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We study a field-theoretic model with an eighth-degree polynomial potential—the φ8 model. We show
that for some certain ratios of constants of the potential, the problem of finding kink-type solutions in
(1þ 1)-dimensional space-time reduces to solving algebraic equations. For two different ratios of the
constants, which determine positions of the vacua, we obtained explicit formulas for kinks in all topological
sectors. The properties of the obtained kinks are also studied—their masses are calculated, and the
excitation spectra which could be responsible for the appearance of resonance phenomena in kink-antikink
scattering are found.
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I. INTRODUCTION

Topological solitons is an important class of solutions of
field-theoretic models which are of great importance to
high energy physics, cosmology, and condensed matter
[1–5]. In this context, models with polynomial potentials,
in turn, are widely used. Apart from applications in high
energy physics theory, such models are used to simulate
spontaneous symmetry breaking in the Ginzburg–Landau
model of superconductivity [6,7], (consecutive) phase
transitions in materials [8,9], field evolution in the early
Universe [10] etc., see also [5,11,12] for review.
The great progress has been made in the study of

models with both polynomial and nonpolynomial poten-
tials. In particular, the deformation procedure has been
developed [13–15] that allows one to find new models
(potentials) and simultaneously their one-dimensional topo-
logically nontrivial solutions—kinks [3, Chap. 5]. There are
impressive advances in the study of kinks scattering and
multikink interactions in such models as, e.g., φ4 model
[5, Chaps. 1–11 and 13], [16–24], φ6 model [5, Chap. 12],
[23–34], φ8, φ10, φ12 models [8], [5, Chap. 12], [34–38],

various modifications of the sine-Gordon model [39–46], as
well as in models with more exotic dynamics [47–55] and
multifield models [56–61].
Recently, models with potentials in the form of polyno-

mials of eighth degree and higher are of growing interest
[8,34–38,62]. In particular, the excitation spectra of the φ8

kinks with exponential asymptotics, as well as resonance
phenomena in the scattering of such kinks at low energies,
were studied [35]. As a separate branch of study, one
can emphasize investigation of properties of kinks with
power-law asymptotics. Such kinks are topological solutions
of, e.g., the φ8, φ10, or φ12 model with particular form of
potential. More specifically, the potential must have a
minimum, which is a zero of the fourth or higher order.
Then the corresponding kink has a power-law asymptotic
behavior at that spatial infinity at which the field approaches
the aforementioned minimum, see, e.g., [36, Sec. II. A]. Due
to the presence of power-law tails, kinks acquire new
properties. In particular, a kink and an antikink (or a kink
and a kink) placed at a certain distance from each other
interact much more strongly than in the case of exponential
asymptotics. This phenomenon is called long-range inter-
action of kinks with power-law tails [36–38,62]. In Ref. [37]
scattering of the φ8 kinks with power-law asymptotic
behavior has been studied numerically. Besides, it was shown
that resonance phenomena in the kink-antikink collisions
could be a consequence of the presence of the vibrational
modes of the “kinkþ antikink” system as a whole.
Recent works [36,38] continued the study of interactions

of kinks with power-law asymptotics. It was demonstrated
that the presence of the power-law tails entails long-range
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interaction which, in turn, requires a special approach to
constructing of the initial conditions for the numerical
simulations of the kink-antikink and kink-kink collisions.
The problem is that the conventional initial conditions
which were used in the case of exponential asymptotics,
being applied to the kinks with power-law tails lead to
appearance of significant disturbances due to radiation.
This, in turn, creates the illusion of repulsion between kink
and antikink [37]. Several methods for “distilling” the
initial configurations into suitable ansätze were proposed, it
was shown how these approaches capture the attractive
nature of interactions between the kink and antikink in the
presence of long-range interaction [36]. The general results
on the interactions of kinks with power-law asymptotics in
φ2nþ4 models for n ≥ 2 have been obtained in [38]. It was
found that the interaction between kink and antikink is
generically attractive, while the interaction between two
kinks is generically repulsive. The force of interaction falls
off with distance as its 2n=ðn − 1Þ-th power. The obtained
analytic estimation is in good agreement with the results of
numerical simulations for n ¼ 2 (the φ8 model), n ¼ 3 (the
φ10 model) and n ¼ 4 (the φ12 model). It is worth to
mention also Refs. [62,63], where various properties of
field-theoretic models with high-degree polynomial poten-
tials are also considered.
Despite some certainly interesting attempts to obtain

explicit expressions for kinks of models with polynomial
potentials [15,64] with very specific set of vacua, kinks of
the φ8 model and of higher degree models so far could
mainly be obtained in the implicit form. The purpose of this
paper is to show that in some more general cases (for some
relations between model parameters) it is possible to obtain
explicit formulas for kinks. Wewill consider the example of
the φ8 model with a potential of a certain type, which will
be described below.
This our paper is organized as follows. In Sec. II we

briefly describe the φ8 model. In Sec. III we show how the
explicit formulas for kinks can be obtained for some
particular model parameters. Section IV presents some
properties of the obtained kink solutions. Finally, we
conclude in Sec. V.

II. THE φ8 MODEL

Consider a field-theoretic model in (1þ 1)-dimensional
space-time with a real scalar field φðx; tÞ. Assume that the
dynamics of the system is determined by the Lagrangian

L ¼ 1

2

�∂φ
∂t

�
2

−
1

2

�∂φ
∂x

�
2

− VðφÞ: ð1Þ

For the topological kinks to exist, it is necessary that the
potential VðφÞ be a (usually non-negative) function of the
field φ that has two or more degenerate minima. The model
considered by us is described by the potential in the form of
eighth degree polynomial:

VðφÞ ¼ 1

2
ðφ2 − a2Þ2ðφ2 − b2Þ2; ð2Þ

where a and b are constants, 0 < a < b, see Fig. 1.
The energy functional for the Lagrangian (1) is

E½φ� ¼
Z

∞

−∞

�
1

2

�∂φ
∂t

�
2

þ 1

2

�∂φ
∂x

�
2

þ VðφÞ
�
dx; ð3Þ

which in the static case becomes

Estatic½φ� ¼
Z

∞

−∞

�
1

2

�
dφ
dx

�
2

þ VðφÞ
�
dx: ð4Þ

From the Lagrangian (1) one can obtain the equation of
motion for the field φðx; tÞ:

∂2φ

∂t2 −
∂2φ

∂x2 þ
dV
dφ

¼ 0; ð5Þ

which in the static case φ ¼ φðxÞ takes the form

d2φ
dx2

¼ dV
dφ

: ð6Þ

This second order ordinary differential equation can be
easily transformed into the first order differential equation

dφ
dx

¼ �
ffiffiffiffiffiffi
2V

p
: ð7Þ

The kinks and antikinks of the model are solutions of
Eq. (7) that interpolate between neighboring vacua of the
model [i.e., connect adjacent minima of the potential (2)].
This means that

φð−∞Þ≡ lim
x→−∞

φðxÞ ¼ φðvacÞ
1 and

φðþ∞Þ≡ lim
x→þ∞

φðxÞ ¼ φðvacÞ
2 ; ð8Þ

FIG. 1. The potential (2) of the φ8 model for b¼1 and a¼1
2
, 1
3
, 1
5
.
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where φðvacÞ
1 and φðvacÞ

2 are two neighboring minima of the
potential (2). A static solution having these asymptotics is
called a configuration belonging to the topological sector

ðφðvacÞ
1 ;φðvacÞ

2 Þ. The potential (2) has four degenerate
minima, φðvacÞ ¼ �a and φðvacÞ ¼ �b, hence there are
three topological sectors: ð−b;−aÞ, ð−a; aÞ, and ða; bÞ.
As always, the terms “kink” and “antikink” stand for
configurations described by increasing and decreasing
functions of coordinate, respectively.
It is important to notice that for non-negative potential

(2) we can introduce the superpotential WðφÞ—a smooth
function of φ such as

VðφÞ ¼ 1

2

�
dW
dφ

�
2

: ð9Þ

Then the energy (4) of a time-independent configuration
can be rewritten as the following:

Estatic½φ� ¼ EBPS½φ� þ
1

2

Z
∞

−∞

�
dφ
dx

� dW
dφ

�
2

dx; ð10Þ

with

EBPS ¼ jW½φðþ∞Þ� −W½φð−∞Þ�j: ð11Þ
From Eq. (10) one can see that a static configuration
belonging to a given topological sector has the minimal
energy if the integrand vanishes, i.e.,

dϕ
dx

¼ � dW
dϕ

: ð12Þ

This equation obviously coincides with Eq. (7). Solutions
of Eq. (7), i.e., kinks and antikinks which are called BPS
configurations (or BPS-saturated solutions) [65,66], have
the minimal energy among all possible field configurations
in a given topological sector. Here the subscript BPS stands
for Bogomolny, Prasad, Sommerfield. The energy (11) is
also called kink’s (antikink’s) mass.
For the model under consideration with the potential (2)

we can take the superpotential in the form

WðφÞ ¼ 1

5
φ5 −

1

3
ða2 þ b2Þφ3 þ a2b2φ: ð13Þ

Then the masses of all kinks and antikinks are

Mða;bÞ ¼ Mð−b;−aÞ ¼
2ðb − aÞ3ða2 þ 3abþ b2Þ

15
ð14Þ

and

Mð−a;aÞ ¼
4a3ð5b2 − a2Þ

15
: ð15Þ

At a ¼ 0 the mass of the kink in the sector ð−a; aÞ
vanishes, while in the sector ða; bÞ from Eq. (14) we

obtain 2b5
15
, which coincides with [37, Eq. (11)] taking into

account the difference in the definition of the potential (2)
and the potential [37, Eq. (8)]. Besides that, the masses (14)
and (15) coincide with the results of [35, Sec. 3.1] at
λ ¼ 1=

ffiffiffi
2

p
. Moreover, the mass of the kink in the sector

ða; bÞ quite naturally vanishes at a ¼ b.
Until now, it was believed that kinks of the φ8 model can

be obtained only in an implicit form, i.e., in the form of the
dependence x ¼ xðφÞ (apparently with the exception of a
particular case [64]). However, as we will demonstrate
below, a detailed analysis of the solutions of the static
equation of motion shows that, at least for particular values
of the ratio b=a, kinks can be obtained in the explicit
form φ ¼ φðxÞ.

III. EXPLICIT KINKS

First, consider topological sectors ða; bÞ and ð−b;−aÞ.
Substituting the potential (2) into the equation of motion (7)
and integrating with taking into account that 0<a< jφj<b,
we obtain an implicit kink solution:

x ¼ 1

2ðb2 − a2Þ ln
��

φ − a
φþ a

�
1=a

�
bþ φ

b − φ

�
1=b

�
: ð16Þ

For future convenience we transform this equation to the
following form:�

φ − a
φþ a

�
b=a bþ φ

b − φ
¼ exp½2bðb2 − a2Þx�: ð17Þ

Then, denoting b=a ¼ n and setting b ¼ 1, as well as
introducing

αnðxÞ ¼ exp

�
2

�
1 −

1

n2

�
x

�
; ð18Þ

we obtain �
nφ − 1

nφþ 1

�
n 1þ φ

1 − φ
¼ αnðxÞ: ð19Þ

Recall that we consider the case 0 < a < b and set b ¼ 1,
which can always be ensured by a suitable choice of units
for the coordinates x, t and for the field φ. Thus, n can
take values in the range n > 1. The limiting case n ¼ 1
corresponds to the potential (2) with only two minima,
which are fourth-order zeros. Note that in this case, the kink
connecting the minima will have power-law asymptotics,
see [36, Sec. II. A].
For positive integer values of n, the Eq. (19) is an

algebraic equation. The problem of solving it reduces to
finding the roots of a polynomial of degree nþ 1, with
coefficients being dependent on x as a parameter (notice
that αnðxÞ > 0). Note that, despite the first paragraph of this
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section, for even values of n Eq. (19) describes kinks in all
topological sectors, while for odd values of n this equation
assumes ðφ − aÞ=ðφþ aÞ > 0, i.e., a < jφj < b. The mass
of each kink/antikink in the sectors ða; bÞ and ð−b;−aÞ
[i.e., in the sectors ð1n ; 1Þ and ð−1;− 1

nÞ] as a function of n is

Mð1n;1Þ ¼ Mð−1;−1
nÞ ¼

2

15

ðn − 1Þ3ðn2 þ 3nþ 1Þ
n5

: ð20Þ

In the limit n → ∞ Eq. (20) yields Mð1n;1Þ →
2
15
, see also

Eq. (14) and the paragraph below Eq. (15).
In the topological sector ð−a; aÞ we have jφj < a and

therefore we obtain the following algebraic equation

�
1þ nφ
1 − nφ

�
n 1 − φ

1þ φ
¼ αnðxÞ; ð21Þ

and the kink/antikink mass

Mð−1
n;
1
nÞ ¼

4

15

5n2 − 1

n5
: ð22Þ

In the limit n → ∞ Eq. (22) yields obvious result
Mð−1

n;
1
nÞ → 0. In Fig. 2 we show the dependences (20)

and (22). It is curious to notice that the two lines intersect at

n ¼ 3þ ffiffi
5

p
2

, which is the square of the golden ratio. The
intersection of the curves in Fig. 2 means, that the masses of
the kinks in all topological sectors become equal. This, in
turn, could have some consequences, e.g., in the kink-(anti)
kink collisions. For example, equal masses would enable
kinks from different topological sectors to easily transform
into one another.
Since we are considering the model with three topo-

logical sectors, it is obvious that a ≠ b. Therefore, the
minimum value of n is 2, with which we begin our
consideration.

A. The case n= 2

At n ¼ 2 Eq. (19) looks like

4φ3 − 3φ − β2ðxÞ ¼ 0; ð23Þ
where

β2ðxÞ ¼
α2ðxÞ − 1

α2ðxÞ þ 1
¼ tanh

�
3

4
x

�
: ð24Þ

To solve Eq. (23) one can substitute φ ¼ cosψ . After some
simple algebra, we get the expression for φðxÞ:

φð2Þ
K ðxÞ ¼ cos

�
1

3
arccos

�
tanh

�
3

4
x

��
þ πm

3

�
; ð25Þ

where m ¼ 0, 1, 2, 3, 4, 5 (or takes any other
six consecutive integer values). At m ¼ 0 and m ¼ 5

Eq. (25) gives kink and antikink in the sector ð1
2
; 1Þ; at

m ¼ 1 and m ¼ 4 Eq. (25) gives kink and antikink in the
sector ð− 1

2
; 1
2
Þ; atm ¼ 2 andm ¼ 3 Eq. (25) gives kink and

antikink in the sector ð−1;− 1
2
Þ. All these kinks are shown

in Fig. 3.
Using explicit formula (25) for the kink solutions, we

can calculate masses of these kinks/antikinks. To do this,
substitute kinks (25) into Eq. (4) and taking into account
Eq. (7) we get

MK ¼ Estatic½φKðxÞ� ¼
Z

∞

−∞

�
dφK

dx

�
2

dx

¼ 2

Z
∞

−∞
VðφKðxÞÞdx; ð26Þ

which yields for φKðxÞ ¼ φð2Þ
K ðxÞ:

Mð1
2
;1Þ ¼ Mð−1;−1

2
Þ ¼

11

240
and Mð−1

2
;1
2
Þ ¼

19

120
: ð27Þ

It is easy to see, that this is exactly the same that could be
obtained from Eqs. (20) and (22) for n ¼ 2.

FIG. 2. Masses of kinks as functions of n ¼ b=a. FIG. 3. All kinks and antikinks at n ¼ 2, Eq. (25), for different
values of m.
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B. The case n= 3

Topological sectors ð1
3
; 1Þ and ð−1;− 1

3
Þ. At n ¼ 3

Eq. (19) looks like

27φ4 − 18φ2 − 8β3ðxÞφ − 1 ¼ 0; ð28Þ

where

β3ðxÞ ¼
α3ðxÞ − 1

α3ðxÞ þ 1
¼ tanh

�
8

9
x

�
: ð29Þ

The equation (28) can be solved analytically, i.e., the
dependence φðxÞ can be obtained for all real values of x.
After some cumbersome but not too complicated algebra,
we get the following explicit expressions for kinks: (i) in
the topological sector ð1

3
; 1Þ

φð3Þ
K ðxÞ ¼

8>>>>>>>>><
>>>>>>>>>:

1

3

0
B@−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sech

2
3

�
8

9
x

�s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ sech

2
3

�
8

9
x

�
−

2 tanh ð8
9
xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sech
2
3ð8
9
xÞ

q
vuut

1
CA; x < 0;

1

3

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sech

2
3

�
8

9
x

�s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ sech

2
3

�
8

9
x

�
þ 2 tanh ð8

9
xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sech
2
3ð8
9
xÞ

q
vuut

1
CA; x > 0;

ð30Þ

and (ii) in the topological sector ð−1;− 1
3
Þ

φð3Þ
K ðxÞ ¼

8>>>>>>>>><
>>>>>>>>>:

1

3

0
B@−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sech

2
3

�
8

9
x

�s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ sech

2
3

�
8

9
x

�
−

2 tanh ð8
9
xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sech
2
3ð8
9
xÞ

q
vuut

1
CA; x < 0;

1

3

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sech

2
3

�
8

9
x

�s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ sech

2
3

�
8

9
x

�
þ 2 tanh ð8

9
xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sech
2
3ð8
9
xÞ

q
vuut

1
CA; x > 0:

ð31Þ

The functions (30), (31) are not defined at the point x ¼ 0, nevertheless, they have pairwise equal one-sided limits,
namely

lim
x→−0

φð3Þ
K ðxÞ ¼ lim

x→þ0
φð3Þ
K ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
3

in the sector

�
1

3
; 1

�
ð32Þ

and

lim
x→−0

φð3Þ
K ðxÞ ¼ lim

x→þ0
φð3Þ
K ðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
3

in the sector

�
−1;−

1

3

�
: ð33Þ

Both kinks (30) and (31) are plotted in Fig. 4.
Topological sector ð− 1

3
; 1
3
Þ. In order to obtain kink solution in this sector, we have to solve Eq. (21) with n ¼ 3, i.e.,

27φ4 − 18φ2 þ 8

β3ðxÞ
φ − 1 ¼ 0; ð34Þ

FIG. 4. All kinks at n ¼ 3: Eq. (30) in the sector ð1
3
; 1Þ—black

solid line, Eq. (31) in the sector ð−1;− 1
3
Þ—blue dashed line, and

Eq. (35) in the sector ð− 1
3
; 1
3
Þ—red dotted line.
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where β3ðxÞ is defined by Eq. (29) above. Equation (34) can be solved quite similarly to Eq. (28). As a result we get the
following explicit formula for kink in the topological sector ð− 1

3
; 1
3
Þ:

φð3Þ
K ðxÞ ¼

8>>>>>>>><
>>>>>>>>:

1

3

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ csch

2
3

�
8

9
x

�s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − csch

2
3

�
8

9
x

�
−

2 coth ð8
9
xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ csch
2
3ð8
9
xÞ

q
vuut

1
CA; x < 0;

1

3

0
B@−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ csch

2
3

�
8

9
x

�s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − csch

2
3

�
8

9
x

�
þ 2 coth ð8

9
xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ csch
2
3ð8
9
xÞ

q
vuut

1
CA; x > 0;

ð35Þ

The kink (35) is shown in Fig. 4. Note that, as in the previous case of the topological sectors ð1
3
; 1Þ and ð−1;− 1

3
Þ, both

functions in Eq. (35) are also not defined at the point x ¼ 0, however, they have equal one-sided limits:

lim
x→−0

φð3Þ
K ðxÞ ¼ lim

x→þ0
φð3Þ
K ðxÞ ¼ 0 for the kink in the sector

�
−
1

3
;
1

3

�
: ð36Þ

Using the obtained explicit expressions for kinks in all
topological sectors for n ¼ 3, we can calculate the kink’s
masses. Substituting Eqs. (30), (31), and (35) into Eq. (26),
we get

Mð1
3
;1Þ ¼ Mð−1;−1

3
Þ ¼

304

3645
and Mð−1

3
;1
3
Þ ¼

176

3645
: ð37Þ

Surely, the same values could also be obtained from
Eqs. (20) and (22) at n ¼ 3.
As for n > 3, some features of the polynomial equations

obtained in the cases n ¼ 2 and n ¼ 3 give reason to hope
that, for some n > 3, explicit solutions can also be found.
On the other hand, if we compare solutions (25) for n ¼ 2
and (30), (31), (35) for n ¼ 3, then we can assume that for
larger n explicit solutions (if any) will be extremely
cumbersome.

C. Asymptotics of kinks

The asymptotics of kinks for any positive integer n > 2
can be obtained from Eqs. (19) and (21). We consider
separately the topological sectors ð1n ; 1Þ (asymmetric kink)
and ð− 1

n ;
1
nÞ (symmetric kink).

Topological sector ð1n ; 1Þ. At x → −∞ we have

φðnÞ
K ðxÞ → 1

n þ 0, i.e.,

φðnÞ
K ðxÞ ¼ 1

n
þ δφ; ð38Þ

where δφ > 0, jδφj ≪ 1. Substituting Eq. (38) into Eq. (19)
and linearizing with respect to δφ, we obtain:

δφðxÞ ≈ 2

n

�
n − 1

nþ 1

�1
n

exp

�
2

n

�
1 −

1

n2

�
x

�
: ð39Þ

At x → þ∞ we have φðnÞ
K ðxÞ → 1 − 0, i.e.,

φðnÞ
K ðxÞ ¼ 1 − δφ; ð40Þ

where δφ > 0, jδφj ≪ 1. Substituting Eq. (40) into Eq. (19)
and linearizing with respect to δφ, we obtain:

δφðxÞ ≈ 2

�
n − 1

nþ 1

�
n
exp

�
−2

�
1 −

1

n2

�
x

�
: ð41Þ

Thus, we obtain the asymptotics of the asymmetric kink in
the topological sector ð1n ; 1Þ:

φðnÞ
K ðxÞ≈

8>>><
>>>:
1

n
þ2

n

�
n−1

nþ1

�1
n

exp

�
2

n

�
1−

1

n2

�
x

�
at x→−∞;

1−2

�
n−1

nþ1

�
n
exp

�
−2

�
1−

1

n2

�
x

�
at x→þ∞:

ð42Þ

In particular, at n ¼ 2 the above formulas give us asymp-
totics of the kink (25) at m ¼ 0:

φð2Þ
K ðxÞ ≈

8>>><
>>>:

1

2
þ 1ffiffiffi

3
p exp

�
3

4
x

�
at x → −∞;

1 −
2

9
exp

�
−
3

2
x

�
at x → þ∞:

ð43Þ

At n ¼ 3 we obtain asymptotics of the kink (30):
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φð3Þ
K ðxÞ ≈

8>>><
>>>:

1

3
þ 22=3

3
exp

�
16

27
x

�
at x → −∞;

1 −
1

4
exp

�
−
16

9
x

�
at x → þ∞:

ð44Þ

In the limit n → ∞ (i.e., for a → 0) at x → −∞ it can be
seen that for any finite x the argument of the exponent
tends to zero, which corresponds to the transition from
exponential to power-law asymptotic behavior of the
kink in the topological sector (0, 1), cf. [36, Eq. (22)].
At x → þ∞ we obtain:

φð∞Þ
K ðxÞ ≈ 1 −

2

e2
e−2x; ð45Þ

which can be compared with [36, Eq. (23)], taking into
account difference in the choice of the model potentials.

Topological sector ð− 1
n ;

1
nÞ. At x → −∞ we have

φðnÞ
K ðxÞ → − 1

n þ 0, i.e.,

φðnÞ
K ðxÞ ¼ −

1

n
þ δφ; ð46Þ

where δφ > 0, jδφj ≪ 1. Substituting Eq. (46) into Eq. (21)
and linearizing with respect to δφ, we obtain:

δφðxÞ ≈ 2

n

�
n − 1

nþ 1

�1
n

exp
�
2

n

�
1 −

1

n2

�
x
�
; ð47Þ

which, of course, coincides with (39). Taking into account
symmetry of the kink in the sector ð− 1

n ;
1
nÞ, we get the

kink’s asymptotics:

φðnÞ
K ðxÞ ≈

8>>><
>>>:

−
1

n
þ 2

n

�
n − 1

nþ 1

�1
n

exp

�
2

n

�
1 −

1

n2

�
x

�
at x → −∞;

1

n
−
2

n

�
n − 1

nþ 1

�1
n

exp

�
−
2

n

�
1 −

1

n2

�
x

�
at x → þ∞:

ð48Þ

In particular, at n ¼ 2 from the above formulas we get
asymptotics of the kink (25) at m ¼ 1:

φð2Þ
K ðxÞ ≈

8>>><
>>>:

−
1

2
þ 1ffiffiffi

3
p exp

�
3

4
x

�
at x → −∞;

1

2
−

1ffiffiffi
3

p exp

�
−
3

4
x

�
at x → þ∞;

ð49Þ

while at n ¼ 3 we obtain asymptotics of the kink (35):

φð3Þ
K ðxÞ ≈

8>>><
>>>:

−
1

3
þ 22=3

3
exp

�
16

27
x

�
at x → −∞;

1

3
−
22=3

3
exp

�
−
16

27
x

�
at x → þ∞:

ð50Þ

In the limit n → ∞ (i.e., for a → 0) the topological sector
ð− 1

n ;
1
nÞ vanishes.

D. The case of rational n

In the case of rational n ¼ p
q, Eq. (35) takes the form:

�
pφ − q
pφþ q

�
p
�
1þ φ

1 − φ

�
q
¼ ðαp=qðxÞÞq; ð51Þ

where

αp=qðxÞ ¼ exp

�
2

�
1 −

q2

p2

�
x

�
; hence

ðαp=qðxÞÞq ¼ exp
�
2q

�
1 −

q2

p2

�
x
�
: ð52Þ

Equation (51) represents polynomial equation of degree
pþ q:

ðpφ−qÞpð1þφÞq ¼ðαp=qðxÞÞqðpφþqÞpð1−φÞq: ð53Þ

For example, at n ¼ 3=2 (p ¼ 3, q ¼ 2) we have

ð3φ − 2Þ3ð1þ φÞ2 ¼ ðα3=2ðxÞÞ2ð3φþ 2Þ3ð1 − φÞ2; ð54Þ

which is a fifth degree equation for φ. Solving of such
equations is beyond the scope of this paper and could be the
subject of a separate study.

IV. KINK’S EXCITATION SPECTRA

Having at hand explicit formulas for kinks, now we can
study the kinks’ excitation spectra. The problem is for-
mulated as follows (see, e.g., [35, Sec. 2], [37, Sec. 4]). We
add a small perturbation δφðx; tÞ to the static kink φKðxÞ,
the excitation spectrum of which we are looking for, i.e.,

φðx; tÞ ¼ φKðxÞ þ δφðx; tÞ; kδφk ≪ kφKk: ð55Þ
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Substituting this φðx; tÞ into the equation of motion (5), we
obtain in a linear approximation in δφ:

∂2δφ

∂t2 −
∂2δφ

∂x2 þ d2V
dφ2

����
φKðxÞ

· δφ ¼ 0: ð56Þ

We can separate the variables x and t or, in other words, we
can look for a solution of this equation in the form

δφðx; tÞ ¼ ψðxÞ cosωt: ð57Þ

Then Eq. (56) yields the following eigenvalue problem:

ĤψðxÞ ¼ ω2ψðxÞ; ð58Þ

which is similar to the one-dimensional stationary
Schrödinger equation with the Hamiltonian

Ĥ ¼ −
d2

dx2
þ UðxÞ: ð59Þ

The function UðxÞ is the stability potential which can be
viewed as “quantum-mechanical” potential. The “energy
levels” of the discrete spectrum in the potential well UðxÞ
are nothing else than eigenvalues ω2

i , which are our
ultimate goal. It is easy to find that

UðxÞ ¼ d2V
dφ2

����
φKðxÞ

: ð60Þ

Notice that it can also be easily shown that there is always a
zero level in the kink’s excitation spectrum, see, e.g., [37,
Eqs. (25) and (26)]. Moreover, all eigenvalues of the
operator Ĥ are non-negative [51, Eqs. (2.20) and (2.21)],
[64, Sec. 2].
For a numerical search of eigenvalues ωi of the discrete

spectrum we used a modification of the “shooting method”
(or “matching method”) [67, Sec. 9.4], see also [41,
Sec. IV], [35, Sec. 3.1.1], [37, Sec. 4]. To be brief, the
essence of the method is as follows. The ordinary differ-
ential equation (58) at a particular value of ω is solved
numerically separately at x < 0 and x > 0 starting from the
left and the right infinity, respectively. Then the two
obtained solutions ψLðxÞ and ψRðxÞ are matched in some
point x ¼ xmatch near the origin. If the selected value of ω is
an eigenvalue of the Hamiltonian (59), the “left” and the
“right” solutions would be parts of the same eigenfunction
of Ĥ. This entails zeroing out the Wronskian of the
functions ψLðxÞ and ψRðxÞ at x ¼ xmatch. To find out the
functions ψLðxÞ and ψRðxÞ, we solved the ordinary differ-
ential equation (58) numerically using the classic fourth-
order Runge-Kutta method with the step h ¼ 10−5.
Substituting explicit formulas for kinks at n ¼ 2 and

n ¼ 3 into Eq. (60), we can get the “quantum-mechanical”
potentials for each kink. The final formulas are too bulky,

and we do not give them here, however obtaining
them either manually or using computer algebra system
does not present fundamental difficulties. For convenience,
consider the two cases n ¼ 2 and n ¼ 3 separately and in
more detail.
The case n ¼ 2. The potentials UðxÞ for all three kinks

are shown in Fig. 5. For the kinks in the topological sectors
ð1
2
; 1Þ and ð−1;− 1

2
Þ the potentials are obviously mirror

symmetric, i.e., Uð−1;−1
2
ÞðxÞ ¼ Uð1

2
;1Þð−xÞ. Therefore, we

focus on the kink ð1
2
; 1Þ only. The corresponding potential

has asymptotics

Uð1
2
;1Þð−∞Þ ¼ lim

x→−∞
Uð1

2
;1ÞðxÞ ¼

d2V
dφ2

����
φ¼1

2

¼ 9

16
ð61Þ

and

Uð1
2
;1Þðþ∞Þ ¼ lim

x→þ∞
Uð1

2
;1ÞðxÞ ¼

d2V
dφ2

����
φ¼1

¼ 9

4
: ð62Þ

Besides, the minimal value Umin ≈ −0.74651 is reached at

xmin¼
4

3
artanh

0
B@−17þ ffiffiffiffiffiffiffiffi

163
p

28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ ffiffiffiffiffiffiffiffi

163
p

14

s 1
CA≈−0.33813:

ð63Þ

The discrete spectrum of the operator Ĥ is thus localized
in the range 0 ≤ ω2 ≤ 0.5625. We performed the numeri-
cal search for discrete levels in the potential well Uð1

2
;1ÞðxÞ

and found only the zero mode ω2
0 ≈ 2 × 10−13.

For the kink in the topological sector ð− 1
2
; 1
2
Þ the

“quantum-mechanical” potential Uð−1
2
;1
2
ÞðxÞ is symmetric,

Uð−1
2
;1
2
Þð−xÞ ¼ Uð−1

2
;1
2
ÞðxÞ, it has asymptotics

FIG. 5. The “quantum-mechanical” (stability) potential UðxÞ
for kinks in the case n ¼ 2 (see Eq. (25) and the text below).
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Uð−1
2
;1
2
Þð−∞Þ ¼ Uð−1

2
;1
2
Þðþ∞Þ ¼ lim

x→�∞
Uð−1

2
;1
2
ÞðxÞ

¼ d2V
dφ2

����
φ¼�1

2

¼ 9

16
ð64Þ

and the minimal value Umin ¼ − 5
8
at x ¼ 0. The discrete

spectrum of the operator Ĥ for this kink is localized in the
range 0 ≤ ω2 ≤ 0.5625. Numerical search for discrete

levels in the potential well Uð−1
2
;1
2
ÞðxÞ gives only the zero

mode ω2
0 ≈ −2 × 10−14.

The case n ¼ 3 The potentials UðxÞ for all three kinks
are shown in Fig. 6. As in the previous case, for the kinks in
the topological sectors ð1

3
; 1Þ and ð−1;− 1

3
Þ the potentials

are mirror symmetric, Uð−1;−1
3
ÞðxÞ ¼ Uð1

3
;1Þð−xÞ, so we

focus on the kink ð1
3
; 1Þ only. The asymptotics of the

corresponding potential are

Uð1
3
;1Þð−∞Þ ¼ lim

x→−∞
Uð1

3
;1ÞðxÞ ¼

d2V
dφ2

����
φ¼1

3

¼ 256

729
ð65Þ

and

Uð1
3
;1Þðþ∞Þ ¼ lim

x→þ∞
Uð1

3
;1ÞðxÞ ¼

d2V
dφ2

����
φ¼1

¼ 256

81
: ð66Þ

The minimal value Umin ¼ Uð1
3
;1ÞðxminÞ ≈ −0.969014 at

xmin ≈ 0.300959, and the discrete spectrum of the operator
Ĥ is localized in the range 0 ≤ ω2 ≤ 0.351166. As a result
of the numerical search for discrete levels in the potential
well Uð1

3
;1ÞðxÞ we obtained only the zero mode with

frequency ω2
0 ≈ 5 × 10−11.

FIG. 6. The “quantum-mechanical” (stability) potential UðxÞ
for kinks in the case n ¼ 3.

FIG. 7. The zero mode wave functions obtained numerically from Eq. (58)—red solid lines, and theoretical functions dφK
dx —blue

dashed lines. For convenience, all the functions are normalized to unity at the maximum points.
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The kink in the topological sector ð− 1
3
; 1
3
Þ has the

symmetric “quantum-mechanical” potential, Uð−1
3
;1
3
Þð−xÞ¼

Uð−1
3
;1
3
ÞðxÞ, with asymptotics

Uð−1
3
;1
3
Þð−∞Þ ¼ Uð−1

3
;1
3
Þðþ∞Þ ¼ lim

x→�∞
Uð−1

3
;1
3
ÞðxÞ

¼ d2V
dφ2

����
φ¼�1

3

¼ 256

729
ð67Þ

and the minimal value Umin ¼ Uð−1
3
;1
3
Þð0Þ ¼ −0.246914.

The discrete spectrum of the operator Ĥ for this kink is
localized in the range 0 ≤ ω2 ≤ 0.351166. The numerical
search for discrete levels in the potential well Uð−1

3
;1
3
ÞðxÞ has

shown only the zero mode with ω2
0 ≈ 3 × 10−13.

Moreover, in all cases we have obtained eigenfunctions
associated with the eigenvaluesω2

0. As it should be, they are
nodeless wave functions corresponding to the ground states
of the discrete spectrum. Up to normalization coefficients,
the found eigenfunctions coincide with the derivatives of
the kinks dφK

dx , as it should be [51, Eq. (2.19)], see Fig. 7.

V. CONCLUSION

We have considered a field-theoretic model with a real
scalar field in the (1þ 1)-dimensional space-time with field
self-interaction (model potential) in the form of the eighth
degree polynomial (2) with four degenerate minima. We
were interested in the possibility of obtaining kink-type
solutions in explicit form φ ¼ φðxÞ. Despite being in
demand, kinks of the φ8 model were still known only in
an implicit form x ¼ xðφÞ until now. This situation sig-
nificantly limited the study of their properties, especially
analytically.
We have shown that in the case of a ratio of constants

b=a ¼ n equal to positive integers, in order to obtain
explicit formulas for kinks, it is necessary to solve an
algebraic equation of degree nþ 1. As an example, we
have considered cases of n ¼ 2 and 3 and obtained
analytical formulas for kinks in all topological sectors of
the model. For n ¼ 3, the expressions for kinks look rather
cumbersome; nevertheless, this is a significant step forward
in the study of topological solitons of the φ8 model.
Further, using the obtained formulas for kinks, we have

calculated the kinks’ masses, which surely coincide with
the values obtained using the superpotential. The point is
that the topological solitons under consideration are BPS-
saturated static configurations that have the smallest pos-
sible energy in their topological sectors. This energy can be
easily found using superpotential.
Besides that, using explicit formulas for kinks, we

investigated the excitation spectra of all kinks at n ¼ 2
and n ¼ 3. A thorough search of levels in the discrete part
of the spectrum of the eigenvalue problem (58) has shown

the presence of only zero levels with ω0 ≈ 0. This means
that all the kinks considered in this paper have only
translational modes.
Emphasize that this paper does not claim to be an

exhaustive study of kinks of the φ8 model. As was
mentioned above, the potential of the φ8 model can be
written in different forms [8,34–38]. In Ref. [36] it was
shown that in some cases kinks with power-law tails may
exist. In this our paper we focused on obtaining and
studying kink-type solutions in the explicit form for a
specific kind of the φ8 model, which admits the existence of
kinks with exponential tails. Of course, in all other variants
of the φ8 model, the option of obtaining of kink-type
solutions numerically always remains available.
In conclusion, we would like to briefly mention several

issues that have not been addressed in this paper but, in our
opinion, could be of interest for future studies.

(i) Searching for explicit kink solutions in models
with polynomial potentials of higher degrees, e.g.,
φ10, φ12, etc., could become a natural extension of
this study.

(ii) A study of the general properties of algebraic
equations that determine explicit kink solutions in
the case of arbitrary n, as well as a study of the case
n ≫ 1 are of interest.

(iii) Finally, another direction of current interest con-
cerns using of the found explicit kink solutions for
studying kink-antikink scattering. In particular, de-
spite the absence of vibrational modes in the kink’s
excitation spectrum, in the case of collisions of
asymmetric kinks one can expect the appearance of
resonance phenomena due to resonant energy ex-
change. One of the vibrational modes in the collec-
tive “quantum-mechanical” potential of the system
“kinkþ antikink” can play the role of an accumu-
lating localized mode (such a mechanism was
studied in Refs. [26,37]). In the context of the
kink-antikink interactions, the forces between kink
and antikink can also be estimated using the ob-
tained asymptotics of the kinks (via the so-called
Manton’s method [68]).
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