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We analyze some features of the entanglement entropy for an integer quantum Hall state (ν ¼ 1) in
comparison with ideas from relativistic field theory and noncommutative geometry. The spectrum of the
modular operator, for a restricted class of states, is shown to be similar to the case of field theory or a type
III1 von Neumann algebra. We present arguments that the main part of the dependence of the entanglement
entropy on background fields and geometric data such as the spin connection is given by a generalized
Chern-Simons form. Implications of this result for bringing together ideas of noncommutative geometry,
entropy and gravity are briefly commented upon.
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I. INTRODUCTION

The idea that there is some deep connection between
entropy and gravity is by now well-known and well-
accepted [1–4]. Also the Reeh-Schlieder and Connes-
Stormer theorems [5], coupled with the observation that
the algebra of local observables should be a type III1 von
Neumann algebra, tell us that entanglement is an integral
part of relativistic quantum field theory [6–8]. In non-
commutative geometry, one attributes degrees of freedom
to space itself via its description by the states of a suitable
Hilbert space [9]. Putting these three observations together,
a question which naturally arises is whether we can
calculate an entanglement entropy between states defining
the spatial geometry in the noncommutative scenario
and relate it to gravity. This is the subject we explore in
this paper.
A simple working model for noncommutative geometry

is given by the quantum Hall system. If we consider a
Kähler manifoldM, we can choose a background magnetic
field which is proportional to the Kähler two-form. The
lowest Landau level (LLL) is obtained by quantizing M
with this multiple of the Kähler form as the symplectic
structure. We get a Hilbert space H which is spanned by
holomorphic wave functions and which can be used as the
model for the noncommutative version of M [10,11].
Although we phrased this in terms of a Landau-Hall
problem, the states of the LLL can be viewed as

holomorphic sections of a power of the canonical line
bundle, so the tie-in to the physical situation of the Hall
effect is useful but not essential. On the other hand, what
we do in this paper can also be viewed more narrowly as an
interesting view on some entanglement issues for the Hall
system, ignoring the larger perspective of gravity and
noncommutative geometry.
We consider a completely filled LLL and a surface (of

co-dimension 1) separating M into two regions. It is then
possible to define an algebra of local observables and
reduced density matrices. Regarding the entanglement
between the states in the two regions, we consider the
spectrum of the modular operator and show that it is
basically Rþ. If we consider only the fully filled LLL,
which is what is relevant in modeling noncommutative
geometry, the only freedom in the reduced density matrices
is due to a change of the separating surface in M. For all
such cases, we will see that the spectrum of the modular
operator is Rþ, as the number of states tends to infinity. In
relativistic quantum field theory, the algebra of local
observables is expected to be a type III1 von Neumann
algebra. This means that the intersection of the spectra of
the modular operators over all states (or density matrices)
should be Rþ [6,7]. In the present problem, we do not
exactly have this result as we are not considering all
possible density matrices. For the fully filled LLL, as
mentioned above, only a smaller class of density matrices is
meaningful. Over this set of reduced density matrices, we
do obtain the same spectrum, namely, Rþ.
The second part of our analysis focuses on the changes in

the entanglement entropy as the background fields are
varied. We can consider fluctuations in the magnetic field
as well as changes in the background geometry due to
gravitational fluctuations. We show that the entanglement
entropy, as a function of these background fields, is
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proportional to a Chern-Simons action. It should be
emphasized that we are not discussing the effective action
for the Hall states; it would not be deemed surprising that
the latter is a Chern-Simons theory. To highlight the nature
of our result, consider the fact that Einstein gravity in 2þ 1
dimensions is described by a Chern-Simons theory [12].
There have also been investigations of higher dimensional
Chern-Simons gravities recently [13]. In these theories, the
gravitational field equations are the extremization of the CS
action. Our argument shows that they may be related to the
extremization of the entanglement entropy between states
corresponding to the degrees of freedom of space itself.
In Sec. II, we recall a few relevant results from relativistic

quantum field theory. The spectrum of the modular
operator for Landau-Hall states on S2 (or fuzzy version
of S2) is considered in Sec. III. The generalization to CPk,
k > 1, is done in Sec. IV. The background field dependence
of the entanglement entropy is discussed in Sec. V. The
paper concludes with a short discussion and two
Appendixes with explicit details of some of the relevant
calculations.

II. OBSERVATIONS FROM FIELD THEORY

In this section, we collect a few known observations
about relativistic quantum field theory which can serve as
points of comparison for our analysis for Hall states.
A key property of relativistic quantum field theory (QFT)

is that local observables commute at spacelike separations,

½ϕðxÞ;ϕðyÞ� ¼ 0; ðx − yÞ2 < 0 ð1Þ

Here ϕðxÞ are not necessarily fundamental or elementary
fields. In some neighborhood O of spacetime, we can
define a local algebra of observables, denoted by AðOÞ,
defined by bounded operators of the form

ϕðfÞ ¼
Z

fðxÞϕðxÞ ð2Þ

where the support of fðxÞ is contained in O. AðOÞ forms a
subalgebra of BðHÞ, the set of bounded operators on the
Hilbert space H. It is unital in the sense that it includes the
identity and is a �-algebra since it inherits an involution
corresponding to the adjoint operation. If O0 is the causal
complement of O, then (1) translates as

½AðOÞ;AðO0Þ� ¼ 0 ð3Þ

This tells us thatAðO0Þ is contained in the commutantA0 of
AðOÞ, namely the set of all operators which commute with
AðOÞ. Following Haag, we take AðO0Þ ¼ AðOÞ0, a state-
ment which is known as Haag duality. We also assume that
AðOÞ ¼ AðOÞ00. A unital �-subalgebra A of BðHÞ which
has the propertyA ¼ A00 is a von Neumann algebra. (There
are other definitions based on operator topology, but this is

the simplest for our purpose.) Thus, we can treatAðOÞ and
AðO0Þð¼AðOÞ0Þ as von Neumann algebras. In what
follows, we will consider fields at a given time. Strictly
speaking, the definition of local operators will need point-
splitting in time, but this refinement will not be important
for most of the following discussion.
While one can define an algebra of local observables, the

Hilbert space of states does not factorize into Hilbert
subspaces defined locally. This statement is the result of
some deep theorems, but a simple illustrative example
which highlights this feature is obtained in terms of local
single-particle states. Consider defining “local” one-particle
states of the form

jfi ¼
Z

d3xfðxÞψ†ðxÞj0i; jhi ¼
Z

d3xhðxÞψ†ðxÞj0i

ð4Þ

where the functions fðxÞ and hðxÞ have supports in disjoint
regions of space and ψ† denotes the negative frequency
(creation) part of an elementary field operator, which may
be taken, for the present purpose, as a free field for
simplicity; we may denote this field as φ ¼ ψ þ ψ†. The
overlap of the states (4) is given by

hfjhi ¼
Z

d3xd3y
d3k
ð2πÞ3

1

2ωk
e−ik⃗·ðx⃗−y⃗ÞfðxÞhðyÞ ð5Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. (We consider particles of massm.)

The factor 1=ð2ωkÞ, which is characteristic of the relativ-
istic theory, plays a crucial role. In the nonrelativistic case
where ωk ≈m, this factor is a constant, independent of k,
and the integration over k gives a δ-function and hence the
overlap integral is zero since f and h have no overlap for
their supports. But in the relativistic theory, we see that this
overlap is nonzero, rendering void any attempt to define
local one-particle states. Entanglement thus becomes a
characteristic feature of relativistic field theory.
A different but related way to see this is the following.

Notice that the correlation function involved in (5) can be
obtained from the vacuum wave function for the scalar field
theory

Ψ0 ¼ N exp

�
−
1

2

Z
x;y

φðxÞðωkÞx;yφðyÞ
�
: ð6Þ

The appearance of ωk can be traced to the Lorentz
invariance of the vacuum state. The key point for us is
that the operator ðωkÞx;y is nonlocal. Thus if we consider
field configurations φ1 and φ2 with support in disjoint
regions, there is still nontrivial overlap in the wave function
since

R
φ1ωkφ2 ≠ 0. This prevents the factorization of the

vacuum wave function, and all other states, the latter being
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obtained form the vacuum by the action of various creation
operators.1

Another important feature is embodied in the Reeh-
Schlieder theorem which tells us that the local algebra
AðOÞ is sufficient to generate a dense set of states on the
Hilbert space of the theory by their action, say, on the
vacuum state [8]. In other words, the vacuum state j0i is a
cyclic vector for the algebra AðOÞ. For such a state, if
A0j0i ¼ 0 for A0 ∈ A0, then

0 ¼ AA0j0i ¼ A0Aj0i ð7Þ

where we use the fact that A and A0 commute. Since Aj0i
generates a dense set of states, considering all A ∈ A, we
see that A0 should vanish on a dense set of states, hence
A0 ¼ 0. A vector jΨi is said to be a separating vector if
A0jΨi ¼ 0 implies A0 ¼ 0. Thus a cyclic vector for A is
separating for A0 and vice versa. Similar arguments apply
starting from A0, so we have the result that the vacuum j0i
is cyclic and separating for both AðOÞ and AðOÞ0.2 This is
the required premise for the Tomita-Takesaki theorem.
Toward the statement of the theorem, let jΨi be a cyclic
and separating vector for the von Neumann algebra A. (We
will use a general state jΨi for many of the statements here,
although specializing to the vacuum state j0i is most
pertinent to the general field theory analysis.) We can then
define an antilinear map SΨ whose action is given by

SΨðAjΨiÞ ¼ A†jΨi ð8Þ

Evidently S2Ψ ¼ 1. Since SΨ is antilinear, conjugation is
defined by (see [8]),

hαjSβi ¼ hS†αjβi ¼ hβjS†αi ð9Þ

Thus if we define FA0jΨi ¼ A0†jΨi,

hA0ΨjSAΨi¼hA0ΨjA†Ψi¼hAA0ΨjΨi
¼hA0AΨjΨi¼hAΨjA0†Ψi¼hAΨjFA0Ψi ð10Þ

Taking jαi ¼ jA0Ψi, jβi ¼ jAΨi, we see from (9) that
F ¼ S†. Thus S† acts on A0 as S acts on A. Going back to
(8), the states AjΨi and A†jΨi do not have the same norm in
general, so SΨ is not unimodular. We can separate out a

unimodular part J via the polar decomposition S ¼ JΔ1
2.

where J is a unimodular antilinear operator and Δ is self-
adjoint. J is referred to as the modular conjugation and
Δ is the Tomita modular operator. The latter can also be
defined by

ΔΨ ¼ S†ΨSΨ ð11Þ

This operator depends on the choice of the state jΨi.
Among other useful properties of S, S†, we can easily verify
that J† ¼ J and

J2 ¼ J†J ¼ 1; JΔ1
2J ¼ Δ−1

2

S†Ψ ¼ Δ
1
2

ΨJ
†; SΨS

†
Ψ ¼ Δ−1

Ψ ð12Þ

The Tomita-Takesaki theorem is the statement that given
a von Neumann algebra A and a cyclic and separating
vector jΨi, with S and S† as defined above,

JAJ ¼ A0

ΔitAΔ−it ¼ A; for all t ∈ R ð13Þ

The first statement relates A and A0, while the second
identifies a one-parameter family of automorphisms of A
which may be viewed as time-evolution. The proof of the
theorem is very involved, we do not discuss it, but to see
how such statements could arise, notice that, if A;B ∈ A,

SBSAjΨi ¼ SBA†jΨi ¼ AB†jΨi
ASBSjΨi ¼ ASBjΨi ¼ AB†jΨi ð14Þ

Thus SBS is contained in A0. Reducing this to the
unimodular part of the action of S, we see how the first
part of the theorem could arise.
Using the polar decomposition, (8) gives JΔ1

2AjΨi ¼
A†jΨi. Thus Δ1

2AjΨi and A†jΨi should have the same
norm. Taking jΨi to be the vacuum j0i, since A is in the
algebra of local observables in O, we can define the
unimodularity condition for J as

TrðρOA†ΔAÞ ¼ TrðρOAA†Þ ð15Þ

where ρO is the reduced density matrix starting from j0i.
(We may view the vacuum in terms of its wave function as a
functional of the fields and we can integrate out the part of
the fields corresponding to O0 to obtain this. How exactly
this is done is not important for now.) There is a similar
equality for operators in A0 with a reduced density matrix
ρ0O0 . Notice that the relation (15) and the corresponding one
for operators in A0 are obtained if we define the action
of Δ by

1There are many physical systems and Hamiltonians, e.g., a
spin chain, which lead to long correlations but allow factorization
of the Hilbert space. There is no contradiction. All separations in
a nonrelativistic system are timelike, since the speed of light can
be taken as infinite. Also, Lorentz invariance is crucial to the
statement of nonfactorizability. Discrete systems do not fulfill this
premise.

2A related statement or corollary is that there is no bounded
local operator which annihilates the vacuum state, a statement
which is useful for proving Coleman’s theorem on realizations of
symmetry.

ENTANGLEMENT FOR QUANTUM HALL STATES AND A … PHYS. REV. D 101, 125021 (2020)

125021-3



ΔA ¼ ρOρ
0−1
O0 Aρ0O0ρ−1O

ΔA0 ¼ ρOρ
0−1
O0 A0ρ0O0ρ−1O ð16Þ

Since the vacuum state is a separating vector, ρ−1O and ρ−1O0

do exist and these formulas are well defined. Introducing
states jk; k̃i which form a basis for H ⊗ H, we can
represent the operators A and A0 in the form3

A¼
X
k;k̃

jk;k̃iðAklδk̃ l̃Þhl; l̃j; A0 ¼
X
k;k̃

jk;k̃iðδklA0̃
kl̃
Þhl; l̃j

ð17Þ

The action of Δ as in (16) can then be written as

Δjk; k̃i ¼
X
l;l̃

ðρOÞklðρ0−1O0 Þk̃ l̃jl; l̃i ð18Þ

A more convenient notation is to represent jk; k̃i as
Φ ¼ jkihk̃j, so that the action ofΔ can be represented as [8]

ΔΨΦ¼
X
l;l̃

ðρOÞklðρ0−1O0 Þk̃ l̃jkihk̃j¼
X
l;l̃

ðρOÞkljkihk̃j½ðρ0TO0 Þ−1�l̃ k̃

¼ρOΦðρ0TO0 Þ−1 ð19Þ

A similar equation holds for a more general state
Φ ¼ P

ck;k̃jk; k̃i ¼
P

ck;k̃jkihk̃j. It should be emphasized
that the dependence of ΔΨ on the state jΨi ¼ j0i is carried
by the reduced density matrices, while Φ denotes another
possible state for the algebras.
From the point of view of general analyses of von

Neumann algebras, the importance of the modular operator
Δ is that its spectrum can be used to classify such algebras
[6,7]. The von Neumann algebra of local operators in
relativistic quantum field theory is expected to be of the
hyperfinite Type III1. This is characterized by the property
that

⋂
Ψ
SpecðΔΨÞ ¼ Rþ ð20Þ

In other words, the intersection of the spectra over all
choices of the state jΨi isRþ. The spectrum itself is defined
by the action of ΔΨ on a general state Φ as in (19). A
consequence of the algebra being of the hyperfinite Type
III1 is that any state can be brought arbitrarily close to any
other state by unitary transformations defined separately in
AðOÞ and AðO0Þ. This is the essence of the Connes-
Stormer theorem and implies that almost all states are
entangled [6,7].

In the light of these facts about relativistic quantum field
theory, we first consider the natural question of whether, for
a quantum Hall state on a manifold divided into two
regions, the spectrum of the modular operator is Rþ. We
show that this is indeed the case in a limited sense. This is
discussed in the next two sections. We shall then take up the
question of how the entanglement entropy depends on the
background gauge fields and the spin connection.

III. THE SPECTRUM OF THE MODULAR
OPERATOR FOR THE ν = 1 HALL STATE

We start by considering the quantum Hall state on the
two-sphere S2 where the lowest Landau level is fully
occupied, i.e., the ν ¼ 1 state [14]. The fermion field
operators can be expanded as

ψ ¼
X
s

asusðxÞ þ
X
α

aαUαðxÞ ð21Þ

where usðxÞ are the single particle wave functions for the
lowest Landau level (LLL). Uα denote the higher Landau
level wave functions, which will not be very important for
what follows. The fully occupied state LLL can thus be
specified as

jν ¼ 1i ¼ a†0a
†
1 � � � a†nj0i ð22Þ

where nþ 1 denotes the number of states which constitute
the LLL. For S2, n ¼ 2Br2 where B is the radial magnetic
field of a monopole at the origin in the standard embedding
of S2 in R3. From (21), the annihilation and creation
operators for the LLL may be expressed as

as ¼
Z

dμu�sψ ; a†s ¼
Z

dμusψ† ð23Þ

We can parametrize the sphere in terms of complex
coordinates z, z̄, corresponding to the stereographic pro-
jection of S2 onto the plane. The wave functions are then
given by

usðxÞ ¼
1ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðnþ 2Þ
s!Γðn − sþ 1Þ

s
zs

ð1þ z̄zÞn=2 : ð24Þ

We want to separate the sphere into two regions, say, the
northern hemisphere and the southern hemisphere. The
equator, which is the dividing line, corresponds to jzj ¼ 1
in the coordinates we are using. We thus define

bs¼
1ffiffiffiffi
λs

p
Z jzj¼1

0

dμu�sψ ; b†s ¼ 1ffiffiffiffi
λs

p
Z jzj¼1

0

dμusψ†

cs¼
1ffiffiffiffiffiffiffiffiffiffiffi
1−λs

p
Z

∞

jzj¼1

dμu�sψ ; c†s ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1−λs

p
Z

∞

jzj¼1

dμusψ†

ð25Þ

3We use discrete labels and summation signs to give the
general tenor of the results and to write expressions in a form
suitable for later sections. An appropriate limit will be needed for
the continuum field theory.
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where

λs ¼
Z jzj¼1

0

u�sus ð26Þ

In terms of these operators

as ¼
ffiffiffiffi
λs

p
bs þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λs

p
cs

a†s ¼
ffiffiffiffi
λs

p
b†s þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λs

p
c†s : ð27Þ

The operators fbs; b†sg and fcs; c†sg form two mutually
commuting fermion algebras, obeying

fbs; brg ¼ fb†s ; b†rg ¼ 0 ¼ fcs; crg ¼ fc†s ; c†rg
fbs; b†rg ¼ δrs ¼ fcs; c†rg: ð28Þ

The second set of commutation rules requires the definition
of the normalization factor of

ffiffiffiffi
λs

p
,

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λs

p
in (25). In

verifying (28), we also assume that the angular integrations
suffice to make the integral vanish for r ≠ s. This is indeed
the case and will be important for the higher dimensional
generalization.
A short parenthetical remark may be useful before we go

on. If we consider functions which have support only in the
region jzj < 1, the lowest Landau level wave functions
fusg are not an adequate basis for a mode expansion of
such functions. One can get a complete basis by including
the higher Landau levels as well. This is also clear from
using the full mode expansion (21) for ψ and ψ† in (25). We
then see that the operator expressions for bs; b

†
s and cs; c

†
s

will also involve aα; a
†
α where the subscript α refers to the

higher LLs.
Returning to the main chain of reasoning, a state vector

for one fermion occupying the state corresponding to us is
given by

jsi ¼ a†s j0i ¼
ffiffiffiffi
λs

p
b†s j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λs

p
c†s j0i: ð29Þ

This defines a way of splitting the state in terms of degrees
of freedom corresponding to the inside region jzj < 1 and
the outside region jzj > 1. In fact, we can consider local
observables which correspond to independent unitary
transformations of the bs’s and the cs’s. Thus let A denote
the set of all unitary transformations Usr on bs (and b†s), of
the form bs → Usrbr, and Ã denote the set of unitary
transformations Vsr of the form cs → Vsrcr. These may be
interpreted as the algebra of observables for the region
inside (i.e., A) and the region outside (i.e., A0 ¼ Ã),
respectively. Evidently, these form two mutually commut-
ing algebras which are copies of Uðnþ 1Þ,

½A; Ã� ¼ 0: ð30Þ

The state (29) is, of course, entangled, since λs ≠ 0, 1 in
general. Since the only operator which commutes with all
of Usr is the identity and similarly for Vsr, we see that A is
the commutant of Ã and vice versa. Thus we have two von
Neumann algebras, which become infinite dimensional as
we take n → ∞. The state corresponding to (22), expressed
in terms of the algebra as a density matrix, can be written,
upon using (29), as

ρ ¼
Y
⊗s

½λsb†s j0ih0jbs þ ð1 − λsÞc†s j0ih0jcs

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λsð1 − λsÞ

p
ðb†s j0ih0jcs þ c†s j0ih0jbsÞ�: ð31Þ

Notice that the state c†s j0i has “one particle of the c-type”
although the occupation number for the b-type is zero and
vice versa. We can now trace over the c-states to get a
reduced density matrix for the b-type, and similarly for the
c-type. These are given by

ρb ¼
Y
⊗s

½λsb†s j0ih0jbs þ ð1 − λsÞj0ih0j�≡
Y
⊗s

ðρbÞs

ρc ¼
Y
⊗s

½ð1 − λsÞc†s j0ih0jcs þ λsj0ih0j�≡
Y
⊗s

ðρcÞs: ð32Þ

There is a slight abuse of notation here in continuing
to use j0i. It should be noted that, in ρb, while the state
j0ih0j, which is obtained by tracing over the c’s, has no
b-occupancy, it is not empty. It stands for

P
s c

†
s j0; 0̃ih0; 0̃jcs

if we consider a more elaborate notation of two copies
of H as in Sec. II. Thus j0ih0j in the first line of (32) does
capture the effect of fermions outside jzj ¼ 1, although the
effect is small, since 1 − λs will be small for states localized
far into the outside region, i.e., for states with s ≫ 1

2
n. And

a similar statement, mutatis mutandis, holds for the second
line of (32) as well. In each of the cases in (32) one can
define the von Neumann entropy, which is also the
entanglement entropy,

S ¼ −Trðρb log ρbÞ ¼ −Trðρc log ρcÞ
¼ −

X
s

½λs log λs þ ð1 − λsÞ logð1 − λsÞ� ð33Þ

This method of splitting as; a
†
s as in (27) and calculating the

entanglement entropy was first given in [15]. For entan-
glement entropy for the ν ¼ 1 state in two dimensions, and
in higher dimensions, for a fixed background, see also [16].
Some of the other references on the entanglement entropy
for Hall systems are given in [17,18].
We now want to consider the modular operator corre-

sponding to the states ρb, ρc. A general state can be taken to
be of the form
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Φ ¼
Y
⊗s

�
αþ β γ − iδ

γ þ iδ α − β

�
s

ð34Þ

with arbitrary elements α;…; δ. In this notation, the (11)
element corresponds to b†j0ih0jb, (12) to b†j0ih0jc, (21) to
c†j0ih0jb, (22) to c†j0ih0jc. Following [8] and our dis-
cussion in Sec. II, we can define the action of the modular
operator Δ as

ΔΦ ¼ ρbΦðρcÞ−1: ð35Þ
Just to reiterate, in this expression, the state dependence of
Δ is given in terms of ρb, ρc. For each 2 × 2 subspace, (35)
works out to

Δ

0
BBB@

α

β

γ

δ

1
CCCA ¼

2
6664
1 0 0 0

0 1 0 0

0 0 1
2
ðxþ x−1Þ − i

2
ðx − x−1Þ

0 0 i
2
ðx − x−1Þ 1

2
ðxþ x−1Þ

3
7775
0
BBB@

α

β

γ

δ

1
CCCA
ð36Þ

where x ¼ λ=ð1 − λÞ. The eigenvalues are 1, 1, λ=ð1 − λÞ,
ð1 − λÞ=λ. This is for one value of s. The full spectrum is
thus given by the product of these eigenvalues over all
values of s. Thus

SpecðΔÞ ¼ ðf1g; f1g; fλs=ð1 − λsÞg; fð1 − λsÞ=λsg; fλs1λs2=ð1 − λs1Þ=ð1 − λs2Þg; etc:Þ: ð37Þ

The products of the individual eigenvalues for all values of
s are included in this set. Since some of the eigenvalues are
just 1, the individual eigenvalues get repeated as well in
this set.
Our first result is to show that, as n → ∞ for states on S2,

for any value between zero and 1, there is some k such that
λs is equal to this chosen value. This will imply that the
spectrum of Δ is the interval ½0;∞Þ. The calculations are
given in Appendix A. We show that the values of λs start
near 1 for s ≪ n and drop to zero as s becomes close to n.
The maximal difference of λs for nearby values of s occurs
at s ¼ 1

2
n, where

λn
2
− λn

2
þ1

λn
2

¼
ffiffiffi
8

π

r
1ffiffiffi
n

p þOð1=nÞ: ð38Þ

We can therefore conclude that the differences between λs
and λsþ1 vanish for all s, as n → ∞, showing that the values
of λs fill the interval between zero and 1. In other words, the
spectrum of Δ for this state is Rþ.
For the analysis given above, we chose the dividing line

between the two regions as the equator, at jzj ¼ 1. The
result can be generalized to an arbitrary value of jzj for the
dividing line, so long as the number of states in each region
tends to infinity as n → ∞. Consider jzj ¼ R. The relevant
integral is now

λs ¼
ðnþ 1Þ!
s!ðn − sÞ!

Z
R2

0

du
us

ð1þ uÞnþ2
: ð39Þ

The middle of the transition region between λ ¼ 0 and
λ ¼ 1 will occur at s ¼ s� ¼ R2n=ð1þ R2Þ. In this case,
the maximal difference is given by

λs� − λs�þ1

λs�
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

wð1 − wÞπ

s
1ffiffiffi
n

p þ � � � ; w ¼ R2

1þ R2
:

ð40Þ

Once again, we notice that the differences of the nearby λ’s
vanish as n → ∞. Thus the values of λ will fill the interval
between zero and 1, leading to the spectrum of Δ as Rþ.
Deformations of the dividing line can be viewed as area

preserving diffeomorphims which are realized in terms of
unitary transformations of the lowest Landau levels states.
The spectrum of Δ will not be sensitive to this, so the
conclusion holds more generally than for the case of a
circular dividing line.
If we consider the lowest Landau level as a model for the

fuzzy version of S2, then the relevant state must be the fully
filled level with ν ¼ 1. Having unfilled one-particle states
will correspond to having the two-sphere with points
removed, as n → ∞. Therefore the only set of states
relevant for the case of fuzzy S2 will correspond to different
choices of R. This leads to the conclusion:

For all allowable states in the framework of using the
lowest Landau as a model for a noncommutative space,
⋂Ψ SpecðΔΨÞ ¼ Rþ.

IV. GENERALIZATION TO CPk

The results we have obtained for S2 ∼ CP1 can be easily
generalized to CPk, k > 1 [11]. We may view this space as
a group coset,

CPk ¼ SUðkþ 1Þ
UðkÞ : ð41Þ

This is a homogeneous space with UðkÞ as the isotropy
group. The curvature is thus valued in the Lie algebra of
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UðkÞ and is constant in the tangent frame basis. This means
that we can introduce additional gauge fields with the field
strength proportional to the curvatures and thus set up the
analogue of the Landau problem and Hall effect. More
explicitly, the wave functions can be considered as func-
tions on SUðkþ 1Þ which have a specific transforma-
tion property under the UðkÞ ⊂ SUðkþ 1Þ. A basis for
functions on the group SUðkþ 1Þ is given by the mat-
rices corresponding to the group elements in the unitary
irreducible representations, or the so-called Wigner
D-functions, which are defined as

DðJÞ
l;r ðgÞ ¼ hJ; ljgjJ; ri ð42Þ

where J denotes the irreducible representation and l, r
stand for two sets of quantum numbers specifying the states
within the representation. There is a natural left and right
action of group translations on an element g ∈ SUðkþ 1Þ,
defined by

L̂Ag ¼ TAg; R̂Ag ¼ gTA ð43Þ

where TA are the SUðkþ 1Þ generators in the representa-
tion to which g belongs.
The generators of SUðkþ 1Þwhich are not in the algebra

of UðkÞ ⊂ SUðkþ 1Þ can be separated into Tþi,
i ¼ 1; 2;…; k, which are of the raising type and T−i which
are of the lowering type. These generate translations while
UðkÞ generates rotations at a point. The covariant deriv-
atives on CPk are given by

D�i ¼ i
R̂�i

r
ð44Þ

where r is a parameter with the dimensions of length.
(The volume of the manifold will be proportional to r2k.)
The strength of the gauge field should be given by the
commutator of covariant derivatives. The commutators of
R̂þi and R̂−i are in the Lie algebra of UðkÞ, so we can
specify the background field by specifying the right action
of UðkÞ on the wave functions. For the constant back-
ground field, the relevant conditions are

R̂aΨJ
m;αðgÞ ¼ ðTaÞαβΨJ

m;βðgÞ ð45Þ

R̂k2þ2kΨJ
m;αðgÞ ¼ −

nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþ 1Þp ΨJ

m;αðgÞ ð46Þ

where m (¼ 1;…; dim J) counts the degeneracy of the
Landau level. Equation (45) shows that the wave functions
ΨJ

m;α transform, under right rotations, as a representation J̃ of
SUðkÞ. Here ðTaÞαβ are the representation matrices for the
generators of SUðkÞ in the representation J̃, and n is an
integer characterizing the Abelian part of the background

field. α, β label states within the SUðkÞ representation J̃
(which is itself contained in the representation J of
SUðkþ 1Þ). The index α carried by the wave functions
ΨJ

m;αðgÞ is basically the gauge index. Thewave functions are
sections of aUðkÞ-bundle on CPk. In terms ofD-functions,
they are given by ΨJ

m;αðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
dim J

p hJ;mjgjJ; α; ni.
The Hamiltonian H for the Landau problem is propor-

tional to the covariant Laplacian on CPk; explicitly the
action of H on wave functions is given by

HΨ ¼ −
1

4m
ðDþiD−i þD−iDþiÞΨ ð47Þ

Since the commutator of ½R̂þi; R̂−i� is in the algebra of
UðkÞ, we see from (44) and (46) that H is proportional toP

i R̂þiR̂−i, apart from additive constants. Thus the lowest
Landau level should satisfy, in addition to the requirements
(45), (46), the condition

R̂−iΨ ¼ 0 ð48Þ

This is the holomorphicity condition on the lowest Landau
level wave functions.
We consider, for simplicity, the case of a Uð1Þ back-

ground, taking jJ; ri to correspond to the trivial (singlet)
representation for SUðkÞ ∈ SUðkþ 1Þ. The relevant rep-
resentations are then the rank n totally symmetric repre-
sentations of SUðkþ 1Þ and we can construct them
explicitly using complex coordinates for CPk as

Ψi1i2���ik ¼
ffiffiffiffi
N

p �
n!

i1!i2! � � � ik!ðn − sÞ!
�1

2 zi11 z
i2
2 � � � zikk

ð1þ z̄ · zÞn2 ð49Þ

where s¼ i1þi2þ���þik and N¼dimJ¼ðnþkÞ!=ðn!k!Þ
is the total number of states or degeneracy of the LLL. The
volume element for CPk is

dμ ¼ k!
πk

d2z1 � � � d2zk
ð1þ z̄ · zÞkþ1

: ð50Þ

We have chosen the normalization such that the total
volume,

R
dμ, is 1. For the entanglement entropy, we thus

need

λi1i2���ik ¼
Z

R

0

dμΨ�
i1i2���ikΨi1i2���ik

¼ ðnþ kÞ!
ðsþ k − 1Þ!ðn − sÞ!

Z
R2

0

du
usþk−1

ð1þ uÞnþkþ1
ð51Þ

where, in the second line, we have carried out the angular
integrations taking the interface to be spherically symmet-
ric. The maximal difference of λs for nearby values of s is
now obtained for s ¼ s� ¼ wðnþ k − 1Þ − ðk − 1Þ, and

ENTANGLEMENT FOR QUANTUM HALL STATES AND A … PHYS. REV. D 101, 125021 (2020)

125021-7



λs� − λs�þ1

λs�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

wð1 − wÞπ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ k − 1
p þ � � � ;

w ¼ R2

1þ R2
: ð52Þ

As before, we then find that all values between zero and 1
are realized for some λs, leading to the same conclusion:

For all allowable states in the framework of using the
lowest Landau as a model for a noncommutative version
of CPk, ∩Ψ SpecðΔΨÞ ¼ Rþ.

We have shown this result only for the case of a Uð1Þ
background. We expect this to hold even with additional
non-Abelian background fields. This will be taken up in a
subsequent paper.

V. ARBITRARY BACKGROUND FIELDS AND
SPIN CONNECTION

We now turn to the second issue mentioned in the
Introduction, namely, the dependence of the entanglement
entropy on the background fields and the spin connection.
For this, we need to know how u�sus depends on these
quantities. One way to identify this dependence is to write
the Hamiltonian (47) where the covariant derivatives
include additional background fields and then use pertur-
bation theory to calculate the change in u�sus. A limit of
m → 0 may then be taken at the end to isolate the LLL
wave functions. A simpler alternative, which we shall
consider here, is to utilize previous calculations for the
effective action for droplets of fermions [11]. The basic
strategy is the following. We will consider a general
occupancy matrix for a subset of the states of the lowest
Landau level. We can then define a function similar to the
symbol for this matrix which carries information about the
wave functions. A general ansatz for this function can then
be written down. Using an index theorem appropriate to the
states of the LLL and considering special cases we can firm
up the various terms in the ansatz. This will then yield the
leading terms for the background dependence of u�sus. This
part of the reasoning will rely on [19] where the Dolbeault
index density was used to obtain the bulk effective action
for the ν ¼ 1 state.
Before proceeding to the main line of reasoning, we

assemble two key ingredients, namely, the index theorem
and the generalized Chern-Simons form. The wave func-
tions of the lowest Landau level obey a holomorphicity
condition, which is (48) for CPk and a suitable generali-
zation of the same for other complex manifolds. The
background fields are included in the relevant antiholo-
morphic derivatives via conditions like (45), (46). Thus we
are looking for the kernel of the antiholomorphic covariant
derivatives on M. This is given by the Dolbeault index,
with the index density

IDolb¼ tdðTcMÞ∧ chðVÞ

¼ 1

2π
Tr

�
Fþ1

2
R

�

−
1

8π2

�
TrF2þTrRTrFþ1

4
ðTrRÞ2− 1

12
TrR2

�
þ���

ð53Þ

where F is the two-form field strength for the gauge field
and R is the curvature two-form. In this equation tdðTcMÞ
is the Todd class on the complex tangent space of the
manifold M. Rather than give the general formula using a
splitting principle, we display the expansion in powers of
the curvature. The general formula is given in [20] and is
discussed in the specific context of Landau level states
in [19]. Also, in (53) chðVÞ ¼ TrðeiF=2πÞ is the Chern
character of the vector bundle V. (The charged fields
defining the Landau problem are sections of this vector
bundle; i.e., they have dimV components corresponding to
the representation for the non-Abelian gauge group, each
component being a local function on M. For example,
for CPk, we can consider fields ϕα with wave functions
of the formΨJ

m;αðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
dim J

p hJ;mjgjJ; α; ni as in Sec. IV.
In this case, dimV ¼ dim J̃ which is the dimension of
the UðkÞ representation carried by the state jJ; α; ni. For
more details, see [19].) As with such formulas, for two-
dimensional manifolds we use the two-form part of
IDolb from (53), for four-manifolds we use the four-form
part, etc.
Turning to the second ingredient, namely, the general-

ized Chern-Simons form, notice that the index densities
involve symmetrized traces of powers of the gauge field
strength (as a two-form), or powers of the curvature two-
form, or mixed terms involving products of powers of both.
Now, if PðFÞ is an invariant polynomial which is the
symmetrized trace of a product of k F’s, then

PðFð1ÞÞ − PðFð2ÞÞ ¼ dQðAð1Þ; Að2ÞÞ

QðAð1Þ; Að2ÞÞ ¼ k
Z

1

0

dtPðAð1Þ − Að2Þ; Ft; Ft;…; FtÞ;

ð54Þ

where At ¼ Að2Þ þ tðAð1Þ − Að2ÞÞ, with Ft ¼ dAt þ A2
t .

Notice that At defines a straight line in the space of
potentials connecting the two potentials Að2Þ and Að1Þ.
Equation (54) is the definition of the generalized Chern-
Simons term QðAð1Þ; Að2ÞÞ [20]. This version of the Chern-
Simons form has been used in physics contexts before, for
example, in obtaining expressions for gauge (and gravita-
tional) anomalies with a nontrivial gauge (or gravitational)
background [21]. We may also note that, since PðFÞ can be
written as the derivative of a Chern-Simons term C:S:ðAÞ,
(54) is equivalent to writing
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QðAð1Þ; Að2ÞÞ ¼ C:S:ðAð1ÞÞ − C:S:ðAð2ÞÞ þ dBðAð1Þ; Að2ÞÞ:
ð55Þ

The formula (54) has the advantage of providing an explicit
expression for BðAð1Þ; Að2ÞÞ as well. Even though we used
the notation of A and F in Eqs. (54) and (55), the statements
equally well apply to the spin connection and the curvature.
We now consider the case of M of the lowest Landau

levels being occupied. (Eventually, we will be interested in
the ν ¼ 1 state with all states being occupied. What we
outline here with a smaller droplet is only a trick to get the
background dependence of u�sus.) We can specify the
droplet of M occupied states by the occupancy matrix P
which is given by

Pij ¼
�
δij; i; j ¼ 0; 1;…; ðM − 1Þ
0 i; j ≥ M:

ð56Þ

Corresponding to this occupancy matrix, we introduce the
function4

ðPÞM−1 ¼
XM−1

0

u�sus: ð57Þ

Thus we may write u�MuM ¼ ðPÞM − ðPÞM−1. The function
(P) is basically the number density of particles in the lowest
Landau level, and hence it should be proportional to the
index density for the ν ¼ 1 state, modulo terms which
integrate to zero. This is the point of utility of the index
theorem.
The background field dependence of u�sus involves the

comparison of two choices of the background. We will
denote the background fields we start with by a and ωð0Þ,
where a is the potential for the gauge part and ωð0Þ is the
spin connection. For example, for CPk, the Abelian part of
a will be an appropriate multiple of the Kähler form; there
can be a non-Abelian background as well. The spin
connection ωð0Þ will correspond to the standard curvatures
for CPk with the Fubini-Study metric. The general back-
ground we want to consider will have gauge fields aþ A
and spin connection ω. We are thus interested in the
function (P) calculated with the one-particle wave func-
tions corresponding to the background ða;ωð0ÞÞ and with
those corresponding to the background (aþ A, ω). We can
then use the result u�MuM ¼ ðPÞM − ðPÞM−1 to identify the
background dependence.
An important point is that the new values of the back-

ground fields, i.e., (aþ A, ω), must be such that the total

number of states obtained by quantization remains the
same. Thus the fields we are considering must all be in the
same topological class, so that the Dolbeault index is
unaltered by a → aþ A, ωð0Þ → ω. In this sense, we may
think of the new fields as a perturbation of the old ones.
We can now write down a general ansatz for (P) as

˜ðPÞ ¼ IDolb

N
ðPÞð0Þ − KdðPÞð0Þ þ dX ð58Þ

Here ðPÞð0Þ denotes the function corresponding to P
calculated with the unperturbed one-particle wave func-
tions, namely, with the background Að2Þ ¼ ða;ωð0ÞÞ. On the
left-hand side, we have the function for P calculated with
the perturbed wave functions corresponding to
Að1Þ ¼ ðaþ A;ωÞ. We actually use the dual on the left-
hand side so that it can be viewed as a 2k-form; this is
signified by the tilde sign. ˜ðPÞ is to be viewed as the
function (P) multiplied by the volume form appropriate to
the background (aþ A, ω). Further, K is a (2k − 1)-form,
so is X. The nature of the terms in (58) and the justification
for them can be seen from the following observations.
(1) First consider the case where all states are filled, so

that M ¼ N. When all states are filled, ðPÞð0Þ is a
constant, in fact equal to N for large n, as seen from
[11,22]. (The symbol is equal to 1, but since we have
used the normalized wave functions, ðPÞð0Þ ¼ N in
this case.) We see that (58) implies that ˜ðPÞ ¼ IDolb,
provided dX also involves only derivatives of ðPÞð0Þ.
The result ˜ðPÞ ¼ IDolb is as it should be, since ˜ðPÞ is
the number density of the occupied states and it
should be the index density when all states are
occupied.

(2) Second, consider the case when the additional
background fields are zero, i.e., we have only
ða;ωð0ÞÞ, but keeping M < N. In this case, we
expect ˜ðPÞ ¼ dμðPÞð0Þ. In (58), we can thus set
IDolb ¼ IDolbða;ωð0ÞÞ. Further, we have

IDolbða;ωð0ÞÞ ¼ Ndμ: ð59Þ

The factor of N in this formula is easily understood.
It is needed to ensure that the integral ofR
IDolbða;ωð0ÞÞ gives N for the unperturbed case,

since we normalized the unperturbed volume
element to integrate to 1. We see that (58) consis-
tently reduces to ˜ðPÞ ¼ dμðPÞð0Þ, provided both K
and X vanish when the additional gauge fields are
set to zero.

(3) Continuing with the case of M < N, we expand
IDolb around ða;ωð0ÞÞ using (54), i.e.,

IDolbðaþ A;ωÞ ¼ IDolbða;ωð0ÞÞ þ dQ ð60Þ

4This is related to what is called the symbol for P by a factor of
N, the total degeneracy of the LLL. The symbol is defined using
just the group elements, say hJ;mjgjJ; α; ni for CPk. Thus the
symbol of P is 1

N ðPÞ [10,11].
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Using this relation, (58) becomes

˜ðPÞ ¼ dμðPÞð0Þ þ dQ
N

ðPÞð0Þ − KdðPÞð0Þ þ dX

ð61Þ
Since the total number of states should be the same
for both ða;ωð0ÞÞ and (aþ A, ω), terms in (58) other
than dμðPÞð0Þ must combine into a total derivative,
so that they can give zero upon integration. This
identifies K ¼ Q=N.

(4) Finally, we have already mentioned that X must
vanish when the additional gauge fields are set to
zero and that it should also vanish when ðPÞð0Þ is a
constant, from items 2 and 1 above. ThereforeX can
be written as Wi∂iðPÞð0Þ, where Wi is a (2k − 1)-
form and is also a vector. It is not determined by our
arguments so far.

Collecting all these results together, we can now rewrite
(58) as

˜ðPÞ ¼ dμðPÞð0Þ þ d

�
QPð0Þ

N

�
þ dðWi∂iðPÞð0ÞÞ ð62Þ

where Wi is zero when restricted to a;ωð0Þ. As mentioned
before, the relevant index density we should use
for the generalized Chern-Simons form Q will be the
Dolbeault index density IDolb, with Að1Þ ¼ ðaþ A;ωÞ and
Að2Þ ¼ ða;ωð0ÞÞ.
Taking the difference between ðPÞM and ðPÞM−1, we

conclude that

dμ½u�sus�aþA;ω ¼ dμu�sus þ d

�
Qu�sus
N

�
þ dðWi∂iðu�susÞÞ

ð63Þ
u�sus in all terms on the right-hand side is evaluated with the
unperturbed background ða;ωð0ÞÞ. Going back to the fully
filled states, i.e., ν ¼ 1, we can now integrate (63) over a
region D whose boundary corresponds to the entangling
surface. The result is

½λs�aþA;ω¼½λs�a;ωð0Þ þ 1

N

I
∂D

Q½u�sus�a;ωð0Þ

þ
I
∂D

Wi½∂iðu�susÞ�a;ωð0Þ ð64Þ

The λs-terms in this equation is the result after integrating
over the boundary ∂D; i.e., the analogue of the angular
integrations has been carried out as discussed earlier and in
the Appendices.
We can now use (64) for the entropy. In the spirit of

perturbation theory, the change in the entanglement entropy
due to the change in the background fields is given by

S ¼ Sða;ωð0ÞÞ −
X
s

log

�
λs

1 − λs

�
δλs

¼ Sða;ωð0ÞÞ −
I
∂D

Q
N

X
s

log

�
λs

1 − λs

�
½u�sus�∂D;a;ωð0Þ

−
X
s

log

�
λs

1 − λs

�I
∂D

Wi½∂iðu�susÞ�∂D;a;ωð0Þ : ð65Þ

This is the main result of this section, summarizing our
expectation for the background dependence in terms of Q.
The precise form of the remaining factors is not important
regarding the background dependence. The arguments
which led to this result are very general, but indirect,
based on index theorems. We will carry out an explicit
calculation, which is presented in Appendix B, for some
special cases. (We expect to present the explicit calculations
for the more general cases in a separate paper.) This will
show that the second correction from (64), namely,
Wi½∂iðu�susÞ�a;ωð0Þ may be taken to be subdominant com-
pared to the first, in some qualified sense. Taking this into
account, we may restate the result as follows.

The leading term in the dependence of the entanglement
entropy on the gauge fields and spin connection is
proportional to the generalized Chern-Simons term Q
for the Dolbeault index density.

It may be useful at this stage to see the explicit formulas
for the generalized Chern-Simons forms relevant to some
lower dimensional examples, rather than the more cryptic
expression (54). Using (53) and (54) we find

Q2d ¼
1

2π
Tr

�
Aþ 1

2
ðω − ωð0ÞÞ

�
ð66Þ

Q4d ¼ −
1

8π2

�
−4πC:S:ðaþ AÞ þ 4πC:S:ðaÞ þ dTrðaAÞ

−
1

12
ð−4πC:S:ðωÞ þ 4πC:S:ðωð0ÞÞ þ dTrðωð0Þðω − ωð0ÞÞÞÞ

þ Trðω − ωð0ÞÞTrðdAÞ þ Trðω − ωð0ÞÞTrðdaþ a2Þ þ TrðAÞTrðdωð0ÞÞ

þ 1

2
Trðω − ωð0ÞÞTrðdωð0ÞÞ þ 1

4
Trðω − ωð0ÞÞTrðdω − dωð0ÞÞ

�
: ð67Þ
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Here C:S: stands for the Chern-Simons three-form, given,
for a generic argument A, as

C:S:ðAÞ ¼ −
1

4π
Tr

�
AdAþ 2

3
A3

�
: ð68Þ

VI. DISCUSSION

The main results of this paper are about the spectrum of
the modular operator and the dependence of the entangle-
ment entropy on the background fields and spin connec-
tion, for a noncommutative space, or equivalently, for the
ν ¼ 1 quantum Hall state. These have been spelled out at
the end of Secs. III and V. An important direction to explore
further is the term involving ðWi∂iðu�susÞÞ in (62), (63).
This is presumably related to the boundary actions for a
droplet of finite size. In the context of quantum Hall effect,
while any direct experimental implication is unclear, our
result is in the nature of elucidating general properties of
Hall states.
As for the context of noncommutative geometry, the

following comments may help with the placement of our
results in a larger context. In the Introduction we have
already alluded to the nexus of ideas about entropy and
gravity, entanglement as an integral feature of relativistic
field theory, and noncommutative geometry which attrib-
utes degrees of freedom to space itself. To this we may add
the observation that, in 2þ 1 dimensions, standard Einstein
gravity can be described by an action which is the differ-
ence of two Chern-Simons terms [12]. In higher dimen-
sions, one can consider a class of gravity theories with
Chern-Simons actions, although they do not correspond to
the standard Einstein gravity [13]. In all these cases, the
field equations of gravity arise as extremization of an action
which is a combination of Chern-Simons terms. Our result
that the leading term in the background dependence of the
entanglement entropy in noncommutative geometry (mod-
eled as quantum Hall systems) is given by a generalized
Chern-Simons term takes on added significance when
viewed within this circle of ideas. We expect that this
result can be utilized to develop an approach to gravity in
odd dimensional spacetimes based on noncommutative
geometry by modeling space by quantum Hall systems
and that such a description would naturally realize the field
equations for gravity as maximization conditions for the
entanglement entropy. We plan to explore this idea further
in future publications.

ACKNOWLEDGMENTS

I thank Dimitra Karabali and Alexios Polychronakos for
reading the manuscript carefully and providing many useful
comments which have significantly improved the presen-
tation. I also thank A. Polychronakos for pointing out a
missing term in an earlier derivation of the formula (52).
I am also grateful to A. Abanov for comments and to

A. Abanov and P. Ghaemi for some of the relevant
references. This research was supported in part by the
U.S. National Science Foundation Grant No. PHY-
1820721 and by Professional Staff Congress-City
University of New York awards.

APPENDIX A: ASYMPTOTIC FORMULAS FOR λs

We will start with Eq. (51) from the text, which gives

λs ¼
ðnþ kÞ!

ðsþ k − 1Þ!ðn − sÞ!
Z

R2

0

du
usþk−1

ð1þ uÞnþkþ1
ðA1Þ

This formula applies to CPk. We started in the text with the
case of k ¼ 1 for CP1 ∼ S2 and with R ¼ 1. Those results
can be obtained as special cases of the formulas give here.
We first consider small values of s compared to n. The

integrand in (A1) is a function which peaks around some
value of u. This value is near zero for small s, moving to
large values of u as s becomes large. Thus, for small values
of s compared to n, λs will be close to 1. The full integral,
up to infinity, gives 1, so we can rewrite (A1) as

λs ¼ 1 −
ðnþ kÞ!

ðsþ k − 1Þ!ðn − sÞ!
Z

∞

R2

du
usþk−1

ð1þ uÞnþkþ1
ðA2Þ

Making a change of variables u ¼ x=ðnþ kþ 1Þ, we find

λs ¼ 1 −
ðnþ kÞ!

Γðsþ kÞðn − sÞ!
1

ðnþ kþ 1Þsþk

×
Z

∞

R2ðnþkþ1Þ
dxxsþk−1e−x

�
1þ x2

2ðnþ kþ 1Þ þ � � �
�

≈ 1 −
Γðsþ k; R2ðnþ kþ 1ÞÞ

Γðsþ kÞ þ � � �

≈ 1 −
½R2ðnþ kþ 1Þ�sþk−1

Γðsþ kÞ e−R
2ðnþkþ1Þ þ � � � ðA3Þ

where, in the first line, we used�
1þ x

N

�
N
≈ ex

�
1 −

x2

2N
þ � � �

�
; as N → ∞: ðA4Þ

For the second and third lines we used the definition of the
incomplete Γ-function and its asymptotic expansion [23],

Γðsþ k; XÞ ¼
Z

∞

X
dxxsþk−1e−x

≈ Xsþk−1e−X þ � � � ðA5Þ
Equation (A3) shows that λs is exponentially close to 1 for
small values of s, as n becomes large. The ellipsis indicates
terms which are smaller than what is displayed.
For values of s close to n, we can do a similar

analysis. Writing s ¼ n − r and carrying out an inversion
u ¼ ðnþ kþ 1Þ=x, we find
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λn−r ¼
ðnþ kÞ!

Γðn − rþ kÞr!
1

ðnþ kþ 1Þrþ1

×
Z

∞

ðnþkþ1Þ
R2

dxxre−x
�
1þ w2

2ðnþ kþ 1Þ þ � � �
�

≈
1

Γðrþ 1Þ
�
nþ kþ 1

R2

�
r
e−ðnþkþ1Þ=R2 þ � � � ðA6Þ

We see that, for s near n, the values are exponentially small.
The maximal difference between nearby values of s will

occur near the midpoint of the transition from 1 to zero. For
this, s is also large and one can use a semiclassical or
steepest descents method. Making a change of variable to
t ¼ u=ð1þ uÞ, (A1) can be written as an incomplete beta
function,

λs ¼
ðnþ kÞ!

Γðsþ kÞðn − sÞ!
Z

w

0

dttsþk−1ð1 − tÞn−s

¼ ðnþ kÞ!
Γðsþ kÞðn − sÞ!

Z
w

0

dteFðtÞ

FðtÞ ¼ ðsþ k − 1Þ log tþ ðn − sÞ logð1 − tÞ ðA7Þ

where w ¼ R2=ð1þ R2Þ. The minimum of FðtÞ occurs at
t0 ¼ ðsþ k − 1Þ=ðnþ k − 1Þ. Expanding FðtÞ around this
value, EFðtÞ becomes a Gaussian function centered around
this value of t. If the maximum of the Gaussian is well
within the range of integration, which is the case for small
s, we will find λs ≈ 1. If the center of the Gaussian is well
beyond the range of integration, which is the case for s near
n, we will find λs ≈ 0. The midpoint of the transition occurs
for t0 at the upper limit of integration, namely, for t0 ¼ w,
which corresponds to s ¼ s� given by

s� ¼ wðnþ k − 1Þ − ðk − 1Þ;
n − s� ¼ ð1 − wÞðnþ k − 1Þ ðA8Þ

Expanding FðtÞ around t0, we obtain

FðtÞ ¼ ðnþ k − 1Þ
�
½t0 log t0 þ ð1 − t0Þ logð1 − t0Þ�

−
x2

2t0ð1 − t0Þ
þ ð1 − 2t0Þx3
3t20ð1 − t0Þ2

þ � � �
�

ðA9Þ

where x ¼ t − t0. Using this expression, we find

λs� ≈
ðnþ kÞ!

Γðs� þ kÞΓðn − s� þ 1Þ e
Fðt0Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πt0ð1 − t0Þ
2ðnþ k − 1Þ

s
−

2ð1 − 2t0Þ
3ðnþ k − 1Þ þ � � �

�
ðA10Þ

where t0 ¼ w. It should be noted that the range of integration for x for this case is from −∞ to zero.
We do a similar calculation for λs�þ1. For s ¼ s� þ 1, the minimum of FðtÞ occurs at

t1 ¼
s� þ k

nþ k − 1
¼ wþ ϵ; ϵ ¼ 1

nþ k − 1
ðA11Þ

This is just beyond the range of integration. The integral over x now becomes

Z
w

0

dteFðtÞ ≈ eFðt1Þ
Z

−ϵ

−∞
dx exp

�
−
ðnþ k − 1Þx2
2t1ð1 − t1Þ

þ ðnþ k − 1Þð1 − 2t1Þx3
3t21ð1 − t1Þ2

þ � � �
�
: ðA12Þ

The integral with the upper limit as zero is similar to what was encountered for λs�, but we have to subtract out the integral
from −ϵ to zero. Apart from this, the result is of the form in (A10) with s� → s� þ 1 and with t0 → t1 ¼ wþ ϵ. The final
result is thus

λs�þ1 ≈
ðnþ kÞ!

Γðs� þ kþ 1ÞΓðn − s�Þ
eFðwþϵÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðwþ ϵÞð1 − w − ϵÞ

2ðnþ k − 1Þ

s
−
2ð1 − 2w − 2ϵÞ
3ðnþ k − 1Þ þ � � �

�

− ϵ
ðnþ kÞ!

Γðs� þ kþ 1ÞΓðn − s�Þ
eFðwþϵÞ ðA13Þ

The rest of the simplification is straightforward, using properties of the Γ-functions. The leading term in the difference
λs� − λs�þ1 comes from the second line of (A13). This leads to the expression (52) quoted in text,

λs� − λs�þ1

λs�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

wð1 − wÞπ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ k − 1
p þ � � � : ðA14Þ
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The results obtained in this Appendix can also be
checked numerically. As an example, consider the case
of the two-sphere or k ¼ 1. In this case, taking R ¼ 1 (i.e.,
w ¼ 1

2
), we have plotted, in Fig. 1, we have plotted the

values of λs for n ¼ 200; the result shows that the values are
close to zero and 1 at the two ends and has the largest
separation between λs and λsþ1 for s� ¼ n=2. The second
graph (Fig. 2) shows the differences ðλs� − λs�þ1Þ. We see
that the maximum values of the differences decrease as we
increase n. The peak value can be checked to be as given
by (A14) or (52).

APPENDIX B: DIRECT CALCULATION OF
BACKGROUND FIELD DEPENDENCE

In this Appendix, we will go over the explicit calculation
of some of the terms which arise in the dependence of u�sus
on the background fields. In other words, we go over the
calculation of the terms in (63), (64). The basic strategy is
to consider TrðPA0Þ, rather than just the function (57) for P,
since this can be related to the calculation of the effective
action. For simplicity, we will consider only the changes in

the background gauge fields, keeping the spin connection
as ωð0Þ. TrðPA0Þ can be expressed as an integral over the
phase space with the star product of the functions corre-
sponding to P and A0 as the integrand. But instead of
considering P and A0 as defined by the modified wave
functions, we can use the wave functions for the back-
ground ða;ωð0ÞÞ, but use A which is a function of A0 and
Ai. In other words,

TrðPA0Þ ¼
Z

˜ðPÞ � ðA0Þ

¼
Z

dμ
X
ij

½u�i Pijuj�a;ωð0Þ �A

¼
Z

dμðPÞð0ÞA

þ terms with derivatives of ðPÞð0Þ;A: ðB1Þ

This shows that if we can identifyA, then from the first and
third lines of this equation, we see that we can obtain the
relation between ˜ðPÞ and ðPÞð0Þ, by functional differ-
entiation with respect to A0. The calculation of A has
been done in a few different ways; we will go over two
methods.
The first method is essentially classical, and can be

applied to the case when the background field is Abelian
[24]. Let Ω denote the symplectic structure of the phase
space, say, CPk; Ω is a multiple of the Kähler form. The
symplectic potential is the Abelian background gauge
potential a, so that Ω ¼ da. Changing the gauge field is
equivalent to using Ωþ F ¼ dðaþ AÞ as the symplectic
two-form. We are interested in TrðPA0Þ calculated using
wave functions with the background aþ A. The classical
version of this is the integral of A0 over the phase volume
corresponding to Ωþ F. So we can write the equivalent of
(B1) asZ

dμΩþFA0 ¼
Z

dμðPÞð0Þ �A

¼
Z

dμðPÞð0ÞAþ derivative terms ðB2Þ

The two-forms Ω and Ωþ F must belong to the same
topological class, so that, upon quantization, we get the
same number of states for the Hilbert space. This means
that we can use a diffeomorphism to map Ωþ F to Ω. We
can then identify A as the image of A0 under this map.
More explicitly, there is a diffeomorphism changing the
local coordinates v as v → v − w such that

Ωþ F�v−w ¼ Ω�v; A ¼ A0�v−w ðB3Þ
Equivalently, we can write aþ A�v−w − a�v ¼ df for some
function f. Taking A to be a first order correction, we can
solve this equation for w as a series. To the quadratic order,
the equations for w are
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FIG. 2. Values of λs − λsþ1 for n ¼ 100, 150, 200, for the three
curves from left to right.
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FIG. 1. Values of λs as a function of s, for n ¼ 200.
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wj
1∂jai þ aj∂iw

j
1 − Ai ≈ 0

wj
2∂jai þ aj∂iw

j
2 þ wj

1∂jAi þ Aj∂iw
j
1 −

1

2
wk
1w

l
1∂k∂lai − wk

1∂kaj∂iw
j
1 ≈ 0 ðB4Þ

where ≈ denotes equivalence up to an exact form. The solution to this order is

wj
1 ¼ −ðΩ−1ÞjkAk

wj
2 ¼ −ðΩ−1Þjk

�
Fklwl

1 þ
1

2
wm
1 w

n
1∂mΩnk þ

1

2
ðwm

1 ∂kwn
1ÞΩmn

�
: ðB5Þ

The expression for A ¼ A0�v−w obtained in this manner is

ΩkA ¼ ΩkA0 þ kΩk−1AdA0 þ
1

2
kðk − 1ÞΩk−2dAAdA0 þ � � � þ 1

2
kΩk−1dðu · AAÞ þ � � � ðB6Þ

where ui ¼ ðΩ−1Þij∂jA0. Using this in (B2), we find

˜ðu�susÞAi≠0 ¼ dμðu�susÞAi¼0 þ
1

N
d½ðu�susÞAi¼0QðA;ωÞ� − k

2N
d½Ωk−1AðΩ−1Þij∂iðu�susÞA¼0Aj� þ � � �

QðAÞ ¼ k
Z

1

0

dtAðΩþ tdAÞk−1: ðB7Þ

There are several observations to be made about this expression. First of all,Ω ¼ nΩK whereΩK is the Kähler two-form for
the space under consideration and N ≈ nk=k!. For CPk, we have

ΩK ¼ i

�
dzidz̄i

ð1þ z̄ · zÞ −
z̄ · dzz · dz̄
ð1þ z̄ · zÞ2

�
: ðB8Þ

Thus terms withΩk−1 are down by a power of n compared toΩk-terms. Also, ðΩ−1Þij gives an additional power of 1=n. The
series represented by QðA;ωÞ has (k − 1) terms terminating with Ω0. Integrating (B8) over the region D, we find

λs�Ai≠0 − λs�Ai¼0 ¼
QðAÞ
N

ðu�susÞat R −
k
2N

½Ωk−1ðΩ−1Þij∂iðu�susÞAj�∂D þ � � � : ðB9Þ

Comparing this with (64), we see that we can identify

Wi½∂iðu�susÞ�∂D;a;ωð0Þ ¼ −
k
2N

½Ωk−1ðΩ−1Þij∂iðu�susÞAj�∂D:
ðB10Þ

This term is order A=n2 while the leading term involving Q
is of order A=n.
The second method is to consider the time-evolution of

the occupancy matrix [25]. This should be a unitary
transformation of the form UðtÞP0U†ðtÞ. The action
governing the time-evolution can then be written as

S ¼
Z

dtTr

�
P0

�
U†i

∂U
∂t −U†AU

��
: ðB11Þ

It is easy to verify that the variational equation for this is the
(quantum) Liouville equation for P ¼ UðtÞP0U†ðtÞ. The
action (B11) can be rewritten using star products as

S ¼ N
Z

dμdt½iðP0 � U† � ∂tUÞ − ðP0 � U† �A �UÞ�

ðB12Þ

whereN is again the degeneracy. In (B12), all quantities are
c-number functions, the symbols which use wave functions
defined with the background fields Ai. Rather than working
out the perturbed wave functions and symbols directly, we
note that the action has the gauge symmetry

δU¼−iθ�U; δAðx⃗;tÞ¼∂tθðx⃗;tÞ− iðθ�A−A�θÞ
ðB13Þ

for some function θ on M. The background gauge fields
are only defined up to the gauge symmetry

δAμ ¼ ∂μΛþ i½aμ þ Aμ;Λ�; δaμ ¼ 0 ðB14Þ
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for some function Λ on M. Since (B13) is the only gauge
symmetry for the action (B12), the transformation (B14)
must induce a transformation of the form (B13). Thus we
must have A and θ as functions of aμ, Aμ, Λ such that
AμðAμ þ δAμÞ ≈Aþ δAwith δAμ as in (B14) and δA as in
(B13). Taking A to be A0 to the lowest order, we can use
this idea to solve forA in terms of the star product (defined
in terms ofΩ). The fieldU is a boundary field at the edge of
the occupied states and can be set to the identity at the end

of the calculation. This strategy was used in [25] and
leads to

A ¼ A0 þ
1

4
ðΩ−1ÞijfAi; 2DjA0 þ i½Aj; A0�g þ � � � :

ðB15Þ

This result is identical to the previous one, if the fields are
Abelian.
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