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The problem of a scalar particle in a constant crossed electromagnetic field (E LH and |E| = |H]) is
considered. The high-temperature expansion of the one-loop grand thermodynamic potential and vacuum

energy accounting for nonperturbative corrections are derived. The contributions from particles and

antiparticles are obtained separately. It is shown that the nonperturbative corrections depend on the

boundary conditions but do not depend on the fields.
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I. INTRODUCTION

Usually, the one-loop contribution to the effective action
in constant electromagnetic fields including the nonzero
electric component is obtained either by solving the
Heisenberg equations for a quantum particle in this field
[1] or by analytic continuation of the result for purely
magnetic fields together with the Poincare-invariance argu-
ments [2,3], or, at finite temperature, by summing the
leading derivative contributions to the effective action that
do not include the strength of the electromagnetic field [4]
(for finite temperature approaches, see also [5-8]). As for
the crossed electromagnetic fields, the result of these
calculations for the one-loop correction to the effective
action is zero at zero temperature. However, the direct
calculation of the effective action induced by charged
particles in the crossed fields that starts with the standard
definition of this correction for stationary background
fields as the energy of zero-point fluctuations is absent,
to our knowledge. Our aim is to fill this gap and to evaluate
that one-loop correction.

In performing this task, one immediately encounters the
problem that the system should be placed in a “box” of a
finite volume in order to have a well-defined vacuum state.
Otherwise, the electromagnetic potentials corresponding to
such a field in the gauge where they are stationary, in
particular Ay(x), grow up to infinity at spatial infinity. So
the work performed by this field on charged particles can be
arbitrarily large (in particular, larger than 2mc?), and the
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particle and antiparticle states cannot be unambiguously
separated (the discussion of superstrong electric fields; see,
e.g., in [9-12]). When the system is placed in a box, its
invariance under the full Poincare group is broken by this
box and the standard symmetry arguments used to prove
that the one-loop correction to the effective action is zero at
zero temperature are not straightforwardly applicable (see,
however, the Conclusion). Furthermore, the method for
evaluation of the one-loop correction based on the exact
solution of the Heisenberg equations for a charged particle
in constant electromagnetic fields [1,4,13] does not work
either. The nontrivial boundary conditions change the
commutation relations between the coordinates and
momenta (see the Appendix A) and the quantum equations
of motion cease to be exactly solvable. Thus the direct
calculations are needed.

It should be mentioned that the study of thermodynamics
properties of systems in the crossed electromagnetic fields
is of a peculiar importance. All the electromagnetic fields
appear to be almost crossed for an ultrarelativistic particle
in its comoving reference frame. Of course, Lorentz-
invariants cannot be changed by a Lorentz transform.
However, the thermal contributions to the effective action
depend on the four-vector that distinguishes the thermal
bath. In the reference frame where this vector is aligned
along the time axis, i.e., in the rest frame of the thermal
bath, the lab frame electromagnetic fields become almost
crossed (see, e.g., [3,14-20]). Hence, the thermal and
density dependent contributions to the grand thermody-
namic potential we shall investigate are pertinent to all the
systems thermalized in the reference frame ultrarelativistic
with respect to the lab frame where the electromagnetic
fields are given. The local constant field approximation that
we imply in this paper is the standard tool for describing the
strong field effects in QED (see, e.g., [17,20-22]).

In the series of papers [23-26], we developed a powerful
method for evaluation of the high-temperature expansion of
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the one-loop contribution to the effective action. It allows
one to find separately the vacuum terms, the temperature
and density dependent contributions, and the contribution
of particles and antiparticles. In particular, these formulas
allow one to find the number of particle-antiparticle pairs in
the system at a given temperature and density. As for
particles obeying the Bose-Einstein statistics, the high-
temperature expansion of the grand thermodynamics poten-
tial (the Q-potential) reads as

o0

—Q, (1) ’:lin(l)|:z [(D-2v—-k){(D=2v—k—n)
i P

XCZ(U)(ﬁ )"+§:(—1)IC(—I)O_1(M)/31 (1)
£ T+ > '

n !ﬁD—Zu—k )

The =~ sign indicates that the expansion in ascending
powers of f is asymptotic, and the terms exponentially
suppressed in temperature (f — 0) are discarded. The
spacetime dimension D =4 and the term with [ = —1
should be considered as a limit, i.e., {(1)/T°(0) = —1. It is
seen that at some values of k and n the first terms may
possess singularities as v — 0 [coefficients ¢ (v) are
always regular], which are canceled exactly by singularities
coming from o’ (u).

The functions o (x) and the coefficients ¢} () entering
into the expansion (1) are determined by the zeta function
constructed by means of Laplacian type operator H(w):

v—1
= [ e,y
C Tl
where the contour C runs upwards a little to the left of the
imaginary axis. The operator H(w) is a Fourier image over
time of the Klein-Gordon type operator and possesses a
spectrum bounded from above. The “4” index of the zeta
function reminds us that its values are determined only by
positive eigenvalues of H(w). The external electromagnetic
fields enter into the one-loop correction to the effective
action through H(w). As the background fields are assumed
stationary, we standardly choose the gauge such that the
gauge fields are time-independent. The zeta function (2) and
so the high-temperature expansion (1) are gauge invariant
with respect to the residual time-independent gauge trans-

formations (see for mathematical grounds, e.g., [27]).
The coefficients ¢} (v) are the coefficients of the asymp-
totic expansion of the zeta function for large w:

(o (v,w) = Z C W)tk 4 O(@d-2-N-1),
k=0

@ — +o0, (3)

and the functions ¢/ (u) are determined in the following

way:

ol (u) = / * dow - 1)'¢. (v, @). (4)

The functions ¢/, contain exponentially suppressed in field
corrections. The calculation of these functions is the most
difficult.

The contribution of antiparticles to the thermodynamic
potential is derived from (1) by changing the sign of a
chemical potential and by a simultaneous replacement
¢ (v) = ¢ (v), where the coefficients {; (v) are deter-
mined from the expansion

N
(o (v, —w) = Zg; W)™ 4+ O(wt-2-N-1),
k=0

® — +00. (5)

It should be noted here that for the configuration of fields
and plates under study the coefficients ¢ (v) coincide with
{; (v). Hereinafter both types will be denoted by ¢ (v).

The paper is organized as follows. Section II is devoted
to the formulation of the problem, the computation of the
spectral density, and the derivation of the valuable relations
between the parameters of the theory that will be used for
calculating ¢!, functions, which define the one-loop con-
tribution to the grand thermodynamic potential. In Sec. III,
the explicit expressions for the first six coefficients {;(v)
are found. The main trick used there is that the zeta function
can be represented as an integral of the function defining
the spectrum of the problem. The alternative method of
calculation of the coefficients is presented in Appendix A.
Section 1V is devoted to the calculation of ¢/ functions.
Despite the fact that the explicit calculation of the functions
at arbitrary / is impossible, emerging structures allow one to
perform exact computations in the case of non-negative
integer [. The method described allows one to derive the
expressions for any /. The explicit calculations are carried
out up to [ =3. The last section presents the explicit
expressions for finite and divergent parts of the grand
thermodynamic potential and the renormalized vacuum
energy taking into account the nonperturbative corrections.
The nonperturbative corrections turn out to be independent
of the electromagnetic fields and are exponentially sup-
pressed at large mL, where L is the extension of the system
along the field E.

II. SPECTRUM

Let us consider the eigenvalue problem for the Klein-
Gordon operator with the constant homogeneous crossed
electromagnetic field

A,=(-Ez,Ez,0,0), E=(0,0,E), H=(0,-E,0), (6)

where A, is given in the Coulomb gauge and, for
definiteness, E > 0. The naive definition of a particle is
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applicable in this field provided EL < 2m, where L is the
size of the system along the z axis (see for details [10]).
Therefore, we impose the zero Dirichlet boundary con-
ditions on the wave function and consider the problem on
the segment z € [-L/2, L/2]. Separating the variables, we
obtain

H(w)y(z) = [0
=ey(z).

+2(0 + py)Ez = pi = py + 02 —m*ly(2)
w(=L/2)=w(L/2)=0, (7)
where the particle charge is included in the definition of the
electromagnetic potential. Notice that the term at z> is
canceled out due to the special field configuration with
|E| = |H|. This differential equation is reduced to the Airy
equation and has the general solution

w = c1Ai(h) + ¢,Bi(h),

h=QE(w+ p,)) e +m*> + P

+ (px — Ez)? — (0 + Ez)?]. (8)

The spectrum ¢ is found as the solution to the equation

Ai(h,)Bi(h_) = Ai(h_)Bi(h,) =0, hyis=h|._.;,. (9)

Obviously, the spectral density with respect to ¢ is equal to

ple) = QE(w + p,)) >/ |AY (hy
+ Ai(h,)Bi'(h_) = Ai'(h_)Bi(h,)|
x 8(Ai(h,)Bi(h_) — Ai(h_)Bi(h.))

= QE(@+ ) olh, . h).

)Bi(h_) — Ai(h_)Bi(h,)

(10)

Further, we shall need the inequalities following from
(7). Averaging (7) with respect to the eigenstate, we find for
particles (@ > 0)

0+ Py = pe=E@) +1/ (pr = E@P + p + (p2) +m* e,
w—px:—2E<>—(px— <Z>)
+\/(px )?+py+(p2) +m® +e. (11)
Then, for € > 0,
w+p, >0, o —p,>—EL. (12)

Using the first inequality, we deduce from (7) that
e<w*—p2—m?’+ (o+ p,)EL. (13)

The spectral density is zero where the above inequalities are
not satisfied for o > 0.

As for antiparticles (w < 0), formulas (8), (11), (12), and
(13) appear as

h=(2E(|w| = p.))[e+m? + p; + (p. — E2)?

— (Jo| - Ez)?],
|| = py=—py+ E(2)

+ \/(px—E<z>)2+p§+ (p2) +m? +e>0,
o] + p, =2E(z) + (px — E(2))

+\/ )+ p3+(p:)+m*+e>—-EL,

e <w’=pi—m’+(lo| - p,)EL, (14)
provided ¢ > 0.
If w = 0, we have
e < E*(2)? —m? <0, (15)

for EL < 2m. To put it differently, H(0) does not possess
negative eigenvalues in this case. It also follows from (7)
that

é(w) =2(w + E(z)).

Therefore, if EL <2m, then sgn(w)¢'(w) >0 for
e(w) = 0. Thus we see that, for EL < 2m, all the appli-
cability conditions of the formula (1) are fulfilled (see for
details [24]).

(16)

III. COEFFICIENTS ¢, (v)

Despite the fact that the spectral equation (9) cannot
be solved explicitly, it is possible to represent the spectral
zeta function as an integral of a function defining the
spectrum (the so-called Gelfand-Yaglom formalism; see,
e.g., [28])

P / /dpx Py o )
() 3 ——5h( Px:Py

PLIAN
2 [% 1/2‘”/dx 0,p,,0
4].[3/21“(3/2_1/) €€ P p(e w,p )

lﬂl/S

T 4°r(3/2 - u)/ Pxomi /dggl/“
x O In[Ai(h)Bi(h_)—Ai(h_)Bi(h,)],

(v

(17)

where §:=L,L, is the area of the boundary surfaces
7 ==+L/2, the contour y runs along the imaginary axis
downwards, and p, in h_, h, is set to zero.

Letus prove that{; (v) = ¢} (v). Itis easy to show that the
spectral equation for antiparticles coincides with (9) with
the replacement p,— —p,. Therefore, p(&; —w, p,, py) =
p(e;®,—py, p,). Due to this relation and the integral
representation (17), it is clear that {(v,w) = {(v, —w).
Hence the desired equality follows.
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To calculate the coefficients £ (v), it is necessary to expand the zeta function into a series for large w, which corresponds
to large negative h.. Using the asymptotic expansion of Airy functions [29], we obtain

Ai(h,)Bi(h_) — Ai(h_)Bi(h,)

IR () ofin e )

COS% ((_h+)3/2 - (_h—)3/2) 2 32 2 3/2 2 3/2 2 3/2
P O e (Sen ) oS ) o (5 e (S ) as)
where the functions P and Q have the following form:
['(6s+1/2)(=1)* 385
32\ _ _
P<3 ) WZ<) Fds+1) 2% T = R

2541 (65 +7/2) (—1)° 5 85085
32 = _ .
Q< ) Z( ) 4S + 3) ZS\+3/2 48Z3/2 66355229/2 + ' (19)

Then, for the logarithm of expression (18), we have

. . . . sing ((=h,)*? = (=h_)*")
In[Ai(h, )Bi(h_) — Ai(h_)Bi(h,)] ~ In—2 R INRLE

w10 2(5 072 ) =0t (=2 = (=205 -7 ) |

w1n[P (5072 ot} (0,02 = (P05 -h02) | 0

It is taken into account that the cotangent tends to 4-i on the upper and lower parts of the contour. The last two logarithms in
(20) are connected by the replacement h, <> h_.
It is easy to obtain the first several terms of the expansion of the logarithm:

0, In[Ai(h.)Bi(h_) — Ai(h_)Bi(h,)] ~ 0, In sin% (=hy)3? = (=h_)3?) - %68 In(hyh_)

’ %88 ((<_h—)_3/ 2= (=h)7) Cotg ((=hy )2 - (—h_)w))

— 2 0(=ho) T () ) 1)

As we will see later, the terms presented suffice to calculate {; up to k = 6. The fact that we are interested in the explicit
form of the first six coefficients is attributable to the fact that we managed to calculate the functions &/, till / = 3. Thus, we
shall know the expansion of the Q-potential up to 4° [see formula (109)]. It should be noted that in order to derive the finite
and divergent, as f§ — 0, parts of the expansion, it is sufficient to know the coefficients till ;.

Consider the first contribution in Eq. (21),

L[ deelr~o,1n sin% (=h, )/ = (=h_)¥2). (22)

2zi J,

Enclose the contour on the cut of the function &'/~ and perform the integral over &:
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Sm;m) / " dee! (e = m = (pe— EL/2)* + @) = (e = m® = (p+ EL/2)? + 02)'?)
.Jo

2E(w + p,
- 2E(Zl)nf ;x)nm/z ;;1)/5@ "2 (02 = = (py + EL/2R = (@ = = (py = EL/2PV). (23)

Here we have introduced the notation w, := w 4+ EL/2. Note that the contributions with E and —FE cannot be considered
separately as the integral over ¢ is divergent at any value of v. After integrating over p,, we arrive at

inv T(v—=5/2 2 .2\5/2-v 1 7 2 _ 02
e ScosmI' (v —5/2) (wz — m?) F( w—m>_|_(E—>—E). (24)

5. Lis—u
16E7/? @ 22T T

The hypergeometric function should be expanded in the vicinity of unity. The easiest way to do this is by using the relation

I'(e)l(a+b—-c)
['(a)L(b)

I'(c)l'(¢c—a—>)

I'(c—a)l'(c—D>)

F(a,b;c;z) = (1=2)%P’F(c—a,c—b,c—a—-b+1;1-2)

Fla,bja+b—-c+1;1-2), c—a-bgZ. (25)

It is not difficult to see that only the second term in (25) gives the leading contribution as @ — +o0, so

inv 2 _ 2\5/2— 2
_16Eﬂ3/§F(SS/2—I/) o a’)”_) yi2F<2,1;1/—1;;n)%>+(E—>—E). (26)
Expanding the derived expression into a series in 1/, we deduce
ey 1
N SART(3/2- 1)
™V 6m* + E°L*(v — 1)
R PTGy E YL T
™V 60m* + 20E*L*>m*v + E*L*v(v — 1)
AT 1200(1/2 - ) ’
€™V 840m°® + 420E2L>m* (v + 1) + 22E*L*m’v(v + 1) + ESLSv(1* — 1)
o™ =g 50400(—1/2 — 1) : (27)

where V := SL.
Consider the second term in Eq. (21),

1
deIn(h h_)~'/* = 1 (h5' + h=")0ch,

! + ! ) (28)

1
4 (8 +m?+ (py+ EL/2)?> —w? e+ m?>+ (p,—EL/2)* — 0%

The contributions with E and —F can be treated separately. It is convenient to enclose the contour y to the right and calculate
the integral using residues. After being integrated, the contribution to {, (v, w) reads as

eirwS
2

—m(a)_ -m?)'=V 4+ (E - —E). (29)

Then, the contribution to {; from (28) becomes
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o dS 1
YT 8 T(2-0)’
Con e Sam? + E2L*(2v - 1)
37 8r 4r(1 -v) ’
e™Sm* + 3 E°L*m*(2u + 1) + g E*L* (47 — 1)
{s~— . (30)
8x 2I'(—v)

It should be pointed out that the expressions (26) and (29) coincide exactly with the known answer for the zeta function as
E - 0:

eimzv ((U2 _ m2)3/2—1/ eim/S (602 _ m2)1—v

,0) = - 31
S @) 8732 T(5/2-v) 8z T['(2-v) (31
In the contribution from the last line of (21), we integrate by parts
1 (v—1/2)

— | dee'> 0, f(h,, h_ —7/d V12 f(hy hl). 32
s | e o) = S [ e g (32

It is sufficient to consider only the integrals of the form

/ dee™ V2 (=h)* = =2i cos(nv) (2E(w + py))0(w? — m? — (p, + EL/2)?)
14

x (02 —m? = (p, + EL/2)?)* " 12B(1/2 —v,v—1/2 — a), (33)

where @ < v—1/2 < 0. In our case @ = {— % ;—3}; see (21). The contribution with 4_ is obtained by the change E — —E
in the final answer. The integral over p, reduces to

/oo dp(p + o_)0(w? — m? — p?)(w?2 — m? — p2)e—v+1/2

— —2a-2n
- Z % o @2 — m2) B (n +1/2.3/2 + a — ), (34)
n=0 ’
where
I'(n+1)
ck = 35
" Tk+1DI(n—k+1) (35)
is the binomial coefficient, and the sum over n is finite as —%a is a positive integer number.
As a result, the contribution to {, (v, w) reads
e™ S cos(a)l(v—1/2 — a) 2, B
47T (—a) (2E)73 ;C_%aa)ﬁ (@wZ —m*)" " VB(n +1/2,3/2 + a —v). (36)
Using this formula for the third term in (21),
2
((=h )72 = (=hy)2) cotz ((=h )Y = (=ho)*2), (37)
we obtain
im/SE
¢ w_(w0? —m?)"V2 4+ (E > —E). (38)

C2P0(1/2-v)
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Expanding this expression into a series in 1/w, we arrive at

em™y  16E*
T8 PT(1/2-0)
_e™V8(v+1)(6m*E* + E*L*)
Y IE Ar(-1/2 1)

(o

(39)

For the fourth term in (21),
(=h_)7 + (=hy)7, (40)

we obtain the following contribution to the zeta
function:

eirmv 1
Sol!) = PTG =)
eim/S 1
Silv) = —Vm
ey 1 1
Cz(l/) = - 8ﬂ3/2m |:]n2 +6(U - 1)(EL)2:| ,

&) = %ﬁ {’”2 +3 (” - %> (EL)z] ’

i””SEZ
— 4671:1_‘7(_11) [2(1/ + 1)(/)3((03 - mz)_”_z - ((U% - mz)_”_l]
+ (E - -E). (41)
The contribution to {5 becomes
e™SE>2u + 1
{s~— (42)

2 T(-v)’

Collecting all the contributions (27)—(42) together and
taking the common factors into account, we find

120 }

e (o -]

emy 1 1, 1 5 1
=—=hoa |5 —U(ELY?m? = =vE* + —vu(v—1)(EL)*
) = a3y (3 + MBI = 0B + ol = D(EL)
ems 1 1, 1 1
S _ _ ELZ 2
() 87 [(-v) [zm +2(”+2)( ym
dmy 1 1
Solt) = 572 I(-1/2-v) {6 12

18

v(v+ 1)E*L? +

The above mentioned expressions for {;(v) allow one to
conjecture the general structure at arbitrary k:

| /2
S =rEm o0 ; ol

(44)

The rigorous proof of (44) follows from the analysis of the
expressions (26), (29), and (36). An alternative method of
calculation of the coefficients by the use of the Dyson series
is presented in Appendix A.

IV. FUNCTIONS & (1)

In accordance with the general formulas (see
Introduction), for the high-temperature expansion to be
obtained, one needs to find the expression for the function

! 6
50401/(1/ - 1)(v+1)(EL) ]

1 5 1
e+ 5 (v DELYm =2 (v + )m’E? + o u(v + 1) (EL)'m?

120

(43)
| .
ol(u) = Iﬁlm do(w —p)' Aoo dee™
dpdp, (45)

(227 p(&; @, py, py),

where § := L,L,, in the form of an analytic function of v
and [. It was shown in [23] that the integral over &
converges when

Rev < 1. (46)
The integral over @ converges for
Re(v—1/2)> (d+1)/2 =2. (47)

Therefore, it is useful to calculate (45) in the region (46)
and (47), where the multiple integral (45) converges, and
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then to continue o)(u) by analyticity to the required
“physical” values of the parameters v and /. Recall that,
according to the Hartogs theorem (see, e.g., [30]), the
function that is analytic with respect to each variable is
analytic with respect to all of them. The uniqueness of
analytical continuation also holds for such functions. As
follows from the general analysis given in [23], the function
o!,(4) is a meromorphic function of v and . It possesses the
singularities in the form of simple poles at
d+1-2v4+2eN, d=3, (48)

provided that there is a neighborhood of the point @ = 0
that does not contain the points of the particle’s energy
spectrum and g belongs to this neighborhood.

First, we integrate (45) over p,. After the replacement
e — & — p?, the spectral density p(e) becomes independent
of p,, and the integral over p, is reduced to

/dpvwze(e)el/z_”ﬁr(l_y) Rev<1. (49)

Te—p3) r3/2-v)’

Further, we make the integration variables dimensionless

® — mo, Py — mp,, e —m’e, (50)
introduce convenient notation
7712 = mZ/E, w = EL/(2m),
c=m*w=mL/2, jo=p/m, (51)

and pass to the light-cone variables

1
u=w+p, v=w-p, dodp, zidudv. (52)

The region of integration with respect to these variables is
determined by the inequalities (12). Stretching the variables

v = 2wo, u— mu/2, e — ce, (53)

we arrive at

inv 34+1-2v
P e L 5/2-u / o 23
o = c duu
W) = g 3mair /2 - ) 0

o 52 1
x/ dv(%—l—Zwv—Zﬂ)
-1

X / dee'*Vp(cu™3 (e + ¢ —uv + u),
0

cu™(e+ ¢ —uv —u)). (54)

As seen from this expression, we can integrate over the
variable v as it was done above with the variable p,.

To this aim, we shift the integration variable
e—=e—c ' +uw. (55)
Then the integrand of (54) includes
v+ 1)0(v+ (e —c™V)/u). (56)

On making the redefinitions (50), (52), (53), and (55), the
inequality (13) has the form

e<u. (57)

Therefore, the first O-function in (56) can be removed. As a
result, the integral over v becomes

/oo dvl(e + uv — ) (e + uv — c)V/2

[Se]

X <ﬁ1_2” +2wo — 2/3)[ B/~ 2)11:((1/1; el

1\
X <7w) (¢ — & — fu/w + m>u?/ (4w))3/ 2+,
Rev < 3/2, Re(v —1) > 3/2, (58)

where it is assumed that (i —w)? < 1. Stretching the
integration variable

£ — ue, (59)

and taking into account the inequality (57), we obtain

eim/Sm3+l—2v

832w (1)

/oo du /1 J . jiu N cu?\ 3/2+1-v
X 573 ElC  —EU——T——H
o ult3 wo 4w?

x(cu'P(e+1), cu'P(e-1)). (60)

ol (i) = (v - 1-3/2)

Further simplification of this integral is impossible without
knowledge of the explicit expression for the function ¢. It
appears at first sight that (60) possesses singularities at

I-v+5/2€N, (61)

which contradicts the general statement (48). However, for
such values of v and /, the integral on the second line of (60)
understood in the sense of analytic continuation goes to
zero [see (90)] and, consequently, o (u) is regular at these
points.

A. Functions o (u) for non-negative integer /

The presence of I'(—/) in the denominator of (60) allows
one to obtain the exact expression for o/ (1) at [ = 0, co.
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To this end, it is sufficient to investigate the singularities of
the integral on the second line in (60) in the complex [ plane
near [ = 0, co. As Theorem 1 shows, these singularities are
the poles with the residues found by expansion of the
integrand in the asymptotic series. There is no need to
evaluate the integral. Namely (see for details [31-33])

Theorem 1. Let ¢(x) be absolutely integrable on (0, A],
and the following asymptotic expansion takes place:

N
p(x) =D apk 4+ 0N, (62)
k=0
for x — +0. Then the function

1) = A Yide(r),  0<A<4oo,  (63)

is analytic for ReA > —1 and can be analytically continued
to the region Red > —2 — N, where it possesses the simple
poles at the points A = —k, k = 1, N + 1, with the residues
ay_y, respectively.

In order to apply the theorem to (60), we pass from the
integration variable ¢ to

EV =1/ (cu) —e—j/w + cu/(4w?). (64)
It is not difficult to see that

§e0,%), So=w/(1=w—p)>0, (65)

where it is supposed that u +w < 1. Let us stretch the
integration variable

u — Eu. (66)

Then the integral on the second line of (60) can be cast into
the form

A deg(e), gl = / " duus o (h, ),

(67)
where
hy = cu'BEBe+1)

— cul3g2/3 (i SO RN 5) (68

cu w o 4w?

~—

and

Cly =2€—M2}2<1+ <1+%)g>
X{Ltp_wab+i+%ﬁyyﬂ} )

The last expression is obtained from the solution of the
equation i_ = 0. The function ¢g(¢) is bounded on the
integration interval except possibly the vicinity of the point
& = 0. Therefore, in order to evaluate (60) at [ = 0, oo, it is
sufficient to derive the asymptotic expansion of the
integrand for & — +-0.

For & — 0, it is useful to split the integration region of the
variable u in (67) into the three intervals:

() =[u_aJula_a,]ula, u]
=AUBUC, (70)
where
2w? [
= (4 (o))

X{li[l‘w2<1+<i+%>é>2]l/2}’ st 7Y

The boundaries of the integration region (71) are obtained
from the solution of the equation € = g, where g, is some
constant independent of £. For the intervals A and C, the
quantity € € [gg, 1]. For the interval B, both A and h_ are
non-negative as long as € < g.

a. Intervals A and C. On the interval A, the integration
variable u — ¢! for £ — 0. In this case, Eq. (9) has the
form

Ai(h,)Bi(h_) = Ai(h_)Bi(h.)

2
== (culBEV3 4 2c%utBPegt3) =0,  (72)
P

where € € [, 1]. Then it follows from (72) that

u=0, or u~1/E (73)
However, u ~ ¢~!. Consequently, for & — 0, Eq. (9) does
not possess solutions on the interval A.

On the interval C, the integration variable u ~ 5‘2 for
£ — 0. Hence, it is useful to redefine the integration
variable u — £2u. Then the integration limits become

2 -
ot s8]
w

c

R ]
Fuym— {1+<1+W>§], (74)
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for £ — 0. On stretching u, the additional factor £% appears
in the expression (67) for the function g(¢) (on the interval
O). If Eq. (9) has solutions on the interval C, then the
integration over u in (67) is removed and u=4w?/c+o0(1),
where o(1) does not contain the powers of &”. Then, in
developing g(£) as a series in &, the factor €% cannot be
canceled out; i.e., the expansion of g(&) (on the interval C)
in the vicinity of £ = 0 does not contain integer powers of
£. Consequently, as follows from Theorem 1 and the form

n* +4w?c?(n’n

of the integral over & in (67), the interval C does contribute
to the poles at non-negative integer powers of /.

b. Interval B. On the interval B, the arguments of the Airy
functions entering into the equation specifying the spectrum
(9) are negative and tend to —oo for £ — +-0. Therefore, we
can employ the asymptotic expansion of the Airy functions
for large negative arguments and solve Eq. (9) with respect to
u, bearing in mind that £ — 0. The first three terms of the
expansion with respect to £ are written as

|
2n? e 22\ 374
o= () nes [ (55)

127*w?n*

2_151540(53)}’ n=1N©E. (75)

where N (&) — oo for ¢ - +0. For example, in the leading order, we obtain from (9) that

3/2 3/
_’5> _<1+_‘L-C”"52+5>
w  cu,

2 37‘[1’! _1/2
2 3/2 :

(76)

The solution of this equation reproduces the leading term of the expansion (75). The integral over u in (67) is reduced to the
sum over the roots of Eq. (9) since on the interval C and for £ — 40,

= )Bi(h_) — Ai(h_)Bi'(h.)

Ai(h,)Bi' (h_)

— Ai'(h_)Bi(h,)

p(hy h_) = Z

=1

I, Al ) i(h) -

Ai(h_)Bi(h,)] + h_[Ai(h,)Bi (h_)

— Ai'(h_)Bi(h,)] ‘5(“ -u,(8),  (77)

where i, = 0, h,.. Substituting the expression (75) for u,, into the resulting sum and expanding the outcome in a series with

respect to &, we have

3/2—v
=" 5/22(1 + ) [bo + b1€ + b + O(&)], (78)
where
bo=1. b =@w-5/2)%,
w
=2 2,2 2042 4 2.2
,u 7°n 1 c*(4c+15) 4c °n
b,=w-17/2 -5/2 l+— | |-—- 1 +— . 79
2= / ){(y / ) < + 402> Llw2 374nt +37r4n4 + 4¢2 (79)
Thus, employing Theorem 1, we deduce
(=1)! . ﬂ2n2 32y
F(Hl)ag(ﬂ) =T(w-1- 3/2)8 3/2 m3+=2 IZ b, 1=0,co. (80)
n=1

The explicit expressions for the sums over n are presented in Appendix B. Using these expressions, we can write

42y T T
od(u) = ei””% |:F(l/—2) —\2/—;1"(1/— 3/2) +F(52/\§_—
0, (1) =—po)(n) = —ua)(0),
o3 =0 - S 1 -3) Yo -52) +
2 5W2 5 2
+@F(u—3/2)—?l“(u—l)+ ;V6fr(l/—l/2)

r(7/2-
~ Vs

V) T(3)/2 y(4c)] )

7 w?
2\/@ )Tg/z y(4c)—2TF(1/—2)

w2 (4c® +15)T5,,_ (4c) +4c*T7 ), (4c)
3¢? I'(7/2—-v) '

(81)

The functions T%(4c) are exponentially suppressed for large c.
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We see from formulas (45) and (81) that 6} (0) vanishes.
In general, for the system at issue

cZ*H(0) =0, k=000 (82)

Indeed, it follows from (68) that

hy —>§h¢, h/ig_) hlﬂF» (83)

for u = 0. Aslong as Eq. (9) remains unchanged under (83)
and @(h,,h_) = @(h_,h,) [see (77)], the expansion of
g(&) with respect to & contains only even powers of &.
Therefore, we have (82).

It is clear from (4) that

!
A =D GRONH)". = (8
Then formula (82) implies that
o (u) = =2t (—n). (85)
Also we obtain
oy (u) = =3uc;(0) = 4?6)(0). (86)

Taking into account the inequalities (14), it is not difficult
to check that the contribution of antiparticles to o/ (u) is
equal to the contribution of particles with g — —p. Hence,
the high-temperature expansion of the thermodynamic
potential including the contributions of particles and anti-
particles does not contain 62**!(u). The terms with 62 (1),
k =1, co, do not contribute to the high-temperature expan-
sion either [see (1)]. Consequently, the one-loop contribu-
tion to the Q-potential coming from particles and
antiparticles does not include the second term with
[ =1, co. Notice that, in contrast to the system of charged
particles in a homogeneous magnetic field (see [25]), the
functions ¢ (u), | = 0, 0o, do not contain the terms that are
nonanalytic with respect to the coupling constant or the
external field. Such contributions do not arise in a pertur-
bative in & solution of Eq. (9) with respect to u. As for
ol (u), I = 0,3, this property is seen directly from expres-
sions (81) and (86).

B. Function 6, !(u)

In order to find the high-temperature expansion for the
thermodynamic potential of bosons, we need to derive
o, (). The considerations of the previous subsection are
not applicable in this case. We did not succeed in finding
the exact expression for ¢! (1), but we managed to find it
under the assumption that [see (51)]

wl < 1, c> 1. (87)
Let us change the integration variable in the integral on the
second line of (60),

u— clu, (88)

and rewrite it as a contour integral

© du [ de i u? \3/2+-v
v=5/2 — (1= _= _
¢ A ut! /CZJn' ( st 4w2)

x 8, In(Ai(h,)Bi(h_) — Ai(h_)Bi(h,)). (89)

where the contour C goes from —oo a little bit lower than
the real axis, encircles the origin, and then runs to —co a
little bit higher than the real axis, hy = c?3u!/3(e £ 1),
and the principal branches of the multivalued functions
are taken.

The logarithmic derivative entering into (89) does not
possess singularities out of the negative part of the real axis
and tends to zero for |e| — oo. Therefore, taking Rev
sufficiently large, we can deform the contour C and reduce
the integral (89) to the integral over the branch cut of the
power function in (89). As a result, we obtain

yspsinm(v—1-3/2) [ du
¢ i o w12

x / " dee¥/ 9, In(Ai(h, )Bi(h_) — Ai(h_)Bi(h.,)),
0
(90)

where

1 u
hy = c2Pul/3 (g—l—u—w—l— 2 + 1>. (91)

Bearing in mind the conditions (87), it is not difficult to see
from the asymptotic behavior of the Airy functions that, in
the given integration region,
Ai(h,)Bi(h_)
Ai(h_)Bi(hy)

is exponentially small. Therefore, up to exponentially
suppressed terms at (¢c/w) — oo, we have

(92)

9, In(Ai(h, )Bi(h_) — Ai(h_)Bi(h.))
~ 0. InAi(h_) + 0, InBi(h,). (93)

Unfortunately, even in this case, we did not succeed in
exact evaluation of the integral (90).

Below, we shall derive the leading in ¢/w contribution to
o, (u), the terms diverging for v — 0, and take into
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account the asymptotics of ;' () in the vicinity of the
singular point in the complex u plane where the chemical
potential approaches the lowest energy level. The integral
(90) possesses the branch point in the # plane when the pole
of the logarithmic derivative tends to the point € = 0.

We start with the leading contribution and the terms
singular at v — 0. Developing the logarithmic derivative as
an asymptotic series, we deduce

8, In(Ai(h,)Bi(h_) — Ai(h_)Bi(h.,))

- - 1 .~
~cu2(RY? = V2 - e+ R4, (94)

where h, := ¢2/3y~'/3h. This asymptotic expansion has
the same form for both the exact logarithmic derivative and
|

o dxx™! _T(B/2)T(p - p/2)
A (x2 +2bx + 1) 2I(p)

the approximate expression (93). The terms presented in
(94) are sufficient to find all the contributions diverging at
v — 0 for [ = —1. On substituting the expansion (94) into
(90), the integrals over ¢ of every term in the series are
reduced to the beta function:

) 1 7 u 5/24+1-v+a
d 3/2+l—bha N P S |
A ° * (u w + 4w? >
TU=v+5/20(w—1-5/2-a)
[(=a) '

(95)

Having stretched the integration variable u — 2wu, the
integral over u becomes (see [34])

F(B/2,p—p/2;1/2;b%)
_T(B+1)/2)T(p=p/2+1/2)

I'(p)

E((B+1)/2.p = B/2+ 1/2:3/2:0%).  (96)

Then the leading term of the expansion (94) gives the contribution to o;'(x) of the form

m
127

invy
e

L2

3

3w rL 3 i 2 4
s/ dz{(l—ﬁ2)3/2+2—”r(u—1)+”—r(y)+— (1—ﬁ)3/2arcsinﬁ+ﬁ<—ﬁ2—l)]}, (97)
— T T T

where ji := i + Ez/m and, for convenience, the expression is written as the integral over z. As for the next term of the
asymptotic expansion (94), we will obtain only the contribution that is singular at v — 0. Using the above integrals, it is easy

to see that this contribution to 6! (i) is the pole part of

i 2-2v
—elmv

T

Thus, it only remains for us to find the asymptotics of
o, () in the neighborhood of the singular point of the u
plane. To this aim, we extract the pole contributions from
the logarithmic derivative (94) that are closest to ¢ = 0:

' 2313
0. InAi(h_) = P
9. InBi(h,) = M+ e (99)
hy +r,
where Ai(—r_) = Bi(-r,) =0 and
r_m~2.34, ro~1.17. (100)

Substituting (99) into (90), integrating over ¢, and stretch-
ing the integration variable u — 2wu, we obtain

r=512(2y) / " duu 1 = 2(7 £ wu + 1
0

+ re (2WM/C)2/3]3/2+1_D,

for the contributions of each of the poles.

(101)

SCv—1D{2+ - D[(E+w)?*+ (- w)]} =

Sm? > +w? — 1
-t 4
167 v

(98)

[

The integral (101) is singular when the expression in the
square brackets vanishes for some # = uy > 0. The main
contribution to this singularity comes from the vicinity of
the point u = uy. Expanding the expression in the square
brackets near this point and keeping only the leading terms,
we have

flu)=u?=2(FEw)u+1+r:2wu/c)*?
) + 5 ) (= ).

uozﬁiw—%(ﬂﬂ:w)_m,

fa=(2+5). 3rws1= (02)

where a, = r(2w/c)?3. The integral (101) diverges
when s, := i = w approach the point
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solas) ®1+ay/2—a%/72. (103)
Substituting the expansion (102) into the integral (101) for / = —1 and integrating, we come to
al'(v—1 solay)—s
ZWCD_5/2%(50<G:‘:> - Si)l_b = ZWCD_S/Z(So(Cli) - Si) (l/_l —ln%"— 0(1/)) . (104)

in the leading order in (w/c). Keeping only the singular term at s, — sy(a4.) and replacing so(a.) — 1, which is justified

in the leading order in (w/c), we deduce

m-

-1 ~ iV

+rg72§[(l_ﬁ_w)ln(l_ﬁ_w)+(l—/2+w)1n(1_ﬁ_|_w)}

where, in the last two terms, it was taken into account that
v — 0. The pole at v — 0 in the expression (104) was
discarded as its contribution is taken into account in the last
term in (105). The finite terms at v — 0 in (104), which are
not singular for s — sy, can also be disregarded to the
accuracy of the approximations made.

Forw/c = E/m? < 1, the expression (105) gives a good
approximation for o, ! (1) and its derivatives with respect to
the chemical potential on the interval |fi| < 1. The expres-
sion (105) has a branch point at z =1 and becomes
complex for fi > 1. However, the exact expression for
o~ (u) is real-valued and well-defined for s, < so(a.).
That is, there exists the interval of values of the chemical
potential, which shrinks to zero for w/c — 0,

I <p+w<sglay), l<p—w<sgla_), (106)
where the expression (105) is not applicable. One can
improve the expansion (94) such that, having integrated
over ¢ and u, the leading contribution will approximate
6, (4) uniformly on the whole interval of physically
acceptable values of u. To this end, one needs to put

hy = (hy+re)—rs (107)
in the arguments of the Airy functions and employ the
asymptotic expansion in (94) supposing that the expression
in the parenthesis is large. Then, on evaluating the integral
over ¢, the integral (96) is replaced by

c’“‘5/2(2w)_1_“ /Oo duu""1(u? = 25, u+ 1
0

a3y Hvra (108)

which is just the Mellin transform. In the present paper we will
not investigate the expression resulting from this procedure.

3-2v L)2 37 ~3 2 4
S/ dz{(l — ji?)3? +£F(v— 1) +%l"(1/) +- [(1 — ji*)3/? arcsin ji +ﬁ<ﬂ2 - 1)] }

3
m>Sp* +w? —1
167 v ’

(105)

Let us point out some other properties of (105). The term
with logarithmic singularity in (105) gives the leading
contribution to the total charge and the average number of
particles at s — 1 in spite of the fact that this contribution
is suppressed by the factor w/c in comparison with the first
term. The first term in (105) can be obtained from o} ! (1)
for a free particle [35]. One just needs to replace i — ji and
integrate the resulting expression over z (see [4]). As we
have already noted above, the contribution of antiparticles
is obtained by replacement u — —u in the corresponding
expression for particles. The contribution of antiparticles to
the thermodynamic potential cancels out all the terms in
(105) that are odd with respect to fi.

V. HIGH-TEMPERATURE EXPANSION

A. Cancellation of singularities

The expression in square brackets in formula (1) is an
entire function of the parameter v; see [24]. This fact can be
exploited for the indirect verification of the expressions for
o whose explicit form is known for [ =0,3. In the
expansion (1) the terms with singularities at v — 0 are

1
P D) (-20) 54 () b,

1
ﬂ] . F(_ZV)C(_I _2’/)54(’/)#,52" +Eﬁl(ﬂ)’
3
B T(=20)5(=3-20)5 ()

(=2 = 20)¢(=3~2) 6 — 03 ().

1
720 (109)

It has been taken into account that there are no singularities
in the first and in the second terms at > and also that
{57(0) = 05 see (44). It is easy to convince oneself that all
the singularities are canceled in this case. This serves as an
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indirect verification of the fact that the divergent at v — 0 It has been taken into account that {, s(1/2) = 0; see (44).

(volume) terms in o, (1) were calculated correctly, e.g., the It is not difficult to check that all the singularities are

term with ['(v —2) in o¥. canceled as well. This verifies that the divergent atv — 1/2

Let us extract the terms with singularities at v — 1/2: (surface) terms in o’,(4) were calculated correctly, e.g., the
term with ['(v —3/2) in oY.

A0 T(1=20)¢(1 =208 W)p* ! =~ 6)

12 B. Grand thermodynamic potential

Bl T(1 = 20)0(=20)G ()up™ " + EJ 3 (1), Now we have everything to write down the explicit
3 expression for the high-temperature expansion of the one-

ik (1 = 20)8(=2 = 2v)3 (y)”_ﬁZV—l loop Q-potential. Formulas (43), (81), (86), and (105)
6 suffice to obtain the expansion up to 3* terms. We present

D(=1=20)¢(=2 = 20) {5 (v)up> ! here only the expression for the divergent and finite terms

1 3 as f# — 0. Thus, for bosons
~ 50w, (110

_ {@) [t L3, L2 B
—Qb—%LSﬁ +S|: ”2 /L/deﬂ_H]ﬁ 2+S|:m2/_l‘/2d (2/1 —1)—7T/,t:| 24

" # pm? 2 . 4
32— —(2* - 3)1 2101 = 52)3/2 e
127zﬂ L/2 ) 27[(# ) In 10 —l—ﬂ (1 — j*)>/% arcsin ji + fi 3/4

+——S[(Il—pg—-wh(l—pg—w)+ (1 —-g+w)In(l -+ w)]

87:2,6

HEL? = o+ (EL)

L/2 2m2e2r-3/2  S5E2 4 ~4 4
+S[/ d{ Wl O mz(ﬁz_"_)_ 7 m(sz)}
-L)2 647> 16z 967 16z 3 127
u(4u? +3(EL)? — 12m?)

m3
+ gt 1027 } (111)

S
+ wlnﬂe_y/Z |:[/l2 - m2 +

If we take into account the contribution from antiparticles, then

L P P 2S/L dz(27 —1+—S/L/2 2y3/2
P s T 2 T )y 678" )12
2
+ S =fi—w)In(l = —w) + (1= +w)In(1 = +w)

8r2p
+(1+p—w)hh(1+ap-—w)+ (1 +ap+w)n(l+a+w)]

+%lnﬂe‘y/2 |:/42—m2+1(EL) ] —i(,u + (EL)?)

4 4P
L2 mt | Pm2e 32 SE2 b i m? m3

s d 1 - S 2mL . 12

* U_L/z Z{327r2 "o 482 8e ( 3) 62 1322 )} 12;:] (112)

The expression for the terms at positive powers of f of the high-temperature expansion (of the one-loop Q-potential) with
the contribution from antiparticles reads as

lim {i T(4 = 20— k)C(4 = 20 — k — 25)C, ()24 (22’22)] (113)
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It is easy to see that the derived expression is regular in the
v-plane; if there are singularities in gamma functions, they
are annihilated by zeros of the zeta function or the
coefficients (;(v); see (43). The vacuum contribution is
not taken into account in (111), (112), and (113).

The derived formulas can be applied to the systems
in a local thermodynamical equilibrium. Namely, let the
system be represented as a collection of subsystems with
|

274 3 2
o [ A [BT e, w24,
Qb—/dx[90 + 5 AO 24 T
2,2
(242 = 3m2) 2"

T A
— 2 _ p2y3/2 _ 40 — 3 "
+12n’{(m ) 2770 e

+ mT m—A, m*  mPe¥ 32

characteristic size L, which are large enough for the statistic
description to apply, and sufficiently small as the electro-
magnetic field to be approximated as crossed, constant, and
homogeneous on a scale L in a comoving reference frame.
It is also assumed that the subsystems possess small
acceleration in this frame so there is no influence of the
metric on thermodynamic properties of the subsystem.
Then, for such a system, we find from (111) that

2 A 4
+— [(m2 — A3)3? ar(:sinz0 + Ay <§A(2) - mz)] }
52 1

I = A1 1
oyl G s P

A4
_ 2A2 ,
9671'2+ 167* < 3”

(114)

in the leading order of w/c. Here, T := #~!, the chemical potential is included into the definition of A := u'A,, where ut is
a velocity 4-vector of a medium, and the Coulomb gauge is assumed. Notice that A, is gauge invariant in this gauge as it is
expressed in terms of gauge invariants (see, e.g., [36]). The parameter L entering into (114) and, consequently, the whole
coefficient at the term in question have only an order-of-magnitude estimate. Taking into account the contribution from
antiparticles, we deduce

Tt m —2A3 T mT m—A m—+ A
_Qb_/d3x|: T B T2+6ﬂ'( 2—A6)3/2+m{(m—A0)ln p” + (m+Ap) In
m4 m2e2y—3/2 5E2 1 A4
1 — _ 242 _20) | 115
02" 6 3322 T <m 0773 )] (115)

C. Vacuum energy

In the paper [26] the high-temperature expansion of the grand thermodynamic potential for particles obeying the Fermi-

Dirac statistics was derived

—Qi(u)= > T(D=2w—kn(D -2w—k—n)
k,n=0

Here, in contrast to formula (1), all the Riemann zeta
functions are replaced by the Dirichlet eta functions
n(z) = (1 =2'"%)¢(z), and, additionally, the term with [ =
—1 is absent because the eta function has no singularity at
z=1

|

0, (B (1 =0, By))

v—0.

E, E,
—_ > — =FE,,
e/ioE,, 41 py=0 ; 2 vac

u(u)/f’

;ﬂD 21/ k +Z

(116)

There is an interesting fact that the high-temperature
expansion for fermions (116) can be used to find the
contribution to the effective action at zero temperature
(vacuum energy). It rests on the following observation:

(117)

where E,, is the energy of the mode with number 7. It should be noted that the Fermi-Dirac distribution in this formula plays
the role of a regularizing factor, and /3 is a regularization parameter. The derived formula gives the unrenormalized energy

of vacuum fluctuations for one bosonic degree of freedom.
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To obtain the vacuum energy, one can use the high-temperature fermionic expansion:

Tn? 3¢(3) 1 1 In2 1
Q =———VB*+ S — |m?>——(E Vpy= —— ——(EL)*|SB;"!
f|ﬁ0—>0 720 ﬁo 167 ﬁ() +48 6< ) ﬂ() 8 m 4( ) ﬂ()
Vv m*V mﬂoeV m*V
————[(EL)* 4+ 90m* — 20(EL 200E%] +—S In 2mL 118
383077 [(EL)" +90m" = 20(EL)*m* + ]+24 T2 122 3 (2mL) + (118)
Then for the vacuum energy we have
3(( ) 1 1 m V mﬂoe7
\%4 m3 m*V
————[(EL)* = 30m* — 20m? 200E%] + —S8 — 2mL). (119
503 [(EL)* = 30m* =200 (ELY? +200E%] + -5 =" 1%,,(2mL).  (119)
Introduce the following counterterms:
3¢(3) 1 1 , 1 3oy o omt . mpye’
= ——(EL —1
120ﬁ an 2P0 g | T BLY A gt
m
1
———[(EL)* = 30m* — 20m*(E 200E%] + —— 120
192072 [(EL)" = 30m* = 20m* (EL)” + I+ 55 127L° (120)
|
Consequently, the renormalized vacuum energy reads as W =(1,1,0,0), n* =(0,0,0,1) = hn =0,
ES Epe m* nt=-1 k=0 (122)
vV =V —c.t.:—6 5 3/Z(ZmL) (121)

which is twice as big as the renormalized vacuum energy
for a neutral massive scalar field with the Dirichlet
boundary conditions (see, e.g., [37-39]). The factor of 2
comes from the fact that we consider a charged scalar field
which has the number of degrees of freedom twice as big as
a neutral scalar field.

VI. CONCLUSION

Let us sum up the results. We obtained the explicit
expressions for the high-temperature expansion of the one-
loop contribution to the thermodynamic potential of
charged scalar particles in a constant crossed electromag-
netic field. The vacuum energy was also calculated. The
contributions of particles and antiparticles were separately
investigated. It was shown explicitly that the high-temper-
ature expansion of the thermodynamic potential and the
vacuum energy do not contain contributions that are
exponentially suppressed with respect to the external field
or coupling constant except, possibly, the term at 1/p.

The fact that the nonperturbative corrections to the
vacuum energy do not depend on the external field for
the given configuration of fields and plates can be antici-
pated from a simple analysis of the gauge invariant Lorentz
invariants. For the crossed electromagnetic field and
given boundary conditions, the stress tensor has the form
F,, = Ehyn,), where

Here n# is the normal to the hypersurface z = +L/2. Due
to antisymmetry of F,,, the following scalars vanish:
nF,, =n'n"F,, = 0. All the higher powers of F,, are
= 0, apart from F7, = E®h,h,. Nevertheless,

WFs, = n'n'Fi, = 0 The same considerations apply to
the dual tensor F =5 Y €uapF®, F2, = E*h,h,. The cross

products also Vanlsh, (FF) w

k
also zero, F,,

= 0. One can also introduce

the 4-vectors F,,x" and F X’ However, it is impossible to
construct nonvanishing gauge and Lorentz invariants using
these vectors that do not change under translations orthogo-
nal to ny. Our study, however, does not rule out the
presence of field dependent nonperturbative contributions
in the temperature dependent part of the thermodynamic
potential, ¢;!. These contributions may depend on the
4-vector specifying the reference frame where the thermo-
dynamic system is at rest. Besides, in deriving the explicit
expression for the thermodynamic potential, we essentially
rely on fulfillment of the condition EL < 2m in the
comoving reference frame. When this condition is violated,
the additional contribution to the effective action can arise.

The system considered in the present paper can be used
for an approximate description of thermodynamical proper-
ties of an ultrarelativistic fluid of charged bosons under the
assumption that it is in a local thermodynamic equilibrium.
In the reference frame comoving with the fluid element, the
action of an external electromagnetic field on charged
particles of this fluid element can be approximated by the
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action of a crossed electromagnetic field [3,14-20].
Therefore, if the acceleration of this fluid element is small
such that the effect of inertial forces on thermodynamic
properties of the system is negligible, then the thermo-
dynamic properties of such a fluid element can be described
by formulas obtained in the present paper. The vacuum
contribution to the effective action is determined by
Lorentz invariants and so is the same in any reference
frame.
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APPENDIX A: DYSON SERIES

A heat kernel [the exponent on the right-hand side of (2)]
can be considered as an evolution operator specified by
the Hamiltonian —H(w) (7) taken at imaginary time.
The dependence of the evolution operator on the constant
p? + p} + m? — w? is trivial and will be taken into account
only in the final answer. We use the perturbation theory
(see, e.g., [24]) to find the matrix elements of the evolution
operator taking H, = p? as an unperturbed Hamiltonian
and —2(w + p,)EZ as a perturbation.

The solution to the Sturm-Liouville problem for the
Hamiltonian H( with zero boundary conditions (7) is given
by the following functions:

2 . L 22
W%(Z):\/gsm[\/i—k(1+5)], ﬂk:ﬂL—z, k=1,00.

(A1)

It is easy to see that in the basis formed by these functions
the operator of coordinate and the unperturbed Hamiltonian
have the following matrix elements:

71'2712
Hgk 12 75 Onks

4L (=1)"+h—1
an:Pnkm lfn?':k,
=0 ifn=k. (A2)

It should be noted that despite the fact that H° is quadratic
in momentum [x, [x, [x, H°]]] # 0. This is the reason why
the naive expression for the heat kernel in external
homogeneous electromagnetic fields [4,13] is not appli-
cable in our case. The time evolution operator takes an
especially simple form in the interaction picture (Dyson
series)

e =1 42i(w+p,)E /f(tl)dtl
0

Ky t
4w+ p,)E? / 2, / S(1)diy+ . (A3)
0 0

where 2(7) = eoze~"M0 is the coordinate operator in the
interaction representation.
Consider the correction of the type EV:

o0 o0

Z<n|e_”ﬁ|n><0) ~ Z e_””ng.

n=1 n=1

(A4)

Taking into account the constant term discarded in —H (w)
and changing s = iz, we obtain the zeroth approximation
for the heat kernel

[So]

px+p}+m —o? E eT ,

n=1

G @, 7:py. p)) = (AS)

where we set Rer < O for the sake of convergence.
There is a trace of the heat kernel in the expression for
the high-temperature expansion

dp.dp,
SpG(w, 1) :S/ CEEE G, 7 ps,py),  (A6)

(27)?

where § := L, L,. The integrals over momenta are Gaussian
and can easily be evaluated,

S o 2,2
0,7) = —— 7@ -m) E e,

drt

SpGO( (A7)

It is not difficult to find an asymptotic expansion of the
remaining sum at small values of z:

© 2,2 1 1

L
zm(—f)_l/z 5 (A8)

In order to calculate the expansion of { (v,w) at
@ — o0, it is convenient to use the following relation:

(i (vo) =~ /2711 (Zak/z k/z) ~rl@i-m?)
2 _ )k

inv ak/z(w -m
= e s
Zk: r(l-v—-k/2)

(A9)

where we have already taken into account the connection
between different branches of the square root function
characterized by cuts along the negative (—) and positive

(+) axes: (—7)k/2 = ¢=BkK/2,
+
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Thus, for the EY correction we deduce

eiﬂyV (1)2 _ m2 3/2—v eim/S w2 _ m2 1-v
o) e ( )T e )
8292 I[(5/2—-v) 8z T[(2-v)

(A10)

This gives the following contribution into the coeffi-
cients {i:

Con ey 1 £m ems 1
0782 r(5/2 -0 T8 T(2-0)’
eim/V m2 eim/S m2
CZz_Wiv 63%——,
87321 (3/2 —v) 8z T'(1-v)
eiﬂuV m4 eirwS m4
é’4 ~ 3/2 ) CS N — N N\
823221 (1/2 = v) 87 2I(-1)
eim/V m6
fem— (A1)

82260(~1/2 - 1)

There is no correction of the form E! since z,, = 0.
Consider the correction of the form E? [denote it by
index (2)]:

|

[Se]

z<”|€_”g|”>(2)

n=1 n,p=1

2 0 L? Z%p —is”z—’z’
—4(w+p,)°E Zzs” " _pze 7,

(A12)

The sum over p is readily evaluated and the contribution to
the heat kernel reads as

GY(w,7; py. py) = e’(’ﬁ*”?*’"z‘")z)(a} +p.)?
® 2
) = 15\ 22
< i ()
(A13)
Having calculated the trace in the phase space, we arrive at

VEL? [ 1
SpGP (. 7) = e s <Z_w2>

(Al14)

The remaining sum over n has the following asymptotic
expansion in small z:

< (n? 15\ 22 '/ /2 15 71/2
> (Zrm )™ m =T (=02 4 35 () 4 105 (0 = s (o). (A15)
n=1
This gives the following contribution into the coefficients {:
0w e™VEL*(v—1) Com e™SE’L*(v—1/2) _e™VVEr(L*m? = 10)
2T R er(3/2-v)’ T 8 2ar(1-v) Y82 er(1/2-v)
e™S (v+ 1/2)E*(4L°m? - 5) e™V E?m?(L*m* - 20)(v + 1)
Z:S = ’ Z:6 x - 3/2 (A16)
87 8 (—v) 87 12I'(-1/2 —v)
Collecting together all the above formulas, we arrive at
eim/V 1 im/S 1
Solv) = 87/2T(5/2-v)’ S 8z I'(2-v)
eV 1 , 1
= —(v—1)(EL
) =5 iy | g - DELY]
em™s 1 , 1
= ~v—=|(EL)?
S0 =g 7+ (-3 e
ey 1 I, 1 5
= — |- —u(EL)*m? = ZvE?|,
G = S n T2 =) {2'” FgUEL M =3y }
em™s 1 o, 1 1 5 1
=- ~J(EL)*m* - = ~ | E?
e y)[ +2<”+2>( ym 8(U+2> }
ey ! L 2 4O 2,2
=- — -= 1)E . Al7
o) =~y 67+ 130+ DEL M =56+ DE (A17)

The corrections of the form E* and E° can be found analogously. It is convenient to perform the calculation by using a
computer. Of course, the answer coincides with formula (43).
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APPENDIX B: SOME SERIES

Let us consider the series (the Epstein-Hurwitz zeta
function; see [40,41])

S 2 2\ a
Z(H%) . Rea<-1/2, (Bl)
4c

that appears in the expression for 69(x) in (81). This series
is a holomorphic function in the indicated domain of the
complex a plane and can be continued by analyticity to the
whole complex plane except a countable number of poles.
Applying the Poisson summation formula to the series of
the form (B1), but with infinite limits, it is not difficult to
derive

Fi(e) =

Fi(e) —%—F%%—%Sin(ﬂa)Tg(%‘), (B2)
where
_ [T (=1 SEKT(a+1) Kewro(ph)
Tg(ﬂ) -—1 dx e/}x 1 - ; \/7_,[ (pﬁ/Z)"“/z
Ia+1) s+1 s
= W/cd”(‘“— 2 F(‘E)
x {(=s) (g) . Rea> -l (B3)

where the contour C runs upward parallel to the imaginary
axis such that Re(s + 2a) < —1 and Res < —1. The last
two expressions in (B3) can be used to construct the
analytic continuation with respect to a to the region
Rea < —1. The last formula in (B3) follows from the
Mellin representation (see, e.g., [42]):

— [ TS5

where the contour C goes upward from below parallel to
the imaginary axis and to the left from the point s = —1.

(ef=1)7! (B4)

The series,

2.2\ a

Zn—4<1+’;”2>, Rea < 3/2, (BS)
C

n=1

Fi(e) =

also arises in (81). It is useful to write it as

Fi(c) = Zn“‘[(l +xn?)* — 1 — axn?]
n=1

0

n=1

* +axn?), (B6)

where x := 7%/ (4¢?). The latter series is reduced to the sum
of the zeta functions. The former series can be completed to
the series with infinite limits, the term with n = 0 being
understood as a limit. Then, using the Poisson formula, we
deduce

2 _ 4
Fife) = ¢4) + ac(2) 1y - DT
(3/2 — 7/2 3
+%% I3sm(ﬂa)T4(4c) (B7)
where
o dx (x> =1)*
T2(P) ’=[ F%
B ds T(—a—s/2+3/2)[(=s){(=s) .
_F(“+1)/C4_m' (5/2—+s/2) r
Rea> —1, (BS)

and the contour C runs upward parallel to the imaginary

axis such that Re(s 4+ 2a) < 3 and Res < —1. The con-

tributions (B3) and (B8) are exponentially suppressed for
¢ — +oo,

2k _ [edx (-1

Ta (46) - [ ﬁ e4cx —1

Al(a+1) .

o5 G e (B9)
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