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We renormalize a six-dimensional cubic theory to four loops in the modified minimal subtraction (MS)
scheme where the scalar is in a bi-adjoint representation. The underlying model was originally derived in a
problem relating to gravity being a double copy of Yang-Mills theory. As a field theory in its own right we
find that it has a curious property in that while unexpectedly there is no one-loop contribution to the β
function the two-loop coefficient is negative. It therefore represents an example where asymptotic freedom
is determined by the two-loop term of the β function. We also examine a multi-adjoint cubic theory in order
to see whether this is a more universal property of these models.
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I. INTRODUCTION

Scalar ϕ3 theory in six dimensions has proved to be a
useful laboratory or tool to explore major ideas in quantum
field theory. For instance, after the discovery of asymptotic
freedom in quantum chromodynamics (QCD) [1,2], it was
used as a testing ground to study the implications of
this property. This was because it was shown that six-
dimensional ϕ3 theory was renormalizable and also asymp-
totically free [3]. In other words the consequences of
this characteristic of non-Abelian gauge theories could
be explored in a simple environment without the
complications of the gauge structure. One reason why
higher-dimensional theories might be of interest for lower-
dimensional ones is that the ultraviolet behavior of one
theory could be related to the infrared dynamics of another
[4,5]. That idea has yet to be realized concretely in the
gauge theory context. However in the case of scalar ϕ3

theory, where the calculations were easier to carry out, it
has been used to explore certain infrared ideas associated
with the strong interactions. For instance, it has proved
useful as a toy model of Regge theory but in six dimensions
where ladder diagrams were analyzed in order to gain
insight into the Regge slope. Several articles in this
direction in ϕ3 theory are [6–8], for example. Clearly there
are limitations to such exercises. The obvious one is that of
an unphysical spacetime dimension. A more serious one is

the lack of a bounded Hamiltonian which means that true
bound state analyses could not be fully credible. Despite
this the theory played a valuable role as a sounding board
for exploring new ideas in a gauge theory. Other applica-
tions of cubic scalar theory lie mainly in condensed matter
physics and in particular critical phenomena. For instance
various decorations of the scalar field with different
symmetries allowed the critical exponents that relate to
percolation and the Lee-Yang edge singularity problems
[9–11] to be determined very accurately in the ϵ expansion
in integer dimensions below six.
More recently another perhaps surprising example of the

connection a cubic scalar theory has with physics has
emerged. In [12,13] the idea that on-shell gravity could be
interpreted as a double copy of Yang-Mills theory was
initially put forward and generated a large amount of
interest. For instance it was shown that there was a relation
between the product of Yang-Mills n-point functions and
the corresponding on-shell gravity amplitudes representing
a connection with the Kawai-Lewellen-Tye relations [14].
This double copy of Yang-Mills theory appears to be
widely accepted as an interesting interpretation and clearly
is a direction to pursue in the quest for a theory of quantum
gravity. One consequence of the double copy vision was the
connection with a scalar field endowed with a bi-adjoint
symmetry, [15,16], although the gravity connection with a
scalar cubic interaction was observed earlier in [17]. For
instance in [15] it was shown that scattering amplitudes of
the double copy theory could be related to the gluonic ones
in pure Yang-Mills theory. Another direction that was
followed in [18,19] was to study classical solutions of a
linearized version of Yang-Mills theory and their relation to
double copies of scalar fields in the bi-adjoint cubic theory.
These ideas were explored further in [20,21] where new
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solutions were found further strengthening the double copy
correspondence concept.
While most of these studies were classical it is worth

investigating the underlying quantum field theory in its own
right to ascertain whether it has any other interesting proper-
ties. That is the purpose of this article. In particular we will
renormalize the theory to four loops in six dimensions and
deduce the renormalization group functions. Doing so will
reveal a curious feature. It will transpire that for general Lie
groups the one-loop coefficient of the β function vanishes
despite there being a one-loop contribution to the 3-point
vertex function. This is a rather unusual and rare situation in a
renormalizable theory although it is known that the one-loop
term of renormalization group functions, other than the β
function, can be zero in other models. What makes this bi-
adjoint theory even more intriguing is that the nonzero two-
loop β-function coefficient is negative. Therefore this model
appears to be one of the few cases where the property of
asymptotic freedom is determined purely from the two-loop
term of the β function. We will explore some of the basic
consequences of this property as well as finding the under-
lying reason why it emerges. As part of this investigation we
will renormalize a generalization of the bi-adjoint model by
allowing the field to take values in the adjoint representation
of four (different) Lie groups which we will refer to as the
quartic adjoint model.
The article is organized as follows. The background to the

properties of the bi-adjoint cubic scalar theory such as the
group theory connected with the computation is discussed in
Sec. II. That will also include the details of how we
performed the computation, the results of which are dis-
cussed in Sec. III. The generalization to the quartic adjoint
model is provided in the next section before the concluding
remarks of Sec. V. An appendix records full details of the
renormalization group functions of the quartic adjointmodel.

II. BACKGROUND

To begin with we define the six-dimensional Lagrangian
for the bi-adjoint cubic scalar theory that was derived from
solutions of linearized Yang-Mills theory and related to the
double copy of gravity. If we denote the basic scalar field
by ϕa1a2 then the Lagrangian is, for example from [19,20],

L ¼ 1

2
ð∂μϕ

a1a2Þ2 þ g
6
fa1b1c1fa2b2c2ϕa1a2ϕb1b2ϕc1c2 : ð2:1Þ

Given that the fields take values in the group G1 ×G2, we
use a different notation from [19,20] as we will carry out a
more general analysis subsequently. Therefore we note that
the numerical label on the adjoint indices will correspond to
the label on the respective subgroups in the overall
symmetry group. The roman letter that carries that label
is the one that is summed over in any repetition. Moreover
these indices will run over a set whose dimension is the
dimension of the adjoint representation of the respective
group and denoted by Ni. So for instance 1 ≤ a1 ≤ N1 and

1 ≤ b2 ≤ N2 or in more general terms 1 ≤ ai, bi, ci, di ≤
Ni for each i. In other words

δaiai ¼ Ni ð2:2Þ
where there is never a sum over the repeated label i which
indicates the specific group. If G1 ¼ SUðNcÞ for example
then N1 ¼ N2

c − 1 corresponding to the dimension of the
adjoint representation. The respective structure functions of
each group appearing in (2.1) are faibici for i ¼ 1 and 2. As
we will be carrying out loop computations it is worth
discussing related group theory quantities that will appear
later. For example, we use a compact notation for the
Casimirs of each with

faicidifbicidi ¼ Ciδ
aibi ð2:3Þ

for each i. Ordinarily one usesCA orC2ðGÞwhereA denotes
the adjoint representation of the group G for what we now
denote by Ci. It is not necessary however to include the
representation designation since the adjoint will be used
throughout the article unless stated otherwise. Beyond the
first few loop orders higher rank group Casimirs will appear.
This was noted when the four-loop β function of QCD was
determined in [22] and a comprehensive study was under-
taken in [23] of general Lie group Casimirs in the context of
perturbative computations. We briefly summarize the rel-
evant aspects that are needed here. For instance the fully
symmetric rank 4 tensor defined by [23]

daibicidiRi
¼ 1

6
TrðTai

Ri
Tðbi
Ri
Tci
Ri
TdiÞ
Ri
Þ ð2:4Þ

will arise. Herewe revert momentarily to representationRi of
the group Gi as (2.4) involves the group generators Tai

Ri
.

Within the computation the contracted product of these
tensors will produce additional group Casmirs independent
of Ci. At four loops in Yang-Mills theory the only combi-
nation that appears turns out to be the simple product [23]

dðiÞ44 ¼ daibicidiA daibicidiA ð2:5Þ
in our notationwhere the bracketed label is used to avoid any
potential ambiguity with the tensor rank when products of
more groups are considered and A denotes the adjoint
representation. In the four-loop QCD β function [23] by
contrast, products of daibicidiRi

in the fundamental and adjoint
representations also arise. As a reference point for results that
appear later we recall that for SUðNcÞ [23]

dðiÞ44 ¼
N2

c½N2
c þ 36�
24

Ni ð2:6Þ

and we have not substituted the explicit value for Ni as that
quantity appears in the results for a general Lie group which
is what we use throughout. Higher rank tensors beyond (2.4)
have been discussed in [23]. A secondary motivation for
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studying the renormalization of (2.1) at large loop order is to
ascertain whether such rank 4 tensor Casimirs first appear at
the same loop order as that of QCD or not. In terms of other
aspects of (2.1) for ease of comparison we retain the
conventions that were used in [24]. In particular in [24]
the sign of the coupling constant g was opposite to that used
in earlier work by others such as [3,25–27]. There ought not
to be difficulty in translating where necessary.
Before renormalizing (2.1) we recall our notation. First if

we denote bare entities with a subscript o then their relation
to the renormalized counterparts are

ϕa1a2
o ¼ ffiffiffiffiffiffi

Zϕ

p
ϕa1a2 ; go ¼ Zgg ð2:7Þ

in six dimensions. However we will dimensionally regu-
larize (2.1) in d ¼ 6 − 2ϵ dimensions and determine the
renormalization group functions in the MS scheme. To find
Zϕ and Zg to four-loop order we have to compute the 2- and
3-point functions and we will follow the algorithm used in
[24] where more details of the technicalities of this exercise
can be found. However given the presence of the structure
constants in the interaction, we have had to adapt that
method to determine Zg in particular. For example there are
540 Feynman graphs to evaluate for the four-loop vertex
function which is a large number to handle. To circumvent
this a shortcut was exploited which was to generate these
and lower-loop vertex graphs from the 2-point graphs by
applying a simple mapping to each propagator. In other
words setting

1

k2
→

1

k2
þ λ

ðk2Þ2 ð2:8Þ

and retaining only terms with zero or one power of the
parameter λ, means that the OðλÞ terms will formally
correspond to 3-point function graphs where one external
momentum is set to zero [24]. In six dimensions this is
infrared safe and evaluating all the graphs that areOðλÞwill
produce the full 3-point function to that loop order. While
this simple mapping is the essence of what one needs to do
at the level of the graph generation, it is not sufficient for
(2.1) as the group theory factors need to be accommodated.
To achieve this we adapt (2.8) by including the group
structure of the propagator as well as the inserted vertex to
produce the mapping for (2.1)

1

k2
δa1b1δa2b2 →

1

k2
δa1b1δa2b2 þ λg

ðk2Þ2 f
a1b1ce1fa2b2c

e
2 ð2:9Þ

where cei are the external indices of the inserted leg of the
generated 3-point function. One benefit of using this tech-
nique is that there are only 64 four-loop graphs in the 2-point
function and the insertion does not change the underlying
graph topology. This is important and leads to a more
efficient computation since the same integration subroutine
for that topology can be used to determine the divergences of
the 2-point graph and its associated 3-point onewhere there is

a nullified insertion on each propagator. While we have not
included a mass term in (2.1) we can still compute the
anomalous dimension of the mass by inserting the mass
operator 1

2
ϕa1a2ϕa1a2 in a 2-point function. The renormaliza-

tion constant associated with this operator is equivalent to
that of the mass itself which we denote by Zm. Therefore we
can directly use (2.8) to determine Zm as well as Zg.
The computational strategy to evaluate the graphs of the

2- and 3-point functions is to use the Laporta integration by
parts algorithm, [28]. This constructs relations between a
set of Feynman integrals that can be algebraically solved in
such a way that all the integrals are related to a relatively
small set. These are termed the master integrals and have to
be evaluated directly. In our case since all the 2-point four-
loop master integrals are available in four dimensions [29]
it was possible to connect these to the ones that emerge in
our six-dimensional computation [24]. This is achieved by
the Tarasov method [30,31] whereby integrals in d dimen-
sions can be related to the (dþ 2)-dimesional integral with
the same topology and other topologies where one or more
edges have been removed. Therefore the four-loop six-
dimensional masters were deduced in [24].
To effect the Laporta algorithm we used the REDUZE

implementation [32,33]. A useful feature of the package is
that it allows the database that is generated to be written in
the symbolic language FORM [34,35]. This is important
since we have written an automatic program in FORM to
carry out the full computation. In particular the contributing
Feynman graphs are generated with the QGRAF package [36]
and the topology mapping appended. This allows the
automatic program to proceed since the integration of each
topology follows a separate path. The final stage is the
summation of all the graphs and the implementation of the
automatic renormalization to deduce Zϕ, Zm and Zg. To do
this we follow [37] which means that the graphs are
evaluated with bare parameters with the renormalization
constants (2.7) being introduced at the end. For instance the
2-point function is multiplied overall by Zϕ which allows
one to deduce the unknown counterterms. Equally for the
extraction of the mass and coupling constant renormaliza-
tion constants the parameter λ in each of (2.8) and (2.9) are
multiplied by Zm and Zg

ffiffiffiffiffiffi
Zϕ

p
respectively. One major tool

that was used to carry out the manipulation of the large
number of structure functions present at each vertex was the
color.h packagewritten in FORM and available from [34].
It encodes the group theory discussed in [23] in an efficient
way particularly for the three- and four-loop graphs.

III. RESULTS

Having outlined our computational strategy we can now
record the outcome of determining Zϕ, Zm and Zg that lead
to the respective renormalization group functions γϕðgÞ,
γmðgÞ and βðgÞ in the MS scheme. First the anomalous
dimension of the scalar field is
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γϕðgÞ ¼ −
g2

12
C1C2 −

5g4

432
C2
1C

2
2 −

827g6

248832
C3
1C

3
2 þ ½1032ζ3C4

1C
4
2N1N2 þ 108ζ4C4

1C
4
2N1N2 − 960ζ5C4

1C
4
2N1N2

− 943C4
1C

4
2N1N2 − 576ζ3C4

1dð2Þ44N1 − 2592ζ4C4
1dð2Þ44N1 − 11520ζ5C4

1dð2Þ44N1 þ 14976C4
1dð2Þ44N1

− 576ζ3C4
2dð1Þ44N2 − 2592ζ4C4

2dð1Þ44N2 − 11520ζ5C4
2dð1Þ44N2 þ 14976C4

2dð1Þ44N2 þ 96768ζ3dð1Þ44dð2Þ44

þ 62208ζ4dð1Þ44dð2Þ44 − 138240ζ5dð1Þ44dð2Þ44�
g8

497664N1N2

þOðg10Þ ð3:1Þ

where ζz denotes the Riemann zeta function and we note that the rank 4 group tensors first appear at four loops. For the mass
anomalous dimension we find

γmðgÞ ¼ −
g2

2
C1C2 þ

5g4

48
C2
1C

2
2 þ ½432ζ3 − 2203�C

3
1C

3
2g

6

13824
þ ½127764ζ3C4

1C
4
2N1N2 þ 1944ζ4C4

1C
4
2N1N2

− 251640ζ5C4
1C

4
2N1N2 þ 255517C4

1C
4
2N1N2 þ 88128ζ3C4

1dð2Þ44N1 − 46656ζ4C4
1dð2Þ44N1

− 492480ζ5C4
1dð2Þ44N1 þ 409536C4

1dð2Þ44N1 þ 88128ζ3C4
2dð1Þ44N2 − 46656ζ4C4

2dð1Þ44N2

− 492480ζ5C4
2dð1Þ44N2 þ 409536C4

2dð1Þ44N2 þ 3110400ζ3dð1Þ44dð2Þ44 þ 1119744ζ4dð1Þ44dð2Þ44

þ 622080ζ5dð1Þ44dð2Þ44�
g8

1492992N1N2

þOðg10Þ ð3:2Þ

where the higher order Casimirs first appear at the same order.
To complete the set, the four-loop β function is

βðgÞ ¼ −
5g5

1152
C2
1C

2
2 þ ½108ζ3C4

1C
4
2N1N2 − 161C4

1C
4
2N1N2 − 2592ζ3C4

1dð2Þ44N1 þ 2592C4
1dð2Þ44N1

−2592ζ3C4
2dð1Þ44N2 þ 2592C4

2dð1Þ44N2 þ 62208ζ3dð1Þ44dð2Þ44�
g7

41472C1C2N1N2

þ ½−368928ζ3C4
1C

4
2N1N2 þ 518400ζ5C4

1C
4
2N1N2 − 101089C4

1C
4
2N1N2

−3483648ζ3C4
1dð2Þ44N1 þ 6220800ζ5C4

1dð2Þ44N1 − 2363904C4
1dð2Þ44N1

−3483648ζ3C4
2dð1Þ44N2 þ 6220800ζ5C4

2dð1Þ44N2 − 2363904C4
2dð1Þ44N2

−95551488ζ3dð1Þ44dð2Þ44 þ 119439360ζ5dð1Þ44dð2Þ44�
g9

23887872N1N2

þOðg11Þ: ð3:3Þ

This has the unusual feature in that the first nonzero term is
at two loops rather than one loop. This is not the first or only
case of the first term of a renormalization group function in a
fully renormalizable field theory being absent. For instance,
while the field anomalous dimension in four-dimensional
ϕ4 theory is zero at one loop this is for the simple reason that
the only graph contributing to the 2-point function is a snail.
Therefore it is independent of the external momentum and
its divergence contributes to the mass renormalization only.
Here the situation is different in that the only one-loop graph
of the 3-point vertex is divergent but the residue of the
simple pole is exactly cancelled by the contribution from the
wave function renormalization. This is not the case for other
symmetry decorations of the scalar field in scalar ϕ3 theory
in six dimensions [3,26,27]. This curious property has an
interesting consequencewhich is that since the coefficient of
the now leading two-loop term of βðgÞ is negative then the

theory is asymptotically free. Ordinarily when this is a
feature of other field theories it is purely from the one-loop
term [1,2].We note at this point that this sign of the two-loop
term would have emerged irrespective of the coupling
constant sign convention alluded to earlier. One comment
that deserves mention at this point concerns the scheme
dependence of this particular β function. Even though the
one-loop term is zero the three-loop term of βðgÞ still
depends on the renormalization scheme. Unlike the other
two renormalization group functions the rank 4 Casimirs
first appear at three loops in the β function rather than four.
This is one order earlier than that of QCD [22].
To gain more insight into the consequences of there

being no one-loop term of the β function, it is worth
focusing on the case when both groups G1 and G2 are the
same which we will denote by G. In this case (3.1), (3.2)
and (3.3) become
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γG×Gϕ ðgÞ ¼ −
C2
1g

2

12
−
5C4

1g
4

432
−
827C6

1g
6

248832
þ ½1032ζ3C8

1N
2
1 − 1152ζ3C4

1dð1Þ44N1 þ 96768ζ3d2ð1Þ44 þ 108ζ4C8
1N

2
1

− 5184ζ4C4
1dð1Þ44N1 þ 62208ζ4d2ð1Þ44 − 960ζ5C8

1N
2
1 − 23040ζ5C4

1dð1Þ44N1 − 138240ζ5d2ð1Þ44 − 943C8
1N

2
1

þ 29952C4
1dð1Þ44N1�

g8

497664N2
1

þOðg10Þ; ð3:4Þ

γG×Gm ðgÞ ¼ −
C2
1g

2

2
þ 5C4

1g
4

48
þ C6

1½432ζ3 − 2203� g6

13824
þ ½127764ζ3C8

1N
2
1 þ 176256ζ3C4

1dð1Þ44N1 þ 3110400ζ3d2ð1Þ44

þ 1944ζ4C8
1N

2
1 − 93312ζ4C4

1dð1Þ44N1 þ 1119744ζ4d2ð1Þ44 − 251640ζ5C8
1N

2
1 − 984960ζ5C4

1dð1Þ44N1

þ 622080ζ5d2ð1Þ44 þ 255517C8
1N

2
1 þ 819072C4

1dð1Þ44N1�
g8

1492992N2
1

þOðg10Þ ð3:5Þ

and

βG×GðgÞ ¼ −
5C4

1g
5

1152
þ ½108ζ3C8

1N
2
1 − 5184ζ3C4

1dð1Þ44N1 þ 62208ζ3d2ð1Þ44 − 161C8
1N

2
1 þ 5184C4

1dð1Þ44N1�
g7

41472C2
1N

2
1

þ ½−368928ζ3C8
1N

2
1 − 6967296ζ3C4

1dð1Þ44N1 − 95551488ζ3d2ð1Þ44 þ 518400ζ5C8
1N

2
1 þ 12441600ζ5C4

1dð1Þ44N1

þ 119439360ζ5d2ð1Þ44 − 101089C8
1N

2
1 − 4727808C4

1dð1Þ44N1�
g9

23887872N2
1

þOðg11Þ: ð3:6Þ

Specifying to the group SUð3Þ we deduce

γSUð3Þ×SUð3Þ
ϕ ðgÞ¼−

3

42
g2−

15

16
g4−

2481

1024
g6þ27½4992ζ3þ1728ζ4−11760ζ5þ5297� g8

2048
þOðg10Þ;

γSUð3Þ×SUð3Þ
m ðgÞ¼−

9

2
g2þ135

16
g4þ27½432ζ3−2203� g

6

512
þ9½299484ζ3þ31104ζ4−429840ζ5þ426157� g8

2048
þOðg10Þ;

βSUð3Þ×SUð3ÞðgÞ¼−
45

128
g5þ9½1728ζ3þ919� g

7

512
þ9½8294400ζ5−5967648ζ3−1086049� g9

32768
þOðg11Þ ð3:7Þ

or

γSUð3Þ×SUð3Þ
ϕ ðgÞ ¼ −0.750000g2 − 0.937500g4 − 2.422852g6 þ 12.836235g8 þOðg10Þ;
γSUð3Þ×SUð3Þ
m ðgÞ ¼ −4.500000g2 þ 8.437500g4 − 88.789469g6 þ 1644.017718g8 þOðg10Þ;

βSUð3Þ×SUð3ÞðgÞ ¼ −0.351562g5 þ 52.666775g7 þ 93.711209g9 þOðg11Þ ð3:8Þ

numerically. From (3.8) it is clear that there is a Banks-Zaks
fixed point [38] stemming from the opposite signs of the
first two terms of the β function. In fact it is also the case
that a similar fixed point is present for SUðMÞ × SUðNÞ.
Strictly the fixed point of [38] in QCD derives from the
one- and two-loop scheme independent terms. We use it
here in the sense of the first two nonzero terms although the
second of these is scheme dependent unlike [38]. Moreover
the value of the critical coupling forN ¼ 3 only changes by
around 1% when solving βSUð3Þ×SUð3ÞðgÞ ¼ 0 at three and

four loops. One of the reasons for providing this example is
to show another interesting consequence of the absence of
the one-loop term. While the renormalization group func-
tions are scheme dependent, one can derive renormalization
group invariants from them. These are critical exponents
that are the evaluation of the functions at a nontrivial fixed
point. One important such fixed point is the Wilson-Fisher
one [39,40], where the critical coupling is defined by
setting the d-dimensional β function to zero and denoted by
g�. So in d ¼ 6 − 2ϵ dimensions we have
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ηSUð3Þ×SUð3Þ ¼ −
2i

ffiffiffi
5

p

5

ffiffiffi
ϵ

p þ 2

25
½576ζ3 þ 323�ϵþ

ffiffiffi
5

p
i½1327104ζ23 þ 779232ζ3 þ 921600ζ5 þ 271945� ϵ

3
2

500

þ ½311040ζ4 − 143327232ζ23 − 96163200ζ3 − 85060800ζ5 − 31005017� ϵ2

6750
þOðϵ52Þ;

ηSUð3Þ×SUð3Þ
m ¼ −

12i
ffiffiffi
5

p

5

ffiffiffi
ϵ

p þ 16½432ζ3 þ 211� ϵ
25

þ 9i
ffiffiffi
5

p

250
½442368ζ23 þ 233664ζ3 þ 307200ζ5 þ 79175�ϵ32

þ 2½110854656ζ23 þ 55734372ζ3 þ 155520ζ4 þ 60058800ζ5 þ 15279107� ϵ2

1125
þOðϵ52Þ;

ωSUð3Þ×SUð3Þ ¼ 2ϵ −
2i

ffiffiffi
5

p

5
½1728ζ3 þ 919�ϵ32 þ ½35831808ζ23 þ 8274528ζ3 þ 41472000ζ5 þ 4704487� ϵ2

2250
þOðϵ52Þ

ð3:9Þ

where η ¼ γϕðg�Þ, ηm ¼ γmðg�Þ and ω ¼ 2β0ðg�Þ. The
main key difference between these exponents and those
from models where there is a nonzero one-loop term is that
the expansion is a function of

ffiffiffi
ϵ

p
rather than ϵ. In addition

the exponents are complex but this is due to having
assumed ϵ is real and positive. If ϵ were real and negative
then the exponents are real above six dimensions.
Finally we close this section by recalling that solving the

β function as a differential equation determines the func-
tional dependence of the running coupling constant with
the renormalization scale μ. Therefore we can compare the
running coupling constants in the conventional case where
asymptotic freedom is determined by the one-loop β
function with that for (2.1). For instance, if we formally
define two β functions by

β1ðg1Þ ¼ −β̄1g31 þOðg51Þ;
β2ðg2Þ ¼ −β̄2g52 þOðg72Þ ð3:10Þ

then we have

g21ðμÞ ¼ −
1

β̄1 ln ðμ2=Λ2
1Þ

ð3:11Þ

for the more conventional one-loop β function. By contrast
solving the second case we find

g22ðμÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2β̄2 ln ðμ2=Λ2
2Þ

q ð3:12Þ

where Λ1 and Λ2 are the constants of integration. Clearly
both running coupling constants have the same general
behavior in that they tend to zero as μ → ∞. However in the
latter case where the one-loop β-function term is absent, the
coupling constant tends to zero at a much slower rate. So if
this model, or one with the same property, was realized in
Nature the constituent particles would only be effectively
free at significantly high energies.

IV. QUARTIC ADJOINT

The absence of a one-loop term in the β function of (2.1)
is an interesting property. In order to see whether this
property is common to more general scalar ϕ3 theories with
adjoint decorations, we have repeated the renormalization
exercise for (2.1) for what we will term the quartic adjoint
theory with Lagrangian

L ¼ 1

2
ð∂μϕ

a1a2a3a4Þ2 þ g
6
fa1b1c1fa2b2c2fa3b3c3fa4b4c4ϕa1a2a3a4ϕb1b2b3b4ϕc1c2c3c4 : ð4:1Þ

Here we have a scalar field which takes values in
the group G1 ×G2 × G3 ×G4 and in particular the inter-
action involves the adjoint representation of the group
generators. In (4.1) we use a similar notation to that
introduced for (2.1) where there are now two additional
labels due to the extra groups G3 and G4. Equally the
definition of the group Casimirs have an obvious natural
extension of those given in (2.2), (2.3) and (2.5). We have
followed the same process of renormalizing (4.1) as that

for (2.1) together with similar consistency checks. There-
fore we move to the discussion of the outcome. With the
additional group structure it transpires that the four-loop
expressions for each of the renormalization group functions
are more involved than those of (2.1). These have been
recorded in the Appendix. Instead we illustrate the structure
in the simpler case of the group G × G × G ×G≡G4 and
find
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γG
4

ϕ ðgÞ ¼ −
C4
1g

2

12
−
19C8

1g
4

864
−
40421C12

1 g6

3981312
þ ½1910ζ3C16

1 N4
1 þ 2112ζ3C12

1 dð1Þ44N3
1 þ 89856ζ3C8

1d
2
ð1Þ44N

2
1

− 110592ζ3C4
1d

3
ð1Þ44N1 þ 4644864ζ3d4ð1Þ44 þ 9ζ4C16

1 N4
1 − 864ζ4C12

1 dð1Þ44N3
1 þ 31104ζ4C8

1d
2
ð1Þ44N

2
1

− 497664ζ4C4
1d

3
ð1Þ44N1 þ 2985984ζ4d4ð1Þ44 − 320ζ5C16

1 N4
1 − 15360ζ5C12

1 dð1Þ44N3
1 − 276480ζ5C8

1d
2
ð1Þ44N

2
1

− 2211840ζ5C4
1d

3
ð1Þ44N1 − 6635520ζ5d4ð1Þ44 − 150934C16

1 N4
1 þ 14976C12

1 dð1Þ44N3
1 þ 179712C8

1d
2
ð1Þ44N

2
1

þ 2875392C4
1d

3
ð1Þ44N1�

g8

23887872N4
1

þOðg10Þ ð4:2Þ

and

γG
4

m ðgÞ¼−
C4
1g

2

2
þC8

1g
2

96
þ½3024ζ3−43537� C

12
1 g6

221184
þ½−619077ζ3C16

1 N4
1þ58176ζ3C12

1 dð1Þ44N3
1þ1389312ζ3C8

1d
2
ð1Þ44N

2
1

þ5640192ζ3C4
1d

3
ð1Þ44N1þ49766400ζ3d4ð1Þ44−91800ζ4C16

1 N4
1−5184ζ4C12

1 dð1Þ44N3
1þ186624ζ4C8

1d
2
ð1Þ44N

2
1

−2985984ζ4C4
1d

3
ð1Þ44N1þ17915904ζ4d4ð1Þ44−177630ζ5C16

1 N4
1−158400ζ5C12

1 dð1Þ44N3
1

−1762560ζ5C8
1d

2
ð1Þ44N

2
1−31518720ζ5C4

1d
3
ð1Þ44N1þ9953280ζ5d4ð1Þ44þ2070250C16

1 N4
1þ136512C12

1 dð1Þ44N3
1

þ1638144C8
1d

2
ð1Þ44N

2
1þ26210304C4

1d
3
ð1Þ44N1�

g8

23887872N4
1

þOðg10Þ ð4:3Þ

for the field and mass anomalous dimensions. For the β function we arrived at

βG
4ðgÞ¼−

3C4
1g

3

32
−
467C8

1g
5

18432
þ½48ζ3C16

1 N4
1−4608ζ3C12

1 dð1Þ44N3
1þ165888ζ3C8

1d
2
ð1Þ44N

2
1−2654208ζ3C4

1d
3
ð1Þ44N1

þ15925248ζ3d4ð1Þ44−125981C16
1 N4

1þ13824C12
1 dð1Þ44N3

1þ165888C8
1d

2
ð1Þ44N

2
1

þ2654208C4
1d

3
ð1Þ44N1�

g7

10616832C4
1N

4
1

þ½394304ζ3C16
1 N4

1−21494784ζ3C12
1 dð1Þ44N3

1−224169984ζ3C8
1d

2
ð1Þ44N

2
1

−7582187520ζ3C4
1d

3
ð1Þ44N1−3301834752ζ3d4ð1Þ44−15552ζ4C16

1 N4
1þ1492992ζ4C12

1 dð1Þ44N3
1

−53747712ζ4C8
1d

2
ð1Þ44N

2
1þ859963392ζ4C4

1d
3
ð1Þ44N1−5159780352ζ4d4ð1Þ44þ325120ζ5C16

1 N4
1

þ18370560ζ5C12
1 dð1Þ44N3

1þ479969280ζ5C8
1d

2
ð1Þ44N

2
1þ4636016640ζ5C4

1d
3
ð1Þ44N1þ24418713600ζ5d4ð1Þ44

−134800515C16
1 N4

1þ15123456C12
1 dð1Þ44N3

1þ189444096C8
1d

2
ð1Þ44N

2
1þ2521497600C4

1d
3
ð1Þ44N1�

g9

18345885696N4
1

þOðg11Þ ð4:4Þ

and there is no Banks-Zaks fixed point. By contrast to (3.3) and the parallel simplification of (3.6) we note that there is a
nonzero one-loop β-function coefficient unlike the bi-adjoint model. In the general group case this coefficient is a simple
product of Ci for i ¼ 1 to 4.
In order to compare with the bi-adjoint case we note that specifying to the group SUð3Þ gives

γSUð3Þ4
ϕ ðgÞ ¼ −6.750000g2 − 144.281250g4 − 5395.552185g6 þ 2.4888387 × 105g8 þOðg10Þ;
γSUð3Þ4
m ðgÞ ¼ −40.50000g2 þ 68.343750g4 − 95872.884627g6 þ 2.842688 × 106g8 þOðg10Þ;

βSUð3Þ4ðgÞ ¼ −7.593750g3 − 166.231934g5 − 458.390411g7 − 95378.353885g9 þOðg11Þ: ð4:5Þ

With these we can illustrate the difference in the corresponding critical exponents at the Wilson-Fisher fixed point in
d ¼ 6 − 2ϵ dimensions by noting that
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ηSUð3Þ4 ¼ 4

9
ϵþ 11

729
ϵ2 þ 2½4608ζ3 þ 12295� ϵ3

59049
þ ½88631400ζ3 þ 4478976ζ4 − 115795200ζ5 þ 33923953� ϵ4

19131876

þOðϵ5Þ;

ηSUð3Þ4
m ¼ 8

3
ϵþ 1006

243
ϵ2 þ ½−22392ζ3 þ 684799� ϵ3

19683
þ ½33249552ζ3 − 10882512ζ4 − 288886560ζ5

þ 1436683139� ϵ4

6377292
þOðϵ5Þ;

ωSUð3Þ4 ¼ ϵ −
467

324
ϵ2 þ ½−18432ζ3 þ 28807� ϵ3

26244
þ ½−467532144ζ3 − 17915904ζ4 þ 508069440ζ5 − 192428981�

×
ϵ4

17006112
þOðϵ5Þ: ð4:6Þ

The nonzero one-loop β-function coefficient produces the
standard ϵ expansion in contrast to the bi-adjoint case
where the exponents depend on

ffiffiffi
ϵ

p
.

Having considered a second scalar theory with a group
theory structure similar to that of (2.1) which does not have a
zero one-loop β-function coefficient, it is worth trying to
understand how this arises for (2.1). There are two parts to
determining the renormalization constantZg that leads to the
β function. These are the divergences from the 2- and 3-point
functions. The former produces the value for Zϕ directly
whereas the divergences of the latter do not immediately

giveZg. Instead theygive the combinationZgZ
3
2

ϕ. So forZg to
have no simple pole at one loop means that the divergence
from the 3-point function must exactly match that of Zϕ

multiplied by 3
2
. From the explicit computation we find that

the residue of the one-loop simple pole of the 2-point
function is − 1

12
C1C2 whereas that for the 3-point function

is 1
8
C1C2. These are clearly in the required ratio. By contrast

the respective numbers for (4.1) are − 1
12
C1C2C3C4 and

1
32
C1C2C3C4. Combining these to deduce Zg at one loop

gives the correct coefficient of− 3
32
C1C2C3C4 of the general

β function. Aside from the additional group theory factors
the only discrepancy between both models is in the coef-
ficient of the divergence from the 3-point function which is
different by a factor of 1

4
. This is the origin ofwhy (3.3) has no

one-loop term and rests in the group theory deriving from the
one-loop triangle graph which is the sole contribution at this
loop order. Each subgroup Gi of the symmetry group
produces the combination

faipiqifbiriqifcipiri ¼ 1

2
Cifaibici : ð4:7Þ

So for each subgroup this relation, derived from the Jacobi
identity in the adjoint representation, gives a factor of 1

2
to the

residue of the simple pole of the 3-point function. As there is
one factor of 1

2
from the actual integration over the loop

momentum then for the most general group G1 ×… ×Gn

the 3-point function simple pole has a residue of
1

2nþ1

Q
n
i¼1 Ci. Hence for this general group the one-loop

coefficient of the β function, denoted by β̂1ðnÞ, will be

β̂1ðnÞ ¼
�

1

2nþ1
−
1

8

�Yn
i¼1

Ci ð4:8Þ

which is a monotonically decreasing function and defined
for all integers n ≠ 1. The exception is because one has a
free field theory for n ¼ 1 since the interaction is
fa1b1c1ϕa1ϕb1ϕc1 which vanishes due to the antisymmetry
of the structure constants. Clearly β̂1ð2Þ ¼ 0 and so the
curiosity of (2.1) being asymptotically free as a consequence
of the two-loop termof theβ function is purely due to a group
theory property.We note that the value of β̂1ð0Þ is consistent
with the known low order β function of the pure ϕ3 theory
[3,25]. Equally β̂1ð4Þ is in agreement with (4.4) and (A3).

V. DISCUSSION

Scalar ϕ3 theory has played an important role as a toy
model in quantum field theory for many decades. For
instance any Feynman graph generated from the basic cubic
interaction can in turn generate the basic topologies that can
occur in higher n-point interactions. This is achieved by
formally deleting propagators in the graph theory sense and
hence represents the initial point for combinatoric studies in
quantum field theory. Where the theory has limitations in
physics applications is that its critical dimension is six
rather than four. However as noted earlier certain properties
of scalar ϕ3 theory are similar to the more involved field
theories in four dimensions and hence the six-dimensional
model can be used to explore ideas. In this article we have
studied an interesting modification whereby the scalar field
is in a bi-adjoint representation of Lie groups. This is
motivated by the double copy relation between Yang-Mills
theory and on-shell gravity. While the studies of [18–21]
examined classical solutions to the scalar theory, it has
turned out that the six-dimensional field theory has a
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peculiar property. It is unusual that asymptotic freedom is a
consequence of the two-loop term of the β function rather
than the first. However that is the case for (2.1). In studying
the consequences it appears to be unique in the class of
extensions that would be termed multi-adjoint as the
analysis we carried out for the quartic adjoint demonstrates.
It is not clear whether there is a parallel theory in four
dimensions that is asymptotically free due to the two-loop β
function for which the bi-adjoint six-dimensional scalar
field theory is the underlying laboratory. It was noted in
[41] that a necessary condition for this is non-Abelian
gauge fields.
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APPENDIX: FULL RESULTS
FOR QUARTIC ADJOINT

In this appendix we record the full expressions for the
renormalization group functions of the quartic adjoint
scalar theory which uses similar notation to that used for
the parallel expressions of the bi-adjoint case. First the field
anomalous and mass anomalous dimensions are

γϕðgÞ ¼ −C1C2C3C4

g2

12
− 19C2

1C
2
2C

2
3C

2
4

g4

864
− 40421C3

1C
3
2C

3
3C

3
4

g6

3981312

þ ½1910ζ3C4
1C

4
2C

4
3C

4
4N1N2N3N4 þ 9ζ4C4

1C
4
2C

4
3C

4
4N1N2N3N4

−320ζ5C4
1C

4
2C

4
3C

4
4N1N2N3N4 − 150934C4

1C
4
2C

4
3C

4
4N1N2N3N4

þ528ζ3C4
1C

4
2C

4
3dð4Þ44N1N2N3 − 216ζ4C4

1C
4
2C

4
3dð4Þ44N1N2N3

−3840ζ5C4
1C

4
2C

4
3dð4Þ44N1N2N3 þ 3744C4

1C
4
2C

4
3dð4Þ44N1N2N3

þ528ζ3C4
1C

4
2C

4
4dð3Þ44N1N2N4 − 216ζ4C4

1C
4
2C

4
4dð3Þ44N1N2N4

−3840ζ5C4
1C

4
2C

4
4dð3Þ44N1N2N4 þ 3744C4

1C
4
2C

4
4dð3Þ44N1N2N4

þ14976ζ3C4
1C

4
2dð3Þ44dð4Þ44N1N2 þ 5184ζ4C4

1C
4
2dð3Þ44dð4Þ44N1N2

−46080ζ5C4
1C

4
2dð3Þ44dð4Þ44N1N2 þ 29952C4

1C
4
2dð3Þ44dð4Þ44N1N2

þ528ζ3C4
1C

4
3C

4
4dð2Þ44N1N3N4 − 216ζ4C4

1C
4
3C

4
4dð2Þ44N1N3N4

−3840ζ5C4
1C

4
3C

4
4dð2Þ44N1N3N4 þ 3744C4

1C
4
3C

4
4dð2Þ44N1N3N4

þ14976ζ3C4
1C

4
3dð2Þ44dð4Þ44N1N3 þ 5184ζ4C4

1C
4
3dð2Þ44dð4Þ44N1N3

−46080ζ5C4
1C

4
3dð2Þ44dð4Þ44N1N3 þ 29952C4

1C
4
3dð2Þ44dð4Þ44N1N3

þ14976ζ3C4
1C

4
4dð2Þ44dð3Þ44N1N4 þ 5184ζ4C4

1C
4
4dð2Þ44dð3Þ44N1N4

−46080ζ5C4
1C

4
4dð2Þ44dð3Þ44N1N4 þ 29952C4

1C
4
4dð2Þ44dð3Þ44N1N4

−27648ζ3C4
1dð2Þ44dð3Þ44dð4Þ44N1 − 124416ζ4C4

1dð2Þ44dð3Þ44dð4Þ44N1

−552960ζ5C4
1dð2Þ44dð3Þ44dð4Þ44N1 þ 718848C4

1dð2Þ44dð3Þ44dð4Þ44N1

þ528ζ3C4
2C

4
3C

4
4dð1Þ44N2N3N4 − 216ζ4C4

2C
4
3C

4
4dð1Þ44N2N3N4

−3840ζ5C4
2C

4
3C

4
4dð1Þ44N2N3N4 þ 3744C4

2C
4
3C

4
4dð1Þ44N2N3N4

þ14976ζ3C4
2C

4
3dð1Þ44dð4Þ44N2N3 þ 5184ζ4C4

2C
4
3dð1Þ44dð4Þ44N2N3

−46080ζ5C4
2C

4
3dð1Þ44dð4Þ44N2N3 þ 29952C4

2C
4
3dð1Þ44dð4Þ44N2N3

þ14976ζ3C4
2C

4
4dð1Þ44dð3Þ44N2N4 þ 5184ζ4C4

2C
4
4dð1Þ44dð3Þ44N2N4

−46080ζ5C4
2C

4
4dð1Þ44dð3Þ44N2N4 þ 29952C4

2C
4
4dð1Þ44dð3Þ44N2N4

−27648ζ3C4
2dð1Þ44dð3Þ44dð4Þ44N2 − 124416ζ4C4

2dð1Þ44dð3Þ44dð4Þ44N2

−552960ζ5C4
2dð1Þ44dð3Þ44dð4Þ44N2 þ 718848C4

2dð1Þ44dð3Þ44dð4Þ44N2

þ14976ζ3C4
3C

4
4dð1Þ44dð2Þ44N3N4 þ 5184ζ4C4

3C
4
4dð1Þ44dð2Þ44N3N4
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−46080ζ5C4
3C

4
4dð1Þ44dð2Þ44N3N4 þ 29952C4

3C
4
4dð1Þ44dð2Þ44N3N4

−27648ζ3C4
3dð1Þ44dð2Þ44dð4Þ44N3 − 124416ζ4C4

3dð1Þ44dð2Þ44dð4Þ44N3

−552960ζ5C4
3dð1Þ44dð2Þ44dð4Þ44N3 þ 718848C4

3dð1Þ44dð2Þ44dð4Þ44N3

−27648ζ3C4
4dð1Þ44dð2Þ44dð3Þ44N4 − 124416ζ4C4

4dð1Þ44dð2Þ44dð3Þ44N4

−552960ζ5C4
4dð1Þ44dð2Þ44dð3Þ44N4 þ 718848C4

4dð1Þ44dð2Þ44dð3Þ44N4

þ4644864ζ3dð1Þ44dð2Þ44dð3Þ44dð4Þ44 þ 2985984ζ4dð1Þ44dð2Þ44dð3Þ44dð4Þ44

−6635520ζ5dð1Þ44dð2Þ44dð3Þ44dð4Þ44�
g8

23887872N1N2N3N4

þOðg10Þ ðA1Þ

and

γmðgÞ ¼ −C1C2C3C4

g2

2
þ C2

1C
2
2C

2
3C

2
4

g4

96
þ C3

1C
3
2C

3
3C

3
4½3024ζ3 − 43537� g6

221184

þ ½−619077ζ3C4
1C

4
2C

4
3C

4
4N1N2N3N4 − 91800ζ4C4

1C
4
2C

4
3C

4
4N1N2N3N4

−177630ζ5C4
1C

4
2C

4
3C

4
4N1N2N3N4 þ 2070250C4

1C
4
2C

4
3C

4
4N1N2N3N4

þ14544ζ3C4
1C

4
2C

4
3dð4Þ44N1N2N3 − 1296ζ4C4

1C
4
2C

4
3dð4Þ44N1N2N3

−39600ζ5C4
1C

4
2C

4
3dð4Þ44N1N2N3 þ 34128C4

1C
4
2C

4
3dð4Þ44N1N2N3

þ14544ζ3C4
1C

4
2C

4
4dð3Þ44N1N2N4 − 1296ζ4C4

1C
4
2C

4
4dð3Þ44N1N2N4

−39600ζ5C4
1C

4
2C

4
4dð3Þ44N1N2N4 þ 34128C4

1C
4
2C

4
4dð3Þ44N1N2N4

þ231552ζ3C4
1C

4
2dð3Þ44dð4Þ44N1N2 þ 31104ζ4C4

1C
4
2dð3Þ44dð4Þ44N1N2

−293760ζ5C4
1C

4
2dð3Þ44dð4Þ44N1N2 þ 273024C4

1C
4
2dð3Þ44dð4Þ44N1N2

þ14544ζ3C4
1C

4
3C

4
4dð2Þ44N1N3N4 − 1296ζ4C4

1C
4
3C

4
4dð2Þ44N1N3N4

−39600ζ5C4
1C

4
3C

4
4dð2Þ44N1N3N4 þ 34128C4

1C
4
3C

4
4dð2Þ44N1N3N4

þ231552ζ3C4
1C

4
3dð2Þ44dð4Þ44N1N3 þ 31104ζ4C4

1C
4
3dð2Þ44dð4Þ44N1N3

−293760ζ5C4
1C

4
3dð2Þ44dð4Þ44N1N3 þ 273024C4

1C
4
3dð2Þ44dð4Þ44N1N3

þ231552ζ3C4
1C

4
4dð2Þ44dð3Þ44N1N4 þ 31104ζ4C4

1C
4
4dð2Þ44dð3Þ44N1N4

−293760ζ5C4
1C

4
4dð2Þ44dð3Þ44N1N4 þ 273024C4

1C
4
4dð2Þ44dð3Þ44N1N4

þ1410048ζ3C4
1dð2Þ44dð3Þ44dð4Þ44N1 − 746496ζ4C4

1dð2Þ44dð3Þ44dð4Þ44N1

−7879680ζ5C4
1dð2Þ44dð3Þ44dð4Þ44N1 þ 6552576C4

1dð2Þ44dð3Þ44dð4Þ44N1

þ14544ζ3C4
2C

4
3C

4
4dð1Þ44N2N3N4 − 1296ζ4C4

2C
4
3C

4
4dð1Þ44N2N3N4

−39600ζ5C4
2C

4
3C

4
4dð1Þ44N2N3N4 þ 34128C4

2C
4
3C

4
4dð1Þ44N2N3N4

þ231552ζ3C4
2C

4
3dð1Þ44dð4Þ44N2N3 þ 31104ζ4C4

2C
4
3dð1Þ44dð4Þ44N2N3

−293760ζ5C4
2C

4
3dð1Þ44dð4Þ44N2N3 þ 273024C4

2C
4
3dð1Þ44dð4Þ44N2N3

þ231552ζ3C4
2C

4
4dð1Þ44dð3Þ44N2N4 þ 31104ζ4C4

2C
4
4dð1Þ44dð3Þ44N2N4

−293760ζ5C4
2C

4
4dð1Þ44dð3Þ44N2N4 þ 273024C4

2C
4
4dð1Þ44dð3Þ44N2N4

þ1410048ζ3C4
2dð1Þ44dð3Þ44dð4Þ44N2 − 746496ζ4C4

2dð1Þ44dð3Þ44dð4Þ44N2
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−7879680ζ5C4
2dð1Þ44dð3Þ44dð4Þ44N2 þ 6552576C4

2dð1Þ44dð3Þ44dð4Þ44N2

þ231552ζ3C4
3C

4
4dð1Þ44dð2Þ44N3N4 þ 31104ζ4C4

3C
4
4dð1Þ44dð2Þ44N3N4

−293760ζ5C4
3C

4
4dð1Þ44dð2Þ44N3N4 þ 273024C4

3C
4
4dð1Þ44dð2Þ44N3N4

þ1410048ζ3C4
3dð1Þ44dð2Þ44dð4Þ44N3 − 746496ζ4C4

3dð1Þ44dð2Þ44dð4Þ44N3

−7879680ζ5C4
3dð1Þ44dð2Þ44dð4Þ44N3 þ 6552576C4

3dð1Þ44dð2Þ44dð4Þ44N3

þ1410048ζ3C4
4dð1Þ44dð2Þ44dð3Þ44N4 − 746496ζ4C4

4dð1Þ44dð2Þ44dð3Þ44N4

−7879680ζ5C4
4dð1Þ44dð2Þ44dð3Þ44N4 þ 6552576C4

4dð1Þ44dð2Þ44dð3Þ44N4

þ49766400ζ3dð1Þ44dð2Þ44dð3Þ44dð4Þ44 þ 17915904ζ4dð1Þ44dð2Þ44dð3Þ44dð4Þ44

þ9953280ζ5dð1Þ44dð2Þ44dð3Þ44dð4Þ44�
g8

23887872N1N2N3N4

þOðg10Þ: ðA2Þ

Finally, the β function is

βðgÞ ¼ −3C1C2C3C4

g3

32
− 467C2

1C
2
2C

2
3C

2
4

g5

18432

þ ½48ζ3C4
1C

4
2C

4
3C

4
4N1N2N3N4 − 125981C4

1C
4
2C

4
3C

4
4N1N2N3N4

−1152ζ3C4
1C

4
2C

4
3dð4Þ44N1N2N3 þ 3456C4

1C
4
2C

4
3dð4Þ44N1N2N3

−1152ζ3C4
1C

4
2C

4
4dð3Þ44N1N2N4 þ 3456C4

1C
4
2C

4
4dð3Þ44N1N2N4

þ27648ζ3C4
1C

4
2dð3Þ44dð4Þ44N1N2 þ 27648C4

1C
4
2dð3Þ44dð4Þ44N1N2

−1152ζ3C4
1C

4
3C

4
4dð2Þ44N1N3N4 þ 3456C4

1C
4
3C

4
4dð2Þ44N1N3N4

þ27648ζ3C4
1C

4
3dð2Þ44dð4Þ44N1N3 þ 27648C4

1C
4
3dð2Þ44dð4Þ44N1N3

þ27648ζ3C4
1C

4
4dð2Þ44dð3Þ44N1N4 þ 27648C4

1C
4
4dð2Þ44dð3Þ44N1N4

−663552ζ3C4
1dð2Þ44dð3Þ44dð4Þ44N1 þ 663552C4

1dð2Þ44dð3Þ44dð4Þ44N1

−1152ζ3C4
2C

4
3C

4
4dð1Þ44N2N3N4 þ 3456C4

2C
4
3C

4
4dð1Þ44N2N3N4

þ27648ζ3C4
2C

4
3dð1Þ44dð4Þ44N2N3 þ 27648C4

2C
4
3dð1Þ44dð4Þ44N2N3

þ27648ζ3C4
2C

4
4dð1Þ44dð3Þ44N2N4 þ 27648C4

2C
4
4dð1Þ44dð3Þ44N2N4

−663552ζ3C4
2dð1Þ44dð3Þ44dð4Þ44N2 þ 663552C4

2dð1Þ44dð3Þ44dð4Þ44N2

þ27648ζ3C4
3C

4
4dð1Þ44dð2Þ44N3N4 þ 27648C4

3C
4
4dð1Þ44dð2Þ44N3N4

−663552ζ3C4
3dð1Þ44dð2Þ44dð4Þ44N3 þ 663552C4

3dð1Þ44dð2Þ44dð4Þ44N3

−663552ζ3C4
4dð1Þ44dð2Þ44dð3Þ44N4 þ 663552C4

4dð1Þ44dð2Þ44dð3Þ44N4

þ15925248ζ3dð1Þ44dð2Þ44dð3Þ44dð4Þ44�
g7

10616832C1C2C3C4N1N2N3N4

þ ½394304ζ3C4
1C

4
2C

4
3C

4
4N1N2N3N4 − 15552C4

1C
4
2C

4
3C

4
4N1N2N3N4ζ4

þ325120C4
1C

4
2C

4
3C

4
4N1N2N3N4ζ5 − 134800515C4

1C
4
2C

4
3C

4
4N1N2N3N4

−5373696ζ3C4
1C

4
2C

4
3dð4Þ44N1N2N3 þ 373248ζ4C4

1C
4
2C

4
3dð4Þ44N1N2N3
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þ4592640ζ5C4
1C

4
2C

4
3dð4Þ44N1N2N3 þ 3780864C4

1C
4
2C

4
3dð4Þ44N1N2N3

−5373696ζ3C4
1C

4
2C

4
4dð3Þ44N1N2N4 þ 373248ζ4C4

1C
4
2C

4
4dð3Þ44N1N2N4

þ4592640ζ5C4
1C

4
2C

4
4dð3Þ44N1N2N4 þ 3780864C4

1C
4
2C

4
4dð3Þ44N1N2N4

−37361664ζ3C4
1C

4
2dð3Þ44dð4Þ44N1N2 − 8957952ζ4C4

1C
4
2dð3Þ44dð4Þ44N1N2

þ79994880ζ5C4
1C

4
2dð3Þ44dð4Þ44N1N2 þ 31574016C4

1C
4
2dð3Þ44dð4Þ44N1N2

−5373696ζ3C4
1C

4
3C

4
4dð2Þ44N1N3N4 þ 373248ζ4C4

1C
4
3C

4
4dð2Þ44N1N3N4

þ4592640ζ5C4
1C

4
3C

4
4dð2Þ44N1N3N4 þ 3780864C4

1C
4
3C

4
4dð2Þ44N1N3N4

−37361664ζ3C4
1C

4
3dð2Þ44dð4Þ44N1N3 − 8957952ζ4C4

1C
4
3dð2Þ44dð4Þ44N1N3

þ79994880ζ5C4
1C

4
3dð2Þ44dð4Þ44N1N3 þ 31574016C4

1C
4
3dð2Þ44dð4Þ44N1N3

−37361664ζ3C4
1C

4
4dð2Þ44dð3Þ44N1N4 − 8957952ζ4C4

1C
4
4dð2Þ44dð3Þ44N1N4

þ79994880ζ5C4
1C

4
4dð2Þ44dð3Þ44N1N4 þ 31574016C4

1C
4
4dð2Þ44dð3Þ44N1N4

−1895546880ζ3C4
1dð2Þ44dð3Þ44dð4Þ44N1 þ 214990848ζ4C4

1dð2Þ44dð3Þ44dð4Þ44N1

þ1159004160ζ5C4
1dð2Þ44dð3Þ44dð4Þ44N1 þ 630374400C4

1dð2Þ44dð3Þ44dð4Þ44N1

−5373696ζ3C4
2C

4
3C

4
4dð1Þ44N2N3N4 þ 373248ζ4C4

2C
4
3C

4
4dð1Þ44N2N3N4

þ4592640ζ5C4
2C

4
3C

4
4dð1Þ44N2N3N4 þ 3780864C4

2C
4
3C

4
4dð1Þ44N2N3N4

−37361664ζ3C4
2C

4
3dð1Þ44dð4Þ44N2N3 − 8957952ζ4C4

2C
4
3dð1Þ44dð4Þ44N2N3

þ79994880ζ5C4
2C

4
3dð1Þ44dð4Þ44N2N3 þ 31574016C4

2C
4
3dð1Þ44dð4Þ44N2N3

−37361664ζ3C4
2C

4
4dð1Þ44dð3Þ44N2N4 − 8957952ζ4C4

2C
4
4dð1Þ44dð3Þ44N2N4

þ79994880ζ5C4
2C

4
4dð1Þ44dð3Þ44N2N4 þ 31574016C4

2C
4
4dð1Þ44dð3Þ44N2N4

−1895546880ζ3C4
2dð1Þ44dð3Þ44dð4Þ44N2 þ 214990848ζ4C4

2dð1Þ44dð3Þ44dð4Þ44N2

þ1159004160ζ5C4
2dð1Þ44dð3Þ44dð4Þ44N2 þ 630374400C4

2dð1Þ44dð3Þ44dð4Þ44N2

−37361664ζ3C4
3C

4
4dð1Þ44dð2Þ44N3N4 − 8957952ζ4C4

3C
4
4dð1Þ44dð2Þ44N3N4

þ79994880ζ5C4
3C

4
4dð1Þ44dð2Þ44N3N4 þ 31574016C4

3C
4
4dð1Þ44dð2Þ44N3N4

−1895546880ζ3C4
3dð1Þ44dð2Þ44dð4Þ44N3 þ 214990848ζ4C4

3dð1Þ44dð2Þ44dð4Þ44N3

þ1159004160ζ5C4
3dð1Þ44dð2Þ44dð4Þ44N3 þ 630374400C4

3dð1Þ44dð2Þ44dð4Þ44N3

−1895546880ζ3C4
4dð1Þ44dð2Þ44dð3Þ44N4 þ 214990848ζ4C4

4dð1Þ44dð2Þ44dð3Þ44N4

þ1159004160ζ5C4
4dð1Þ44dð2Þ44dð3Þ44N4 þ 630374400C4

4dð1Þ44dð2Þ44dð3Þ44N4

−3301834752ζ3dð1Þ44dð2Þ44dð3Þ44dð4Þ44 − 5159780352ζ4dð1Þ44dð2Þ44dð3Þ44dð4Þ44

þ24418713600ζ5dð1Þ44dð2Þ44dð3Þ44dð4Þ44�
g9

18345885696N1N2N3N4

:

þOðg11Þ ðA3Þ
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