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The Hadamard renormalization procedure is applied to a free, massive Dirac field ψ on a two-
dimensional Lorentzian spacetime. This yields the state-independent divergent terms in the Hadamard
bispinor Gð1Þðx; x0Þ ¼ 1

2
h½ψ̄ðx0Þ;ψðxÞ�i as x and x0 are brought together along the unique geodesic

connecting them. Subtracting these divergent terms within the limit assigns Gð1Þðx; x0Þ, and thus any
operator expressed in terms of it, a finite value at the coincident point x0 ¼ x. In this limit, one obtains a
quadratic operator instead of a bispinor. The procedure is thus used to assign finite values to various
quadratic operators, including the stress-energy tensor. Results are presented covariantly, in a conformally
flat coordinate chart at purely spatial separations, and in the Minkowski metric. These terms can be directly
subtracted from combinations of Gð1Þðx; x0Þ—themselves obtained, for example, from a numerical
simulation—to obtain finite expectation values defined in the continuum.

DOI: 10.1103/PhysRevD.101.125019

I. MOTIVATION

Considering that one’s surroundings tend to at least seem
four-dimensional, two-dimensional models play a surpris-
ingly central role in quantum field theory (QFT). This is
largely a matter of convenience: they tend to be more
readily soluble by nonperturbative methods than their
higher-dimensional counterparts. The Thirring model [1]
of self-interacting two-dimensional fermions, for example,
can be solved nonperturbatively in the massless [2,3] and
massive cases [4]. Enough results have by now been
gathered about two-dimensional conformal field theories
[5] to form practically a new discipline.
Such nonperturbative studies often (e.g., [6]) exploit an

identification between two-component Dirac spinors and
continuum limits of spin chains. Here, Dirac spinors in the
continuum are mapped, for example by “staggering” [7–9],
to continuum limits of fermionic lattice operators. These, in
turn, can be exactly related to Pauli operators by a so-called
Jordan-Wigner transformation [10].
This strategy has enjoyed something of a renaissance of

late, because the numerical simulation of spin-chain
Hamiltonians using “matrix product state” [11–18] algo-
rithms has grown sufficiently mature for application to
lattice field theory [19–33]. Such studies encounter a recur-
rent difficulty during computations of certain “quadratic”
expectation values. These diverge in the continuum limit,
and some sort of countertermmust be subtracted to get finite
results. Most of the standard renormalization techniques
used in perturbation theory are not available in a numerical
lattice setting, since the “bare” results are found directly in

coordinate space, and since the forms of divergences with
the lattice spacing are not easily determined.
A similar problem occurs during studies of quantum field

theory in curved spacetime [34,35]. On general manifolds,
one has neither a preferred vacuum state nor spatial
homogeneity, so that one must in this case as well regulate
and renormalize directly in coordinate space. Among the
various techniques for doing this, covariant point splitting
followed by Hadamard renormalization [36–42] is particu-
larly interesting for application to numerics [43], since it
works by subtracting precomputed terms from externally
supplied two-point functions, which are relatively ame-
nable to simulation.
Curved two-dimensional spacetimes are of some physi-

cal interest, despite the identical vanishing of the Einstein
tensor upon them. Most of the familiar quantum field
theory-in-curved-spacetime effects such as Hawking radi-
ation [44] occur in both two [45] and four dimensions, but
the former are much simpler technically. They also arise
theoretically from “dilaton” theories [46–48], obtained, for
example, by restricting Einstein gravity to spherical sym-
metry and then compactifying. Even in flat spacetime,
Hadamard renormalization is of some use. Though easier
methods exist to calculate the actual flat-spacetime diver-
gences, the Hadamard procedure establishes their inde-
pendence of the particular quantum state.
Once the terms have been computed, renormalization is

as simple as subtracting them from correlation functions,
but unfortunately the initial computation is a bit involved.
Early studies found results in 4 dimensions, first for scalar,
and then for vector and spinor fields. More recent work has
concerned a scalar field in dimensions from 2 up to 6 [41].
In the special case of AdS spacetime, where parallel*alewis@perimeterinstitute.ca
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transport operators can be found in closed form [49],
Hadamard renormalization has been used to obtain exact
expectation values, both for vacuum states of scalars [50]
and spinors [42], and for thermal states of both [51,52]. The
close-distance singularities in the two-point functions of
chiral fermions, on arbitrary two-dimensional backgrounds,
have also been studied [53,54].
The immediately relevant case of a Dirac field in two

dimensions, though, seems to be missing. This is the most
useful case for application to matrix product state simu-
lations, whose expense scales with the spatial dimension
and with the local Hilbert space of the lattice model.
I develop the missing results here.
Section II establishes notation, while Sec. III reviews the

well-understood theory of two-point functions on curved
spacetime. Section IV details the replacement of quadratic
expectation values with divergent limits of correlation
functions. Section V then shows how to compute the
divergent terms in the correlation functions, and Sec. VI
how to relate the latter to those regulating the quadratic
operators. Section VII then specializes these results to a
general conformally flat metric at zero coordinate time
separation, and to Minkowski spacetime.
As an accessory to the main text, Mathematica [55]

notebooks that adapt the package xTensor [56–59] to the
manipulation of bispinors and to their coincidence limits
are hosted at [60]. These are not restricted to two dimen-
sions. One of them, in particular, performs the computation
of the divergences in the stress-energy tensor from those in
the Hadamard function, which otherwise is quite involved.

II. THE FREE DIRAC FIELD

Consider a globally hyperbolic, two-dimensional space-
time M with metric gμνðxÞ and Lorentzian signature. Each
point x ∈ M will be equipped with a spinor field ψAðxÞ,
whose two components are addressed by uppercase latin
indices A. Spinor indices will, however, normally be
suppressed, ψAðxÞ ↦ ψðxÞ. The spinor fields are defined
to transform under a local Lorentz transformation like (see
the discussion surrounding (5.256) of [35])

ψAðxÞ ↦ ψ 0
A ¼ SðLðxÞÞψAðxÞ ð1Þ

where SðLðxÞÞ is some representation of a double covering
of the Lorentz group. To relate between local Lorentz
transformations and global diffeomorphisms, introduce a
set of local frame fields eaμðxÞ via

eaμðxÞebνðxÞηab ¼ gμνðxÞ; ð2aÞ

eaμðxÞeaνðxÞ ¼ δμν ; ð2bÞ

eaμðxÞebμðxÞ ¼ δab; ð2cÞ

where δμν is the Kronecker delta. The lowercase-latin
“Lorentz” indices are raised and lowered by the
Minkowski metric ηab ¼ diagð−1 1 Þ, just as the greek
“world” indices are by the spacetime metric gμνðxÞ.
Relationships between uppercase-latin and, respectively,
lowercase-latin and greek indices, are furnished, respec-
tively, by the “flat-spacetime” gamma matrices γaB

A and
“curved spacetime” gamma matrices γ̃μB

AðxÞ, themselves
defined by their anticommutation relations

fγa; γbg ¼ 2ηab; ð3Þ

fγ̃μðxÞ; γ̃νðxÞg ¼ 2gμνðxÞ: ð4Þ

The former imply the latter, given

γ̃μðxÞ ¼ eaμðxÞγa; ð5Þ

where again uppercase latin spinor indices will usually be
suppressed, γaBA ↦ γa, γ̃μBAðxÞ ↦ γ̃μðxÞ.
We will denote covariant derivatives interchangeably

with semicolons and nablas [e.g., ∇μTνðxÞ ¼ Tν;μðxÞ], and
partial derivatives interchangeably with colons and dels
[e.g., ∂μTνðxÞ ¼ Tν;μðxÞ]. Note the coordinate dependence
of the covariant derivative operator will always be sup-
pressed. The covariant derivative of a spinor ψ ;μðxÞ is
given by

ψ ;μðxÞ ¼ ψ ;μðxÞ þ ζμðxÞψðxÞ; ð6Þ

ψ̄ ;μðxÞ ¼ ψ̄ ;μðxÞ − ψ̄ðxÞζμðxÞ; ð7Þ

where the spin connection ζμðxÞ stands in for

ζμðxÞ ¼
1

2
ωμabðxÞΣab; ð8Þ

Σab ≡ 1

4
½γa; γb�: ð9Þ

Some references call ωμabðxÞ the spin connection.
Whatever its name, it relates to the Christoffel connection
Γλ

μν via

ωμ
a
bðxÞ ¼ −ebνðxÞð∂μeaνðxÞ − Γλ

μνðxÞeaλðxÞÞ: ð10Þ

In the torsion-free geometries we consider, Γλ
μνðxÞ ¼

Γλ
νμðxÞ. Given that along with (10) and (2), we find

ωμabðxÞ ¼ −ωμbaðxÞ: ð11Þ

The failure of the spin covariant derivative to commute is
measured by
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½∇μ;∇ν�ψðxÞ ¼
1

2
ΣabRab

μνðxÞψðxÞ; ð12Þ

where Rμν
στðxÞ is the Riemann curvature tensor. Partial

derivatives commute, of course.
From (12) along with the covariant conservation of the

gamma matrices,

γ̃ν;μðxÞ ¼ 0; ð13Þ

the square of the Dirac operator γ̃μðxÞ∇μ is found to be

ðγ̃μ∇μÞ2 ¼ □þ 1

4
RðxÞ; ð14Þ

where □≡∇μ∇μ is the covariant spinor wave operator.
The field’s dynamics will be set by the free Dirac action,

S ¼ −
Z

d2x
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
ψ̄ðxÞ

�
1

2
γ̃μðxÞ∇↔μ −m

�
ψðxÞ; ð15Þ

where gðxÞ is the metric determinant, the Dirac adjoint ψ̄ðxÞ
is defined by

ψ̄ðxÞ≡ iψ†ðxÞγ0; ð16Þ
and left-right arrows over a derivative operator indicate, for
example,

ψ̄ðxÞ∇↔μψðxÞ ¼ ψ̄ðxÞψ ;μðxÞ − ψ̄ ;μðxÞψðxÞ: ð17Þ

Variation of (15) yields the Dirac equation and its adjoint,

γ̃μðxÞψ ;μðxÞ −mψðxÞ ¼ 0; ð18aÞ

ψ̄ ;μðxÞγ̃μðxÞ þmψðxÞ ¼ 0: ð18bÞ

The theory can now be quantized by various equivalent
means. We use canonical quantization for reference. Thus
we will impose the canonical anticommutation relations

fψ̄ðt;xÞ; πðt; yÞg ¼ iδðy − xÞ; ð19aÞ

fψðt;xÞ;ψðt; yÞg ¼ fπðt;xÞ; πðt; yÞg ¼ 0 ð19bÞ

where boldface coordinates are purely spatial, while
δðx − yÞ is the Dirac delta distribution. Here the canonical
momentum πðxÞ is defined in terms of the Lagrangian
density LðxÞ by

πðxÞ≡ ∂LðxÞ
∂ψ ;0ðxÞ

; ð20Þ

S ¼ −
Z

LðxÞ: ð21Þ

Imposition of the canonical anticommutation relations
(19) requires ψðxÞ to be operator valued. As a far-from-
obvious consequence, classically unproblematic expres-
sions involving products of fields, for instance ψ̄ðxÞψðxÞ,
yield formally infinite expectation values after quantization.
A more sophisticated procedure than simple substitution of
operators for classical fields is required in these cases.
On the Minkowski metric this problem, in free theories at

least, is solved by normal ordering of mode operators.
Normal ordering is unsatisfactory on general metrics
because it privileges the coordinate of the associated
time-ordering operator. Hadamard renormalization is one
of a few possible replacements.
The Hadamard scheme runs essentially as follows. A

quadratic expectation value such as hψ̄ðxÞψðxÞi is to be
computed against a given quantum state. The expression is
first regularized by covariant point splitting [37,39,40],
which prescribes its replacement by the x0 → x limit of a
correlation function such as hψ̄ðx0ÞψðxÞi. These correlation
functions are assumed to adopt a special “Hadamard” form,
which can be viewed as a restriction of attention to special
quantum states called Hadamard states. The Hadamard
form provides sufficient information to compute the diver-
gent terms in the x0 → x limit explicitly. By first subtracting
these terms and then taking the x0 → x limit, a finite number
is obtained. The original quadratic expectation value is
finally identified with that number.

III. TWO-POINT FUNCTIONS ON MANIFOLDS

Before explicating the Hadamard procedure in further
detail, it is helpful to review some of the well-understood
machinery of two-point functions on manifolds.
As is standard, we label indices transforming at x0 with a

prime. Thus Aμν0 ðx; x0Þ transforms separately as a vector
with respect to coordinate transformations at either the
“base” point x or the “field” point x0. Such an object is
known as a “bitensor”, with “bispinors” defined analo-
gously via local Lorentz transformations at x and x0. A
“biscalar” is the special case of a bitensor with no indices.
Note that when x0 ¼ x, the bitensor Aμν0 ðx; x0Þ trans-

forms, if nonsingular, as a rank-2 tensor at x. This case
recurs sufficiently often to earn its own notation. Thus

½B�ðx; x0Þ ¼ Bðx; xÞ; ð22Þ

when the rhs is defined, for some smooth bispinor-tensor
Bðx; x0Þ. A more generalized notation is useful, however, to
enclose the often-interesting case that Bðx; x0Þ expands into
multiple terms, some of which may be independently
singular. In this case we write

½B�ðxÞ≡ lim
x0→x

Bðx; x0Þ; ð23Þ

and thus square brackets can then be manipulated as limits.
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One is typically interested in using coincidence limits to
construct “covariant expansions” of tensors (spinors) in
terms of bitensors (bispinors). These are morally similar to
Taylor series, with the separation measured by Synge’s
world function σðx; x0Þ, a biscalar numerically equal to one-
half the squared geodesic proper interval between x0 and x.
The idiosyncratic, though standard, practice of denoting

covariant derivatives of σðx; x0Þwithout a semicolon will be
adopted: σμðx; x0Þ≡ σ;μðx; x0Þ, for example. In addition, σ’s
coordinate dependence will be suppressed throughout,
σμðx; x0Þ ↦ σ. The most important facts about σ are

½σ� ¼ ½σμ� ¼ 0; ð24Þ

σμσμ ¼ 2σ: ð25Þ

The latter identity, in particular, implies that coincidence
limits involving σμ scale numerically like Oðσ1=2Þ.
Outside of Minkowski space, primed indices will generi-

cally suffer a nontrivial parallel transport as the coincidence
limit is taken. We express this using the spinor parallel
propagator, defined by

J B
A0
;μðx; x0Þσμ ¼ 0; ð26aÞ

½J �ðxÞ ¼ 1; ð26bÞ

where 1 is the identity on spinor indices, and the vector
parallel propagator, defined by

gρ0ν;μðx; x0Þσμðx; x0Þ ¼ 0; ð27aÞ

½gρ0ν�ðxÞ ¼ δνρ: ð27bÞ

The identities (26a) and (27a) are, respectively, the
parallel transport equations for spinors and vectors.
Thus, contraction with a parallel propagator implements
parallel transport along the coincident geodesic.
With its spinor indices suppressed, the spin parallel

propagator will appear as

J A0
B ðx; x0Þ ↦ J ðx; x0Þ; ð28Þ

J B
A0 ðx; x0Þ ↦ J −1ðx; x0Þ: ð29Þ

IV. COVARIANT POINT SPLITTING

The Hadamard procedure will now be applied to four
operators: the chiral condensate CIðxÞ, the axial condensate
C5ðxÞ, the μ current jμðxÞ, and the stress-energy tensor

TμνðxÞ≡ −2ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp : ð30Þ

In the classical theory, we have

CIðxÞ ¼ mψ̄ðxÞψðxÞ; ð31aÞ

C5ðxÞ ¼ ψ̄ðxÞγ5ðxÞψðxÞ; ð31bÞ

jμðxÞ ¼ ψ̄ðxÞγ̃μðxÞψðxÞ; ð31cÞ

Tμν ¼
1

4
ψ̄ðxÞðγ̃μðxÞ∇

↔

ν þ γ̃νðxÞ∇
↔

μÞψðxÞ; ð31dÞ

where γ5 ≡ iγ0γ1. In the limit of flat spacetime, the chiral
and pseudoscalar condensate provide measures of sym-
metry breaking, while the currents form a conserved
quantity. The stress-energy tensor both measures how
the field responds to diffeomorphisms and, in general
relativity, sources the gravitational field. Unfortunately,
the expressions (31) become problematic after quantiza-
tion, since their right-hand sides will typically be formally
infinite.
Hadamard renormalization is one of various routes to

well-defined generalizations. The first step is to construct
“point-split” correlation functions, depending separately on
the base point x and a new field point x0, such that the
classical expressions (31d) and (31) are defined in the
coincidence limit from x0 to x.
To make eventual contact with the Dirac equation, it is

convenient to express the point-split expressions in terms of
the Hadamard bispinor [61]

Gð1Þ
A
B0 ðx; x0Þ ↦ Gð1Þðx; x0Þ ¼ 1

2
h½ψAðxÞ; ψ̄B0 ðx0Þ�i: ð32Þ

The superscript ð1Þ is a typical notation used to distinguish
the Hadamard bispinor from other two-point functions
like the Feynmann propagator, which will not appear here.
Due to the comma, the square bracket in (32) is the
commutator, not the coincidence limit. Note finally that
the Hadamard bispinor implicitly depends upon (or, from a
different point of view, defines) the quantum state.
The point-split expressions [37] we use are

CIðxÞ ↦ CIðx; x0Þ ¼ −mTrJGð1Þðx; x0Þ; ð33aÞ

C5ðxÞ ↦ C5ðx; x0Þ ¼ −TrJ γ5Gð1Þðx; x0Þ; ð33bÞ

jμðxÞ ↦ jμðx; x0Þ ¼ −TrJ γ̃μGð1Þðx; x0Þ; ð33cÞ

TμνðxÞ↦Tμνðx;x0Þ¼
1

8
TrJ γ̃ðμðGð1Þ

;νÞ ðx;x0Þ−gνν
0
Gð1Þ

;ν0Þðx;x0ÞÞ:
ð33dÞ

The traces here are over the suppressed spinor indices. The
problem of defining e.g., hCIðxÞi then becomes that of
defining the coincidence limits e.g., ½CIðx; x0Þ�.
We will find that, having restricted attention to so-called

Hadamard quantum states, all the divergences in ½Gð1Þðx; x0Þ�,
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and thus in each of (33), are determined only by the
Lagrangian and by the geometry local to x and x0. We denote
by an overbar the terms in a two-point function which are
(a) fully determined by the Lagrangian and the spacetime
geometry, and (b) nonvanishing at coincidence. By the above
requirements, the coincidence limit of the difference between
a two-point function and its barred correspondent is well-
defined.
Later, we will develop machinery to compute Ḡð1Þðx; x0Þ

explicitly. Having done so, we can find the locally
determined terms of each point-split two-point function via

C̄Iðx; x0Þ≡ −mTrJ Ḡð1Þðx; x0Þ; ð34aÞ

C̄5ðx; x0Þ≡ −TrJ γ5Ḡð1Þðx; x0Þ; ð34bÞ

j̄μðx; x0Þ≡ −TrJ γ̃μḠð1Þðx; x0Þ; ð34cÞ

T̄μνðx; x0Þ≡ ¼ 1

8
TrJ γ̃ðμðḠð1Þ

;νÞ ðx; x0Þ − gνν
0
Ḡð1Þ

;ν0Þðx; x0ÞÞ;
ð34dÞ

where it is understood that terms which vanish at coinci-
dence are to be dropped from the right-hand side. We can
then make the definitions

hCIðxÞi≡ ½CIðx; x0Þ − C̄Iðx; x0Þ�; ð35aÞ

hC5ðxÞi≡ ½C5ðx; x0Þ − C̄5ðx; x0Þ�; ð35bÞ

hjμðxÞi≡ ½jμðx; x0Þ − j̄μðx; x0Þ�; ð35cÞ

hTμνðxÞi≡ ½Tμνðx; x0Þ − T̄μνðx; x0Þ�; ð35dÞ

which make sense only if all the coincident divergences
within e.g., CIðx; x0Þ are indeed contained within its locally
determined parts e.g., C̄Iðx; x0Þ.

V. COMPUTATION OF Ḡð1Þðx;x0Þ
To employ the definitions (35) we must first compute

the locally determined terms Ḡð1Þðx; x0Þ in the Hadamard
function, and next work out those in each point-split
operator through (34).Wewill do the first part in this section.

A. The Hadamard form

One first assumes that Gð1Þðx; x0Þ is a homogeneous
solution to the Dirac equation

ðγ̃μðxÞ∇μ −mÞGð1Þðx; x0Þ ¼ 0; ð36Þ

a first order partial differential equation (PDE). We would
like to appeal to results concerning solutions to second
order hyperbolic PDEs. To this end, define the auxiliary
propagator Gðx; x0Þ implicitly by

ðγ̄μðxÞ∇μ þmÞGðx; x0Þ ¼ Gð1Þðx; x0Þ: ð37Þ

Inserting (37) into (36) and applying (14) reveals that
Gðx; x0Þ obeys a Klein-Gordon-like equation with a ζ ¼ 1

4

curvature coupling,

�
∇μ∇μ þ

1

4
R −m2

�
Gðx; x0Þ ¼ 0; ð38Þ

a second-order hyperbolic PDE. We now make the
Hadamard assumption that Gðx; x0Þ is regular except along
characteristics of (38); that is, except when x and x0 are
lightlike separated. Should this be so it is possible to
construct a general form for Gðx; x0Þ even without initial
data, called the “Hadamard form” or “elementary solution”.
In two-dimensional spacetime, the Hadamard form is

Gðx; x0Þ ¼ αðVðx; x0Þ ln ðμσ þ iϵÞ þWðx; x0ÞÞ ð39Þ

where Vðx; x0Þ and Wðx; x0Þ are smooth bispinors, and ϵ a
small number that regulates the logarithm. The Hadamard
form was first presented by Hadamard (p. 100 of [36]) as
part of a highly recommended treatise on the Cauchy
problem, apparently the first to draw a distinction between
elliptic and hyperbolic PDEs. The relevant results were first
imported to relativity theory during a study of the radiation
backreaction by DeWitt and Brehme [39], which also laid
out much of the necessary theory of bitensors.
For Gðx; x0Þ of the Hadamard form (39), we have

Ḡðx; x0Þ ¼ αVðx; x0Þ ln ðμσ þ iϵÞ; ð40aÞ

¼ 1

4π
Vðx; x0Þ ln ðμσ þ iϵÞ; ð40bÞ

where the overall scale

α ¼ 1

4π
ð41Þ

is fixed in the Appendix by demanding agreement with
standard QFT results. In the following, this value will
be used for α without comment. The dimensionful
“renormalization parameter” μ is similarly assigned a value
in the Appendix, but we follow tradition in leaving μ as is
during subsequent calculations.
As we will soon discover, the requirement that Gðx; x0Þ

be of the form (39) places a restriction upon the quantum
state. States meeting this requirement are said to be
Hadamard. Heuristically, such states locally resemble the
Minkowski vacuum, and the Hadamard condition is taken
[62–64] as a condition for the physical reasonableness of a
quantum state.
The significance of assuming (39) is perhaps best

appreciated by first noting that, using traditional free
QFT formalisms involving e.g., mode expansions and

HADAMARD RENORMALIZATION OF A TWO-DIMENSIONAL … PHYS. REV. D 101, 125019 (2020)

125019-5



normal-ordered Hamiltonian minimization, it is straightfor-
ward to construct quantum states failing to meet the
Hadamard condition. For example, the “Rindler” vacuum
minimizing the normal-ordered Hamiltonian of constantly
accelerated observers in flat spacetime will fail to meet it,
due to additional divergences independent of σ at the
acceleration horizon.
According to one’s taste, Hadamard-renormalized quan-

tum field theory thus either predicts or assumes that
standard normal-ordering techniques, generalized to non-
trivial metrics, in many cases furnish quantum states which
do not occur in nature. Of course free two-dimensional
Dirac fields also do not occur in nature, but this qualitative
feature of the Hadamard procedure holds more generally.

B. Expansion in σ

Due to (40a), we can determine Ḡðx; x0Þ by computing
Vðx; x0Þ. To do so, insert the Ansatz expansions

Vðx; x0Þ ¼
X∞
i¼0

Viðx; x0ÞσðiÞ; ð42aÞ

Wðx; x0Þ ¼
X∞
i¼0

Wiðx; x0ÞσðiÞ; ð42bÞ

into (39) and then (38). Having done so, the demand that
each power of σ separately vanish yields a set of recurrence
relations for Viðx; x0Þ andWiðx; x0Þ, along with a boundary
condition for V0ðx; x0Þ. The resulting expressions are a bit
visually confusing, so we will briefly suppress coordinate
dependencies while presenting them. They are

2ðnþ 1Þ2Vnþ1 þ 2ðnþ 1ÞVnþ1;μσ
μ

− 2ðnþ 1ÞVnþ1Δ−1=2Δ1=2
;μ σμ

þ
�
□x −m2 þ 1

4
R

�
Vn ¼ 0; ð43aÞ

2ðnþ 1Þ2Wnþ1 þ 2ðnþ 1ÞWnþ1;μσ
μ

− 2ðnþ 1ÞWnþ1Δ−1=2Δ1=2
;μ σμ þ 4ðnþ 1ÞVnþ1

þ 2Vnþ1;μσ
μ − Vnþ1Δ−1=2Δ1=2

;μ σμ

þ
�
□x −m2 þ 1

4
R
�
Wn ¼ 0; ð43bÞ

V0;μσ
μ − V0Δ−1=2Δ1=2

;μ σμ ¼ 0: ð43cÞ

The biscalar Δ1=2, called the van Vleck-Morette determi-
nant, appears here via the identity

□xσ ¼ ðdþ 1Þ − 2Δ−1=2Δ1=2
;μ σμ; ð44Þ

where d ¼ 1 is the spatial dimension. It bears repeating that
the labels i in Vi, e.g., nþ 1 in Vnþ1, are not indices, but
simply label the order within the expansions (42). Note that
(43) are formally identical to those obtained in [41] for a
scalar field with a ζ ¼ 1

4
curvature coupling, apart from the

differing connection in the covariant derivatives.
In the immediately following subsection we will be able

to determine V0ðx; x0Þ from (43c) up to a constant scalar
coefficient. While the computational effort quickly
becomes forbidding, V0ðx; x0Þ in turn provides sufficient
information in principle to determine Vðx; x0Þ to arbitrary
order in σ via (43a). Due to the assumed Hadamard form
(39), V0ðx; x0Þ also fully determines the divergent terms
within each of (34). Thus, as promised, these divergent
terms are fully determined by the mass and the local
spacetime geometry.
On the other hand, Wðx; x0Þ additionally depends upon

the bispinor W0ðx; x0Þ, which is not constrained by any
boundary condition. Thus, W0ðx; x0Þ must contain any
information apart from the mass and the local spacetime
geometry distinguishing different two-point functions from
one another. This notably includes the quantum state: all
Hadamard states with the same mass and on the same
background have the same Ḡðx; x0Þ.

C. Solving for Vðx;x0Þ
Each time we take a derivative of Vðx; x0Þ, its scaling

with σ during the coincidence limit will be reduced by a
factor of σ1=2. Since Tμνðx; x0Þ depends on second deriv-
atives of Gðx; x0Þ, in order to compute T̄μν we need Vðx; x0Þ
up to OðσÞ. In light of (42), we in turn need V0ðx; x0Þ up to
OðσÞ, and V1ðx; x0Þ up to Oð1Þ.
To find V0ðx; x0Þ we must solve the boundary equa-

tion (43c). To do so, we make the Ansatz

V0ðx; x0Þ ¼ aSðx; x0ÞSðx; x0Þ; ð45Þ

where a is a scalar constant, Sðx; x0Þ is a biscalar, and
Sðx; x0Þ is a bispinor. We then find by inspection that (43c)
is satisfied by the simultaneous choices

Sðx; x0Þ ¼ Δ1=2; ð46aÞ

S;μðx; x0Þσμ ¼ 0: ð46bÞ

A covariant expansion of Δ1=2 can be found, for
example, in [40]. Up to OðσÞ it is

Δ1=2 ¼ 1þ 1

12
Rμνσ

μσν þOðσ3=2Þ; ð47Þ

so that ½Δ1=2� ¼ 1, and

½V0ðx; x0Þ� ¼ a½Sðx; x0Þ�: ð48Þ
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In the Appendix we find that, in order to recover the results
of standard flat-spacetime QFT, we should demand

½V0ðx; x0Þ� ¼ −1; ð49Þ

and thus

a ¼ −1; ð50Þ

½Sðx; x0Þ� ¼ 1: ð51Þ

Taken together, (46b) and (51) form the definition (26) of
the spin parallel propagator, so that Sðx; x0Þ ¼ J ðx; x0Þ. We
thus have exactly

V0ðx; x0Þ ¼ −Δ1=2J : ð52Þ

It is not possible to make a covariant expansion of J , but
we can insert the expansion (47) for Δ1=2 to find

V0ðx; x0Þ ¼ −J
�
1þ 1

12
Rσ

�
þOðσ3=2Þ; ð53Þ

where the well-known relations

Rμνστ ¼
1

2
RðgμνðxÞgστðxÞ − gμτðxÞgσνðxÞÞ; ð54aÞ

Rμν ¼
1

2
RgμνðxÞ; ð54bÞ

which are specific to 2D, were used.
To get V1ðx; x0Þ up to Oð1Þ, we follow [40] and first

write J −1V1ðx; x0Þ as a Taylor-like “covariant” expansion
[65],

J −1V1ðx; x0Þ ¼ v0ðxÞ þ v1μðxÞσμ þ � � � ð55Þ

where the coefficients viðxÞ depend only on x. Taking the
coincidence limit of both sides we have

v0ðxÞ ¼ ½V1�ðxÞ: ð56Þ

Now set n ¼ 0 in (43a), insert (53), and take the coinci-
dence limit to find

½V1ðxÞ� ¼
1

24
ð−12m2 þ 5RÞ1; ð57Þ

V1ðx; x0Þ ¼ J
1

24
ð−12m2 þ 5RÞ þOðσ1=2Þ: ð58Þ

Combining (58) and (53) with (42), we find

J −1Vðx; x0Þ ¼ −1 − ð1=2Þðm2 þ ð1=4ÞRÞσ1: ð59Þ

Except for the presence of the spinor identity, this is the
same result as reported for the scalar field in [41] with
scalar curvature coupling ζ ¼ 1=4.

VI. THE LOCALLY DETERMINED TERMS

We now must insert (59) into (40a) and then (37) to find
Ḡð1Þðx; x0Þ, and then the latter into each of (33) to find
C̄Iðx; x0Þ, j̄μðx; x0Þ, and T̄μνðx; x0Þ. Doing so, inserting the
expansions found in [37,39,40], and dropping any terms
that vanish at coincidence, one obtains expressions in terms
of geometric tensors, σ, and σμ only.
This is conceptually straightforward, but a bit tiresome in

practice, due to the length of the intermediate expressions
involved. I have written some Mathematica notebooks,
based on the package xTensor [56–59], to assist with such
bispinor and bitensor manipulations. They can be found
at [60].
Following this procedure yields our central results,

C̄Iðx; x0Þ ¼ −
m2

2π
ln μσ; ð60aÞ

C̄5ðx; x0Þ ¼ 0; ð60bÞ

j̄μðx; x0Þ ¼ −
σμ
2πσ

; ð60cÞ

T̄μνðx; x0Þ ¼
1

4π

�
gμν
σ

−
σμσν
σ2

þ R
6

�
σμσν
σ

−
5

4
gμν

��

þm2

8π

�
σμσν
σ

þ gμνð1þ ln μσÞ
�
: ð60dÞ

Note that the trace of (60d) is

T̄μ
μðx; x0Þ ¼ −

R
48π

þm2

2π

�
1þ 1

2
ln μσ

�
; ð61Þ

which, when m ¼ 0, differs from the standard CFT result
[5] for free Dirac fermions by a factor of 1=2. If desired,
this can be corrected via a procedure due to Moretti [66].
Here, the stress-energy tensor is redefined to include a
factor proportional to the Lagrangian, which vanishes
classically. Thus, define

Θμνðx; x0Þ≡ gμνðxÞJ −1ðγ̃ρðxÞ∇ρ −mÞGð1Þðx; x0Þ: ð62Þ

The correction Θμνðx; x0Þ vanishes for the “classical”
Gð1Þðx; xÞ which solves the Dirac equation. However, it
does not vanish after the replacement Gð1Þðx; x0Þ →
Ḡð1Þðx; x0Þ. Instead,
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Θ̄μνðx; x0Þ ¼
gμν
π

�
R
24π

−m2gμν

�
: ð63Þ

Now define

T̄ new
μν ðx; x0Þ≡ T̄μνðx; x0Þ þ qΘ̄μνðx; x0Þ: ð64Þ

Then the demand

T̄new;μ
μ ¼ −

R
24π

ð65Þ

implies q ¼ − 1
4
, and thus

T̄new
μνðx; x0Þ ¼

1

4π

�
gμν
σ

−
σμσν
σ2

þ R
2

�
σμσν
3σ

−
1

2
gμν

��

þm2

8π

�
σμσν
σ

þ gμνð3þ ln μσÞ
�
: ð66Þ

VII. SPECIALIZATION TO CONFORMALLY
FLAT COORDINATES

Our original motivation in computing (60a), (60c),
and (60d) was to regularize numerically generated data.
These will typically be in some specific coordinate chart,
localized to equal-time hypersurfaces with t ¼ t0. Thus, we
outline here how to specialize the given example to a
coordinate system, using conformally flat coordinates

gμνðxÞ ¼ Ω2ðxÞημν ð67Þ
and a purely spatial coordinate separation as a prototype.
Such coordinates are always available in 2D.
The connections and the curvature scalar satisfy the

component equations

Γ0
00ðxÞ ¼ Γ0

11ðxÞ ¼ Γ1
01ðxÞ ¼

Ω;0ðxÞ
ΩðxÞ ; ð68aÞ

Γ0
01ðxÞ ¼ Γ1

00ðxÞ ¼ Γ1
11ðxÞ ¼

Ω;1ðxÞ
ΩðxÞ ; ð68bÞ

ζ0ðxÞ ¼
i
2

Ω;1ðxÞ
ΩðxÞ γ5; ð68cÞ

ζ1ðxÞ ¼
i
2

Ω;0ðxÞ
ΩðxÞ γ5; ð68dÞ

R¼2

�
Ω2

;1ðxÞ−Ω2
;0ðxÞ

Ω4ðxÞ −
Ω;11ðxÞ−Ω;00ðxÞ

Ω3ðxÞ
�
; ð68eÞ

while the gamma matrices satisfy

γ̃μðxÞ ¼ Ω−1ðxÞγμ; ð69aÞ

γ̃μðxÞ ¼ ΩðxÞγμ: ð69bÞ

Coordinate expansions of σ;μ can be found in [67].
Specialized to (67) with t0 ¼ t, they yield

σ0 ¼
1

2
ΩðxÞΩ;0ðxÞr2 þOðr3Þ ð70aÞ

σ1 ¼ −Ω2ðxÞr − 1

2
ΩðxÞΩ;1ðxÞr2 þOðr3Þ ð70bÞ

where r≡ x0 − x. We can find expansions of σ by inserting
these expansions into the identity σ ¼ 1

2
σμσμ, and then the

result into a Laurent expansion of 1
σ about σ ¼ 0. The

results are

C̄I ¼ −
m2

2π
ln
1

2
μr2Ω2ðxÞ; ð71aÞ

C̄5 ¼ 0; ð71bÞ

j̄0 ¼
Ω;0ðxÞ
2πΩðxÞ ; ð71cÞ

j̄1 ¼ −
1

πr
þ Ω;1ðxÞ
2πΩðxÞ ; ð71dÞ

T̄00ðx;x0Þ¼
1

2πr2
þ 1

2πr
Ω;1ðxÞ
ΩðxÞ

þm2

8π
Ω2ðxÞ

�
1þ lnμ

1

2
r2Ω2ðxÞ

�
−

5

96π
RΩ2

þ 1

24π

Ω2
;1ðxÞ

Ω2ðxÞ −
1

6π

Ω;11ðxÞ
ΩðxÞ þ 5

24π

Ω2
;0ðxÞ

Ω2ðxÞ ; ð72aÞ

T̄01ðx; x0Þ ¼
1

2π

�
−
Ω;0ðxÞ
ΩðxÞ

1

r
þΩ;0ðxÞΩ;1ðxÞ

2Ω2ðxÞ −
1

3

Ω;01ðxÞ
ΩðxÞ

�
;

ð72bÞ

T̄11ðx; x0Þ ¼
1

2πr2
þ 1

2πr
Ω;1ðxÞ
ΩðxÞ

−
m2

8π
Ω2ðxÞ

�
3þ ln

1

2
μr2Ω2ðxÞ

�

þ 1

32π
RΩ2ðxÞ þ 1

24π

Ω2
;1ðxÞ

Ω2ðxÞ −
1

6π

Ω;11ðxÞ
ΩðxÞ

þ 5

24π

Ω2
;0ðxÞ

Ω2ðxÞ ; ð72cÞ

Θ00ðx; x0Þ ¼
q
π
Ω2ðxÞ

�
m2 þ R

24

�
; ð73aÞ

Θ01ðx; x0Þ ¼ 0; ð73bÞ

Θ11ðx; x0Þ ¼ −Θ00ðx; x0Þ: ð73cÞ
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Further specializing to Minkowski space, Ω ¼ 1, we
have

C̄Iðx; x0Þ ¼ −
m2

2π
ln
1

2
μr2; ð74aÞ

C̄5 ¼ 0; ð74bÞ

j̄0 ¼ 0; ð74cÞ

j̄1ðx; x0Þ ¼ −
1

πr
; ð74dÞ

T̄00ðx; x0Þ ¼
1

2πr2
þm2

8π

�
1þ ln

1

2
μr2

�
; ð75aÞ

T̄ 01 ¼ 0; ð75bÞ

T̄11ðx; x0Þ ¼
1

2πr2
−
m2

8π

�
3þ ln

1

2
μr2

�
; ð75cÞ

Θ00 ¼
q
π
m2; ð76aÞ

Θ01 ¼ 0; ð76bÞ

Θ11 ¼ −Θ00: ð76cÞ
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APPENDIX: IDENTIFICATIONS
WITH STANDARD QFT

In this Appendix we fix the constants μ and α in (39)
along with a in (45) by comparison with mode-sum-based
QFT in flat spacetime. Choose gμνðxÞ ¼ ημν and consider x0

and x separated by a purely spatial distance r so that
σ¼ 1

2
r2. Consulting e.g. [68] we find that in the Minkowski

vacuum state,

Gðx; x0Þ ¼ −
1

4π

Z
dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p e−ipr; ðA1Þ

which can be related to the modified Bessel function of the
first kind K0ðωÞ via the identity

K0ðωÞ ¼
1

2

Z
db

eiωbffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p ; ðA2Þ

thus

Gðx; x0Þ ¼ 1

2π
K0ðmrÞ; ðA3aÞ

¼ −
1

4π
ln

��
1

2
m2e2γE

�
1

2
r2� þOðr2Þ; ðA3bÞ

where γE is the Euler-Mascheroni constant. Under the
hypothesized conditions, the Hadamard form (39) is

Gðx;x0Þ ¼ α

�
Vðx;x0Þ ln

�
μ
1

2
r2þ iϵ

�
þWðx;x0Þ

�
; ðA4Þ

which is consistent with (A3b) given

μ ¼ 1

2
m2e2γE ; ðA5aÞ

α ¼ 1

4π
; ðA5bÞ

½V�ðxÞ ¼ ½V0�ðxÞ ¼ −1: ðA5cÞ
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