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We discuss two types of quantum mechanical models that couple large numbers of Majorana fermions
and have orthogonal symmetry groups. In models of vector type, only one of the symmetry groups has a
large rank. The large N limit is taken keeping gN ¼ λ fixed, where g multiplies the quartic Hamiltonian.
We introduce a simple model with OðNÞ × SOð4Þ symmetry, whose energies are expressed in terms of
the quadratic Casimirs of the symmetry groups. This model may be deformed so that the symmetry is
OðNÞ ×Oð2Þ2, and the Hamiltonian reduces to that studied in [I. R. Klebanov et al., Phys. Rev. D 97,
106023 (2018)]. We find analytic expressions for the large N density of states and free energy. In both
vector models, the large N density of states varies approximately as e−jEj=λ for a wide range of energies.
This gives rise to critical behavior as the temperature approaches the Hagedorn temperature TH ¼ λ. In the
formal large N limit, the specific heat blows up as ðTH − TÞ−2, which implies that TH is the limiting
temperature. However, at any finite N, it is possible to reach arbitrarily large temperatures. Thus, the finite
N effects smooth out the Hagedorn transition. We also study models of matrix type, which have two OðNÞ
symmetry groups with large rank. An example is provided by the Majorana matrix model with
OðNÞ2 ×Oð2Þ symmetry, which was studied in Klebanov et al. In contrast with the vector models,
the density of states is smooth and nearly Gaussian near the middle of the spectrum.

DOI: 10.1103/PhysRevD.101.126002

I. INTRODUCTION AND SUMMARY

Strongly interacting fermionic systems describe some of
the most challenging and interesting problems in physics.
For example, one of the big open questions in condensed
matter physics is the microscopic description of the various
phases observed in the high-temperature superconducting
materials. Models relevant in this context [1–3] include the
Hubbard [4,5] and t-J models [6]. The Hamiltonians of
these models include the quadratic hopping terms for
fermions on a lattice, as well as approximately local quartic
interaction terms. The analysis of such models often begins
with treating a quartic interaction term as a small pertur-
bation. In the cases when such an expansion is not possible,
for example, the fractional quantum Hall effect, one
typically has to resort to numerical calculations.
Fortunately, there are also fermionic systems which can

be solved analytically in the strongly interacting regime,
when the number of degrees of freedom is sent to infinity.
Such large N systems include the Sachdev-Ye-Kitaev

(SYK) models [7–12] (see also the earlier work [13,14]).
The SYK models have been studied extensively in the
recent years; for reviews and recent progress, see [15–17].
The simplest of them, the so-called Majorana SYK

model [8,12], has the Hamiltonian H ¼ Jijklψ iψ jψkψ l,
which describes a large number NSYK of Majorana fer-
mions ψ i (we assume summation over repeated indices
throughout this work). They have random quartic couplings
Jijkl with appropriately chosen variance. A remarkable
feature of this model is that, in the limit where NSYK → ∞,
it becomes nearly conformal at low energies. The low-lying
spectrum exhibits gaps which are exponentially small in
NSYK. In further work, models consisting of coupled pairs
of Majorana SYK models [18–20], as well as the SYK
chain models [21,22], have produced a host of dynamical
phenomena which include gapped phases and spontaneous
symmetry breaking. In addition to the terms quartic in
fermions, they can include quadratic terms which describe
hopping between different SYK sites.
Another class of solvable large N fermionic models

are those with degrees of freedom transforming as
tensors under continuous symmetry groups [23,24] (for
reviews, see [25,26]). A simple example [24] is the OðNÞ3
symmetric quantum mechanics for N3 Majorana fermions
ψabc. In these tensor models the interaction is disorder-free,

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 126002 (2020)

2470-0010=2020=101(12)=126002(13) 126002-1 Published by the American Physical Society

https://orcid.org/0000-0002-8756-169X
https://orcid.org/0000-0002-1210-3088
https://orcid.org/0000-0003-0384-5909
https://orcid.org/0000-0002-1807-234X
https://orcid.org/0000-0001-7350-5550
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.126002&domain=pdf&date_stamp=2020-06-02
https://doi.org/10.1103/PhysRevD.97.106023
https://doi.org/10.1103/PhysRevD.97.106023
https://doi.org/10.1103/PhysRevD.101.126002
https://doi.org/10.1103/PhysRevD.101.126002
https://doi.org/10.1103/PhysRevD.101.126002
https://doi.org/10.1103/PhysRevD.101.126002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


so the standard rules of quantum mechanics apply.
Interestingly, the large N limit is similar to that in the
SYK model because in both classes of models the pertur-
bative expansion is dominated by the “melonic” Feynman
diagrams, which can be summed [27–41]. Since the
Hubbard and t-J models do not have any random couplings,
the disorderfree tensor models may be viewed as their
generalization, and it is interesting to investigate if they can
incorporate some interesting physical effects in a solvable
setting. One possibility is to interpret the three indices of
the tensor ψabc, where a; b; c ¼ 1;…; N, as labeling the
sites of a 3-dimensional cubic lattice [42]. Then the tensor
models may perhaps be interpreted as nonlocal versions of
the Hubbard model.
It is also natural to generalize the Majorana tensor model

of [24] to the cases where the indices have different ranges:
a ¼ 1;…N1, b ¼ 1;…N2, c ¼ 1;…N3; then the model
has OðN1Þ ×OðN2Þ ×OðN3Þ symmetry [43,44] (see also
[36,45]). The traceless Hamiltonian of this model is [24,43]

H ¼ gψabcψab0c0ψa0bc0ψa0b0c −
g
4
N1N2N3ðN1 − N2 þ N3Þ;

ð1:1Þ

where fψabc;ψa0b0c0 g ¼ δaa0δbb0δcc0 . If the ranks Ni are sent
to infinity with fixed ratios, then the perturbation theory is
dominated by the melonic graphs. However, it is also
interesting to consider the cases where one or two of the Ni

are not sent to infinity. Such models with OðNÞ ×Oð2Þ2
and OðNÞ2 ×Oð2Þ symmetry were studied in [43] and
were shown to be exactly solvable, with the integer energy
spectrum in units of g. The OðNÞ ×Oð2Þ2 model has the
familiar vector large N limit, where gN ¼ λ is held fixed.
A closely related vector model, which we also study in this
paper, has Majorana variables ψaI, I ¼ 1;…; 4, and sym-
metry enhanced to OðNÞ × SOð4Þ:

HOðNÞ×SOð4Þ ¼
g
2
ϵIJKLψaIψaJψa0Kψa0L: ð1:2Þ

The OðNÞ2 ×Oð2Þ model, which may be viewed as a
complex fermionic matrix model [43], has the ‘t Hooft
large N limit where all the planar diagrams contribute
(similar fermionic matrix models were studied in [46,47]).
In this paper we will carry out further analysis of the

fermionic vector and matrix models. In particular, we study
the large N densities of states ρ and analyze the resulting
temperature dependence of the specific heat. In the matrix
model case, the density of states is smooth and nearly
Gaussian, which is a rather familiar behavior. In the large N
vector models, we instead find a surprise: for a wide
range of energies we find log ρ ≈ −jEj=λ plus slowly
varying terms. The approximately exponential growth of
the density of states, discussed long ago in the context of
hadronic physics and string theory [48,49], leads to

interesting behavior as the temperature approaches the
Hagedorn temperature, TH ¼ λ. In the Majorana vector
models we indeed find critical behavior as the temperature
is tuned to λ, with a sharp peak in the specific heat. In the
formal large N limit, the specific heat blows up as
ðTH − TÞ−2. This means that TH is the limiting temper-
ature, and it is impossible to heat the system above it.
However, at any finite N, no matter how large, the specific
heat does not blow up, so it is possible to reach arbitrarily
large temperatures. Thus, our model provides a demon-
stration of how the finite N effects can smooth the
Hagedorn transition.
In Sec. II, we study the OðNÞ ×Oð2Þ2 symmetric vector

model. We find that the density of states exhibits expo-
nential growth in a large range of energies, and match this
with analytical results. In Sec. III we study a related vector
model, where the symmetry is enhanced to OðNÞ × SOð4Þ.
In this case, we obtain simple closed-form expressions for
the large N density of states, free energy, and specific heat.
In Sec. IV, we consider the fermionic matrix model with
OðNÞ2 ×Oð2Þ symmetry and find that the spectrum now
exhibits a nearly Gaussian distribution for sufficiently large
N. In Appendix we study the structure of the Hilbert space
of the above models, and derive the Cauchy identities from
simple physical arguments.

II. THE OðNÞ × Oð2Þ2 MODEL

Let us consider the Hamiltonian (1.1) in the caseN1¼N,
N2 ¼ N3 ¼ 2, so that it has OðNÞ ×Oð2Þ ×Oð2Þ sym-
metry. We may think of one of the Oð2Þ symmetries as
corresponding to charge, and the other Oð2Þ as the third
component of spin Sz. The first index of ψabc, which takes
N values, can perhaps be interpreted as a generalized orbital
quantum number.1 It will be convenient to think of the
last two indices as one composite index taking four
values (I ∈ fð11Þ; ð12Þ; ð21Þ; ð22Þg). Thus, we have
Majorana fermions ψaI with anticommutation relations
fψaI;ψbJg ¼ δabδIJ. Hence, the Hilbert space of this
problem, according to the results of the Appendix, has a
simple decomposition in the irreducible representations of
the SOðNÞ × SOð4Þ group

H ¼
X

μ⊂μmax¼ðð2ÞN=2Þ
½μ�OðNÞ ⊗ ½ðμmax=μÞT �Oð4Þ; ð2:1Þ

where ½μ�G stands for a representation of the group G
described by the Young Tableaux μ. In the Hilbert space of
our model, the Young Tableaux of SOðNÞ contains at most
2 columns and N=2 rows. In terms of fermions ψaI , the
Hamiltonian (1.1) may be rewritten as

1We are grateful to Philipp Werner for this suggestion.
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H ¼ g
2
ϵIJKLψaIψaJψa0Kψa0L

− 2g½ðψab1ψab2Þ2 − ðψa1cψa2cÞ2�: ð2:2Þ

The last two terms are the charges of the two Oð2Þ groups,
which break the SOð4Þ symmetry of the first term con-
taining the invariant tensor ϵIJKL. Each of the terms has
a simple action on each of the terms of (2.1), since Oð2Þ ×
Oð2Þ ⊂ Oð4Þ could be thought of as the Cartan subalgebra
of Oð4Þ, and we know how the Cartan subalgebra acts in
the representations of Oð4Þ. The normalized generators of
the SOð4Þ group have the form

JIJ ¼ ψaIψaJ; ð2:3Þ

and can be used to split the lie algebra soð4Þ into the direct
sum of the two suð2Þ algebras, which we have labeled
by þ and −, as follows:

K�
1 ¼ 1

2
J01 �

1

2
J23; K�

2 ¼ 1

2
J02 �

1

2
J31;

K�
3 ¼ 1

2
J03 �

1

2
J12: ð2:4Þ

It is easy to see that both sets Kþ
i and K−

i comprise an
SUð2Þ algebra, and thus the representations of the two
SUð2Þ groups with spins Qþ=2 and Q−=2, respectively,
fully determine the representation of the SOð4Þ group. One
can derive the following algebraic relation:

g
2
ϵIJKLψaIψaJψa0Kψa0L ¼ g

2
ϵIJKLJIJJKL ¼ 4g

X
i

½ðKþ
i Þ2 − ðK−

i Þ2� ¼ g½QþðQþ þ 2Þ −Q−ðQ− þ 2Þ�; ð2:5Þ

where we have used that ðKþ
i Þ2 is the quadratic Casimir operator and we know its value in each of the representations of

SUð2Þ. It is also interesting to notice that from (2.4) we have

ψab1ψab2 ¼ 2Kþ
1 ; ψa1cψa2c ¼ 2K−

1 : ð2:6Þ

This allows one to rewrite the Hamiltonian only in terms of the SOð4Þ representations. If we have a representation with
SUð2Þ spins ðQþ=2; Q−=2Þ, then all eigenvectors with definite K�

1 are the eigenvalues of Hamiltonian with energies

EðQþ; Q−; qþ; q−Þ ¼ g½QþðQþ þ 2Þ −Q−ðQ− þ 2Þ þ 2q2− − 2q2þ�;
K�

1 jQ�; q�i ¼ q�jQ�; q�i: ð2:7Þ

The degeneracy of such a state is determined by the dimension of the corresponding SOðNÞ representation. Because we
know the structure of the Hilbert space (2.1), we can determine the complete structure of the spectrum. If we have a SOðNÞ
representation with a Young tableaux μ consisting of two columns of the length μ1 ≥ μ2 ≥ 0, the corresponding
representations of SOð4Þ haveQþ ¼ N − μ1 − μ2,Q− ¼ μ1 − μ2, and the dimension of the representation of SOðNÞ is [50]

dimðQþ; Q−Þ ¼
ðQþ þ 1ÞðQ− þ 1ÞN!ðN þ 2Þ!

ðN−Qþ−Q−
2

Þ!ðNþQþ−Q−þ2

2
Þ!ðN−QþþQ−þ2

2
Þ!ðNþQþþQ−þ4

2
Þ! : ð2:8Þ

From this one can see that each set of pairs of non-negative integers ðQþ; Q−Þ whose sum is constrained to take values
N;N − 2; N − 4;… appears once. This formula allows us to study the density of states in the vicinity of the ground state and
of E ¼ 0.
The ground state (E0 ¼ −gNðN þ 2Þ) corresponds to the choice of Qþ ¼ 0, Q− ¼ N, thus qþ ≡ 0 and the spectrum in

its vicinity has the form,

E ¼ 2gq2− − gNðN þ 2Þ; deg ¼ dimðN; 0Þ ¼ 1; −N ≤ q− ≤ N: ð2:9Þ

The states immediately above the ground state are labeled by q− and the gap between them is of the order g ∼ λ
N. The next

excited states correspond to the choice Qþ > 0. The gap between such states and the ground state is of the order ΔE ∼
gN ∼ λ and is finite in the largeN limit, but the dimension of the representation is of the order dim∼NQþ and diverges in the
large N limit. Immediately above the ground state (δE ∼ λ, Qþ ¼ 0) the density of states may be approximated as
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ΓðEÞ ¼ f# of states : Est ≤ Eþ E0g ¼ f# of q−∶2gq2− − gNðN þ 2Þ ≤ Eþ E0g ≈
ffiffiffiffiffi
E
2g

s
;

ρðEÞ ¼ dΓ
dE

∼

ffiffiffiffiffiffiffiffi
1

8gE

s
; E ∼

λ

N
: ð2:10Þ

On the other hand, near E ¼ 0, the logarithm of the density of states exhibits an unusual cusp-like behavior shown in Fig. 1.
Another remarkable feature is its approximately linear behavior for a large range of energies.
For jEj=λ of order 1, the dominant contributions come from the states with large charges Q� ∼

ffiffiffiffi
N

p
≫ 1. In this regime

we can apply the Stirling approximation to the factorials in (2.8) to obtain

dimðQþ; Q−Þ ≈ 22NQþQ− exp

�
−
Q2þ þQ2

−

N

�
: ð2:11Þ

To obtain the density of states in the large N limit, we introduce the variables t� ¼ Q�ffiffiffi
N

p , u� ¼ q�ffiffiffi
N

p , and x ¼ E
λ. Then we have

ρðxÞ ∼
Z

∞

0

tþdtþ

Z
∞

0

t−dt−e−t
2
−−t2þ

Z
tþ

−tþ
duþ

Z
t−

−t−
du−δðxþ t2þ − t2− þ 2u2− − 2u2þÞ: ð2:12Þ

This may be evaluated if we first perform the integrals over T� ¼ t2�:

ρðxÞ ∼
Z

∞

−∞
duþ

Z
∞

−∞
du−

Z
∞

u2þ
dTþ

Z
∞

u2−

dT−e−T−−Tþδðxþ Tþ − T− þ 2u2− − 2u2þÞ

∼
Z

∞

0

due−2u
2−jxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj þ u2

q
þ
Z

∞ffiffiffiffi
jxj

p duejxj−2u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − jxj

q

¼ e−jxj1F1

�
−
1

2
; 0; 2jxj

�
þ ejxjffiffiffi

2
p

ffiffiffiffiffi
jxj

p
G0;1

1;2

�
1

− 1
2
; 1
2

����2jxj
�
; ð2:13Þ

where the last term involves the Meijer G-function. The
formula (2.13) is in good agreement with the numerical
results (see Fig. 1). Expanding ρðxÞ near x ¼ 0 we see that

ρðxÞ ∼ 1þ 1

4

�
2 log

jxj
2
þ 2γ − 1

�
x2; ð2:14Þ

which exhibits a singularity at x ¼ 0: ρ00ð0Þ diverges,
signaling a breakdown of the Gaussian approximation
of the density of states. We also note that, for x ≫ 1,
ρðxÞ ∼ jxj12e−jxj.
We can present an argument for why the density of states

is not Gaussian near the origin. The high temperature
expansion of the free energy is

tre−βH ¼ e−F; F ¼
X∞
n¼1

ð−1Þnþ1βntrcon½Hn�: ð2:15Þ

The quantity on the right-hand side of (2.15) may be
computed with the use of Feynman diagrams. For vector
models, the “cactus” or “snail” diagrams, shown in Fig. 2,
typically dominate in the large N limit [25,51]. However, in
our problem they vanish due to the Majorana nature of the

variables. Therefore, for any connected part, the trace
begins with the subleading term

1

Nn trcon½Hn� ¼ N0C1 þ N−1C2 þ… ð2:16Þ

FIG. 1. The logarithm of the density of states of the OðNÞ ×
Oð2Þ2 vector model, shown for N ¼ 100. For comparison, the
large N result (2.13) is shown with a dashed line.
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It is easy to see that C1 comes from the necklace diagrams
in Fig. 2, which give

C1 ¼
X∞
k¼1

ðgNÞk
k

ð1þ ð−1ÞkÞ
2

; ð2:17Þ

where the factor of 1
k comes from the symmetries of the

necklace diagrams. These necklace diagrams may be inter-
preted as trajectories of a particle propagating in one
dimension. Introducing the ‘t-Hooft coupling λ ¼ gN and
taking the large N limit while keeping λ finite, we calculate
the free energy,

F ¼
X∞
k¼1

ðβλÞk
k

ð1þ ð−1ÞkÞ
2

¼ −
1

2
ðlogð1þ βλÞ þ logð1 − βλÞÞ ¼ −

1

2
log½1 − ðβλÞ2�:

ð2:18Þ

The inverse Laplace transformation with respect to β yields

the density of states log ρðEÞ ∼ a − jEj
λ . From this one can

derive that the distribution must have a Laplace-like form,
and this agrees with the numerical results.
Let us review the physical effects of the approximately

exponential behavior of ρ. In the canonical ensemble, the
partition function as a function of inverse temperature β is

Z ¼
Z

∞

0

dẼρðẼÞe−βẼ; ð2:19Þ

where we define Ẽ ¼ E − E0 to be the energy above the
ground state. If ρðẼÞ ∼ eẼ=TH , then Z diverges for β < βH,
where βH ¼ 1=TH; this is the well-known Hagedorn
behavior. For our vector model, the Hagedorn temperature
is TH ¼ λ. However, the divergence is cut off by the fact
that ρðẼÞ grows approximately exponentially only from
some initial value Ẽ0 up to some critical value Ẽc, as
shown in Fig. 1. The contribution to Z from this region of
energies is

ZHagedorn ∼
e−ðβ−βHÞẼ0 − e−ðβ−βHÞẼc

β − βH
: ð2:20Þ

The presence of the denominator produces a logarithmic
term in the free energy, but it is cut off by the numerator
before it diverges. It follows that the specific heat
C ¼ −T∂2F=∂T2 may be approximated by

C ¼ 1

ð T
TH

− 1Þ2 þ
δẼ2

4T2sinh2ðδẼ
2
½1T − 1

TH
�Þ ; δẼ ¼ Ẽc − Ẽ0;

ð2:21Þ

where δẼ goes to infinity in the largeN limit and the second
term vanishes. Thus, for large enough N, there should be a
clear peak in the specific heat. This simple analytic argu-
ment for the existence of a peak is supported by the
numerical plots of specific heat shown in Fig. 3. For any
finite N, the height of the peak in C is finite, so that it is
possible to heat the system up to any temperature.
However, in the formal large N limit, the specific heat
blows up as ðT − THÞ−2 so the Hagedorn temperature is the
limiting temperature. This shows that the finite N effects
smooth out the Hagedorn transition.

FIG. 3. The plot of specific heat C for the OðNÞ ×Oð2Þ2
model, as a function of temperature T=λ, for N ¼ 50, 100, 150.
The specific heat has a pronounced peak which gets closer to
T=λ ¼ 1 as N grows.

FIG. 2. The cactus diagrams, which are of order N, vanish due to the Majorana nature of the variables. The “necklace” diagrams, are
not equal to zero and give the leading contributions in the large N limit, which are of order N0.
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III. THE OðNÞ × SOð4Þ MODEL

In this section we study the simpler vector model where
we retain only the first term in the Hamiltonian (2.2). The
symmetry is then enhanced to OðNÞ × SOð4Þ symmetry.
Since SOð4Þ ∼ SUð2Þ × SUð2Þ, we can think of one of the
SUð2Þ groups as corresponding to the spin of the fermions.

From the previous section we know that the spectrum of the
model may be expressed in terms of the two SUð2Þ spins,
Q�=2, where Q� are non-negative integers whose sum is
constrained to take values N;N − 2; N − 4;…. The ener-
gies and their degeneracies are

EðQþ; Q−Þ ¼ g½QþðQþ þ 2Þ −Q−ðQ− þ 2Þ� ¼ gðQþ −Q−ÞðQþ þQ− þ 2Þ;

degðQþ; Q−Þ ¼
ðQþ þ 1Þ2ðQ− þ 1Þ2N!ðN þ 2Þ!

ðN−Qþ−Q−
2

Þ!ðNþQþ−Q−þ2

2
Þ!ðN−QþþQ−þ2

2
Þ!ðNþQþþQ−þ4

2
Þ! : ð3:1Þ

The ground state corresponds to Qþ ¼ 0, Q− ¼ N; it has
energy E0 ¼ −λðN þ 2Þ and degeneracy N þ 1. For the
series of states Qþ ¼ m, Q− ¼ N −m, where m are
positive integers much smaller than N, we find the
excitation energies Em − E0 ≈ 2mλ. These states are
equally spaced in the large N limit, and their degeneracies
behave for largeN as N1þm

ðmþ1Þ!. Thus, the density of states ρðEÞ
near the lower edge grows as ∼N

E−E0
2λ . This edge behavior

does not have a smooth large N limit; it is very different
from the random matrix behavior ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − E0

p
which is

observed in the SYK model.
Just like for the OðNÞ ×Oð2Þ2 model, we find that the

large N limit of the OðNÞ × SOð4Þ model has a nearly
linear behavior of the logarithm of density of states for a
certain range of E=λ (see Fig. 4). Let us study this function
more precisely near the middle of the distribution,
following the procedure used in the previous section.
We include the contributions of representations where
Q� ∼

ffiffiffiffi
N

p
, and introduce variables x� ¼ Q�=

ffiffiffiffi
N

p
. The

energy is then given by E ¼ λðx2þ − x2−Þ. Using the Stirling
approximation for the factorials in (3.1), we find that the
density of states is

ρðEÞ ∼
Z

∞

0

dxþ

Z
∞

0

dx−x2þx2−e−ðx
2
þþx2−ÞδðE − λðx2þ − x2−ÞÞ:

ð3:2Þ

This integral can be evaluated in closed form:

ρðEÞ ¼ 22N
jEj
πλ2

K1

�jEj
λ

�
; ð3:3Þ

where K1 is the modified Bessel function, and the
normalization is such that ρ integrates to the total number
of states, 22N . Plotting (3.3), we see that in the range where
N−1 ≪ jEj=λ ≪ N, it is close to the numerical results in
Fig. 4. The expansion of (3.3) near the origin,

ρ¼ 22N
1

πλ

�
1þ 1

4

�
2 log

jxj
2
þ 2γ − 1

�
x2 þOðlog jxjx4Þ

�
;

x¼ E
λ
; ð3:4Þ

shows that ρ00ð0Þ diverges. The reasons for this unusual
behavior in the large N limit were discussed in the

FIG. 4. The logarithm of the density of states for the Oð200Þ × SOð4Þ (on the left) and Oð300Þ × SOð4Þ (on the right) models with
Hamiltonian (1.2). For comparison, the large N result (3.3) is shown with a dashed line.
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previous section. We also note that ρ ∼ jxj1=2e−jxj for
jxj ≫ 1.
The approximation (3.3) can be used to get the large N

limit of the free energy:

FðTÞ ¼ −T logZðTÞ ¼ 3

2
T log

�
λ2

T2
− 1

�
; ð3:5Þ

up to an additive term linear in T. The specific heat diverges
at the Hagedorn temperature TH ¼ λ,

CðTÞ ¼ −T
∂2F
∂T2

¼ 3λ2ðT2 þ λ2Þ
ðT2 − λ2Þ2 : ð3:6Þ

Note that this is of order N0 for T < TH, as usual for the
Hagedorn transition. For a finite N, the divergence is cut
off, but the peak is prominent; see Fig. 5.
We can write the Hamiltonian (1.2) in terms of complex

fermions by introducing the following operators:

ca1 ¼
1ffiffiffi
2

p ðψa1 þ iψa2Þ; c̄a1 ¼
1ffiffiffi
2

p ðψa1 − iψa2Þ;

ca2 ¼
1ffiffiffi
2

p ðψa3 þ iψa4Þ; c̄a2 ¼
1ffiffiffi
2

p ðψa3 − iψa4Þ:

ð3:7Þ

We may think of a ¼ 1;…N as a 1-dimensional lattice
index, so that there are two complex fermions at each lattice
site. The lattice Hamiltonian is then nonlocal2:

HOðNÞ×SOð4Þ ¼−
gN
2
−
gN2

4
þgc̄a1c̄a2cb1cb2þg

�X
a
J⃗a

�
2

;

J⃗a¼ c̄aασ⃗αβcaβ: ð3:8Þ

It is then not surprising that this model exhibits a phase
transition in the large N limit: it corresponds to the limit
where the lattice becomes infinitely long.
For the Hilbert space of the model containing fermions

ψ iJ, the quadratic Casimirs of the SOðNÞ and SOð4Þ
symmetry groups satisfy the constraint [43],

CSOðNÞ
2 þ CSOð4Þ

2 ¼ N

�
N
2
þ 1

�
: ð3:9Þ

In later sections we will be interested in the SOðNÞ
invariant states, and (3.9) implies that these states must

have CSOð4Þ
2 ¼ NðN

2
þ 1Þ. The corresponding representa-

tions of SUð2Þ × SUð2Þ have spins jþ ¼ 0; j− ¼ N=2 or
jþ ¼ N=2; j− ¼ 0. The first set of N þ 1 states has the
lowest energy, while the second set of N þ 1 states has the
highest energy. In total there are 2N þ 2 states which are
SOðNÞ invariant.
We may also work in terms of complex fermions cai,

(3.7), which are naturally acted on by SUðNÞ × SUð2Þ×
Uð1Þ. The SUðNÞ acts on the first index, SUð2Þ on the
second, and Uð1Þ by overall phase rotation. On the Hilbert
space constructed this way, the quadratic Casimirs satisfy
the constraint [43]

CSUðNÞ
2 þ CSUð2Þ

2 ¼ N þ 2

4N
ðN2 −Q2Þ; ð3:10Þ

where Q is the Uð1Þ charge. This implies that the SUðNÞ
invariant states with Q ¼ 0 must be in the spin N=2
representation of SUð2Þ. Therefore, there are N þ 1 such
states. There are also two SUðNÞ × SUð2Þ invariant states,
which have Q ¼ �N. Thus, the total number of SUðNÞ
invariant states is N þ 3.
We can generalize such a model to the case of

OðNÞ × SOð2MÞ with the Hamiltonian

H ¼ iM
g
M!

ϵj1…j2Mψa1j1ψa1j2…ψaMj2M−1
ψaMj2M : ð3:11Þ

This may be expressed via the higher Casimirs operators of
the SOð2MÞ group. For the case ofM ¼ 1we would have a
simple model OðNÞ × SOð2Þ,

H ¼ igϵijψaiψaj ¼ 2igψa1ψa2 ¼ 2g

�
c̄aca −

N
2

�
;

ca ¼
ψa1 þ iψa2ffiffiffi

2
p : ð3:12Þ

FIG. 5. The plot of specific heat C for the OðNÞ × SOð4Þ
model, as a function of temperature T=λ, for N ¼ 50, 100, 150.
The peak in specific heat gets closer to T=λ ¼ 1 as N increases.

2This Hamiltonian should be contrasted with the local fer-
mionic OðNÞ chains (see, for example, the recent paper [52]),
where there are N fermions at each lattice site.
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The spectrum consists of half-integers running from E ¼
− N

2
þ q and the degeneracy degðEÞ ¼ ðNqÞ corresponds to

the representation of the fully antisymmetric tensors.

IV. FERMIONIC MATRIX MODELS

In this section we study the fermionic matrix models
withOðN1Þ ×OðN2Þ ×Oð2Þ symmetry [43]. They contain
2N1N2 Majorana fermions that are coupled by the
Hamiltonian

H ¼ gψabcψab0c0ψa0bc0ψa0b0c −
g
2
N1N2ðN1 − N2 þ 2Þ:

ð4:1Þ

The direct numerical diagonalization of this Hamiltonian is
hampered by the exponential growth of the dimension of
Hilbert space as 2N1N2 . For N1 ¼ N2 ¼ 6 it is ≈7 × 1010,
while for N1 ¼ N2 ¼ 8 it is ≈2 × 1018 states. For the
former we were able to carry out Lanczos diagonalization
giving the wave functions and energies of the lowest few
states.
Fortunately, the Hamiltonian (4.1) may be expressed in

terms of the Uð1Þ charge Q, the Casimir operators of the

SOðNiÞ symmetry groups, as well as of the SUðN1Þ group
which acts on the spectrum [43]:

H ¼ −2g
�
4CSUðN1Þ

2 − CSOðN1Þ
2 þ CSOðN2Þ

2 þ 2

N1

Q2

þ ðN2 − N1ÞQ −
1

4
N1N2ðN1 þ N2Þ

�
: ð4:2Þ

This analytical expression allows us to proceed to higher
values of Ni. In general, all the energy eigenvalues are
integers in units of g, but finding their degeneracies requires
some calculations via the group representation theory.
For N1 ¼ N2 ¼ N, we find that near E ≈ 0 the density of

states may be approximated by the Gaussian:

log ρðEÞ ¼ N2 log 2 −
1

2

�
E
λN

�
2

; ð4:3Þ

where λ ¼ gN is the ‘t-Hooft coupling, which is held fixed
as N → ∞. We find nice agreement, which is shown
for N1 ¼ N2 ¼ 8 and N1 ¼ N2 ¼ 10 in Fig. 6 and for
N1 ¼ N2 ¼ 9 in Fig. 7.

FIG. 6. The spectrum for N1 ¼ N2 ¼ 8 and N1 ¼ N2 ¼ 10 on the top and the bottom row. One can see that the spectrum is Gaussian,
but split into two branches. The fit is quite close to the theoretical predictions.
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To demonstrate the validity of this approximation, let us
compute

hEni ¼
Z

dEρðEÞEn ¼ tr½Hn�
tr½1� : ð4:4Þ

This may be computed via the path integral

tr½Hn�
tr½1� ¼

Z
DψabHn exp

�
−
Z

β

0

dτψabðτÞ∂τψabðτÞ
�
:

ð4:5Þ

Therefore we can use standard Feynman techniques with
the propagator hψabψa0b0 i ¼ 1

2
δaa0δbb0 and H as an inter-

action vertex. Since H has the form of a single-trace
operator in the large N limit, this product is dominated
by the planar diagrams and moreover by the disconnected
parts. From this point of view one can see that

ð4:6Þ

Then one can invert (4.4) and get that ρðEÞ is the Gaussian
distribution

ρðEÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2E

p exp

�
−

E2

2σ2E

�
: ð4:7Þ

The second moment, σ2E, is easy to compute using the
diagrammatic technique: σ2E ¼ g2ðN4 − N3Þ ≈ ðλNÞ2. To
get the higher order corrections to the distribution function,
we can continue calculating the energy moments, or we can
instead simply compute the free energy and perform the
inverse Laplace transformation to get the energy distribu-
tion. To be more precise, the free energy is defined as

FðβÞ ¼ − log tre−βH ¼ − log
Z

dEρðEÞe−βE: ð4:8Þ

This gives us a formula to compute FðβÞ as a sum of the
connected diagrams with H as an interaction vertex

FðβÞ ¼
X∞
n¼1

βntrðHnÞcon ¼ β2trðH2Þcon: þ β4trðHnÞcon: þ…

ð4:9Þ

Continuing this function to imaginary temperatures β → iβ,
we can use the inverse Fourier transform

ρðEÞ ¼
Z

dβ
2π

eiβEe−FðiβÞ

¼
Z

dβ
2π

eiβEe−β
2trðH2Þcon−β4trðH4Þconþ…: ð4:10Þ

This integral can be calculated with the use of general
diagrammatic technique, where iE is the source for the
energy, trðH2Þcon is the propagator, and trðH4Þcon and the
higher correlators are the vertices. By using these proce-
dures we can compute the connected contribution. It is
easy to compute the leading contributions to the connected
trace of H4,

ðtrH4Þcon ¼ ðtrH4Þ − 3ðtrH2Þ2con ¼ 8g4N6: ð4:11Þ

After that we can restore

log ρðEÞ ¼ N2 log 2 −
1

2
x2 −

1

12N2
x4 þ…;

E ¼ gN2x: ð4:12Þ

Comparing this expression with the numerical data we find
a nice agreement between these two formulas.
Let us note the splitting between the even and the odd

energies, which is seen in Fig. 6 but absent in Fig. 7. These
two sets of energies are distinguished by the value of

FIG. 7. The spectrum forN1 ¼ N2 ¼ 9. As one can see it has the same features as forN1 ¼ N2 ¼ 8 andN1 ¼ N2 ¼ 10, but there is no
separation between the even and the odd energy sectors. It could indicate that this difference has a purely group theoretic explanation.
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PC ¼ ð−1Þ12ðC2
O1

−C2
O2

Þ: ð4:13Þ

The trace of this operator counts the difference between the
number of these branches. The trace of this operator over
the whole space can be computed via the representation
theory and is equal to trPC ¼ 22N

2−Nþ1.
We can study the thermodynamic properties of the

matrix model in a similar fashion as in the case of the
vector models. The behavior of the system would be
analogous to a system of the spins in an external magnetic
field. The partition function is

ZðTÞ ¼
Z

∞

−∞
dEe−

E
Te−

E2

2λ2N2 ∼ e
λ2N2

2T2 ;

F ¼ −T logZðTÞ ¼ −
λ2N2

2T
; ð4:14Þ

and the heat capacity C is

C ¼ −T
∂2F
∂T2

¼ λ2N2

T2
: ð4:15Þ

This behavior is nicely captured by the numerical results
shown in Fig. 8. Note that the peak near Tpeak ∼ g ∼ λ

N is
due to the discreteness of the spectrum; it may be seen if we
consider the contributions coming only from the ground
state and the first excited state.
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APPENDIX: DECOMPOSING THE
HILBERT SPACE

In this section we will review the structure of the Hilbert
space of the OðN1Þ ×OðN2Þ ×Oð2Þ symmetric Majorana
models. We will study the irreducible representation of
this algebra, which is spanned by 2 × N1 × N2 Majorana
fermions ψabc subject to the anticommutation relations
(4.1). To simplify the structure we introduce the Dirac
fermions by combining two Majorana fermions,

cab ¼
1ffiffiffi
2

p ðψab1 þ iψab2Þ;

c̄ab ¼
1ffiffiffi
2

p ðψab1 − iψab2Þ;

fcab; c̄a0b0 g ¼ δaa0δbb0 ;

fcab; ca0b0 g ¼ fc̄ab; c̄a0b0g ¼ 0: ðA1Þ

These relations respect the larger symmetry group
UðN1Þa ×UðN2Þb, and could be considered as symmetries
of the Hilbert space, in contrast to the Hamiltonian (4.1)
which does not respect these symmetries. We can now try
to decompose the Hilbert space in terms of the representa-
tions of these unitary groups using the character theory
[53]. We notice that the generator of the UðN1Þa and
UðN2Þb groups could be rewritten in the following form

JAT ¼ 1

2
TA
aa0 ½c̄ab; ca0b�; JBT ¼ 1

2
TB
bb0 ½c̄ab; cab0 �; ðA2Þ

where TA;B
aa0 are Hermitian matrices and can be considered

as elements of the uðNiÞ algebra. Then the operators JA;BT
are the corresponding representations of these elements of

FIG. 8. The specific heat as a function of temperature for the
OðNÞ2 ×Oð2Þ matrix model with N ¼ 10. The low-temperature
peak is due to the discreteness of the spectrum. At higher T, the
specific heat falls off polynomially with the power α ¼ d logC

d logT ¼
−1.98, close to that predicted by the analytic result (4.15).
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the uðNiÞ algebra. Hence, a general element of the
UaðN1Þ ×UbðN2Þ group, acting on the Hilbert space, is

g ¼ eiT
A
; ρψ ðgÞ ¼ e

i
2
TA
aa0 ½c̄ab;ca0b�: ðA3Þ

Therefore we can compute the trace of this operator in the
Hilbert space, and it is equal to the following:

χHðTA; TBÞ ¼ tr
�
e

i
2
TA
aa0 ½c̄ab;ca0b�þ

i
2
TB
bb0 ½c̄ab;cab0 �

�
: ðA4Þ

We can study this trace rigorously and expand this
exponent to compute the trace order by order. Since the
TA;B are Hermitian matrices, we can diagonalize the matrix
by some unitary transformation of the Hilbert space.
Therefore, we can just consider the case where the matrices
TA;B are diagonal

TA
aa0 ¼ xaδaa0 ; TB

bb0 ¼ ybδbb0 : ðA5Þ

This gives the following formula for the character

χHðxa; ybÞ ¼ tr
�
e

i
2

P
a;b

ðxaþybÞ½c̄ab;cab�
�
: ðA6Þ

Since each of the N1N2 pairs cab; c̄ab and ½c̄ab; cab� acts
diagonally on the Hilbert space, the trace for each of the ab
effectively decouples from the rest making the computation
straightforward,

χHðxa; ybÞ ¼
YN1;N2

a;b¼1

�
e−

i
2
ðxaþybÞ þ e

i
2
ðxaþybÞ

�

¼
YN;M

a;b¼1

2 cos

�
xa þ yb

2

	
: ðA7Þ

One can see that this integral has the correct normalization,
because if xa ¼ yb ¼ 0 we restore the dimension of the
space and χH ¼ 2N1N2 as it should be. We can decompose
this product in terms of the Schur polynomials, which are
the characters of the irreducible representations of UðNiÞ.
Fortunately, this problem is easily solved with the use of the
dual Cauchy identity [54]

YN1;N2

a;b¼1

�
e−

i
2
ðxaþybÞ þ e

i
2
ðxaþybÞ

�

¼
X

λ⊂ðNN2
1

Þ
sλðeixaÞsλT ðeiybÞ; ðA8Þ

where the λ is the Young Tableaux and λT is the transpose.
Therefore the Hilbert space has a very simple decompo-
sition in terms of the UðNiÞ groups. To each Young
tableaux λ ⊂ ðNN2

1 Þ with no more than N1 columns and

N2 rows we assign only one UaðN1Þ representation; this
state is an irreducible representation for the second unitary
group described by the transposed Young Tableaux
λT : H ¼ P

λ⊂ðNN2
1

Þ½λ� ⊗ ½λT �.
Our original problem came from the study of the

Hamiltonians and the anticommutation relations respecting
theOðNiÞ group, instead of the unitary group UðNiÞ. Since
OðNiÞ ⊂ UðNiÞ we can simply decompose each of the
representations [λ] of the UðNiÞ into irreducible represen-
tations of OðNiÞ. This problem was successfully solved by
Littlewood in 1947 [55] and he obtained the following
result [56],

½λ�UðNiÞ ¼
X

μ;δ≺λ;δ∈Δ2

cλδ;μ½μ�OðNiÞ; ðA9Þ

where ½λ�UðNiÞ and ½μ�OðNiÞ are representations of the UðNiÞ
and OðNiÞ groups described by Young Tableaux λ, and Δ2

is the set of all Young Tableaux with an even number of
rows, and cλδ;μ is a Littlewood-Richardson coefficient.
While this rule gives a nice procedure for the decom-
position of the Hilbert space in terms of the irreducible
representations of OðNiÞ, it complicates the analytical
understanding of the structure of the Hilbert space.
It is interesting to notice that if, instead of complex

fermions cab, we considered Majorana fermions ψab, we
can compute the partition function to get the following
character,

χHðxa; ybÞ ¼
YN1
2
;
N2
2

i¼a;j¼b

ðeixa þ e−ixa þ eiyb þ e−iybÞ: ðA10Þ

We can deduce this structure heuristically. Note that,
because of the Fermi-nature of each state λ of the Oð2nÞ
representation, we must include the correspondence
λ ⊂ ððN1=2ÞðN2=2ÞÞ. One can compute the dimension of
all of these representations and find that it is equal to the
full Hilbert space. This gives a new dual Cauchy identity
for orthogonal Schur polynomials,

X
λ⊂ðnmÞ

oλðxÞoððN1=2ÞðN2=2Þ=λÞ0 ðyÞ ¼
Y
i;j

ðxi þ x−1i þ yj þ y−1j Þ:

ðA11Þ

It is easy to show that this is true just from the definition
of the orthogonal characters. First of all, we notice that
the character of Oð2nÞ in the even case has the following
form [53,57],

oλðxÞ ¼
aλ
a0

¼
det

�
x
λjþn−j
i þ x

−ðλjþn−jÞ
i

�
det

�
xn−ji þ x−ðn−jÞi

� : ðA12Þ
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Then we notice that if we denote the length of rows in the
diagram ððN1=2ÞðN2=2Þ=λÞ0 as μi, the numbers μi þm −
i; λj þ n − j comprise a permutation σ ∈ Sn of the numbers
In ¼ f0; 1;…; nþm − 1g. Therefore, we just need to sum
up all over possible permutations of the set In. This gives us

X
λ⊂ðnmÞ

oλðxÞoððN1=2ÞðN2=2Þ=λÞ0 ðyÞ¼
P

σ∈SnaσλðxÞaλ̃ðyÞ
a20

; ðA13Þ

where σðλÞ¼σðf0;…;n−1gÞ σðλ̃Þ¼σðfn;…;nþm−1gÞ.
This could be rewritten using the Laplace rule for calculat-
ing determinants. We find that,X
σ∈Sn

aσλðxÞaλ̃ðyÞ

¼ Δðx1 þ x−11 ; x2 þ x−12 ;…;−y1 − y−11 ;…;−yn − y−1n Þ

¼ a0ðxÞa0ðyÞ
Yn;m

i¼1;j¼1

ðxi þ x−1i þ yj þ y−1j Þ: ðA14Þ

The relation (A11) directly follows. This concludes the
proof of the structure of the Oð2nÞ ×Oð2mÞ model. We
can present a direct computation to show that this relation
works for the Oð4Þ ×Oð2Þ model. The content of the
Hilbert space is

ðA15Þ

The characters of this representations are

ðA16Þ

Substituting these into the character of the Hilbert space
we get

χH ¼
�
x1 þ

1

x1
þ y1 þ

1

y1

��
x1 þ

1

x1
þ y2 þ

1

y2

�
: ðA17Þ

As one can see, the representation of the one-dimensional
fermions gives a very powerful tool for proving famous
combinatorial equalities. It would be interesting to expand
these ideas for other groups, say SpðNÞ, and to generalize it
for the case of MacDonald polynomials [54].
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