
(i) We introduce the classical Minkowski space-

time coordinates xμ ∈ X as vectorial representation
of relativistic symmetries described by classical
Poincaré algebra P, with the algebraic structure
of P ⊗ X given by the semidirect product P⋊X.
In quantum-deformed theory one introduces the NC
space-times ðx̂μ ∈ X̂Þ as the module algebra (NC
algebraic representation) of quantum Poincaré-
Hopf algebra H. In the case of θμν-deformation
the quantum space-time coordinates x̂μ ∈ X̂ are
obtained from Drinfeld twisting procedure [11] by
star product technique [12,13].

Let us consider the algebra Â of functions on X̂
ðfðx̂Þ ∈ ÂÞ. In the scheme of twist quantization one
can represent the algebra ðÂ; ·Þ by the algebra
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1In this paper we shall consider the case D ¼ 3þ 1.
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ðA;⋆F Þ of classical functions, with their multipli-
cation defined by the nonlocal star product ⋆F

2

fðx̂Þ · gðx̂Þ ≃ fðxÞ⋆FgðxÞ ¼ m½F−1∘ðf ⊗ gÞ�
¼ ðF−1

ð1Þ⊳fÞðF−1
ð2Þ⊳gÞ:

ð6Þ
Putting in (6) fðx̂Þ ¼ x̂μ; gðx̂Þ≡ 1 one gets

x̂μ ¼ m½F−1ð⊳ ⊗ 1Þðxμ ⊗ 1Þ� ¼ ðF−1
ð1Þ⊳xμÞF−1

ð2Þ:

ð7Þ
Formula (7) provides the quantum map expressing
the deformed NC space-time coordinates by a non-
local map in undeformed relativistic phase space
ðxμ; pμ ¼ 1

i ∂μÞ. If we put fðxÞ ¼ xμ; gðxÞ≡ xν one
can calculate from (6) the commutator given by the
formula (1).

½x̂μ; x̂ν�≃ ½xμ;xν�⋆F
≡xμ⋆Fxν−xν⋆Fxμ¼ iλ2θμν:

ð8Þ

(ii) By Hopf-algebraic duality one can define the θμν-
deformed quantum Poincaré group G, with gener-
ators ĝ ¼ fξ̂μ; Λ̂μνg, describing generalized NC
coordinates on algebraic θμν-deformed Poincaré
group manifold [14] with quantum Lorentz group
parameters Λ̂μν and the NC quantum Poincaré group
translations ξ̂μ satisfying the following algebra:

½ξ̂μ; ξ̂ν� ¼ iλ2θρσðημρηνσ − Λ̂μρΛ̂νσÞ ≔ iλ2ΘμνðΛ̂Þ:
ð9Þ

Using the Heisenberg double construction [5,15]
given by the particular choice of semidirect product
G⋊H called smash product, one obtains (10þ 10)-
dimensional generalized θμν-deformed quantum
phase space Hð10þ10Þ ¼ ðξ̂μ; Λ̂μν; pμ;MμνÞ. Such
phase space can be employed in physical ap-
plications for the description of NC dynamics on
algebraic θμν-deformed quantum Poincaré group
manifold.3

It appears that both θμν-deformed structures presented
above [see (1) and (9)] are necessary in order to describe in a

complete way the NC space-time (8) as describing quantum
Poincaré-covariantH-module, which transforms under quan-
tum Poincaré group G in the following standard way:

x̂0μ ¼ Λ̂μνx̂ν þ ξ̂μ; ð10Þ

where NC translations ξ̂μ ∈ T satisfy the relation (9). We
shall show that to describe the quantum Poincaré trans-
formations (10) using a star-product formula one should
extend the star multiplication (6) to the functions of NC
variables x̂μ (NC Minkowski space) and ξ̂μ (NC Poincaré
translations) (see [14]).4

The plan of our paper is the following. In Sec. II we
recall the θμν-deformed Poincaré-Hopf algebra H extended
by NC space-time coordinates x̂μ ∈ X̂, which describe the
Lorentz group extension of the relativistic phase space
ðx̂μ; pμÞ ∈ X̂⋊T 4

X̂⋊H ¼ X̂⋊ðT 4⋊Oð3; 1ÞÞ: ð11Þ

In Sec. III we describe the θμν-deformed Poincaré quantum
group G and calculate the θμν-deformed Heisenberg double
Hð10þ10Þ ¼ H⋊G, with generalized NC Poincaré coordinates
fξ̂μ; Λ̂μνg ∈ G and generalized momenta fpμ;Mμνg ∈ H. In
Sec. IV we shall derive the covariance under the
quantum Poincaré group transformations given by for-
mula (10). In Sec. V we specify the data which define
two Hopf algebroids, first providing the quantum
Poincaré-covariant θμν-deformed phase space ðx̂μ; pμÞ ∈
X̂⋊T 4 with positions (coordinates) described by algebra
X̂ ðx̂μ ∈ X̂Þ supplemented with Lorentz transformations
(Lorentz parameters Λμν) and the second Hopf algebroid
describing quantum θμν-deformed Poincaré symmetry
transformations [see (10)], with the coordinate sector
described by quantum θμν-deformed Poincaré group
G. In particular in Sec. V D. by following earlier
applications of Hopf algebroids to the description
of κ-deformed quantum phase spaces [19,20] we shall
consider the applicability of the coalgebra sector of θμν-
deformed Hopf algebroids to the phase space description
of the multiparticle states.

II. θμν-DEFORMED QUANTUM POINCARÉ
ALGEBRA H AND NC SPACE-TIME

AS H-MODULE

A. Twist deformed quantum Poincaré algebra H

The classical D ¼ 4 Poincaré-Hopf algebra looks as
follows:

2Because the twistF is the function of classical Poincaré algebra
generators ĝ ¼ ðpμ;MμνÞ, the action ĝ⊳fðxÞ in formula (6) is
described by the differential realization of classical Poincaré algebra
on functions of standard Minkowski coordinates xμ.

3The idea of phase space description of the dynamics on the
classical group and coset group manifolds is due to Souriau [16]
and Kostant [17].

4See [18] for the use of star product to represent the quantum
group transformations.
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½pμ; pν� ¼ 0

½Mμν; pρ� ¼ iðηνρpμ − ημρpνÞ
½Mμν;Mρσ� ¼ iðηνρMμσ − ημρMνσ − ηνσMμρ þ ημσMνρÞ;

ð12Þ

where ημν ¼ diagð−1; 1; 1; 1Þ and is supplemented by
primitive costructure maps

Δ0ðhÞ ¼ h⊗ 1þ 1⊗ h; S0ðhÞ ¼ −h; ϵ0ðhÞ ¼ 0:

ð13Þ

The twist F is an element of H ⊗ H ðH ¼ UðPÞÞ
which has an inverse, satisfies the cocycle condition
F 12ðΔ0 ⊗ 1ÞF ¼ F 23ð1 ⊗ Δ0ÞF and the normalization
condition ðϵ ⊗ 1ÞF ¼ ð1 ⊗ ϵÞF ¼ 1, where F 12 ¼ F ⊗
1 and F 23 ¼ 1 ⊗ F .
The twist F does not modify the algebraic part and the

counit, but changes the coproducts Δ∶H → H ⊗ H and
the antipodes S∶H → H according to formulas (4)–(5). The
quantum θ-deformation is generated by the twist (3). From
the formula (4) one gets the coproducts

ΔF ðpμÞ ¼ pμ ⊗ 1þ 1 ⊗ pμ ð14Þ

ΔF ðMμνÞ ¼ Mμν ⊗ 1þ 1 ⊗ Mμν

−
1

2
θαβ½ðηαμpν − ηανpμÞ ⊗ pβ

þ pα ⊗ ðηβμpν − ηβνpμÞ�: ð15Þ

From (3) and (5), it follows that in the considered case
of θμν-deformations U ¼ 1 and the antipodes remain
unchanged, i.e., SF ðhÞ ¼ S0ðhÞ ¼ −h.

B. Algebra of generalized coordinates X̂
as twisted H-module

For the twist-deformed case we can introduce the
deformed coordinates algebra X̂ ∋ X̂A ¼ fx̂μ; Λ̂μνg with
the multiplication given by the star product formula

X̂A · X̂B ≃ XA⋆FXB ¼ m½F−1∘ðXA ⊗ XBÞ�
¼ ðF−1

ð1Þ⊳XAÞðF−1
ð2Þ⊳XBÞ; ð16Þ

where

h⊳XA ¼ ½h;XA�; h¼ fpμ;Mμνg; XA ¼ fxμ;Λμνg;
ð17Þ

and in the undeformed case we obtain

½pμ; xν� ¼ iημν; ½Mμν; xρ� ¼ iðηρνxμ − ηρμxνÞ ð18Þ

½pμ;Λρσ� ¼ 0; ½Mμν;Λρσ� ¼ ηρνΛμσ − ηρμΛνσ: ð19Þ

If we choose XA ¼ fðXÞ; XB ¼ gðXÞ the formula (16) can
be also written as follows:

fðXÞ⋆FgðX0Þ ¼ dfðXÞ⊳gðX0Þ; ð20Þ

where dfðXÞ denotes the noncommutative star representa-
tion of fðX̂Þ defined by the formula [see also (7)]

fðX̂Þ ≃ dfðXÞ ¼ m½F−1ð⊳ ⊗ 1ÞðfðXÞ ⊗ 1Þ�: ð21Þ
For the twist (3) we get from (21) the following ex-
plicit formulas describing generalized coordinates X̂A ¼
fx̂μ; Λ̂μνg in terms of undeformed relativistic quantum
phase space variables ðxμ; pμÞ and Λμν∶

x̂μ ¼ xμ þ 1

2
θμαpα; Λ̂ρσ ¼ Λρσ; ð22Þ

i.e., Lorentz group parameters, remain classical. Due to
(18) and (22) one gets the expected algebraic relations

½x̂μ; x̂ν� ¼ iθμν ð23Þ

½x̂μ; Λ̂ρσ� ¼ ½Λ̂μν; Λ̂ρσ� ¼ 0: ð24Þ

Using the relation

h⊳ðX̂AX̂BÞ ¼ ðhð1Þ⊳X̂AÞðhð2Þ⊳X̂BÞ ð25Þ

following [10] one can check easily that the commutators
(23)–(24) are covariant under the action (25) of θμν-
deformed Poincaré-Hopf algebra.

C. θμν-deformed quantum phase space
Hð10 + 10Þ

θ = ðx̂μ;Λ̂μν; pμ;MμνÞ
Using (22) one can check the following set of cross

commutators:

½pμ; x̂ν� ¼ iημν ð26Þ

½pμ; Λ̂ρσ� ¼ 0 ð27Þ

½Mμν; Λ̂ρσ� ¼ −iðηρμΛ̂νσ − ηρνΛ̂μσÞ ð28Þ

½Mμν; x̂ρ� ¼ iηρν

�
x̂μ −

1

2
θ α
μ pα

�
− iηρμ

�
x̂ν −

1

2
θ α
ν pα

�

−
i
2
ðθρμpν − θρνpμÞ: ð29Þ

Together with commutators (23)–(24) the set of relations
(26)–(29) satisfies the Jacobi identities and defines the

algebra of θμν-deformed quantum phase space Hð10þ10Þ
θ .
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III. θμν-DEFORMED QUANTUM POINCARÉ
MATRIX GROUP G AND CORRESPONDING

HEISENBERG DOUBLE G⋊H
A. RTT quantization method and θμν-deformed

quantum Poincaré group algebra G

The universal R-matrix ða ∧ b ¼ a ⊗ b − b ⊗ aÞ

R¼ F TF−1 ¼ exp½−iθμνpμ ⊗ pν� ða⊗ bÞT ¼ b⊗ a

ð30Þ

can be used for the description of the 10-generator
deformed D ¼ 4 Poincaré group. Using the 5 × 5-matrix
realization of the Poincaré generators,

ðMμνÞAB ¼ δAμηνB − δAνημB ðpμÞAB ¼ δAμδ
4
B; ð31Þ

we can show that in (30) only the linear term is non-
vanishing, i.e.,

R ¼ 1 ⊗ 1 − iθμνpμ ⊗ pν: ð32Þ

To find the matrix quantum group, which provides the
Hopf algebra dual to H in the matrix realization (31), we
introduce the following 5 × 5-matrices:

T̂ AB ¼
�
Λ̂μν ξ̂μ

0 1

�
; ð33Þ

where Λ̂μν parametrizes the quantum Lorentz rotation and

ξ̂μ denotes quantum translations. In the framework of the
FRT procedure, the algebraic relations defining such a
quantum group G are described by the following relation:

RT̂ 1T̂ 2 ¼ T̂ 2T̂ 1R; ð34Þ

while the composition law for the coproduct remains
classical ΔðT̂ ABÞ ¼ T̂ AC ⊗ T̂ C

B with T̂ 1 ¼ T̂ ⊗ 1,
T̂ 2 ¼ 1 ⊗ T̂ and quantum R-matrix (32) given in the
representation (31).
In terms of the basis ðξ̂μ; Λ̂μνÞ of G the algebraic relations

(34), describing the quantum group algebra, can be written
as follows:

½ξ̂μ; ξ̂ν� ¼ iθρσðημρηνσ − Λ̂μρΛ̂νσÞ ≔ iΘμνðΛ̂Þ; ð35Þ

½ξ̂μ; Λ̂ρσ� ¼ 0; ½Λ̂μν; Λ̂ρσ� ¼ 0; ð36Þ

while the coproduct takes the well known classical form

ΔðΛ̂μνÞ ¼ Λ̂μρ ⊗ Λ̂ρ
ν Δðξ̂μÞ ¼ Λ̂μν ⊗ ξ̂ν þ ξ̂μ ⊗ 1:

ð37Þ

One can check that coproducts (37) are homomorphic to
the algebra (35)–(36) defining the θμν-deformed quantum
Poincaré group.

B. Duality between quantum Hopf algebras
H and G and Heisenberg double H=H⋊G

Two Hopf algebras H, G are said to be dual if there exists
a nondegenerate bilinear form h; i∶H × G → C; ðh; ĝÞ →
hh; ĝi such that the duality relations

hh; ĝĝ0i ¼ hΔðhÞ; ĝ ⊗ ĝ0i ð38Þ

hhh0; ĝi ¼hh ⊗ h0;ΔðĝÞi ð39Þ

are satisfied. In our considerations the following pairing
relations:

hpμ; ξ̂νi ¼ iημν

hMμν; Λ̂αβi ¼ −iðημαηνβ − ηναημβÞ
h1; Λ̂μνi ¼ ημν ð40Þ

are appropriate. The basic action of H on G promoting G to
the H-module is given by the following relation:

h▸ĝ ¼ ĝð1Þhh; ĝð2Þi: ð41Þ

After using (38) one gets the relation

h▸ðĝĝ0Þ ¼ ĝĝ0ð1ÞhΔh; ĝð2Þ ⊗ ĝ0ð2Þi
¼ ĝĝ0ð1Þhhð1Þ; ĝð2Þihhð1Þ; ĝ0ð2Þi
¼ ðhð1Þ▸ĝÞðhð2Þ▸ĝ0Þ ð42Þ

which establishes that algebra G is indeed the H-module.
In the Heisenberg double framework we can obtain cross

commutators between the algebra H and group G by the
following relation:

½h; ĝ� ¼ ĝð2Þhhð1Þ; ĝð1Þihð2Þ − ĝh

h ¼ fpμ;Mμνg; ĝ ¼ fξ̂μ; Λ̂μνg: ð43Þ

In such a way we obtain the quantum phase space algebra.5

Using pairing (40), coproducts (14), (15), and formula (37)
we get

½pμ; ξ̂ν� ¼ iημν ð44Þ

½pμ; Λ̂ρσ� ¼ 0 ð45Þ

½Mμν; Λ̂ρσ� ¼ −iðηρμΛ̂νσ − ηρνΛ̂μσÞ ð46Þ

5For the case of κ-deformed quantum phase space see [15].
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½Mμν; ξ̂ρ� ¼ iηρν

�
ξ̂μ −

1

2
θ α
μ pα

�
− iηρμ

�
ξ̂ν −

1

2
θ α
ν pα

�

−
i
2
ðθρμpν − θρνpμÞ: ð47Þ

The Hopf algebroid H̃ð10þ10Þ ¼ ðξ̂μ; Λ̂μν;pμ;MμνÞ introdu-
ces an alternative model of θμν-deformed quantum phase
space. It describes the quantum phase space characteri-
zing the dynamical system with the coordinates ðξ̂μ; Λ̂μνÞ
which are specified by the NC quantum Poincaré group
manifold G.

IV. THE COVARIANCE OF X̂ UNDER QUANTUM
POINCARÉ GROUP G AND THE GENERALIZED

STAR PRODUCT

A. The covariance of X̂ under quantum
Poincaré group G

We recall that X̂ is the algebra of generalized coordinates
X̂A ¼ fx̂μ; Λ̂μνg, and G is the algebra of Poincaré symmetry
parameters ĝ ¼ fξ̂μ; Λ̂μνg. One performs the quantum
Poincaré transformations of X̂A in the following way:

x̂μ → x̂0μ ¼ Λ̂μνx̂ν þ ξ̂μ ð48Þ

Λ̂μν → Λ̂0
μν ¼ Λ̂ α

μ Λ̂ β
ν Λ̂αβ ¼ Λ̂μν: ð49Þ

The commutators of algebra X̂ [see (23)–(24)] are invariant
under a such transformation provided that the quantum
Poincaré symmetry parameters G ∋ ĝ ¼ fξ̂μ; Λ̂μνg satisfy
the relations defining the algebra G [see (35)–(36)] and
½X̂A; ĝ� ¼ 0. In particular, we have

½x̂μ; x̂v� ¼ iθμν !x̂μ→x̂0μ¼Λ̂μν x̂νþξ̂μ½x̂0μ; x̂0ν� ¼ iθμν: ð50Þ

We see that the generalized coordinates algebra X̂ in
different G-frames specified by (48)–(49) transform cova-
riantly under the transformations of quantum Poincaré
group G.
In order to describe effectively the quantum Poincaré

transformations (48) of NC functions fðx̂μÞ it is convenient
to introduce the generalized star products (see also [18])
representing the algebra of functions Fðx̂μ; ξ̂μÞ depending
as well on NC translations ξ̂μ.

B. Star product on the product X ⊗ T with
noncommutative translations of coordinates

Let us consider firstly the star product ⋆0
F describing the

NC product of algebra of functions Fðξ̂μÞ which depend on
NC translations ξ̂μ ∈ G satisfying the relation (9):

Fðξ̂μÞ ·Gðξ̂νÞ≃FðξμÞ⋆0
FGðξνÞ

¼m∘exp
�
i
2
ΘαβðΛ̂Þ ∂

∂ξα ⊗
∂
∂ξβ

�
FðμÞ⊗ GðνÞ;

ð51Þ

where in formula (51) one treats the Lorentz group
parameters Λ≡ Λμν as the numerical ones. Discussing
the quantum Poincaré transformations (10) in field theory
we should deal with NC algebra of functions on X ðxμ ∈
XÞ as well as on T ðξμ ∈ TÞ, and subsequently use the
composite star product ⋆̃F ¼ ⋆F · ⋆0

F (see also [21]):

Fðx̂μ; ξ̂μÞ ·Gðx̂ν; ξ̂νÞ
≃ Fðxμ; ξμÞ⋆̃FGðxν; ξνÞ

¼ m∘ exp
�
i
2

�
θαβ

∂
∂xα ⊗

∂
∂xβ þ ΘαβðΛ̂Þ ∂

∂ξα ⊗
∂
∂ξβ

��
× ðFðxμ; ξμÞ ⊗ Gðxν; ξνÞÞ: ð52Þ

In formula (52) both relations (1), (9) are taken into account
and we can represent the NC quantum Poincaré trans-
formations given by G by using such a star product
language. In particular one can show that using the relation
ΛμαΛνβθ

αβ þ ΘμνðΛÞ ¼ θμν [see (9)] we get

FðΛμαxα þ ξμÞ⋆̃FGðΛνβxβ þ ξνÞ
¼ Fðx0μÞ⋆FGðx0νÞjxμ→x0μ¼Λμαxαþξμ;xν→x0ν¼Λναxαþξν

¼ m∘ exp
�
i
2
θαβ

∂
∂x0α ⊗

∂
∂x0β

�
ðFðx0μÞ ⊗ Gðx0νÞÞ

≡ Fðx0μÞ⋆FGðx0νÞ: ð53Þ

In such a way we expressed in star product language the NC
Poincaré group transformations by classical Poincaré group
transformations. We see that the NC structure of quantum
Poincaré group translations is encoded in the replacement
of the star product ⋆F → ⋆̃F . It can be shown by explicit
calculation that three star products ⋆F ;⋆0

F , and ⋆̃F are
associative.

V. TWO θμν-DEFORMED HOPF ALGEBROIDS

A. Briefly on Hopf algebroids

The Hopf algebroids, introduced in [22] (see also [23]),
are described by bialgebroids with supplemented antipo-
des. It has been argued (see e.g., [24–28]) that the Hopf
algebroids are well adjusted to the description of physically
important quantum (canonical and noncanonical) phase
space.
The bialgebroid B is specified by the set of the data

ðH;A; s; t;m; Δ̃; ϵÞ where H is the total algebra with
product m and its subalgebra A ⊂ H is called the base
algebra. The source map sðaÞ∶A → H is a homomorphism
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and the target map tðaÞ∶A → H an antihomomorphism,
with their images commuting

½sðaÞ; tðbÞ� ¼ 0 a; b ∈ A sðaÞ; tðbÞ ∈ H: ð54Þ

The canonical choice of the source map is sðaÞ ¼ a. One
can introduce natural ðA; AÞ-bimodule structure onH using
source and target maps in the basic ðA; AÞ-bimodule
formula, namely, ahb ¼ htðaÞsðbÞ. The coproducts Δ̃
are described by the maps H → H ⊗A H from H into
ðA; AÞ bimodules H ⊗A H, satisfying the coassociativity
condition

ðΔ̃ ⊗A idHÞΔ̃ ¼ ðidH ⊗A Δ̃ÞΔ̃: ð55Þ

Because H ⊗A H as the codomain of coproducts Δ̃ does
not inherit the algebra structure from H ⊗ H, in order
to have well defined multiplication one introduces the
submodule H ×A H ⊂ H ⊗ H defined by the Takeuchi
coproduct [29].
The algebraH with the productm and the coalgebra with

Takeuchi coproduct Δ̃ are compatible, i.e.,

Δ̃ðhh0Þ ¼ Δ̃ðhÞΔ̃ðh0Þ: ð56Þ

The coproduct Δ̃ in H ×A H can be expressed in terms of
standard tensor product H ⊗ H by the equivalence classes
satisfying the condition

Δ̃ðhÞILðaÞ ¼ 0; ILðaÞ ¼ tðaÞ ⊗ 1 − 1 ⊗ sðaÞ; ð57Þ

where IL defines the left ideal in H ⊗ H. The equivalence
classes defined by (57) are parametrized by so-called
coproduct gauge (see e.g., [20]).
The counit map ϵ∶H → A is satisfying ϵð1HÞ ¼ 1A, and

ðϵ ⊗A idHÞΔ̃ ¼ ðidH ⊗A ϵÞΔ̃ ¼ idH: ð58Þ

We get Hopf algebroids if we are able to introduce an
antipode (bijective map) S∶H → H, which is an algebra
antihomomorphism and satisfies the following properties:

SðtÞ ¼ s ð59Þ

m½ð1 ⊗ SÞ∘γΔ̃� ¼ sϵ ¼ ϵ ð60Þ

m½ðS ⊗ 1Þ∘Δ̃� ¼ tϵS; ð61Þ

where in the general case we need an additional linear map
γ∶H ⊗A H → H ⊗ H, the so-called anchor map.

B. First choice: The coordinates X̂
as the base algebra (following [30])

Let us choose the bialgebroid group coproducts for base
algebra generators X̂A ¼ fx̂μ; Λ̂μνg:

Δ̃ðX̂AÞ ¼ X̂A ⊗ 1 ð62Þ

satisfies the group and generalized quantum phase space
algebra (26)–(29).
The source sðX̂AÞ and the target tðX̂AÞ maps are the

following:

sðX̂AÞ ¼ m½F−1ð⊳ ⊗ 1Þðs0ðXAÞ ⊗ 1Þ� ¼ X̂A ð63Þ

tðx̂μÞ ¼ m½ðF−1Þτð⊳ ⊗ 1Þðt0ðxμÞ ⊗ 1Þ�

¼ xμ −
1

2
θ α
μ pα ¼ x̂μ − θ α

μ pα ð64Þ

tðΛ̂μνÞ ¼ m½ðF−1Þτð⊳ ⊗ 1Þðt0ðΛμνÞ ⊗ 1Þ� ¼ Λμν ¼ Λ̂μν;

ð65Þ

where s0ðXAÞ ¼ XA, t0ðXAÞ ¼ XA. The maps (63)–(65)
satisfy the following relations:

½sðX̂AÞ; tðX̂BÞ� ¼ 0 ð66Þ
½sðx̂μÞ; sðx̂νÞ� ¼ iθμν; ½tðx̂μÞ; tðx̂νÞ� ¼ −iθμν ð67Þ

½sð·Þ; sð·Þ� ¼ ½tð·Þ; tð·Þ� ¼ 0 ðfor the other choices of X̂AÞ:
ð68Þ

The counit has the canonical form

ϵðX̂AÞ ¼ m½F−1ð⊳ ⊗ 1Þðϵ0ðXAÞ ⊗ 1Þ� ¼ X̂A: ð69Þ
Using (59) one gets explicit formulas for the antipodes

SðX̂AÞ ¼ tðX̂AÞ: ð70Þ
In our case we have S2 ¼ 1. One can check that for ideal
I ¼ t ⊗ 1 − 1 ⊗ s, it is true that

m½ð1 ⊗ SÞ�I ¼ m½ðS ⊗ 1Þ�I ¼ 0; ð71Þ
and it follows that we do not need the anchor map
[see (60)].
In order to determine the ideal (57) let us start form the

nondeformed ideal (for θμν ¼ 0)

I0ðXAÞ ¼ XA ⊗ 1 − 1 ⊗ XA: ð72Þ

We can obtain X̂A from XA by using twisting formula (21).
One gets for our twisted algebroid the following twist-
deformed ideal [see (63)–(65)]:
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ILðX̂AÞ ¼ FI0ðXAÞF−1 ¼ tðX̂AÞ ⊗ 1 − 1 ⊗ sðX̂AÞ: ð73Þ

In particular one can check the following relations:

½Δ̃ðX̂AÞ; ILðX̂AÞ� ¼ ½ILðX̂AÞ; ILðX̂BÞ� ¼ 0: ð74Þ

If we change the bialgebroid coproduct (62) by introducing
the following coproduct gauge transformation (see also
[19,24,26]):

Δ̃ðX̂AÞ → Δ̃λðX̂AÞ ¼ Δ̃ðX̂AÞ þ λILðX̂AÞ; ð75Þ

it follows from (74) that the new bialgebroid coproduct (75)
describes the homomorphism of the commutation relations
(23)–(24) extended by the phase space commutators
(26)–(29).
The formula (75) after substituting the formulas (63)–

(65) for source as well as target map and using the
exponential parametrization,

Λ̂μν ≡ ðeω̂Þμν ¼ ημν þ ω̂μν þ
1

2
ω̂ ρ
μ ω̂ρν þOðω̂3Þ; ð76Þ

takes for example for λ ¼ − 1
2
the following explicit form:

Δ̃−1
2
ðx̂μÞ ¼

1

2
ðx̂μ ⊗ 1þ 1 ⊗ x̂μÞ −

1

2
θ ν
μ pν ⊗ 1; ð77Þ

Δ̃−1
2
ðΛ̂μνÞ ¼

1

2
ðΛ̂μν ⊗ 1þ 1 ⊗ Λ̂μνÞ

≡ ημν1 ⊗ 1þ 1

2
ðω̂μν ⊗ 1þ 1 ⊗ ω̂μνÞ þOðω̂2Þ;

ð78Þ

where (77) describes the θμν-deformation of the symmetric
formula Δ̃−1

2
ðxμÞ ¼ 1

2
ðxμ ⊗ 1þ 1 ⊗ xμÞ.6

C. Second choice: Quantum group G
as the base algebra (following [22])

The half-primitive bialgebroid coproducts for ĝ ¼
fξ̂μ; Λ̂μνg

Δ̃ðĝÞ ¼ ĝ ⊗ 1 ð79Þ

together with the coproducts (14)–(15) satisfy theHeisenberg
double commutators [see (35)–(36) and (44)–(47)].
The source sðĝÞ and the target tðĝÞ maps should be

consistent with base algebra in the following sense:

½sðĝÞ; tðĝ0Þ� ¼ 0 ð80Þ

½sðξ̂μÞ; sðξ̂νÞ� ¼ iΘμνðsðΛ̂ÞÞ; ½tðξ̂μÞ; tðξ̂νÞ� ¼−iΘμνðtðΛ̂ÞÞ
ð81Þ

½sð·Þ; sð·Þ� ¼ ½tð·Þ; tð·Þ� ¼ 0 ðfor the other choices of ĝÞ;
ð82Þ

where due to (35) the relations (81) describe quadratic
algebras. Subsequently, it can be easily shown that analo-
gously to (63)–(65) one gets

sðĝÞ ¼ ĝ ð83Þ

tðΛ̂μνÞ ¼ Λ̂μν; tðξ̂μÞ ¼ ξ̂μ − Θ α
μ ðΛ̂Þpα: ð84Þ

The counit is

ϵðĝÞ ¼ ĝ; ð85Þ

and the antipodes which are given by

SðĝÞ ¼ tðĝÞ ð86Þ
satisfy the required relations (59)–(61). Similarly as in
Sec. V B, S2 ¼ 1 and we do not need the anchor map.
If we consider the ideal

ILðĝÞ ¼ tðĝÞ ⊗ 1 − 1 ⊗ sðĝÞ ð87Þ
and use the formulas (83)–(84) one can introduce as well
the counterpart of the coproduct gauge transformations (75)
and (77)–(78).

VI. OUTLOOK

In this paper we considered the most popular in the
literature Moyal quantum deformation of space-time coor-
dinates and the corresponding quantum-deformed nonca-
nonical phase-spaces, described by θμν-deformation of
relativistic Heisenberg algebra. Our aim was to present
the pair of θμν-deformed phase spaces in the language of
Hopf algebroid, with the extension of translational sectors
ðx̂μ; pμÞ or ðξ̂μ; pμÞ by the rotational Lorentz phase space
coordinates ðΛ̂μν;MμνÞ, describing in relativistic particle
models the spin degrees of freedom.
There were introduced two different relativistic quantum

phase spaces with Hopf-algebroid structure described in
two ways:

[–] by twist deformation of classical canonical Heisen-
berg bialgebroid, describing θμν-deformed relativistic
quantum phase space with NC Minkowski space-
time coordinates and dual commuting fourmomenta
(see e.g., [23–26,30]),

[–] by considering dual pairs of quantum-deformed
Poincaré-Hopf algebras (see [20]) which define the
Poincaré-Heisenberg double as a semidirect (smash)

6For a pair of free nonrelativistic two-particles with the same
masses, the coproduct Δ̃−1

2
ðxμÞ describes the global coordinates

describing the center of mass (see [19], Sec. 4).
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product of the quantum θμν-deformed Poincaré group
describing generalized coordinate sector and dual
quantum Poincaré algebra which provides the gener-
alized momenta sector (see e.g., [20,27]).

These methods were applied in order to obtain two
versions of θμν-deformed quantum phase spaces. We
considered the (10þ 10)-dimensional generalized phase
spaces, with generalized coordinates described, respec-
tively, by ðx̂μ; Λ̂μνÞ and ðξ̂μ; Λ̂μνÞ and different noncommu-
tativity for x̂μ and ξ̂μ: the first one characterized by constant
θμν [see (1)], and the second one with Λ-dependentΘμνðΛ̂Þ,
with commutation relations quadratic in Λ̂ [see (35)].
The Hopf algebroids introduce a new class of quantum

spaces H endowed with bialgebroid structure, suitable for
the description of quantum manifolds with symplectic
structure. The bialgebroidal coproducts Δ̃ can be intro-
duced in the framework of standard tensor productsH ⊗ H
as algebras defined by modulo so-called coproduct gauges
[19,20]. The coproduct gauge freedom can parametrize
various classes of dynamical particle models, with different
values of physical parameters, but with the same sym-
plectic algebraic structure in H, in H ⊗ H, and higher

multiparticle sectors. A simple example has been provided
in [19] where it was shown that the coproduct gauges in the
model describing pairs of free NR particles with massesm1,
m2 depend on the mass ratio m1

m2
, which is a physical

parameter. It should be pointed out however that at present
the role of coproduct gauges, e.g., in phase space descrip-
tion of physically important interacting relativistic particles
still is not well understood.
The second question which could be studied is the

description and classification of infinitesimal quantum
deformations of Hopf algebroids. In particular it would
be interesting to introduce for Hopf algebroids the notion
analogous to classical r-matrices for Hopf algebras, as well
as the bialgebroidal counterpart of Yang-Baxter and pen-
tagon equations. The answer to the last problem is linked
with the previous problem, i.e., the understanding of the
physical content of the notion of coproduct gauges.
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