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We study tensor models based on OðNÞr symmetry groups constructed out of rank-r tensors with order-
q interaction vertices. We refer to those tensor models for which r < q − 1 as subchromatic. We focus most
of our attention on sextic (q ¼ 6) models with maximally single-trace interactions. We show that only three
subchromatic sextic maximally single-trace interaction vertices exist: these are the r ¼ 3 prism, the r ¼ 3

wheel (or K3;3) and the r ¼ 4 octahedron. For theories based on these interactions we demonstrate that the
set of Feynman diagrams that contribute to the free energy in the large N limit are melonic and thus can be
explicitly summed. In order to take into account the prism, we generalize the conventional notion of
melonic diagrams slightly to include diagrams generated by a new melonic move—vertex expansion.
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I. INTRODUCTION AND SUMMARY

In addition to a well-known adjoint/matrix model [1]
and vector model large N limits [2], a new large N limit
dominated by melonic diagrams has attracted a great deal of
attention recently [3–11]. The melonic limit was first
observed in tensor models (see [12–15] for reviews), but
interest in this limit grew due in large part to its appearance in
the Sachdev-Ye-Kitaev (SYK) model [16–18] which serves
as a very educational toymodel for quantumgravity [19–38].
Here we seek to better understand the entire range of

models for which melonic diagrams dominate. While there
are important dynamical differences between the SYK
model and tensor models [39,40], tensor models provide
a very natural context for understanding the diagrammatics
of the melonic largeN limit, and its possible generalizations.
Motivated by [41–44], we consider the large N limit of

tensor models constructed out of rank-r tensors which
transform in a representation of OðNÞr, with order-q, i.e.,
ϕq, interactions [14]. Each index transforms in the funda-
mental representation of its corresponding OðNÞ sym-
metry group.
It is natural to restrict our attention to a class of interaction

vertices that are maximally single-trace (MST), first defined
in [41]. (We review the definition of maximally single-trace,
and other basic features of these theories in Sec. II.) In the
large N limit, we expect that the maximally single-trace
interactions are the “most interesting” interactions, in the

same sense that the tetrahedron is more interesting than the
pillow and double-trace interactions for q ¼ 4 theories.1 We
also remark that the restriction to maximally single-trace
operators reduces the number of interactions to a much more
manageable number.
Let us discuss the large N limit of theories based on such

interactions. When r ¼ 2, these theories define the familiar
bifundamental model [45,46], in the large N limit, in which
all planar diagrams survive. When r ¼ q − 1, these theories
are dominated by melonic diagrams, as recently argued in
[44]. For interaction vertices with intermediate values of r,
i.e., 2 < r < q − 1, we can attempt to determine the set of
diagrams which survive in the natural large N limit on a
case-by-case basis—these will certainly include melonic
diagrams, but additional diagrams may also contribute. An
example of this is the prismatic2 limit of [43,49], where
additional diagrams contribute compared to the r ¼ 5
sextic tensor model [41,44], such as the one shown in
Fig. 1. Because r determines the number of colors used in a
multiline ’t Hooft notation, we may also refer to r as the
number of “colors” of the model. We refer to models with
r < q − 1 as subchromatic.3
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1To provide some justification for this expectation, we observe
that all the sextic non-MST interactions in [43] can be obtained
from quartic pillow and double-trace interactions via an auxiliary
field.

2The prismatic limit is solved by introducing an auxiliary field
to rewrite the theory as a quartic tensor model with the familiar
tetrahedron interaction [43,47]. So one can argue that it is
effectively still melonic. This limit can also be realized in a
theory with random couplings, discussed in [48].

3An alternative name for these models is subvalent as each
field vertex in the interaction graphs described in the next section
have submaximal valence.
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In this paper, we focus our attention on the case of q ¼ 6
with OðNÞ interactions. This case is the smallest nontrivial
case to consider. This case is also interesting because, in
addition to studying quantum mechanical models in one
dimension, one can hope to define quantum field theories
with ϕ6 interactions in d ≤ 3 dimensions.
While one might be concerned that a large number of

subchromatic vertices exist for generic q, the set of
maximally single-trace subchromatic vertices for q ¼ 6
turns out to be very small, as we show in Sec. III. For r ¼ 3,
there are two interaction vertices—namely the prism and
the wheel (which also corresponds to the complete bipartite
graph K3;3) defined in [43]; and for r ¼ 4, there is exactly
one such interaction vertex, which corresponds to the graph
of a regular octahedron. In Sec. III we also discuss the
discrete symmetries of these interactions.
In Sec. IV we then discuss basic features of the large N

limit of such theories: including the natural ’t Hooft
coupling and the existence of loops passing through one
or two vertices. We also define the notion of a 1-cycles and
2-cycles, which are used in subsequent analysis. These
results (which mostly are a special case of a slightly more
general analysis in ([41]) apply to all subchromatic max-
imally single-trace interactions.
In Sec. V, we use the results of Sec. IV to characterize the

set of free energy diagrams which survive in the large N
limit for theories based on each of the three subchromatic
maximally single-trace interactions we identified in
Sec. III. We also consider theories based on rank-3 tensors
that contain both prism and wheel interactions. In all cases
we find the diagrams can be explicitly summed, and these
theories are effectively melonic—although, the case of
the prism [43,49] might not be considered melonic in the
conventional sense.
In Sec. V, we also argue that, in the most general

“solvable” melonic theory, we expect that the set of
diagrams that survive in the large N limit can be generated
by three types of melonic moves: replacing propagators by
elementary melons, replacing propagators by elementary

snails and vertex expansion. The third-move, vertex-expan-
sion, is not present in most models previously studied; the
prismatic theory is the first example of a theory for which
all three types of moves are present.
Let us point out4 that related work on sextic UðNÞ3 and

UðNÞ4 theories appear in [50], where the melonic domi-
nance of the wheel=K3;3 interaction, is discussed following
[51]. We believe our work is complementary to that of [50],
as we consider OðNÞr models, which allow for a larger
number of maximally single-trace interactions. In particu-
lar, we prove melonic dominance in the r ¼ 4 theory based
on the octahedron and the r ¼ 3 theory involving both a
prism and wheel interaction.
In Sec. VI we briefly discuss the implications for bosonic

and fermionic conformal field theories based on these
interactions.
In Sec. VII, we present conclusions and several avenues

for future work.

II. PRELIMINARIES

Rank-3 tensor models based on fields with 3 indices,5

ϕabc, that transform under the symmetry groupOðNÞ3 were
introduced in [9] and studied in [11]. Here, a ¼ 1;…; N,
b ¼ 1;…; N, and c ¼ 1;…; N are indices that transform in
the fundamental representation of each OðNÞ symmetry
group. Similarly, theories based on rank-r indices are
constructed out of fields with r indices that transform
under the symmetry group OðNÞr.
The simplest theories one can define are based on a

single tensor-field which is either bosonic or fermionic.
Theories with quartic interactions of both types, as well as
supersymmetric theories, were introduced, and sub-
sequently studied and generalized in, e.g., [54–69]. In this
paper, we focus primarily on sextic interactions, for which
it is natural to consider bosonic theories in d ≤ 3 dimen-
sions, and fermionic theories in d ≤ 1 (i.e., quantum
mechanical models).
A variety of interactions for tensor models exist, which

are obtained by contracting the indices in various ways.
For example, the wheel interaction [43] is represented by
the following interaction term:

Lwheel ¼
Z

ddx
gwheel
6

ϕa1b1c1ϕa2b1c2ϕa2b2c3

× ϕa3b2c1ϕa3b3c2ϕa1b3c3 : ð2:1Þ

We divide the coupling constant by 6 because that is the
size of the automorphism symmetry group of this inter-
action, as discussed in Sec. III B.

FIG. 1. A maximal Feynman diagram in a theory with prism
interactions that is not a conventionally melonic Feynman
diagram. The diagram is proportional to g3N12 ¼ λ3N3.

4We thank Igor Klebanov for pointing out the Ref. [50].
5An alternative class of tensor models is defined using

symmetric traceless or antisymmetric representations of a single
OðNÞ symmetry group [47,52,53]. We do not consider such
theories here.
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One way of drawing Feynman diagrams for the rank-3
tensors is via a triple-line notation that is a straightforward
generalization of ’t Hooft’s double-line notation. Each
propagator hϕa1b1c1ϕa2b2c2i ∼ δa1a2δb1b2δc1c2 is represented
by three colored lines, with different colors representing the
different indices a, b and c; as shown in Fig. 2(a). The
wheel interaction vertex is represented by the vertex shown
in Fig. 2(b).
A two-loop correction to the propagator is shown in

Fig. 3. As we will show in section IV, the natural ’t Hooft
coupling for the wheel is λwheel ¼ gwheelN3. In the large N
limit, with the ’t Hooft coupling fixed, this is a leading-
order diagram proportional to λ2wheel. This diagram is also an
elementary melon. In melonic theories, any leading-order
diagrams can be obtained by repeatedly replacing propa-
gators by elementary melons. We will discuss this in more
detail in Sec. V B.
For the purpose of systematically enumerating all pos-

sible interactions, it is more convenient to represent
interactions by an interaction graph, as shown in Fig. 4.

Each vertex in the interaction graph represents a field.
Each symmetry group corresponds to a different color, and
colored edges denote contractions of the corresponding
indices. We will refer to the vertices of the interaction graph
as field-vertices, or simply fields, to avoid confusion with
“interaction vertices” in Feynman diagrams.
It is convenient to label the fields-vertices of an inter-

action graph by i ¼ 1, 2, … 6; where pi represent the
momenta of each field, and are “dummy indices,” as can
be seen from the momentum-space representation of the
vertex:

Z
ddp1ddp2ddp3ddp4ddp5ddp6

ð2πÞ6d gϕðp1Þϕðp2Þϕðp3Þ

× ϕðp4Þϕðp5Þϕðp6Þδd
�X

i

pi

�
: ð2:2Þ

Two labeled interaction graphs correspond to the same
interaction if they can be made identical by a permutation
of outgoing-field labels.
Each interaction will be presented with a conventional

set of labels for its fields, such as the labels given in Fig. 4.

FIG. 2. Feynman diagrams in rank-3 tensor models, can be represented by an 3-line notation, with the propagator and interaction
vertex as shown above. Each color corresponds to a different OðNÞ symmetry group.

FIG. 3. An order g2wheel correction to the propagator in triple-
line notation. This diagram is also an elementary melon and is
proportional to g2wheelN

6 ¼ λ2wheel.
FIG. 4. The wheel (or K3;3) interaction vertex is represented by
the above labeled interaction graph.
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One advantage of using these labels is that one can
unambiguously represent Feynman diagrams in single-line
notation. The elementary melon of Fig. 3 can also be
represented as a single-line Feynman diagram, using field-
labels, as shown in Fig. 5.
An interaction graph representing an interaction of rank-

r tensors will involve edges of r different colors. Given a
multiline interaction graph with r colors, one can remove
all lines of a given color, to obtain an interaction graph with
r − 1 colors. For example, in Fig. 6, if we forget the green

edges in the graph on the left, we obtain the 2-color
interaction graph on the right. We call this process “for-
getting” a color. Given an interaction graph, it is convenient
to sometimes forget all but 2 colors. We call the resulting
interaction graph a two-color subgraph.
We say that an interaction vertex is single-trace if it is

represented by a connected interaction graph. An inter-
action is maximally single-trace (MST) if all its two-color
subgraphs are single-trace [41]. As an example, represent-
atives for all the quartic interaction vertices are pictured in
Fig. 7. The tetrahedron vertex is maximally single-trace; the
pillow interaction is single-trace, but not maximally single-
trace; and the double-trace interaction is not single-trace.

III. SEXTIC MAXIMALLY SINGLE-TRACE
INTERACTIONS

The only quartic maximally single-trace interaction is the
tetrahedron. In this section, we enumerate all the sextic
maximally single-trace interactions and discuss their sym-
metries. Related discussion for tensor models of maximal
rank appears in [41,44].

A. Constructing all sextic maximally
single-trace interactions

Here we construct all maximally single-trace sextic
vertices for subchromatic tensor models. For r ¼ 2, there
is one MST vertex, the usual single-trace interaction. Note
that this must take form of a connected cyclic graph with
edges of alternating colors, which we take to be red and
green, as shown in Fig. 8.
Let us now consider the r ¼ 3 MST interactions. Note

that upon forgetting one color from an r ¼ 3 MST
interaction graph, we are left with the r ¼ 2 cyclic graph.
To construct an r ¼ 3 MST interaction, we need to add
three blue edges to the red-green cyclic graph of Fig. 8,
such that the red-blue and green-blue subgraphs are also
cyclic graphs. Note that, if we use a blue edge to connect
two vertices that were already connected by a green edge,
then the blue-green subgraph will consist of two or more

FIG. 5. The elementary melon of Fig. 3 represented as a
Feynman diagram in single-line notation using the field-labels
of Fig. 4 to specify the Wick contractions.

FIG. 6. If we “forget” the green edges in the 3-color interaction
graph on the left, we obtain the 2-color interaction (sub)graph on
the right.

FIG. 7. Representatives of all r ¼ 3, q ¼ 4 interaction vertices are pictured above. The first interaction on the left is not single-trace, as
it is disconnected. The second interaction, the pillow, is single-trace but not maximally single-trace, because forgetting the blue edges
leaves us with a disconnected interaction graph. The last interaction, the tetrahedron, is maximally single-trace.
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disconnected components—hence there are not very many
possibilities to consider for the locations of the blue edges.
One can explicitly check all possibilities to see that there
are exactly two ways to add blue edges which result in an
MST interaction—these correspond to the prism and the
wheel of [43] shown in Figs. 9 and 10.
The wheel interaction graph is also known as K3;3

(the complete bipartite graph consisting of two sets of

3 vertices) in the graph theory literature, which is one of the
two simplest nonplanar graphs.
We will refer to the three colors of the r ¼ 3 interactions

as ðr; g; bÞ.
Let us now consider the case of r ¼ 4. When any one

color is forgotten, the r ¼ 4 MST interaction must reduce
to a prism or wheel. As before, we consider all ways of
adding (three) yellow edges to the prism or the wheel, such
that the resulting interaction is MST. We find that there is
no way of adding yellow edges to the wheel interaction
while preserving the MST property; and there is exactly
one way to add yellow edges to the prism interaction that
preserves MST. Hence there is a unique r ¼ 4MST vertex,
depicted in Fig. 11. We will refer to the four colors of the
r ¼ 4 interaction as ðr; g; b; yÞ. If one redraws this graph in
three-dimensions, one can see that it corresponds to a
regular octahedron.6 Hence we refer to this as the octahe-
dron interaction.
It turns out that one can add a color to the r ¼ 4 MST

vertex while preserving the MST property. This gives rise

FIG. 8. The unique maximally single-trace interaction vertex
for r ¼ 2 is represented by a cyclic graph. Any two-color sub-
graph of a maximally single-trace interaction must be a cyclic
graph such as this.

FIG. 9. The prism interaction vertex, (above-right) is a max-
imally single-trace r ¼ 3 interaction that can be obtained from
combining the red-green cycle of Fig. 8 with the blue-green cycle
pictured on the above left. This graph corresponds to the skeleton
graph of a triangular prism, as shown below.

FIG. 10. The wheel or K3;3 interaction vertex, shown on the
above right, is a maximally single-trace r ¼ 3 interaction that can
be obtained from combining the red-green cycle of Fig. 8 with the
blue-red cycle pictured on the above left. The graph is the
simplest nonplanar graph, and can also be drawn as a 3-rung
Möbius ladder, as shown below.

6We thank Igor Klebanov and Martin Roček for pointing this
out to us. Another name we used for this interaction is the double-
prism, as both the rgb and rgy subgraphs of this interaction are
prism interactions.
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to the unique r ¼ 5 MST vertex. This interaction contains
the maximal number of colors for a sextic vertex, and gives
rise to a traditionally melonic large N limit, as discussed
in [41,44].
This recursive procedure of adding colors to subchro-

matic graphs can be repeated to enumerate all MST
interactions for larger values of q as well.

B. Automorphism and color permutation symmetry

All of the three MST interactions identified above have a
discrete symmetry—they are symmetric under permutation
of the OðNÞ symmetry groups. In terms of the graphical
representation of interactions, this is a discrete symmetry
under permutation of the various colors in an interaction
graph. The interactions may also posses a nontrivial auto-
morphism symmetry group.
We represent symmetry operations by permutations of

the field-vertices in the labeled interaction graph. If a field
permutation σ̂ gives rise to a labeled interaction graph
isomorphic to the original, σ̂ is an element of the auto-
morphism group of the interaction vertex. If a field
permutation σ̂ gives rise to a labeled interaction graph
isomorphic to the original graph, up to a permutation of
colors, then σ̂ is an element of the color permutation
symmetry group.

In order to show that an interaction is symmetric under
all color permutations, we require that, for each permuta-
tion of colors (i.e., relabeling of edges), there is a
permutation of field-labels that leaves the labeled inter-
action graph unchanged. For rank-three interactions, we
need to check that all color permutations which are
generated by the two generators σrg ¼ ðr; gÞ and σgb ¼
ðg; bÞ, correspond to field-label permutations. For the rank-
four interaction, the color permutation group has 3 gen-
erators: σrg, σgb, and σby, and we need to verify that each of
these generators corresponds to a permutation of field-
labels.
Let us first consider the prism. We draw the prism

interaction in two different ways in Fig. 12, from which we
can see that σrg is equivalent to the field-vertex permutation
(6,4)(1,3), and σgb is equivalent to the field-vertex permu-
tation (2,3)(5,4). We also see that the field-vertex permu-
tation (1,6)(2,5)(3,4) leaves all colors the same. Hence, the
prism interaction should conventionally come with a factor
of 1=2 in the Lagrangian.
We next consider the wheel (or K33) interaction. We

draw the wheel in two different ways in Fig. 13, from
which we can see that σrg is equivalent to the field-vertex

FIG. 11. The octahedron interaction vertex (above-right) is the
unique maximally single-trace r ¼ 4 interaction. It can be
obtained from combining the r ¼ 3 prism interaction of Fig. 9
with the yellow-red cycle pictured on the above-left. The graph
can be redrawn as the vertices of a regular octahedron shown
below.

FIG. 12. Two ways of drawing the prism interaction graph that
make its color permutation symmetry manifest. Reflection across
the dashed line interchanges two colors in each figure.

FIG. 13. Two ways of drawing the wheel (or K33) interaction
graph. Reflection through the dashed line corresponds to an
exchange of two colors.
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permutation (1,5)(2,4), and σgb is equivalent to the field-
vertex permutation (1,5)(4,6). We see that the field-vertex
permutations (1,6)(2,5)(3,4) and (1,2)(4,5)(3,6) leave all
colors the same. Hence, the wheel (or K33) interaction
should conventionally come with a factor of 1=6 in the
Lagrangian.
Finally, we consider the octahedron. We draw the

octahedron in three different ways in Fig. 14, from which
we can see that σrg is equivalent to the field-vertex
permutation (1,4)(2,5)(3,6), σgb ¼ ð1; 6Þð2; 4Þð3; 5Þ, and

σby ¼ ð1; 2Þð3; 6Þð4; 5Þ. There is no field-vertex permuta-
tion that leaves all colors the same, so the interaction comes
with a factor of 1 in the Lagrangian.
Let us conclude this section with the observation that, if

the automorphism symmetry group includes a field-vertex
permutation that is odd, then, in a theory of Majorana
fermions, the 1-dimensional fermionic interaction term
based on that interaction vanishes due to anticommutation
of Grassmann variables.
In particular, as observed in [40], for the wheel:

Lwheel ¼
gwheel
6

Z
dtψa1b1c1ψa1b2c2ψa2b2c3ψa2b3c1ψa3b3c2ψa3b1c3 ð3:1Þ

¼ −
gwheel
6

Z
dtψa3b1c3ψa3b3c2ψa2b3c1ψa2b2c3ψa1b2c2ψa1b1c1 ð3:2Þ

¼ −Lwheel: ð3:3Þ

In the second line, we applied the field permutation (1,6)(2,5)(3,4). In the third line, because this is an automorphism, we are
able to relabel the dummy indices ai, bi and ci (via: a3 ↔ a1, b2 ↔ b3) to undo this permutation. Similarly, for the prism:

Lprism ¼ gprism
2

Z
dtψa1b1c1ψa1b2c2ψa2b2c1ψa2b3c3ψa3b3c2ψa3b1c3 ð3:4Þ

¼ −
gprism
2

Z
dtψa3b1c3ψa3b3c2ψa2b3c3ψa2b2c1ψa1b2c2ψa1b1c1 ð3:5Þ

¼ −Lprism: ð3:6Þ

These arguments do not apply to complex fermions.7

Let us also remark that, if wewould like to define an theory
with complex fields, and promote all the symmetry groups to
UðNÞ, then we require the interaction graph to be bipartite.

The wheel is bipartite, but the prism, the octahedron and the
unique r ¼ 5 sextic MST interaction of [41,44] are not
bipartite. If we wish to promote some, but not all, of the
symmetry groups to UðNÞ, this restriction does not apply.
In all cases, real bosonic versions of these theories can be

defined, and can be thought of as special cases of the
general sextic bosonic theory studied perturbatively in [70].

FIG. 14. Three ways of drawing the interaction graph for the r ¼ 4 octahedron interaction. Reflection through the dashed line
corresponds to an exchange of two colors.

7We thank Igor Klebanov for discussions on this point.
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IV. LARGE N LIMIT OF SUBCHROMATIC
MAXIMALLY SINGLE-TRACE INTERACTIONS

We now consider the large N limit of the maximally
single-trace interaction vertices defined in the previous
section. In this section we present results for an arbitrary
maximally single-trace interaction of any order q. We
follow the approach outlined in [11]. The results of this
section are a special case of a more general analysis of
the large N limit of maximally single-trace interactions
given in [41].

A. Large N scaling of coupling constants

Let us first determine the natural scaling of the coupling
constant with N, in the large N limit, for an order-q
maximally single-trace interaction with r indices.
Consider a connected Feynman diagram with no external

edges, i.e., one that contributes to the free energy of our
theory. As shown in the previous sections, Feynman
diagrams for fields based on rank-r tensors can be drawn
in a multiline notation, using r different colors. If we take
any such diagram, and erase all but two of the colors, we
obtain a two-color fat graph, or simply fat graph. Since our
multiline propagator contains r colors, we can generate
rðr − 1Þ=2 fat graphs—one for each pair of colors. We shall
use the index α, where α ¼ 1;…; rðr − 1Þ=2, to label each
of these fat graphs. We denote the number of loops for each
fat graph by fα. Then, summing over all such pairs of
indices, we obtain,

Xrðr−1Þ=2

α¼1

fα ¼ ðr − 1Þftotal; ð4:1Þ

where ftotal is the total number of loops in the multiline
Feynman diagram and determines the power of N.
Because our interaction vertices are maximally single-

trace, each fat graph will consist of a single connected
component. The Euler equation for each α can be
written as,

fα þ v − e ¼ χα ¼ 2 − 2gα ð4:2Þ

where v and e refer to the number of vertices and edges in
the graph (which are the same for all fat graphs) and gα is
the genus of the fat graph labeled by α. We define maximal
Feynman diagrams to be those with the largest ftotal for a
given v. From the above formula, we see that maximal
Feynman diagrams satisfy gα ¼ 0, i.e., maximal Feynman
diagrams are those diagrams that give rise to only planar fat
graphs.
Since our vertices are order-q, we have 2e ¼ qv. Placing

this into the above equation, we obtain,

fα þ v

�
1 −

q
2

�
¼ 2 − 2gα

fα þ v

�
1 −

q
2

�
≤ 2 ð4:3Þ

Now, summing over all α, we get

Xrðr−1Þ=2

α¼1

fα þ
Xrðr−1Þ=2

α¼1

v

�
1 −

q
2

�

≤ 2
Xrðr−1Þ=2

α¼1

ðr − 1Þftot þ
rðr − 1Þ

2
v

�
1 −

q
2

�
≤ rðr − 1Þ

ð4:4Þ

which imply,

ftot ≤
r
4
ðq − 2Þvþ r: ð4:5Þ

Maximal Feynman diagrams saturate the above bound, and
must satisfy:

ftot ¼
r
4
ðq − 2Þvþ r: ð4:6Þ

This relation tells us that we should define the large N
limit while keeping the ’t Hooft coupling

λ ¼ gNrðq−2Þ=4; ð4:7Þ

fixed. (This is essentially the same as Eq. (3.37) of [41].)
Then, the free energy scales with N as,

NrfðλÞ: ð4:8Þ

B. Existence of a loop passing through
one or two vertices

We now show that any connected maximal diagram
contributing to the free energy contains a loop passing
through exactly one vertex or a loop passing through
exactly two vertices.
Let us define F s to be the number of loops passing

through s vertices [11]. Clearly,

X∞
s¼0

F s ¼ ftotal ð4:9Þ

Also, by considering the total number of colored lines
passing through a vertex in the multiline notation, one can
see that:
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X∞
s¼1

sF s ¼ rq
v
2
: ð4:10Þ

Combining (4.9) and (4.10), and eliminatingftotal using (4.6),
we obtain

X
s

�
2q

ðq − 2Þ − s

�
F s ¼

2q
ðq − 2Þ r: ð4:11Þ

When q ≥ 6, one can separate the termsF 1 andF 2 from the
sum, to obtain the following inequality:

ðqþ 2ÞF 1 þ 4F 2 ≥ 2qr: ð4:12Þ

The above analysis assumed that the number of interaction
vertices was greater than or equal to 1. The trivial free-energy
diagram which contains no interaction vertices, is also
maximal. Thus, we have the following result:
Theorem 1. Any maximal, nontrivial, multiline

Feynman diagram contributing to the free energy contains
at least one loop passing through one vertex, or one loop
passing through two vertices.

C. 1-cycles and 2-cycles

In our subsequent analysis, it will be convenient to
distinguish between single-line Feynman diagrams and
multiline Feynman diagrams. Each single-line Feynman
diagram (constructed from labeled interaction vertices)
corresponds to a multiline Feynman diagram and vice-
versa. (There may be multiple ways of labeling the
interaction vertices in the single-line diagram correspond-
ing to a given multi-line diagram, due to the automorphism
symmetry of each interaction, but this does not affect our
discussion.)
A single line Feynman diagram contributing to the free

energy is a graph, i.e., a collection of vertices and edges.
A walk of length s in a graph is defined to be an ordered
sequence of s edges ðe1; e2;…; esÞ, that joins a sequence of
vertices ðv0; v1; v2;…; vsÞ. A closed walk is a walk that
starts and ends on the same vertex, i.e., v0 ¼ vs. Let us
define an s-cycle as a closed walk of length s, such that no
edge or vertex is repeated, other than the starting vertex
which is the same as the end vertex. This is the usual notion
of a cycle in graph theory.
In the previous subsection, we defined F s as the number

of loops passing through s vertices in a multiline Feynman
diagram. Any loop passing through s vertices in a multiline
Feynman diagram induces a closed walk of length s, with
distinct edges, in the corresponding single-line Feynman
diagram. (Of course, the converse is not true—a closed
walk in the single line Feynman diagram need not corre-
spond to a loop in the multiline Feynman diagram.) Note
that a closed walk of length 1 is necessarily a 1-cycle. Note
also that a closed walk of length 2 with distinct edges is

either a 2-cycle, or passes through the same vertex twice,
in which case it is the union of two (possibly identical)
1-cycles.
Theorem 1 of the previous subsection therefore implies

the following theorem.
Theorem 2. Any maximal, nontrivial, single-line

Feynman diagram contributing to the free energy must
contain at least one 1-cycle, or at least one 2-cycle.
Theorem 2 is slightly weaker than Theorem 1 of the

previous subsection, but it will be more convenient to apply
Theorem 2 in the subsequent analysis.
While Feynman diagrams containing 1-cycles may be

unphysical, we include them in the analysis below, in order
to obtain purely combinatorial constraints on the diagrams
that contribute in the large N limit.

V. MELONIC DOMINANCE OF SUBCHROMATIC
INTERACTION VERTICES

Here, we focus our attention on theories based on the
sextic MST interactions obtained in Sec. III. We can define
a theory with r ¼ 3, to contain a wheel interaction, a prism
interaction, or both. We can also define a theory with r ¼ 4
based on the octahedron interaction. The theory for r ¼ 5
was discussed in [41,44] so we do not discuss it here.

A. General strategy

We wish to explicitly characterize and generate all the
maximal Feynman diagrams that contribute to the free
energy in any of the above theories. Our arguments are
inspired by [41,44,71].
Our strategy is as follows. In the previous section, we

demonstrated that any Feynman diagram, drawn in single-
line notation, contributing to the free energy that survives in
the large N limit must either:
(1) Contain no vertices, in which case it is just the

zeroth-order diagram.
(2) Contain at least one 1-cycle.
(3) Contain at least one 2-cycle.

These cases are illustrated in Fig. 15. Note also that a
2-cycle cannot pass through the same vertex twice by
definition, so we do not need to treat this case separately.
(A loop passing through the same vertex twice in the
multiline Feynman diagram would give rise to a 1-cycle in
the single-line Feynman diagram.)
To enumerate all the maximal Feynman diagrams con-

tributing to the free energy, we need to enumerate all the
inequivalent free energy diagrams containing a 1-cycle or a
2-cycle. (In a slight abuse of terminology, we refer to these
as inequivalent 1-cycles or 2-cycles.) For each inequivalent
1-cycle and 2-cycle, we draw each of its rðr − 1Þ=2 fat
graphs, and impose the restriction that each fat graph is
planar.
When we draw a fat graph corresponding to a particular

pair of colors, we must arrange the outgoing lines from
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each interaction vertex in a particular cyclic order, for the
fat graph to be manifestly planar. For example, consider the
wheel interaction, shown in Fig. 10. If we draw a blue red
fat-graph, we must arrange the outgoing lines of each
interaction vertex in the cyclic order 163254 (or 145236). If
we instead draw a red-green fat-graph, we must arrange the
outgoing lines of each interaction vertex in the cyclic order
123456 (or 654321).
For a given pair of colors, the requirement of fat-graph

planarity might rule out a particular 2-cycle entirely, as is
the case for the 2-cycle shown in Fig. 16 which contains an
odd number of twists. Alternatively, the requirement of
fat-graph planarity may “divide” the subgraph G into two
smaller disconnected components G0 and G00 as shown
in Fig. 17.
Suppose, for each inequivalent 1-cycle and 2-cycle

consistent with fat-graph planarity, the requirement of
fat-graph-planarity splits the subgraphs G of Fig. 15(b)
and 15(c) into disconnected components, as shown in
Fig. 18. Crucially, each of these subgraphs in Fig. 18
contains only two external edges. This fact allows us to use
a cutting and sewing argument to isolate the graphs GðiÞ, as
illustrated in Fig. 19. Each of the cut-and-sewn subgraphs
GðiÞ defines a maximal Feynman diagram contributing to

the free energy, with fewer interaction vertices than the
original diagram. The arguments of this section apply to the
cut-and-sewn subgraph as well, so we obtain a recursive
enumeration of all the Feynman diagrams contributing to
the free energy.

B. Melonic diagrams

We now discuss the recursive enumeration of the
diagrams that contribute in the large N limit, following
[41] with some generalizations.
The set of maximally free energy diagrams enumerated

by this recursive procedure above can typically also be
obtained starting from the 0-cycle by repeatedly replacing
propagators by elementary snails or elementary melons as
shown in Fig. 20.
The set of all elementary melons can be obtained from

the list of maximal free-energy graphs containing a 2-cycle:
we first replace all subgraphs (shaded blobs) by free

FIG. 15. Any maximal Feynman diagram contributing to the free energy must be of one of the three types specified above. To obtain a
recursive enumeration of all Feynman diagrams, we must place some constraints on the subgraph G. (a) The diagram with no vertices.
(b) A diagram containing a 1-cycle. (c) A diagram containing a 2-cycle.

FIG. 16. A 2-cycle which contains an odd number of twists and
is therefore nonplanar.

FIG. 17. We require each two-color fat graph to be planar. For a
given choice of two-colors, such as red and blue, planarity forces
us to arrange the outgoing edges from each interaction vertex in a
particular cyclic order. This means that the 2-cycle may split the
subgraph G from Fig. 15(c) into two disconnected pieces, as
shown above. If we consider all two-color fat graphs, we hope
to split the graph G into four disconnected pieces as shown
in Fig. 18.

SHIROMAN PRAKASH and RITAM SINHA PHYS. REV. D 101, 126001 (2020)

126001-10



propagators, and then cut any one of the edges open to
obtain an elementary melon such as the one shown in
Fig. 20. The set of all elementary snails can be obtained
from the list of maximal free energy graphs containing a
1-cycle in a similar manner.
The act of replacing a propagator by an elementary snail

or elementary melon is called a melonic move. More
generally, we may consider a theory with additional

melonic moves. Given a set of melonic moves, we define
the set of melonic diagrams to be the set of diagrams that
can be generated by making an arbitrary number of melonic
moves on the 0-cycle.
After identifying the complete set of melonic moves, it is

straightforward to check that all melonic diagrams are
maximal. For instance, using the elementary melon defined
for the wheel interaction, it is easy to check that if the act

FIG. 18. If, for all possible 1-cycles and 2-cycles, the requirement that all two-color fat graphs are planar splits up the subgraphG from
Fig. 15(b) and 15(c) into disconnected components as shown above, then we can argue the theory is melonic the conventional sense, via
the cutting and sewing argument in Fig. 19.

FIG. 19. The above two figures illustrate a cutting and sewing argument that can be used to separate the graphs G0, G00, G000, and G0000
from Fig. 18. Either these graphs contain no vertices, or they contain a 1-cycle or 2-cycle. One thus obtains a recursive characterization
of all the leading order graphs. (a) The “connectivity structure” of a connected graph with two external edges must be the same as that of
a free propagator. (b) We can argue that the combined graph of G andG0 on the left is maximal if and only if both separated components
on the right are maximal, since each subgraph graph can be replaced by a free propagator without affecting the N counting.
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of replacing a propagator by an elementary melon causes
v → vþ 2 and ftot → ftot þ r

2
ðq − 2Þ. We also have a

similar result for the elementary snail. Hence, if one acts
on a maximal Feynman diagram with either of the two
above elementary melonic moves, the relation (4.6) is
preserved.
However, we would like to know if the converse is true

for a given model, i.e., are all maximal diagrams in a given
theory melonic? This requires us to carry out the analysis
outlined in the previous subsection, which also enumerates
the complete set of melonic moves for a given model. We
summarize this argument here:
(1) We argued that any free energy diagram must take

one of the three forms shown in Fig. 15. For each of
the interaction vertices shown in Fig. 15, we must
consider all possible ways of labeling the outgoing
lines. There are a large but finite number of ways to
do this. For the interactions we study in this paper,
many labelings are equivalent to each other via the
color permutation and automorphisms described in
Sec. III B, which reduces the number of cases we
need to check. We refer to this stage of the argument
as “enumerating all inequivalent 1-cycles and
2-cycles”.

(2) For each inequivalent 1-cycle or 2-cycle, we then
impose the constraint of planarity on each of the
two-color fat graphs, as illustrated in Figs. 16 and
17. These constraints translate into restrictions on
the subgraphs shown in Fig. 15. We refer to this
stage of the argument as “imposing fat-graph
planarity.”

(3) By tracing the index contractions of lines flowing
out of each subgraph, we attempt to replace the
original Feynman diagram F containing the sub-
graph with a simpler Feynman diagram F0. We must
be able to argue that the original Feynman diagram F
is maximal if and only if the simpler Feynman
diagram F0 is maximal. We refer to this stage of the
argument, depicted in Figs. 18 and 19, as “cutting

and sewing.” (Here, we say F0 is “simpler” than F if
it contains fewer interaction vertices.)

(4) The inverse of the cutting and sewing argument, i.e.,
replacing F0 with F, defines a melonic move. If we
can find a cutting and sewing argument for each
inequivalent 1-cycle and 2-cycle, then we can
enumerate the entire list of melonic moves that
apply to our model. We can also conclude that all
maximal diagrams can be obtained from the action
of melonic moves on simpler diagrams. Therefore,
the model is, in principle, solvable in the large N
limit. We refer to this stage of the argument as
“collecting all melonic moves”.

For any given model, this 4-stage procedure may lead to
three possible outcomes:
(1) If the set of melonic moves so obtained involve only

replacing propagators by elementary melons or
elementary snails, as shown in Fig. 20, the model
is melonic in the conventional sense.

(2) If the set of melonic moves includes any additional
move, (such as vertex-expansion defined below for
the prism), the model is still solvable in the large N
limit, but it is not melonic in the conventional sense.

(3) If the cutting and sewing argument fails for any
1-cycle or 2-cycle, (i.e., we cannot find a simpler F0
to replace F for some labeling of the vertices) then
the theory may not be solvable in the large N limit.
(This is the case, for instance, when r ¼ 2.)

We propose that any theory for which case 1 or 2 applies,
should be considered as a generalized melonic theory, even
if it is not conventionally melonic.
We can ask what are the most general set of melonic

moves possible? Note that, F contains 1 or 2 interaction
vertices (excluding interaction vertices in subgraphs). F0
contains at most 1 interaction vertex (excluding interaction
vertices in subgraphs). Therefore there are three types of
melonic moves possible in our generalized notion of a
melonic theory,
(1) Replacing a diagram containing 0 interaction

vertices (i.e., a propagator) with a diagram
containing 1 interaction vertex, (e.g., an elementary
snail).

(2) Replacing a diagram containing 0 interaction verti-
ces with a diagram containing 2 interaction vertices,
(e.g., an elementary melon).

(3) Replacing a diagram containing 1 interaction vertex
with a diagram containing 2 interaction vertices,
(i.e., vertex expansion).

Most well-known melonic theories only involve moves of
the second type, or possibly of the first two types. However,
we will see below that the prismatic model is an example of
a theory that contains a move of the third type.
For conventionally melonic theories, the melonic moves

directly translate into the equation for the exact propagator
shown in Fig. 21. The snails may or may not be present

FIG. 20. The diagrams recursively enumerated via the argu-
ment in the text can also be generated by repeatedly replacing
propagators with an elementary snail (above) or an elementary
melon (below). The snail need not be present in all models.
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depending on the interaction. As mentioned earlier, the
snails are tadpoles, and would formally vanish in a
quantum field theory due to dimensional regularization.
Let us conclude this section with the caveat that, while

it is straightforward to obtain the Schwinger-Dyson
equation for the exact propagator, if one wants to actually
evaluate the free energy, one must also include the
symmetry factors for each of these diagrams. As one
can see from the diagrammatic expansion for the free
energy in a vector model, e.g., [72], these factors are
generally nontrivial to obtain.

C. Wheel (or K3;3) interaction

In this section we demonstrate the melonic dominance of
the wheel vertex, according to the general recipe above.

The wheel vertex is shown in Fig. 22, along with its three
two-color fat vertices.

1. Diagrams containing a 2-cycle

A 2-cycle is specified by two Wick contractions. We label
the two interaction vertices L and R; each Wick contraction
must include one field from each interaction vertex. We thus
specify the two Wick contractions that define the 2-cycle in
the following notation: ðhXL; YRi; hZL;WRiÞ, where X, Y,
Z, andW are integers between 1 and 6 corresponding to the
field labels given in the labeled interaction graph of Fig. 10.
The notation means that field from the left interaction vertex
labeled by the number X in the labeled interaction graph is
contracted with the field labeled by the number Y from the
right interaction vertex [44].

FIG. 21. The melonic moves give rise to the above schematic equation for the exact propagator. If one were to connect the two external
lines together, the first term on the right-hand side (rhs) is a 0-cycle, the second term is a 1-cycle, and the third term is a 2-cycle.

FIG. 22. The wheel interaction and its three two-color fat-vertices are shown above. For a given choice of two-colors, we must arrange
the labeled-fields in one of the two particular cyclic orders in order to maintain manifest planarity. (a) The wheel interaction is shown as a
triple-line fat vertex. (b) The red-green fat vertex. (c) The red-blue fat vertex. (d) The green-blue fat vertex.
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A priori there are a large number of different 2-cycles
that are possible. However, using the automorphism and
color permutation symmetries of the wheel interaction, we
can reduce the total number of inequivalent 2-cycles to a
very manageable number. The idea behind this is that if a
particular 2-cycle ðhXL; YRi; hZL;WRiÞ induces only pla-
nar fat graphs, then the same must be true for any other 2-
cycle ðhX0

L; Y
0
Ri; hZ0

L;W
0
RiÞ obtained by a permutation of

colors. Hence we do not need to check all different
2-cycles: we only need to check the subset of 2-cycles whose
orbit under the color permutation (and automorphism)
symmetry group covers all 2-cycles. This is an elementary
exercise in group theory, which, for the sake of clarity and
completeness we spell out explicitly in the appendix.
As shown in the appendix, the inequivalent 2-cycles are
(1) ðh1L; 1Ri; h2L;WRiÞ,
(2) ðh1L; 1Ri; h3L;W0

RiÞ,
where WR ¼ 2, 3 or 4, and W0

R ¼ 2, 3 or 5.
Not all these 2-cycles give rise to planar fat-graphs. If

WR is odd, or if W0
R is even, one can check that the red-

green fat graph arising from this 2-cycle contains an odd
number of twists, and hence is nonplanar. Hence there are
only four different 2-cycles to consider.
Let us first consider the 2-cycle ðh1L; 1Ri; h2L; 2RiÞ. The

three fat graphs for this 2-cycle are shown in Fig. 23. Using
these constraints we have two possibilities for the form
of a free-energy diagram containing this 2-cycle, shown
in Fig. 24.

We carry out a similar analysis for the 2-cycle
ðh1L; 1Ri; h2L; 4RiÞ; the form of any free-energy diagram
consistent with planarity of fat-graphs is shown in Fig. 25.
Let us next consider the 2-cycle ðh1L; 1Ri; h3L; 3RiÞ. The

three fat graphs for this 2-cycle are shown in Fig. 26. Using
these constraints we have one possibility for the form of a
free-energy diagram containing this 2-cycle, also depicted
in Fig. 26.
Let us next consider the 2-cycle ðh1L; 1Ri; h3L; 3RiÞ. The

three fat graphs for this 2-cycle are shown in Fig. 26.
For the 2-cycle ðh1L; 1Ri; h3L; 5RiÞ, we find there is no

way to satisfy the constraints that all fat-graphs be planar.

2. Diagrams containing a 1-cycle

A 1-cycle is formed by contracting two fields from the
same interaction vertex, which we denote as hX; Yi. Using

FIG. 23. The fat graphs for the 2-cycle ðh1L; 1Ri; h2L; 2RiÞ involving two wheel interaction vertices. From the blue-red fat-graph, we
see that 4L can be connected (via a subgraph) to one of 4R, 5R or 5L. If 4L is connected to 4R or 5R, then we see from the red-green fat
graph that 3L must be connected to 3R, and 6L must be connected to 6R. Then using the blue-green fat-graph, we see 4L must be
connected to 4R and 5L must be connected to 5R. This corresponds to the first graph on the left in Fig. 24. If, instead, 4L is connected to
5L, one can similarly work out that the connections must be as depicted in the second graph in Fig. 24.

FIG. 24. For the 2-cycle ðh1L; 1Ri; h2L; 2RiÞ, the constraint that all fat graphs are planar means the interaction vertices must be
connected in one of the two above ways. The second possibility is a “double-snail” that originates from the insertion two elementary
snails.

FIG. 25. For the 2-cycle ðh1L; 1Ri; h2L; 4RiÞ connecting two
wheel interaction vertices, the constraint that all fat graphs are
planar means the interaction vertices must be connected as shown
above.
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the automorphism symmetry of thewheel interaction, we can
always choose the first field X ¼ 1. Via color permutation
symmetry, the second field Y can be chosen to be 2 or 3.
There are thus two inequivalent 1-cycles: h1; 2i and h1; 3i.
The 1-cycle h1; 3i results in a nonplanar red-green fat

graph, so is nonmaximal. The h1; 2i 1-cycle is constrained
by planarity of the red-blue fat graph to be of the form
in Fig. 27.

3. Melonic moves

From the inequivalent 1-cycles and 2-cycles above, we
can extract the elementary melon and elementary snail
shown in Fig. 28.

D. Octahedron interaction

Let us now consider the octahedron. (We present this
case before the prism, because it also gives rise to a
conventional melonic limit.) Its fat vertices are pictured
in Fig. 29.

1. Diagrams containing a 1-cycle

One can check that, for the octahedron, there is noway of
forming a 1-cycle such that all six fat-graphs are planar.
Hence elementary snails are ruled out on purely combina-
torial grounds.

2. Diagrams containing a 2-cycle

Let us enumerate all inequivalent 2-cycles: ðhXL; YRi;
hZL;WRiÞ passing through two octahedron interaction
vertices.
The octahedron has no automorphism symmetry.

However, we can use the color permutation symmetry to
reduce the number of cases one has to check to ensure all
fat-graphs are planar.
By permuting the colors in the Feynman diagram, any

2-cycle can be mapped to one in which X ¼ 1. This
procedure does not use all the color permutation symmetry,
as the permutation σðgbyrÞ corresponds to the field-vertex
permutation (2,3,4,6), which leaves the choice of X ¼ 1
invariant. In case Y was chosen to be 3,4, or 6, one could

FIG. 26. For the 2-cycle ðh1L; 1Ri; h3L; 3RiÞ connecting two wheel interaction vertices, the constraint that all fat graphs (shown above)
are planar means the interaction vertices must be connected as shown below.

FIG. 27. Any Feynman diagram containing a 1-cycle involving
one wheel vertex must be of this form, or related to this by
permutation of colors.

FIG. 28. The maximal diagrams arising from the wheel
interaction can also be generated by replacing propagators with
the above elementary snail and elementary melon (or their color
permutations).

MELONIC DOMINANCE IN SUBCHROMATIC SEXTIC TENSOR … PHYS. REV. D 101, 126001 (2020)

126001-15



use the color permutation σðgbyrÞ to map it to an equivalent
diagram where Y ¼ 2. We can thus set Y ¼ 1, 5 or 2. If
Y ¼ 1, 5, then the color permutation symmetry still remains
at our disposal to set Z ¼ 1, 5 or 2. Finally, if Z ¼ 1, 5, the
unused color permutation symmetry can be used to set
W ¼ 1, 5 or 2.
The inequivalent 2-cycles can thus be taken as:
(1) ðh1L; 2Ri; hZL;WRiÞ
(2) ðh1L; 5Ri; h2L;W0

RiÞ
(3) ðh1L; 5Ri; h5L; 2RiÞ
(4) ðh1L; 5Ri; h5L; 1RiÞ
(5) ðh1L; 1Ri; h2L;W00

RiÞ
(6) ðh1L; 1Ri; h5L; 5RiÞ

UnlessW00 ¼ 2, Z ¼ 2,W ¼ 1, one of the two-color fat-
graphs will contain an odd number of twists. Cases 2 and 3
also give rise to fat graphs with an odd number of twists, so
these cases are also ruled out. We finally have only four
possibly planar inequivalent 2-cycles, which are

(i) ðh1L; 2Ri; h2L; 1RiÞ
(ii) ðh1L; 5Ri; h5L; 1RiÞ
(iii) ðh1L; 1Ri; h2L; 2RiÞ
(iv) ðh1L; 1Ri; h5L; 5RiÞ
Drawing all fat-graphs for each 2-cycle as we did for

the wheel, we obtain the following results. We find that
any free energy diagram containing the 2-cycle ðh1L; 2Ri;
h2L; 1RiÞ, or ðh1L; 5Ri; h5L; 1RiÞ, gives rise to at least one

FIG. 29. The octahedron interaction and its three two-color fat-vertices are shown above. Note that, for a given choice of two-colors,
we must arrange the fields in a particular cyclic order in order to maintain manifest planarity. (a) The octahedron interaction as a multi-
line fat vertex. (b) The red-green fat vertex. (c) The red-blue fat vertex. (d) The blue-green fat vertex. (e) The yellow-red fat vertex. (f)
The blue-yellow fat vertex. (g) The yellow-green fat vertex.
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nonplanar fat graphs. Hence any free-energy diagram
containing these cycles is nonmaximal.
Next we consider free-energy diagrams containing the

2-cycle ðh1L; 1Ri; h5L; 5RiÞ. Requiring all fat graphs to be
planar gives rise to a free energy diagram of the form
shown in Fig. 30. An identical result holds for free-energy
diagrams containing the 2-cycle ðh1L; 1Ri; h2L; 2RiÞ.

3. Melonic moves

Putting all these results together, we find that this model
is melonic in the conventional sense. All diagrams can be
generated by replacing propagators by the elementary
melon shown below in Fig. 31. There is no elementary
snail, unlike the case of the wheel.

E. Prism interaction

Let us now consider the prism interaction. The prism
interaction and its two-color fat vertices, are shown in
Fig. 32. In [43,49], it was shown that the leading order
diagrams arising from the prism interaction can be explic-
itly summed by using an auxiliary field to convert it into a
quartic tetrahedron interaction.
However, if we do not introduce this auxiliary field, and

simply draw Feynman diagrams using the sextic prism
vertex, we find that there are maximal diagrams which are
not melonic in the sextic sense. In other words, the set of

maximal Feynman diagrams in the prismatic theory
includes diagrams that would not be maximal in a conven-
tional melonic theory, such as a theory based on the
octahedron or a theory based on the r ¼ 5 maximally
single-trace interaction studied in [41,44]. An example of
such a diagram is shown in Fig. 1.
Because the prism interaction gives rise to a largeN limit

that is not conventionally melonic in this sense, it is
interesting to see how the method of analysis given above
can be modified to characterize all maximal diagrams.

1. Diagrams containing a 1-cycle

One can check that the only maximal free energy
diagram containing a 1-cycle is h1; 6i, or its color permu-
tations. It takes the form shown in Fig. 33.

2. Diagrams containing a 2-cycle

Consider two prism interaction vertices, one denoted by
L and the other R. As before, we specify a 2-cycle, by the
following contractions: ðhXL; YRi; hZL;WRiÞ.
We can choose XL ¼ 1L using the automorphism of the

first interaction vertex and the color permutation symmetry.
The automorphism symmetry of the second vertex and the
residual color permutation symmetry group can be used to
choose YR ¼ 1R or 2R. If YR ¼ 1R the residual color
permutation symmetry can be used to set ZL ¼ 2L; 4L,
or 6L Thus, we have the following inequivalent 2-cycles,
(1) ðh1L; 1Ri; hZL;WRiÞ
(2) ðh1L; 2Ri; hZ0

L;W
0
RiÞ

where Z ¼ 2, 4, 6.
After removing those 2 − cycles which give rise to fat-

graphs with an odd-number of twists, we find the allowed
2-cycles are
(1) ðh1L; 1Ri; h2L; 2RiÞ
(2) ðh1L; 1Ri; h4L; 4RiÞ
(3) ðh1L; 1Ri; h6L; 6RiÞ
(4) ðh1L; 2Ri; h2L; 1RiÞ
(5) ðh1L; 2Ri; h5L; 6RiÞ
Let us look at the structure of the constraints imposed

by requiring fat graphs planarity for free-energy diagrams
containing these cycles.
First, one can check that free energy diagrams containing

the 2-cycles h1L;2Ri;h5L;6Ri and h1L; 2Ri; h2L; 1Ri always
give rise to a nonplanar fat graph, and are hence
nonmaximal.
Next consider the 2-cycle ðh1L; 1Ri; h4L; 4RiÞ. Planarity

of the fat graphs restricts any free energy diagram con-
taining this cycle to be of the form shown in Fig. 34.
We then consider the case h1L; 1Ri; h6L; 6Ri. Free energy

diagrams containing this 2-cycle (not pictured) are either a
conventional melonic diagram, or a double-snail.
We finally consider free energy diagrams containing the

2-cycle ðh1L; 1Ri; h2L; 2RiÞ. We observe that the require-
ment of planar fat subgraphs, does not split the subgraph
into 4 disconnected components, as it did for the other

FIG. 30. Requiring the 2-cycle ðh1L; 1Ri; h5L; 5RiÞ to be
maximal means it must take the above traditionally melonic
form. A similar result holds for ðh1L; 1Ri; h2L; 2RiÞ.

FIG. 31. The theory based on the octahedron is traditionally
melonic, with the above elementary melon (and its color
permutations).
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cases. Instead, as shown in Fig. 35, we are left with one
subgraph with two external edges and one subgraph with
six external edges.

3. New melonic move

In order to obtain a recursive enumeration of diagrams in
this case, we need to adapt the cutting and sewing rules
given earlier to the subgraph containing 6 external lines. We
show how this is done in Fig. 36. By carefully following the
index contractions, one can check that the diagram on
the left in Fig. 36 is maximal if and only if the diagram on
the right is maximal.

The diagram on the right in Fig. 36 (which contains one
fewer interaction vertex than the original diagram) is a free
energy graph that contains at least one vertex, so it must
take one of the forms enumerated in the previous section.
By cutting out one prism interaction vertex from any of
these forms, we can determine all the possibilities for
subgraph G in Fig. 36. We have thus formally obtained a
recursive procedure for generating all free-energy graphs.
In practice, it is helpful to translate this enumeration into

the language of melonic-moves. We note that, in addition to
the usual melonic move of replacing a propagator by an
elementary snail or melon, Fig. 36 requires us to introduce
an additional move. From the possibility that the subgraph
G could be obtained from cutting out one interaction vertex
from the nonmelonid 2-cycle of Fig. 35 itself, we obtain the
new “vertex-expansion” move of replacing an interaction
vertex by two-interaction vertices contracted in a particular
way, as shown in Fig. 37.8 This vertex expansion move can
be thought of as the “inverse” of the cutting and sewing rule
of Fig. 36. All maximal diagrams can be produced by
application of this melonic move, along with the melonic
moves of replacing a propagator by an elementary melon or
elementary snail.

FIG. 32. The prism interaction and its three two-color fat-vertices are shown above. Note that, for a given choice of two-colors, we
must arrange the fields in a particular cyclic order in order to maintain manifest planarity. (a) The prism interaction is shown as a
triple-line fat vertex. (b) The red-green fat vertex for the prism. (c) The red-blue fat vertex for the prism. (d) The blue-green fat vertex
for the prism.

FIG. 33. Any maximal Feynman diagram containing a 1-cycle
passing through one prism vertex must be of this form, or related
to this by permutation of colors.

8We would like to thank Adrian Tanasa and Victor Nador for
discussions on this point.
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One can also check that under this move, v → vþ 1
and ftot → ftot þ r, so the maximality condition (4.6) is
preserved, so all diagrams produced by this move are
maximal.
It is easy to check that the diagrams produced by this

melonic move are equivalent to those produced by the
auxiliary field in [43,49].

F. Theory with both a prism and wheel

Let us also consider a theory with both r ¼ 3 maximally
single-trace interactions, the prism and wheel. The allowed
1-cycles remain those from the prism and wheel theories
respectively, but the 2-cycles now also include the possi-
bility of a closed path passing through one wheel vertex and
one prism vertex. We analyze this case now.

FIG. 34. The fat graphs for the 2-cycle ðh1L; 1Ri; h4L; 4RiÞ involving two prism interaction vertices are shown above. We see that this
gives rise to a conventional melonic structure shown below.

FIG. 35. The three fat graphs for the 2-cycle ðh1L; 1Ri; h2L; 2RiÞ involving two prism interaction vertices are shown above. From the
blue-red fat-graph, we see that the subgraph gets split into two parts. However, there are not enough constraints to separate the subgraph
into 4 components, with two external edges each. Hence the theory is not melonic in a conventional sense.
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Let us assume the L vertex is a prism and the R vertex
is a wheel. As shown in the appendix, the inequivalent
2-cycles are
(1) ðh1L; 1Ri; h2L;WRiÞ,
(2) ðh1L; 1Ri; h4L;W0

RiÞ,
(3) ðh1L; 1Ri; h6L; 2RiÞ,
(4) ðh1L; 1Ri; h6L; 3RiÞ,
(5) ðh1L; 1Ri; h6L; 6RiÞ.
All of the 2-cycles of the form 1, 2 and 4 contain an odd

number of twists in one of the two-color fat graphs, and are
nonmaximal.
Case 3 and Case 5 allow for a double snail. There are no

other possibilities. In particular there is no new elementary
melon containing both a wheel and a prism vertex, and the
elementary moves of the prism theory and the wheel theory
generate all Feynman diagrams.

VI. COMMENTS ON FIELD-THEORIES BASED
ON THESE INTERACTIONS

In this section we discuss specific realizations of these
theories. Let us focus our attention on obtaining IR fixed
points with physics similar to the SYK model. A list of

theories involving a single, real rank-r tensor field that can
be solved via the analysis given above includes:
(1) A quantum-mechanical theory of rank-4 Majorana

fermions based on the octahedron interaction.
(2) A d < 3 dimensional theory of rank-4 real bosons

dominated by the octahedron interaction.
(3) A d < 3 dimensional theory of rank-3 real bosons

dominated by the wheel interaction.
(4) A d < 3 dimensional theory of rank-3 real bosons

dominated by the prism interaction.
(5) A d < 3 dimensional theory of rank-3 real bosons

dominated byboth thewheel and theprism interaction.
All the bosonic theories face difficulties, such as a

complex spectrum, in higher dimensions, with the possible
exception of the last case that has not yet been carefully
studied [43,48,49].
We have argued that 1d theory of real, rank-4, fermionic

tensors based on the octahedron is dominated by melonic
diagrams. Hence we expect its largeN saddle point solution
will proceed exactly along the lines of [44], and in
particular we expect essentially the same spectrum as the
q ¼ 6 SYK model. It might be interesting to study the
theory more carefully, including numerical studies to
compare its behavior at finite N to the rank-5 melonic
tensor model studied in [41,44] or other models [73–78],
but we do not do this here.
The bosonic version of this theory, which can be defined

for d < 3, also dominated by melonic diagrams. Its large N
saddle point solution will proceed exactly along the lines of
the q ¼ 6 bosonic theories discussed in [54]. We illustrate
this explicitly in Sec. VI A below.
For the large N solution of the theory of rank-3 real

bosons with a wheel interaction, the only difference from the
traditional melonic theory is the presence of the elementary
snail. This elementary snail is a tadpole, so it does not appear
to affect the results of the Schwinger-Dyson equation for
the exact propagator. We, therefore, again expect the large N
solution to again proceed along the lines of the q ¼ 6
bosonic tensor models discussed in [54]. However, one

FIG. 36. The graph on the left, which originates from the Fig. 35, is maximal if and only if the graph on the right is maximal. One can
see this by tracing each of the index contractions for each of the three OðNÞ symmetry groups. The graph on the right is a free energy
graph and must be one of the forms enumerated in the previous subsection. The above relation also gives rise to a new elementary move:
of replacing one vertex (right) by two vertices (left).

FIG. 37. A new melonic move, vertex expansion, is present in
the prismatic model.
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slightly novel feature of the wheel interaction is that it allows
us to define a theory of complex bosons with UðNÞ3
symmetry group, as its interaction graph is bipartite.
The large N solution to the theory of rank-3 bosons with

a prism interaction was discussed in [43,49]. We now have
the possibility of solving for the large N limit of a theory of
rank-3 bosons with both the wheel and prism interactions.
We leave this for future work.

A. Real sextic bosonic theories with
melonic dominance

Let us first consider the rank-4 bosonic theory with the
octahedron interaction. The Lagrangian for this theory is

L ¼
Z

ddx
1

2
∂μϕ∂μϕþ gϕa1b1c1d1ϕa1b2c2d2ϕa2b2c1d3

× ϕa2b3c3d1ϕa3b3c2d3ϕa3b1c3d2 : ð6:1Þ

The ’t Hooft coupling for this theory is λ ¼ gN4.
To write down the gap equation, we need to carefully

count all the melonic Wick contractions that take the form
of the elementary melon in Fig. 31. Let us denote this
number by nmelon. Here nmelon ¼ 6. The gap equation in the
strong coupling limit takes the form:

G−1ðxÞ ¼ −λ2nmelonGðxÞ6: ð6:2Þ

Let us now write the integration kernel:

Kðx1; x2; x3; x4Þ ¼ nkernelλ2Gðx13ÞGðx24ÞGðx34Þ4; ð6:3Þ

where nkernel is the number of melonic Wick contractions of
the form given in Fig. 38. Clearly, for any melonic Wick
contraction that takes the form of the elementary melon,
one simply has to choose an internal line to cut, in order to
obtain a melonic Wick contraction for the kernel, so
nkernel ¼ ðq − 1Þnmelon, where q ¼ 6 in our case. If we
now absorb nmelon into λ̃2 ¼ λ2nmelon, our Schwinger-
Dyson equations become:

G−1ðxÞ ¼ −λ̃2GðxÞ6: ð6:4Þ

and

Kðx1; x2; x3; x4Þ ¼ ðq − 1Þλ̃2Gðx13ÞGðx24ÞGðx34Þ4; ð6:5Þ

which are identical to those solved in [54].
An identical argument shows that the theory with only a

wheel is also given by the solution in [54] for q ¼ 6,
assuming here that the elementary snail, which is a tadpole,
in the gap equation can be made to vanish, say via
dimensional regularization.

VII. DISCUSSION

Any tensor model with maximally single-trace inter-
actions admits a the natural large-N ’t Hooft limit [41]. In
this paper, we classified all real sextic subchromatic tensor
models with maximally single-trace interactions and found
only three interactions with r < 5: the wheel (or K3;3)
interaction, the prism, and the octahedron. We showed that
the theory based on the r ¼ 4 octahedron is dominated by
melonic diagrams. We also showed that the theory based
on the r ¼ 3 wheel (or K3;3) interaction is dominated by
melonic diagrams, with the addition of an elementary snail
that should vanish in most situations. Finally, we showed
that the prism is dominated by a superset of melonic
diagrams that also include diagrams generated by an
additional melonic (or post-melonic) move—vertex expan-
sion. In all cases, these diagrams can be explicitly enu-
merated and summed.
As a by-product of our arguments, we found that the

diagrams which may contribute in the large N limit to
general melonic theory involving maximally single trace
interaction vertices may be generated by three classes of
melonic moves—replacing a propagator by an elementary
snail, replacing a propagator by an elementary melon, and
vertex expansion. The prismatic model is an example of a
model where all melonic moves are present.
We have essentially shown that all rank-3 sextic tensor

models are solvable in the large N limit by our analysis of
maximal diagrams arising from the wheel interaction. For
completeness, we should also explain how to handle the
non-MST interactions of [43]. It is easy to see that all the
non-MST interactions can be reduced to quartic pillow and
double-trace interactions by the introduction of an auxiliary
field, as was done for the prism in [43]. Hence, any sextic
rank-3 tensor model without a wheel interaction is effec-
tively a quartic-tensor model and is therefore solvable in
the large N limit by now-standard techniques. With the
analysis in this paper, one can also include diagrams arising
from the wheel. We postpone a detailed study of the
most general r ¼ 3 sextic theory and its fixed points to
future work.
One might ask whether all rank-4 sextic tensor models

are solvable. This is evidently not the case—for example,
the non-MST interaction shown in Fig. 39, is clearly
equivalent to a rank-2 MST interaction, and gives rise to
all planar diagrams. Such an interaction would exist for any
theory based on tensors of even rank.FIG. 38. The integration kernel for the four-point function.
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It would also be straightforward to extend the analysis of
this paper to higher-q in attempts to find new solvable large
N limits, perhaps similar to the prismatic limit.
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APPENDIX: FINDING INEQUIVALENT
2-CYCLES

Here we illustrate a simple method for enumerating all
inequivalent 2-cycles. We discuss only the case of a 2-cycle
passing through two different wheel vertices and a 2-cycle
passing through a wheel and a prism vertex. A very similar
analysis applies for the other cases.
Recall that a 2-cycle is a path defined in the single-line

Feynman diagram. In the single-line Feynman diagram,
each vertex represents an interaction vertex, and each edge
represents a Wick contraction between two fields. Consider
a 2-cycle passing through 2 interaction vertices we denote
as L and R. The 2-cycle is defined by an edge contracting a
field from the vertex L to a field from the vertex R, and
another edge contracting a field from the vertex R to a field
from the vertex L. Hence a 2-cycle is specified by twoWick
contractions: ðhXL; YRi; hZL;WRiÞ. Here X, Y, Z, and W
range from 1 to 6.
We consider two different 2-cycles to be equivalent if

they are related to each other by either color permutation
symmetry operation or an automorphism symmetry
operation. We represent the symmetry group as a

group of permutations acting on the twelve labeled field-
vertices

f1L; 2L;…6L; 1R; 2R;…; 6Rg:

Color permutations simultaneously act on both vertices,
while automorphisms can act on each vertex independently.
For example, let L and R be two wheel interaction vertices.
The 2-cycle ðh1L; 1Ri; h2L; 2RiÞ is equivalent to ðh5L; 5Ri;
h4L; 4RiÞ by the action of the color permutation symmetry
generator σrg defined below. The 2-cycle ðh1L; 1Ri;
h2L; 2RiÞ is also equivalent to ðh6L; 1Ri; h5L; 2RiÞ, by an
automorphism symmetry acting on the vertex L.
Below, we enumerate all 2-cycles that are not equivalent

using the symmetry operations above. Let us emphasize
that the 2-cycles enumerated here are closed walks in the
single-line Feynman diagram, and need not correspond to
loops passing through two vertices in the multi-line
Feynman diagram.

1. Two wheel vertices

The color permutation generators act as

σrg ¼ ð1L; 5LÞð2L; 4LÞð1R; 5RÞð2R; 4RÞ; ðA1Þ

and

σgb ¼ ð1L; 5LÞð4L; 6LÞð1R; 5RÞð4R; 6RÞ: ðA2Þ

The automorphism symmetry group is generated by the
permutations:

ð1L; 6LÞð2L; 5LÞð3L; 4LÞ;
ð1L; 2LÞð4L; 5LÞð3L; 6LÞ;
ð1R; 6RÞð2R; 5RÞð3R; 4RÞ

and

ð1R; 2RÞð4R; 5RÞð3R; 6RÞ:

The combined symmetry group of color permutations
and automorphisms (which we are representing as a
subgroup of S12) has 216 elements.
To determine the inequivalent choices for XL, we note

that the orbit of 1L under the combined symmetry group is
f1L; 2L; 3L; 4L; 5L; 6Lg. Hence, any choice of XL can be
related to XL ¼ 1L without loss of generality.
We are then left with a residual symmetry group: the

stabilizer of 1L, which contains 36 elements. We find the
orbit of 1R in this residual symmetry group is f1R;
2R; 3R; 4R; 5R; 6Rg. Hence we can take YR ¼ 1R. We next
consider the residual symmetry group that stabilizes both
1L and 1R; this group contains 6 elements. We find its orbits

1 2

3

45

6

FIG. 39. This is a non-MST rank-4 interaction whose large N
limit gives rise to all planar diagrams. It is equivalent to the
rank-2 MST interaction.
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include f2L; 4L; 6Lg and f3L; 5Lg. Hence we can take
ZL ¼ 2L or 3L.
The inequivalent 2-cycles so far are thus:
(1) ðh1L; 1Ri; h2L;WRiÞ,
(2) ðh1L; 1Ri; h3L;W0

RiÞ.
To determine the inequivalent choices for WR, we again

consider the residual symmetry group that stabilizes 1L; 1R,
and 2L; this residual symmetry group contains two ele-
ments. The orbits of this symmetry group are f2Rg,
f3R; 5Rg, and f4R; 6Rg. Hence the inequivalent choices
for WR are 2R, 3R and 4R.
To consider the inequivalent choices forW0

R, we consider
the residual symmetry group that stabilizes 1L; 1R, and 3L;
this group contains 3 elements. Its orbits are f3Rg, f5Rg,
and f2R; 4R; 6Rg. The inequivalent choices forW0

R are thus
2R; 3R, and 5R.

2. Prism and wheel

Let us consider a 2-cycle which intersects one prism
interaction vertex and one wheel interaction vertex. Let as

assume the left (L) vertex is a prism and the right (R) vertex
is a wheel.
The combined color permutation and automorphism

symmetry group contains 72 elements. The orbit of 1L
under this group is f1L;…; 6Lg, so we can take
XL ¼ 1L.
The residual symmetry group that stabilizes 1L has 12

elements. The orbit of 1R under this residual symmetry
group is f1R;…; 6Rg, so we can choose YR ¼ 1R.
The residual symmetry group that stabilizes both 1L and

1R has 2 elements. Its orbits include f2L; 3Lg and f4L; 5Lg.
Hence we can take ZL ¼ 2L; 4L, or 6L. If we choose
ZL ¼ 6L, then there is still a residual symmetry group
and we can take WR ¼ 2R; 3R or 6R.
The inequivalent 2-cycles are thus:
(1) ðh1L; 1Ri; h2L;WRiÞ,
(2) ðh1L; 1Ri; h4L;W0

RiÞ,
(3) ðh1L; 1Ri; h6L; 2RiÞ,
(4) ðh1L; 1Ri; h6L; 3RiÞ,
(5) ðh1L; 1Ri; h6L; 6RiÞ.
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