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We renormalize a six-dimensional cubic theory to four loops in the modified minimal subtraction (MS)
scheme where the scalar is in a bi-adjoint representation. The underlying model was originally derived in a
problem relating to gravity being a double copy of Yang-Mills theory. As a field theory in its own right we
find that it has a curious property in that while unexpectedly there is no one-loop contribution to the
function the two-loop coefficient is negative. It therefore represents an example where asymptotic freedom
is determined by the rwo-loop term of the f# function. We also examine a multi-adjoint cubic theory in order
to see whether this is a more universal property of these models.
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I. INTRODUCTION

Scalar ¢ theory in six dimensions has proved to be a
useful laboratory or tool to explore major ideas in quantum
field theory. For instance, after the discovery of asymptotic
freedom in quantum chromodynamics (QCD) [1,2], it was
used as a testing ground to study the implications of
this property. This was because it was shown that six-
dimensional ¢* theory was renormalizable and also asymp-
totically free [3]. In other words the consequences of
this characteristic of non-Abelian gauge theories could
be explored in a simple environment without the
complications of the gauge structure. One reason why
higher-dimensional theories might be of interest for lower-
dimensional ones is that the ultraviolet behavior of one
theory could be related to the infrared dynamics of another
[4,5]. That idea has yet to be realized concretely in the
gauge theory context. However in the case of scalar ¢?
theory, where the calculations were easier to carry out, it
has been used to explore certain infrared ideas associated
with the strong interactions. For instance, it has proved
useful as a toy model of Regge theory but in six dimensions
where ladder diagrams were analyzed in order to gain
insight into the Regge slope. Several articles in this
direction in ¢’ theory are [6-8], for example. Clearly there
are limitations to such exercises. The obvious one is that of
an unphysical spacetime dimension. A more serious one is
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the lack of a bounded Hamiltonian which means that true
bound state analyses could not be fully credible. Despite
this the theory played a valuable role as a sounding board
for exploring new ideas in a gauge theory. Other applica-
tions of cubic scalar theory lie mainly in condensed matter
physics and in particular critical phenomena. For instance
various decorations of the scalar field with different
symmetries allowed the critical exponents that relate to
percolation and the Lee-Yang edge singularity problems
[9-11] to be determined very accurately in the € expansion
in integer dimensions below six.

More recently another perhaps surprising example of the
connection a cubic scalar theory has with physics has
emerged. In [12,13] the idea that on-shell gravity could be
interpreted as a double copy of Yang-Mills theory was
initially put forward and generated a large amount of
interest. For instance it was shown that there was a relation
between the product of Yang-Mills n-point functions and
the corresponding on-shell gravity amplitudes representing
a connection with the Kawai-Lewellen-Tye relations [14].
This double copy of Yang-Mills theory appears to be
widely accepted as an interesting interpretation and clearly
is a direction to pursue in the quest for a theory of quantum
gravity. One consequence of the double copy vision was the
connection with a scalar field endowed with a bi-adjoint
symmetry, [15,16], although the gravity connection with a
scalar cubic interaction was observed earlier in [17]. For
instance in [15] it was shown that scattering amplitudes of
the double copy theory could be related to the gluonic ones
in pure Yang-Mills theory. Another direction that was
followed in [18,19] was to study classical solutions of a
linearized version of Yang-Mills theory and their relation to
double copies of scalar fields in the bi-adjoint cubic theory.
These ideas were explored further in [20,21] where new
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solutions were found further strengthening the double copy
correspondence concept.

While most of these studies were classical it is worth
investigating the underlying quantum field theory in its own
right to ascertain whether it has any other interesting proper-
ties. That is the purpose of this article. In particular we will
renormalize the theory to four loops in six dimensions and
deduce the renormalization group functions. Doing so will
reveal a curious feature. It will transpire that for general Lie
groups the one-loop coefficient of the f function vanishes
despite there being a one-loop contribution to the 3-point
vertex function. This is a rather unusual and rare situation in a
renormalizable theory although it is known that the one-loop
term of renormalization group functions, other than the f
function, can be zero in other models. What makes this bi-
adjoint theory even more intriguing is that the nonzero two-
loop p-function coefficient is negative. Therefore this model
appears to be one of the few cases where the property of
asymptotic freedom is determined purely from the two-loop
term of the f function. We will explore some of the basic
consequences of this property as well as finding the under-
lying reason why it emerges. As part of this investigation we
will renormalize a generalization of the bi-adjoint model by
allowing the field to take values in the adjoint representation
of four (different) Lie groups which we will refer to as the
quartic adjoint model.

The article is organized as follows. The background to the
properties of the bi-adjoint cubic scalar theory such as the
group theory connected with the computation is discussed in
Sec. II. That will also include the details of how we
performed the computation, the results of which are dis-
cussed in Sec. III. The generalization to the quartic adjoint
model is provided in the next section before the concluding
remarks of Sec. V. An appendix records full details of the
renormalization group functions of the quartic adjoint model.

II. BACKGROUND

To begin with we define the six-dimensional Lagrangian
for the bi-adjoint cubic scalar theory that was derived from
solutions of linearized Yang-Mills theory and related to the
double copy of gravity. If we denote the basic scalar field
by ¢“1“2 then the Lagrangian is, for example from [19,20],

1 9
L =— aja,\2 J ra\bycy fabrcy payay b by ciea 2.1
S (@2 L poabie puubses g gz (2.1)

Given that the fields take values in the group G; x G,, we
use a different notation from [19,20] as we will carry out a
more general analysis subsequently. Therefore we note that
the numerical label on the adjoint indices will correspond to
the label on the respective subgroups in the overall
symmetry group. The roman letter that carries that label
is the one that is summed over in any repetition. Moreover
these indices will run over a set whose dimension is the
dimension of the adjoint representation of the respective
group and denoted by N;. So for instance 1 < a; < N; and

1 < by, < N, or in more general terms 1 < a;, b;, ¢;, d; <
N, for each i. In other words
0% = N; (2.2)
where there is never a sum over the repeated label i which
indicates the specific group. If G; = SU(N,.) for example
then N, = N2 — 1 corresponding to the dimension of the
adjoint representation. The respective structure functions of
each group appearing in (2.1) are f%%i for i = 1 and 2. As
we will be carrying out loop computations it is worth
discussing related group theory quantities that will appear
later. For example, we use a compact notation for the
Casimirs of each with
fu,-c',-d,-fbicidi — Ci(suibi (23)
for each i. Ordinarily one uses C, or C,(G) where A denotes
the adjoint representation of the group G for what we now
denote by C;. It is not necessary however to include the
representation designation since the adjoint will be used
throughout the article unless stated otherwise. Beyond the
first few loop orders higher rank group Casimirs will appear.
This was noted when the four-loop f function of QCD was
determined in [22] and a comprehensive study was under-
taken in [23] of general Lie group Casimirs in the context of
perturbative computations. We briefly summarize the rel-
evant aspects that are needed here. For instance the fully
symmetric rank 4 tensor defined by [23]
dyghe = éTr(T}l{i T Ty Ty) (2.4)
will arise. Here we revert momentarily to representation R; of
the group G; as (2.4) involves the group generators T?ei»
Within the computation the contracted product of these
tensors will produce additional group Casmirs independent
of C;. At four loops in Yang-Mills theory the only combi-
nation that appears turns out to be the simple product [23]
d([)44 — d;’iibicididzl‘bicidi (25)
in our notation where the bracketed label is used to avoid any
potential ambiguity with the tensor rank when products of
more groups are considered and A denotes the adjoint
representation. In the four-loop QCD f function [23] by

boc.d
contrast, products of dg "

representations also arise. As a reference point for results that
appear later we recall that for SU(N ) [23]

in the fundamental and adjoint

_ NZ[N? + 36

N; 2.6
<IN, 2.6)

dj)aa
and we have not substituted the explicit value for N; as that
quantity appears in the results for a general Lie group which
is what we use throughout. Higher rank tensors beyond (2.4)
have been discussed in [23]. A secondary motivation for
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studying the renormalization of (2.1) at large loop order is to
ascertain whether such rank 4 tensor Casimirs first appear at
the same loop order as that of QCD or not. In terms of other
aspects of (2.1) for ease of comparison we retain the
conventions that were used in [24]. In particular in [24]
the sign of the coupling constant g was opposite to that used
in earlier work by others such as [3,25-27]. There ought not
to be difficulty in translating where necessary.

Before renormalizing (2.1) we recall our notation. First if
we denote bare entities with a subscript o then their relation
to the renormalized counterparts are

B = 2,

in six dimensions. However we will dimensionally regu-
larize (2.1) in d = 6 — 2¢ dimensions and determine the
renormalization group functions in the MS scheme. To find
Z, and Z,; to four-loop order we have to compute the 2- and
3-point functions and we will follow the algorithm used in
[24] where more details of the technicalities of this exercise
can be found. However given the presence of the structure
constants in the interaction, we have had to adapt that
method to determine Z, in particular. For example there are
540 Feynman graphs to evaluate for the four-loop vertex
function which is a large number to handle. To circumvent
this a shortcut was exploited which was to generate these
and lower-loop vertex graphs from the 2-point graphs by
applying a simple mapping to each propagator. In other
words setting

9o =249 (2.7)

1 1 A
and retaining only terms with zero or one power of the
parameter A, means that the O(1) terms will formally
correspond to 3-point function graphs where one external
momentum is set to zero [24]. In six dimensions this is
infrared safe and evaluating all the graphs that are O(4) will
produce the full 3-point function to that loop order. While
this simple mapping is the essence of what one needs to do
at the level of the graph generation, it is not sufficient for
(2.1) as the group theory factors need to be accommodated.
To achieve this we adapt (2.8) by including the group
structure of the propagator as well as the inserted vertex to
produce the mapping for (2.1)

1 1 A
Pﬁalbléazbz N Péalbléazbz 4 ﬁfﬂlb]c]]wzbzcz
where ¢{ are the external indices of the inserted leg of the
generated 3-point function. One benefit of using this tech-
nique is that there are only 64 four-loop graphs in the 2-point
function and the insertion does not change the underlying
graph topology. This is important and leads to a more
efficient computation since the same integration subroutine
for that topology can be used to determine the divergences of
the 2-point graph and its associated 3-point one where there is

(2.9)

a nullified insertion on each propagator. While we have not
included a mass term in (2.1) we can still compute the
anomalous dimension of the mass by inserting the mass
operator % @12 ¢p*1%2 in a 2-point function. The renormaliza-
tion constant associated with this operator is equivalent to
that of the mass itself which we denote by Z,,. Therefore we
can directly use (2.8) to determine Z,, as well as Z,,.

The computational strategy to evaluate the graphs of the
2- and 3-point functions is to use the Laporta integration by
parts algorithm, [28]. This constructs relations between a
set of Feynman integrals that can be algebraically solved in
such a way that all the integrals are related to a relatively
small set. These are termed the master integrals and have to
be evaluated directly. In our case since all the 2-point four-
loop master integrals are available in four dimensions [29]
it was possible to connect these to the ones that emerge in
our six-dimensional computation [24]. This is achieved by
the Tarasov method [30,31] whereby integrals in d dimen-
sions can be related to the (d + 2)-dimesional integral with
the same topology and other topologies where one or more
edges have been removed. Therefore the four-loop six-
dimensional masters were deduced in [24].

To effect the Laporta algorithm we used the REDUZE
implementation [32,33]. A useful feature of the package is
that it allows the database that is generated to be written in
the symbolic language FORM [34,35]. This is important
since we have written an automatic program in FORM (o
carry out the full computation. In particular the contributing
Feynman graphs are generated with the QGRAF package [36]
and the topology mapping appended. This allows the
automatic program to proceed since the integration of each
topology follows a separate path. The final stage is the
summation of all the graphs and the implementation of the
automatic renormalization to deduce Z,, Z,, and Z,. To do
this we follow [37] which means that the graphs are
evaluated with bare parameters with the renormalization
constants (2.7) being introduced at the end. For instance the
2-point function is multiplied overall by Z, which allows
one to deduce the unknown counterterms. Equally for the
extraction of the mass and coupling constant renormaliza-
tion constants the parameter 4 in each of (2.8) and (2.9) are
multiplied by Z,, and Z,,/Z,, respectively. One major tool
that was used to carry out the manipulation of the large
number of structure functions present at each vertex was the
color.hpackage written in FORM and available from [34].
It encodes the group theory discussed in [23] in an efficient
way particularly for the three- and four-loop graphs.

III. RESULTS

Having outlined our computational strategy we can now
record the outcome of determining Z,, Z,, and Z,, that lead
to the respective renormalization group functions y,(g),
vm(g) and B(g) in the MS scheme. First the anomalous
dimension of the scalar field is
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7 Sg » 827¢° 3 3
19l0) = ~ 501G~ 353 O~ g CICH
- 9430‘,‘031\111\12 576¢5Cld(

2aalNy = 25928, Cd 14Ny — 11520¢5C4d,

[1032¢3C}C3N N, + 108£4,CICIN N, — 960¢5C1C3N | N,

244Ny + 14976CHd 44N,

— 576£5Cid1)N> — 25924’4C‘2‘d<1)44N2 — 1152085 Cid 114N, + 14976C4d 1)44N2 + 967688 3d 1 asd 2y
8
9 10
62208 d(2)44 — 138240 d —— 40 3.1
+ Cad(1)a4d(2)a4 Csd(1)44 (2)44] 197664N N, +0(9"") (3.1)

where {, denotes the Riemann zeta function and we note that the rank 4 group tensors first appear at four loops. For the mass

anomalous dimension we find

5¢* CiC3g°
Ym(g) = %2 G+ g C3C3 + [432¢5 — 2203] 11383*2 + [127764¢3C1C3N | N, + 1944,C1CIN N,
— 25164005C{CIN| N, + 255517C{CAN | N5 + 8812803C1d 2)asN| — 466560, Cd 244N
— 492480 5Cd(2)4aN | + 409536C1d(2)4a N + 8812803C3d 1)44N, — 466564, Cadl 1144
— 49248085 C3d 1)44N2 + 409536C3d 1)44N2 + 311040083d 144 2aa + 11197448 4d (11444 2104
8
g 10
22 SRR SN— 2
+ 62208085 1ya4d 4] 355000n v, T O 52

where the higher order Casimirs first appear at the same order.

To complete the set, the four-loop £ function is

54

202
1152CC

Blg) =

~2592¢3C4d 1)4sN> + 2592C3d

44N, + 622085

+ [10853CHCAN N, — 161CCEN | Ny — 259283Cd(2)uNy + 2592Cd 244N,

g7

d
Daadejad] 41472C,C,N N,

+ [~3689285C4CAN | N, + 518400L5C+CAN N, — 101089C*C4N| N,
~34836485Cd 244N + 62208008 5CHd 244N — 2363904Cd (234N
—34836485C3d 144N, + 622080085 Cid 144N, — 2363904C4d 134N,

~95551488C3d1)44d 2)a4 + 119439360 54l

This has the unusual feature in that the first nonzero term is
at two loops rather than one loop. This is not the first or only
case of the first term of a renormalization group function in a
fully renormalizable field theory being absent. For instance,
while the field anomalous dimension in four-dimensional
¢* theory is zero at one loop this is for the simple reason that
the only graph contributing to the 2-point function is a snail.
Therefore it is independent of the external momentum and
its divergence contributes to the mass renormalization only.
Here the situation is different in that the only one-loop graph
of the 3-point vertex is divergent but the residue of the
simple pole is exactly cancelled by the contribution from the
wave function renormalization. This is not the case for other
symmetry decorations of the scalar field in scalar ¢ theory
in six dimensions [3,26,27]. This curious property has an
interesting consequence which is that since the coefficient of
the now leading two-loop term of f(g) is negative then the

9
1444 (2)4 ot

0(g"). 3.3
2assisTav .y, 0 (33)

I
theory is asymptotically free. Ordinarily when this is a
feature of other field theories it is purely from the one-loop
term [1,2]. We note at this point that this sign of the two-loop
term would have emerged irrespective of the coupling
constant sign convention alluded to earlier. One comment
that deserves mention at this point concerns the scheme
dependence of this particular § function. Even though the
one-loop term is zero the three-loop term of S(g) still
depends on the renormalization scheme. Unlike the other
two renormalization group functions the rank 4 Casimirs
first appear at three loops in the f function rather than four.
This is one order earlier than that of QCD [22].

To gain more insight into the consequences of there
being no one-loop term of the f function, it is worth
focusing on the case when both groups G, and G, are the
same which we will denote by G. In this case (3.1), (3.2)
and (3.3) become
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Cig® 5Clg* 821C%¢°

r3 %(g) = - > " a2 " oassaz T [1032¢3C8NT — 115245Cd(1)aaN + 96768C3d(21)44 + 108¢,C8N?
— 5184¢,Cld(1)aaN | + 62208L4d7,,, — 96055 CENT — 2304085 Cld(1)0aN — 138240857, — 943CINT
+29952C1d 144N ] 49769241\[% +0(g"), (3.4)
GxG(,\ _ Clg® | 5Cig* 6 ¢° 8 A2 4 2
Y O(9) = ———+ s T O [432¢5 — 2203] Ehi [127764£3CENT + 17625643C1d 1)4aNy + 31104008347, ),
+ 1944¢,CiNT — 93312, Cld 1Ny + 1119744¢,d2,, — 25164005 CENT — 98496085 Cd(1)asN
+ 622080g5df1>44 + 255517C{NT + 819072C1d 144N 1] 149299892]\,% + 0(¢') (3.5)
and
pC(g) = - slclg + [108¢3CEN — 5184¢3CHd 144N | + 62208052, — 161CENG + 5184CTd 1144 ﬁ;]\ﬂ
1°'1

+ [~36892803 C§N? — 696729603C1d 14uN1 — 95551488L5d? ,, + S18400L5CENT + 1244160085 Ctd 1144

9

g
+ 1194393600547, ,, — 101089CEN? — 4727808C}d 1144 g+ 0(g"). (3.6)
Specifying to the group SU(3) we deduce
SUG)xSU(3) 3 2 15 4 2481 ¢, g’ 10
Pt T g6 4 07[4992¢, + 17288, — 117 297
vy (9)==259~169 ~1o3a¥ 271499265 +1728¢, 60 +5297] 5 7=+ 0(9"),
SU3)xSU(3) 9 135 q° '
Y (9) =—2 P +—=g* +27[4320; —2203] 2+ 9[299484¢ 3 + 31104¢, — 429840 s +426157) ——— + O(g'°),
27 16 512 2048
45 g7 99
SUBISUG) (g) = ———¢> +9[172 19] == +9[8294400¢ s — 5967648¢ 5 — 1086049] —~— 1 7
i (9) =~ g9 +91728L; +919] = +9[829440075 —~ 596764885 ~ 1086049] 1=+ 0(¢'!) (3.7)
or
75U (g) = —0.75000047 — 0.937500g" — 2.422852¢° + 12.836235¢° + 0(¢'°),
yalBSUG) () — 450000042 + 8.4375004" — 88.789469¢° + 1644.017718¢° + O(g'°),
pSUBISUB) (g) = —0.351562¢° + 52.666775g" + 93.711209¢° + O(g'") (3.8)

numerically. From (3.8) it is clear that there is a Banks-Zaks
fixed point [38] stemming from the opposite signs of the
first two terms of the S function. In fact it is also the case
that a similar fixed point is present for SU(M) x SU(N).
Strictly the fixed point of [38] in QCD derives from the
one- and two-loop scheme independent terms. We use it
here in the sense of the first two nonzero terms although the
second of these is scheme dependent unlike [38]. Moreover
the value of the critical coupling for N = 3 only changes by
around 1% when solving pSUG)*SUG)(g) = 0 at three and

four loops. One of the reasons for providing this example is
to show another interesting consequence of the absence of
the one-loop term. While the renormalization group func-
tions are scheme dependent, one can derive renormalization
group invariants from them. These are critical exponents
that are the evaluation of the functions at a nontrivial fixed
point. One important such fixed point is the Wilson-Fisher
one [39,40], where the critical coupling is defined by
setting the d-dimensional S function to zero and denoted by
g.. So in d = 6 — 2¢ dimensions we have

125022-5
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SU3)xSU(3) — 2’\/_ 2 e
PV Vet o [576C3 +323]e + V/5i[132710422 + 779232¢5 + 92160085 + 271945) —— o0

2
+ [311040¢, — 14332723202 — 96163200¢; — 850608005 — 31005017] 6;% 1 0(é),
. 12
el BPSUE) ’f Ve + 16[432¢; +211] 265 Z;{ [442368¢2 + 233664¢; + 3072005 + 79175)é
2
+2[11085465602 + 5573437285 + 1555208, + 60058800 s + 15279107 1—25 +0(é),

SU(3)xSU(3) 2i\/§ 3 ¢’

® = 2e = 5717285 + 91916 + [35831808C3 -+ 8274528 + 4147200005 -+ 4704487) Tso +0(&)

where 1 = 74(g.): Nm = vm(g.) and @ =2p'(g,). The
main key difference between these exponents and those

from models where there is a nonzero one-loop term is that
the expansion is a function of /e rather than e. In addition
the exponents are complex but this is due to having
assumed ¢ is real and positive. If € were real and negative
then the exponents are real above six dimensions.

Finally we close this section by recalling that solving the
p function as a differential equation determines the func-
tional dependence of the running coupling constant with
the renormalization scale . Therefore we can compare the
running coupling constants in the conventional case where
asymptotic freedom is determined by the one-loop S
function with that for (2.1). For instance, if we formally
define two f functions by

Bi(g1) = =Pigi + O(q).

Po() = —ﬁzgz + 0(9%) (3.10)

then we have

1

B G2/ (.11

gi(u) = -

_ ajarazay 2
L= 5 (@gomes)? 4

Here we have a scalar field which takes values in
the group G; x G, X G3 X G4 and in particular the inter-
action involves the adjoint representation of the group
generators. In (4.1) we use a similar notation to that
introduced for (2.1) where there are now two additional
labels due to the extra groups Gz and G,. Equally the
definition of the group Casimirs have an obvious natural
extension of those given in (2.2), (2.3) and (2.5). We have
followed the same process of renormalizing (4.1) as that

falbl01fazszzfa3bsC3fa4b4C4¢alazasa4¢b1bzb3b4¢ClczC3C4 .

(3.9)

|
for the more conventional one-loop f function. By contrast
solving the second case we find

1

—_—_— (3.12)
28 In (4 /A3)

where A; and A, are the constants of integration. Clearly
both running coupling constants have the same general
behavior in that they tend to zero as 4 — co. However in the
latter case where the one-loop f-function term is absent, the
coupling constant tends to zero at a much slower rate. So if
this model, or one with the same property, was realized in
Nature the constituent particles would only be effectively
free at significantly high energies.

IV. QUARTIC ADJOINT

The absence of a one-loop term in the $ function of (2.1)
is an interesting property. In order to see whether this
property is common to more general scalar ¢ theories with
adjoint decorations, we have repeated the renormalization
exercise for (2.1) for what we will term the quartic adjoint
theory with Lagrangian

(4.1)

[

for (2.1) together with similar consistency checks. There-
fore we move to the discussion of the outcome. With the
additional group structure it transpires that the four-loop
expressions for each of the renormalization group functions
are more involved than those of (2.1). These have been
recorded in the Appendix. Instead we illustrate the structure
in the simpler case of the group G x G x G x G = G* and
find
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—2985984¢,CYd?, N1 + 17915904¢ 4, — 17763045 CION — 158400 5C12d 1144 N
— 1762560053 d?, , N3 —3151872005Cl, Ny +995328005d?, , +2070250C 10N +136512C12d 114N}

+[=619077¢3CION{ 4 581765 C12d (1) N7 + 138931285 C a2, N3

8

9 10
S ) 43
238878728¢ T O (43)

+1638144C} 2, N3 +26210304C1d3, N ]

for the field and mass anomalous dimensions. For the f# function we arrived at

3Cig 467C3 4
G4 - 19 _ 1
7 (9) 32 18432

11592524805, — 125981 CIONY + 13824C12d 144N} +165888C}?, , N}

+ [48L3CIONT —46085C12d 1144 N7 + 1658883 Chd?, |, N3~ 265420885 Cld 4N

7
+2654208C4d3, N1 [394304¢3C 10N~ 21494784¢3C12d 144 N7 — 224169984, C5 2, N3

S
(M 10616832CIN?
— 758218752085 C1d3) 44Ny —3301834752¢3df, ,, — 155528, C1ONT + 14929928, C12d )44 N7
—53747712¢,Cd?) ), N7 +859963392L,Ctd?) N1 —51597803528,d, ,, +32512045CIONY
+18370560¢5C17d(1)44N 7 +479969280¢5Cd?, , N7 +463601664085Cd}, Ny +24418713600¢5d,

g9

18345885696N
+0(g'") (4.4)

— 1348005 15C1ON} + 15123456 C12d 144 N7 + 189444096 CY 2, ,, N3 +2521497600C 2, , N |

and there is no Banks-Zaks fixed point. By contrast to (3.3) and the parallel simplification of (3.6) we note that there is a
nonzero one-loop S-function coefficient unlike the bi-adjoint model. In the general group case this coefficient is a simple

product of C; for i =1 to 4.
In order to compare with the bi-adjoint case we note that specifying to the group SU(3) gives

75/%" (g) = —6.750000¢7 — 144.281250¢" — 5395.552185¢° + 2.4888387 x 10%* + 0(¢'°),

ySuey (g9) = —40.50000¢> + 68.343750g" — 95872.884627¢° + 2.842688 x 10°¢® + 0O(g'?),
pSUGY (g) = —7.593750¢° — 166.231934¢° — 458.39041147 — 95378.353885¢° + O(g'!). (4.5)

With these we can illustrate the difference in the corresponding critical exponents at the Wilson-Fisher fixed point in
d = 6 — 2¢ dimensions by noting that
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suer — 2oy 1L 2 4 oueose, 4 12205 -5 € + [88631400¢; + 44789768, — 115795200C5 + 33923953] _¢
rIN = get g€’ 3 50049 3 4 5 19131876
+ 0(6 )
SU(3)4 - 8 1006 3 _ _
MO = S22 € + [-22390; + 684799 o + 332495520 — 10882512¢, — 288886560
&
14 | 5
+ 1436683139] -~ + O(€").
467 &3
WSV = ¢ — %e (184325 + 28807) 5=+ [~467532144¢5 — 179159047, + 508069440¢5 — 192428981]
4
€ 5
X—17OO6112+0<€ ). (4.6)

The nonzero one-loop S-function coefficient produces the
standard e expansion in contrast to the bi-adjoint case
where the exponents depend on /€.

Having considered a second scalar theory with a group
theory structure similar to that of (2.1) which does not have a
zero one-loop A-function coefficient, it is worth trying to
understand how this arises for (2.1). There are two parts to
determining the renormalization constant Z , that leads to the
S function. These are the divergences from the 2- and 3-point
functions. The former produces the value for Z, directly
whereas the divergences of the latter do not immediately

give Z,. Instead they give the combination Z gZ%). SoforZ,to
have no simple pole at one loop means that the divergence
from the 3-point function must exactly match that of Z,
multiplied by % From the explicit computation we find that
the residue of the one-loop simple pole of the 2-point
function is — 11—2 C,C, whereas that for the 3-point function
is % C,C,. These are clearly in the required ratio. By contrast
—1—12C1C2C3C4 and
% C,C,C5C4. Combining these to deduce Z,, at one loop
gives the correct coefficient of — ;—2 C,C,C5C, of the general
p function. Aside from the additional group theory factors
the only discrepancy between both models is in the coef-
ficient of the divergence from the 3-point function which is
different by a factor of %. This is the origin of why (3.3) has no
one-loop term and rests in the group theory deriving from the
one-loop triangle graph which is the sole contribution at this
loop order. Each subgroup G; of the symmetry group
produces the combination

the respective numbers for (4.1) are

1
faiPi‘Iifbiri%fCiPiri = 5 Cl.f“ibici_ (47)

So for each subgroup this relation, derived from the Jacobi
identity in the adjoint representation, gives a factor of § to the
residue of the simple pole of the 3-point function. As there is
one factor of % from the actual integration over the loop
momentum then for the most general group G; X ... X G,

|
the 3-point function simple pole has a residue of
st [ 112, C;. Hence for this general group the one-loop

coefficient of the f# function, denoted by f)’l (n), will be

i) = |- 1T

(4.8)

which is a monotonically decreasing function and defined
for all integers n # 1. The exception is because one has a
free field theory for n =1 since the interaction is
fabiergapbrper which vanishes due to the antisymmetry
of the structure constants. Clearly /;(2) =0 and so the
curiosity of (2.1) being asymptotically free as a consequence
of the two-loop term of the  function is purely due to a group
theory property. We note that the value of 3, (0) is consistent
with the known low order 8 function of the pure ¢ theory
[3,25]. Equally /3, (4) is in agreement with (4.4) and (A3).

V. DISCUSSION

Scalar ¢* theory has played an important role as a toy
model in quantum field theory for many decades. For
instance any Feynman graph generated from the basic cubic
interaction can in turn generate the basic topologies that can
occur in higher n-point interactions. This is achieved by
formally deleting propagators in the graph theory sense and
hence represents the initial point for combinatoric studies in
quantum field theory. Where the theory has limitations in
physics applications is that its critical dimension is six
rather than four. However as noted earlier certain properties
of scalar ¢* theory are similar to the more involved field
theories in four dimensions and hence the six-dimensional
model can be used to explore ideas. In this article we have
studied an interesting modification whereby the scalar field
is in a bi-adjoint representation of Lie groups. This is
motivated by the double copy relation between Yang-Mills
theory and on-shell gravity. While the studies of [18-21]
examined classical solutions to the scalar theory, it has
turned out that the six-dimensional field theory has a
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peculiar property. It is unusual that asymptotic freedom is a
consequence of the two-loop term of the § function rather
than the first. However that is the case for (2.1). In studying
the consequences it appears to be unique in the class of
extensions that would be termed multi-adjoint as the
analysis we carried out for the quartic adjoint demonstrates.
It is not clear whether there is a parallel theory in four
dimensions that is asymptotically free due to the two-loop
function for which the bi-adjoint six-dimensional scalar
field theory is the underlying laboratory. It was noted in
[41] that a necessary condition for this is non-Abelian
gauge fields.

2
g
74(9) = =C1C2C3C4 75 = 19CTC3C3C

4
g
3864 —40421C{C3C3C;
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APPENDIX: FULL RESULTS
FOR QUARTIC ADJOINT

In this appendix we record the full expressions for the
renormalization group functions of the quartic adjoint
scalar theory which uses similar notation to that used for
the parallel expressions of the bi-adjoint case. First the field
anomalous and mass anomalous dimensions are

g6

3981312

+ [1910£3C$CACICIN N, N3Ny + 98, CHC3CYCIN| N, N3N,
—320¢5C1C4C4CIN| N, N3N, — 150934C1C3CLCIN | N, N3N,
+528(3C1C3Chd (444N 1 N2 N3 — 2165, C1C3C3d (444N N2 N5y
—38405C{C3C3d 444N 1N, N5 + 3744C1C3Cid (444N 1N, N
+528(3C1C3Cd (344N 1Ny Ny — 2165, C1C5C4d 3)44N N2 N,
—3840(5C1C3C4d 344N N, Ny + 3744C1C3Cd 344N N2 N,
+14976(3C{C3d 3144 (444N 1 N1 + 5184L,C1Chd 3)44d (444N | N,
—46080¢5C{Cid 3144 (444N 1 N2 + 29952C{ Cid 3144 (444N 1 N,
+528(3C1C3Cd(2)aaN 1 N3Ny — 2165, C{C5C4d 2)44N N3N,
—3840¢5C1CYCd 2)aaN | N3Ny + 3744C1C4Chd 244N 1 N3N,
+14976(3C{Cid 2)4ad (444N 1 N3 + 5184 4C1Cid 2)44d (444N 1 N5
—46080¢5C{Cid 244 (444N 1 N3 + 29952C1 C4d 2)44d (444N N5
+14976(3C{Cid 2)44d 344N 1 Ny + 5184L4,C1 Chd 2)44d (304N N4
—46080¢5C{Cid 2)aad (344N 1Ny + 29952C{ Cid 244 344N 1 N4
—27648(3C1d (2)44d 3)44d 4)4aN 1 — 124416, C1d 244 (3104 (4)44N
—5529605Cd (2)44l (3144 (4)2aN | + T18848Cd 2)44d 3)44d 444N
+528(3C3C3Cd (1)aaN2 N3Ny — 2165, C3C5C4d (1)44N2 N3N,
—3840¢5C4CYCd (1)aaN2N3Ny + 3744C5C4C4d 1)44N, N3N,y
+14976(3C3C3d 1)4ad (4)44N2 N3 + 5184L4C3Cd 144 (444N 2 N5
—46080¢5C3Cid 144 (444NN + 29952C5Cd 1 )44 (444N 2N
+14976(3C3C}d 144 (3,44N2 Ny + 5184L4,C3Cd 1)44d (314N 2N 4
—46080¢5C3Cd 1)4ad 3,44N2 Ny + 29952C3Cd 144 (3)44N2 N4
—27648(3C5d 1)44d 3)44d (4)34 N> — 1244160, C3d 144 (3144 ()44 N>
—5529605C3d 1440 (3)44d (44N> + T18848C3d 1)44d 344 (4144
+14976(3C3C}d 1)44d 244NNy + 5184L,C4Cd 1)44d (244N 3N 4
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and

m(g) = —C1C,C5C L . " aaaas g

—460808 s C4C4d1)44d 244 N3N + 29952C4CAd 11442134 N3 N
~276485C4d 1 )44d 244 (4134 N3 — 124416, C3d 144 2144 444N 3
~55296085C4d 144 21444134 N3 + T18848C3d 144 214 (41443
~276485C4d 1 )44d 21443134 N s — 1244160, C1d 1144 214 304N 4
~55296085Chd 144 2144 (344N + T18848Cd 144 2144 3)44N s
F4644864C3d(1)44d 204 (3144 a4 + 298598484144 2144 324 4114

98

—663552085d 1)44d (2)44d (3)44l (4)4] 33887872N N, N1 N,

+ 0(g")

6

496 221 184
+ [=619077¢3C{C3CICIN | N2 N3N, — 918008,C1C5C3CIN NoN3N,

—177630¢5sC{C3CCIN | N,N3N 4 + 2070250CTC3CICIN | N, N3N,
+14544¢,C1C3Cd (4)44N | N2 N3 — 12964, C1C3C3d 444N 1N, N
—3960085C1C3C3d 444NNy N3 + 34128C1C3C3d 414N N2 Ny
+14544£,C1C3Cd 344N N2 Ny — 1296, C1C5C1d (3)44N N2 N,y
—3960085C1C3Chd 344N\ NoNy 4 34128C1C3Chd (344N | N2 Ny
+231552¢3C1C3d 3)44d (4)44N | N> + 311048, C1C3d (3144 (414N | N,
—293760¢5C{Cid 3,44 (4)44N 1 N> + 273024C{ Chd 3)44d (444N 1 N>
+14544£,C1C3Cd 44N N3Ny — 12968, C1C5C1d (5)44N N3N,
—3960085C1C3Cd 2)44N N3Ny 4 34128C1C{Cid (2)aaN | N3Ny
+231552¢3C1C3d (5)44d (4)44N | N3 + 311048, C1 Cid )44 (444N | N3
—293760¢5C{C4d 2)44d(4y44N 1 N3 + 273024C{ C4d )44 (444N 1 N3
+231552¢3C1Cyd 2)44d 344N | Ny + 311048, C1Chd )44 (344N 1 N4
—293760¢5C{Cid 2)44d3)44N 1Ny + 273024C1 Chd )44 344N 1 N4
+141004883C1d 2)44d 3)44d (4)44N | — T46496,Cd 9)44d 31440 (4)44N
—78796805C1d 3)44d 3)44d (44N | + 6552576C1d 3)44d 340 (424N
+14544£,C3C3Cyd (1)44aN2 N3Ny — 12965, C3C5CHd (1)44N2 N3N,
—3960085C3C3Cd 1)44N2 N3Ny 4 34128C3C{Cd (14aN2N3 Ny
+231552¢3C3C4d 1)44d (4)44N2 N3 + 311048, C3C3d (144 (444N N5
—293760¢5C3C4d 1)44d (4y44N2 N3 + 273024C3C4d (1)44d (4)44N2 N5
+231552¢3C3C4d 1)44d 3)44N2 Ny + 311048, C3Chd (1144 (3144 N2 N
—293760¢5C3C4d 1)44d(3)44N2 Ny + 273024C3Chd (1144 (344N 2N 4
+141004883C3d 1 )44d (3)44d ()44 N> — TA6496 4 C3d (11444 (3142 (422N~

+ C3C3C3C3[3024¢; — 43537)
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—7879680¢ s Chd 1144l 3144 4134 N> + 65525T6C3dl 1,44l 314l 414N
+23155203C4Cd 1y1ad 2144 N3N, + 311048, CHCHd 144 214N 3N
~2937605CAC4d (1144 2144 N3 Ny + 273024CECld 1134 21NN
+14100483C3d 1)44d 244 (444 N3 — 146496, C3d (11440 2)44d (444 N3
787968005 Cd 1144 )4 aysa N3 + 6552576Cd 1144 214 41243
+14100483C5d 1)44d 244 (344N 4 — 464964 Cid (11444 (2)44d 3144 N4
787968005 Cld 1144 2)a4 344N s + 6552576Cd 1144l 3110 314N 3

+4976640083d (1)44d (2)44d (3)44d 442 + 17915904C4d (11444 2)444 (3)42d (444
8

+995328085d (11444 (244 (344 (4)44] 23887872?]1 NoNSN, + 0(g"). (A2)
Finally, the f function is
g pcogope 9
Blg) = —3C1C2C3C43—2 —467CIC,G5C 18432

+ [4883C{C3C3CIN | NyN3 Ny — 125981C1C3C3CIN N,N3 N,
—1152¢3CCChd 404N NN + 3456C CACEd 434N N, N
—115283C4CChd 344N NNy, + 3456C4 CAChd 344N N2 N
+27648¢3CCad 3yaad )N 1 Ny + 27648C C3d 3134 434N N,
—115283C4C4Chd 243N 1 N3Ny, + 3456C4 CAChd )4sN N3N,
+27648¢3CChd pyaad yaaN 1 N3 + 27648C Chd 2)44d (434N 1 N3
+27648¢3C1Cd 2440 3)44N 1 Ny + 27648C1Cd 244 344N 1 N4
—663552¢3C4d pyasd 3144 ayasN 1 + 663552CHd 2)4ad 344 ayaaN
—115283C4C4Chd 143N N3Ny, + 3456CHCACEd 1)44N2 N3N,
276483 CHCAd 1 yaad (4yaaN2 N3 + 27648CHCId 1)44d (413 N2 N3
+276483C3C1d 11440 3)44N2 Ny + 27648C3Cd 144 3)44N2 N4
—663552¢3C2d 144 3,44 434 N> + 663552C3d 11443134 404N
1276483 C4Chd 1)44d 2)aaN3 Ny + 27648CICId 1)44d (2)4aN3 N
—663552¢3C4d 144 244 ()44 N3 + 663552C3d 1144 224 4144 N3
~66355283Cd (144 2144 344N + 663552Cd 1134 2144 3134 N 4

g7
10616832C,C,C3C4N;N,N3N,
+ [394304¢5CHCLCLCEN | N,N3 Ny — 15552C4CACACAN | N, N3Ny
+325120C{C3C4CIN | NaN3N 45 — 134800515CTC5CICIN | N, N3N,
~5373696(3CC3CYd 434N 1 NN + 3732488, C1CICid 404N N2 N5

+159252483d 144 (2)44d 3)44 (4)44]
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+459264085C1 C3C3d 444N 1Ny N3 + 3780864C1 C3C3d (444N 1NN
—537369643CC4Chd (344N 1NNy + 3732488, C1C3Cd (344N N2 N
+459264085C1C3C3d (3)44N 1Ny Ny + 3780864C1 C3C3d 344N 1 No Ny
—3736166443CC3d (3)44d (4)aaN 1 Noy — 89579528, C1C3d 3)44d (444N 1 N>
+799948808's C1C4d 3)44d (4)aaN | N2 + 31574016C{Cad 3)44d 444N\ N
—537369643CC4Chd (244N N3Ny + 3732488, C1CYCd 2)aaN N3N,
+459264085C1C3C3d (2)4aN | N3Ny + 3780864C1 C3C3d 2)asN N3N,
—3736166443CC3d 2)44d (444N 1 N3 — 8957952, C1Cid 244 (444N 1 N3
+799948808's C1C4d 2)44d (444N | N3 + 31574016C{ C4d 2)44d (444N N5
—3736166443CCd (2)44d (3044 N 1 Ny — 8957952, C1Cd 244 (344N 1 N4
+799948808's C1Chd 2)44d (314N | Ny + 31574016C1Cid 3)44d 344N Ny
—1895546880¢3C1d 2)4ad (3)44d (4)aaN | + 214990848( 4 C1d 2)44d (344 (444N,
+1159004160¢5Cd 2)44d (3)44d (4144 + 630374400Cd (2)44d 3144 (444N
—537369643C4C4Chd(1)4aN2N3 Ny + 3732488, CLCYCHd 1)4aN2 N3N,
+459264085C3C3C3d 1)aaN2 N3Ny + 3780864C3C3C1d 1)asN2 N3Ny
—3736166443C4C3d 1)44d (444 N2 N3 — 8957952, C3C3d 144 (4)44N2 N3
+799948808's C4C4d 1)44d (4)aaN2N3 + 31574016C3Chd 1)44d (444N 2N
—3736166443C4Cd 1)44d (3744 N2 Ny — 89579528, C3Cd 1144 (3)44N2 N,
+799948808's C4C4d 1)44d (3144 N2 Ny + 31574016C3C4d 1)44d 344N 2N 4
—1895546880¢3C3d|1)44d (3)44d (4)4aN2 + 2149908484 C3d1)44d (3)44 (444N
+115900416085C3d(1)44d (344 (4)44N 2 + 630374400C3d (144l (3)44d (444N
—3736166443C4C1d 1)44d (2)4a N3Ny — 89579528, C3CHd 1144 (2)44N3 N4
+799948808's C4Chd 1)44d (2)aaN3 Ny + 31574016C4Chd 1)44d (2)4aN3N 4
—18955468803Cd 144 (2)44d (44 N3 + 2149908484 C3d 1)44d 2)44d 444 N3
+1159004160¢5C3d 1)44d (2)44(4)44N3 + 630374400Cd 1 )44 (2)44d (424 N3
—1895546880¢3Cd|1)4ad (2)44d (344N + 214990848( 4 Cd 1)44d (2)44 (344N 4
+1159004160¢5C3d(1)44d (2)44d (344N 4 + 630374400C5d (144 2)44d 344N
—3301834752¢3d (1)44d (2)44d 3)a4 (4)44 — 515978035284 d (1)444 (2)44d (3)a4 (444

99

18345885696N N, N3Ny

+24418713600¢ 51144 (2)44d 3)44 (4)4]

+0(g")
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