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Quantum correlators of pure supersymmetric Yang-Mills theories in D ¼ 3, 4, 6 and 10 dimensions can
be reformulated via the nonlinear and nonlocal transformation (“Nicolai map”) that maps the full functional
measure of the interacting theory to that of a free bosonic theory. As a special application we show that for
the maximally extended N ¼ 4 theory in four dimensions, and up to order Oðg2Þ, all known results for
scalar correlators can be recovered in this way without any use of anticommuting variables, in terms of a
purely bosonic and ghost-free functional measure for the gauge fields. This includes in particular the
dilatation operator yielding the anomalous dimensions of composite operators. The formalism is thus
competitive with more standard perturbative techniques.
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I. INTRODUCTION

Pure supersymmetric Yang-Mills theories exist in
D ¼ 3, 4, 6 and 10 dimensions [1]. As is well known,
the corresponding extended super-Yang-Mills theories in
lower dimensions can be obtained from these by dimen-
sional reduction. Among the supersymmetric Yang-Mills
theories, the maximally extended N ¼ 4 theory in four
dimensions stands out for several reasons, especially in
connection with the AdS=CFT correspondence, as a result
of which there now exists an enormous variety and wealth
of results (indeed, too many to list here). In this paper we
want to take a new and different look at this theory,
exploiting the existence of a nonlocal and nonlinear trans-
formation Tg (“Nicolai map”) that maps the full functional
measure of the interacting Yang-Mills theory to the one of a
theory of dim G-free (Maxwell) vector fields, where G is
the gauge group in question [usually G ¼ SUðNÞ]. The
existence of this map for the N ¼ 1; D ¼ 4 theory was
established long ago [2,3], and a detailed prescription for its
iterative construction was presented in [4–7] and [3]. It was,
however, only very recently that these constructions were
extended to other dimensions, and in particular to the maxi-
mally extended D ¼ 10 and N ¼ 4; D ¼ 4 theories [8].

The existence of the map Tg opens very different perspec-
tives on the quantization of supersymmetric Yang-Mills
theories, in terms of a ghost- and fermion-free formalism
and with a purely bosonic functional measure. This con-
cerns especially the computation of quantum correlators.
Previous work in this direction remains somewhat scat-
tered: in [5,6] several perturbative results for the N ¼ 1;
D ¼ 4 theory (for instance, wave function renormalization
factors and the β-function to order g2) were recovered in a
perturbative approach. Nonperturbative aspects were stud-
ied in [9] where it was shown in particular that there exists a
local expression for Tg in the light-cone gauge. This result
was subsequently used to recalculate 2-gluon and 3-gluon
Green’s functions up to one loop [10]. The N ¼ 1; D ¼ 4
Yang-Mills theory can also be investigated in terms of
anti-self-dual variables, yielding (amongst other results) a
nonperturbative derivation of the β-function [11]. However,
as far as we are aware, [12] is the only attempt towards
understanding extended, and more specifically, half-
maximal (i.e., D ¼ 6 or N ¼ 2; D ¼ 4) super-Yang-
Mills theories in this framework, with an intriguing
proposal for a closed form expression of Tg. Yet, to the
best of our knowledge, no results in this direction have been
available so far for the maximally extended N ¼ 4 theory,
which from many points of view is by far the most
interesting. This is the main issue we want to (begin to)
address in this paper.
Accordingly, we wish to investigate certain quantum

correlators, and more specifically scalar correlation func-
tions of the N ¼ 4 theory in terms of the map Tg, and to
show that several known results can be easily recovered
with this formalism and in terms of the map Tg, at least to
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the extent that it has been worked out. It should, however,
be understood that these results—being confined to the
perturbative domain—constitute only a very first step.
Ultimately, we would hope that this formalism can provide
essentially new insights on the N ¼ 4 theory. Amongst
other things, these include prospects for a nonperturbative
regularization of the N ¼ 4 theory, especially in conjunc-
tion with its conjectured integrability properties [13].
The nonlinear and nonlocal transformation (which more

generally exists for all rigidly supersymmetric theories with
Lagrangians quadratic in the fermions)

Tg½A�aμðxÞ≡ A0a
μ ðx; g;AÞ ð1:1Þ

is characterized by the following properties:
(1) Substitution of A0ðAÞ into the free Maxwell action

(or rather: sum of Maxwell actions) yields the
interacting theory, viz.

S0½A0ðAÞ� ¼ Sg½A�≡ 1

4

Z
dDxFa

μνFa
μν ð1:2Þ

where

Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν ð1:3Þ

is the Yang-Mills field strength [with fully antisym-
metric structure constants fabc for the chosen gauge
group, usually SUðNÞ], and S0 is the free Maxwell
action

S0½A0�≡ 1

4

Z
dDxð∂μA0a

ν − ∂νA0a
μ Þ2; ð1:4Þ

i.e., Sg for g ¼ 0.
(2) Tg preserves the gauge condition

Tg½GaðAÞ� ¼ GaðAÞ: ð1:5Þ

(3) The Jacobian of the transformation equals the
product of the Matthews-Salam-Seiler (MSS) deter-
minant (or Pfaffian) [14] obtained by integrating out
the gauginos, and the Faddeev-Popov (FP) determi-
nant [15] (obtained by integrating out the ghost
fields Ca; C̄a),

det

�
δA0a

μ ðx; g;AÞ
δAb

νðyÞ
�

¼ ΔMSS½A�ΔFP½A� ð1:6Þ

at least in the sense of formal power series.
The existence of the map Tg allows for a ghost-free and

fermion-free quantization of supersymmetric theories, and
can thus provide a completely different perspective also on
super-Yang-Mills theories. The main advance of the present
work consists in applying these techniques to the compu-
tation of simple correlators for the maximal N ¼ 4 theory,

and in showing that the calculational effort with this
formalism is comparable to the usual one, thus providing
a proof of principle for its workability and demonstrating
its competitiveness with more standard perturbative tech-
niques. Of course, to push these computations further one
must determine the map Tg to higher orders. Ultimately, the
main goal would be to go beyond the perturbative frame-
work, by exploiting as yet unknown properties of the map
Tg, presumably related to the maximally extended super-
conformal symmetry of the N ¼ 4 theory. Certainly it
would be fascinating to make a connection between the
map Tg and the integrable properties of the N ¼ 4 theory
(see e.g., [13] for a review)—after all the image of the map
Tg is a free field theory which is certainly integrable. A
distinctive feature of the map Tg is that it works for finite N
in the SUðNÞ gauge theory, in contradistinction to inte-
grability, which is tied to the planar (N → ∞) limit. Indeed,
while it appears unlikely that there exists a closed form
expression for Tg (as is the case for some special theories,
like supersymmetric quantum mechanics and the N ¼ 2;
D ¼ 2 Wess-Zumino model, see [9,16–18]) there could be
an underlying integrable structure. Likewise, it would be
interesting to find a link with the conformal bootstrap
program (see e.g., [19] for a review), where again the
N ¼ 4 theory appears to play a distinguished role [20] (see
also [21] and references therein for more recent work) and
to elucidate the role of the conformal and dual-conformal
symmetries in this context.

II. PRELIMINARIES

Let us briefly summarize our conventions. We use the
Euclidean metric; this is not essential, as analogous results
can be derived with Lorentzian signature (as in [4–6]). The
scalar propagator is (with the Laplacian □≡ ∂μ∂μ)

CðxÞ ¼
Z

dDk
ð2πÞD

eikx

k2
⇒ −□CðxÞ ¼ δðxÞ ð2:1Þ

where δðxÞ≡ δðDÞðxÞ is the D-dimensional δ-function. For
the relevant dimensions we have

CðxÞ ¼ 1

4π
·
1

jxj for D ¼ 3;

CðxÞ ¼ 1

4π2
·
1

x2
for D ¼ 4;

CðxÞ ¼ 1

4π3
·

1

ðx2Þ2 for D ¼ 6;

CðxÞ ¼ 3

2π5
·

1

ðx2Þ4 for D ¼ 10: ð2:2Þ

For all dimensions the free fermionic propagator is

γμ∂μS0ðxÞ ¼ δðxÞ ⇒ S0ðxÞ ¼ −γμ∂μCðxÞ: ð2:3Þ

HERMANN NICOLAI and JAN PLEFKA PHYS. REV. D 101, 125013 (2020)

125013-2



The number rD of spinor components depends on D, and
we here restrict our attention to those values for which
supersymmetric Yang-Mills theories exist, viz.

D ¼ 3; 4; 6; 10 ⇔ rD ¼ 2; 4; 8; 16: ð2:4Þ
For D ¼ 4 this corresponds to a Majorana spinor, for
D ¼ 6 to a Weyl spinor, while for D ¼ 10 we get an extra
factor of 1

2
because of the Majorana-Weyl condition (other-

wise we would have r ¼ 32). Here and in other formulas
below we usually suppress spinor indices. To derive the
extended theories in four dimensions we will consider
dimensional reduction of the corresponding theories to
D ¼ 4 such that all integrals will be performed in four
dimensions (or rather, D ¼ 4 − 2ε for the regularized
theory).
Covariant derivatives are only needed for the adjoint

representation:

DμVa ≡ ∂μVa þ gfabcAb
μVc ⇒ ½Dμ; Dν�Va ¼ gfabcFb

μνVc:

ð2:5Þ
Although results also hold for other gauges, we will here
stick with the Landau gauge fixing function

Ga½Aμ� ¼ ∂μAa
μ: ð2:6Þ

For the map Tg there is a systematic construction via its
inverse T−1

g in terms of its infinitesimal generator [3–7].
The latter is realized by the so-called R-operator, such that

ðT−1
g AÞaμðxÞ ¼ Aa

μðxÞ þ
X∞
n¼1

1

n!
gnðRn½A�aμðxÞÞg¼0: ð2:7Þ

As we will see it is also the inverse map that is needed for
the computation of quantum correlation functions. For the
Landau gauge the R-operator is compactly represented by
the (functional) differential operator

R ¼ d
dg

−
1

2rD

Z
dxdudvΠμνðx − uÞ

× TrðγνγρσSbaðv − uÞÞfbcdAc
ρðvÞAd

σðvÞ
δ

δAa
μðxÞ

ð2:8Þ

with the transversal projector

Πμνðx − yÞ≡
�
δμν −

∂μ∂ν

□

�
δðx − yÞ

≅ δμνδðx − yÞ þ ∂μCðx − yÞ∂ν ð2:9Þ

where “≅” means equality in the sense of distributions.
Note that in the above we write du ¼ dDu for short and that
space-time derivatives on propagators are to be understood
as ∂μCðx − yÞ ≔ ∂

∂xμ Cðx − yÞ, i.e., as acting always on the
first argument. Sabðx; y;AÞ is the full fermionic propagator
in the gauge field dependent background with Aa

μðxÞ, and
thus defined by

γμ½δac∂μ − gfacdAd
μðxÞ�Scbðx; y;AÞ ¼ δabδðx − yÞ: ð2:10Þ

The R-operator acts distributively,

R½Aa
μðxÞAb

νðyÞ � � �� ¼ R½Aa
μðxÞ�Ab

νðyÞ � � �
þ Aa

μðxÞR½Ab
νðyÞ� � � � þ � � � : ð2:11Þ

Specializing the action of R to the gauge field Aa
μ, we get

R½A�aμðxÞ≡ −
1

2rD

Z
dudvΠμνðx − uÞ

× TrðγνγρσSbaðv − uÞÞfbcdAc
ρðvÞAd

σðvÞ:
ð2:12Þ

From (2.12) it follows immediately that the R operation
preserves the Landau gauge

∂μR½Aa
μðxÞ� ¼ 0: ð2:13Þ

This will guarantee that the equality

∂μðTgðAÞaμÞðxÞ ¼ ∂μAa
μðxÞ ð2:14Þ

holds for all values of the Yang-Mills coupling constant g.
Once we have the result for T−1

g the map Tg itself can be
obtained by perturbatively inverting the power series (2.15)
(in principle, there is also a direct construction of Tg [18]).
To order Oðg2Þ a double application of the R-operator

leads to [8]

ðT−1
g AÞaμðxÞ ¼ Aa

μðxÞ − gfabc
Z

du ∂λCðx − uÞAb
μðuÞAc

λðuÞ

þ 1

2
g2fabcfbde

Z
dvdw½−∂ρCðx − vÞAc

σðvÞ∂σCðv − wÞAd
ρðwÞAe

μðwÞ

þ ∂ρCðx − vÞAc
σðvÞ∂ρCðv − wÞAd

σðwÞAe
μðwÞ

− ∂ρCðx − vÞAc
σðvÞ∂μCðv − wÞAd

σðwÞAe
ρðwÞ

þ 2∂ρCðx − vÞAc
μðvÞ∂σCðv − wÞAd

σðwÞAe
ρðwÞ

− 2∂ρCðx − vÞAc
ρðvÞ∂σCðv − wÞAd

σðwÞAe
μðwÞ� þOðg3Þ: ð2:15Þ
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The map Tg itself is obtained by inverting up to second order

ðTgAÞaμðxÞ ¼ Aa
μðxÞ þ gfabc

Z
du ∂λCðx − uÞAb

μðuÞAc
λðuÞ

þ 3

2
g2fabcfbde

Z
dudv ∂ρCðx − uÞAc

λðuÞ∂ ½μCðu − vÞAd
λðvÞAe

ρ�ðvÞ þOðg3Þ ð2:16Þ

thus reproducing the old result from [2]. These formulas are valid in all dimensions where pure supersymmetric Yang-Mills
theories exist. While our main interest is in the maximally extended N ¼ 4 theory in four dimensions, we will keep D
general in the following section, and consider the dimensional reduction to D ¼ 4 in later sections.

III. CORRELATION FUNCTIONS

For all admissible dimensions, and for any n-point correlator of bosonic operators OjðxjÞ our basic relation is

⟪O1ðx1Þ � � �OnðxnÞ⟫ ¼ hT−1
g ½O1�ðx1Þ � � �T−1

g ½On�ðxnÞi0 ð3:1Þ

where OjðxjÞ are either elementary or composite bosonic fields. Here ⟪ � � �⟫ denotes the full expectation value of the
interacting supersymmetric Yang-Mills theory (with fermions, ghosts and all interactions), while h� � �i0 denotes the free
field expectation value of the purely bosonic noninteracting gauge theory where one integrates only over the bosonic fields
(with the notation from [5,6]). More precisely, we have

⟪O1ðx1Þ � � �OnðxnÞ⟫≡
Z

DADχDCDC̄
Y
x;a

δð∂μAa
μðxÞÞe−S½A;χ;C;C̄�O1ðx1Þ � � �OnðxnÞ

¼
Z

Dg½A�
Y
x;a

δð∂μAa
μðxÞÞO1ðx1Þ � � �OnðxnÞ ð3:2Þ

where S½A; χ; C; C̄� is the full supersymmetric action (with gauginos χa and ghost fields fCa; C̄ag), whileDg½A� denotes the
(nonlocal) bosonic functional measure of the interacting theory obtained after integrating out the gauginos and the ghosts.
Likewise

hT−1
g ½O1�ðx1Þ � � �T−1

g ½On�ðxnÞi0 ≡
Z

D0½A�
Y
x;a

δð∂μAa
μðxÞÞT−1

g ½O1�ðx1Þ � � �T−1
g ½On�ðxnÞ ð3:3Þ

with the free measureD0½A� (where the fermionic and ghost
determinants become trivial). Importantly, the gauge fixing
function is not affected by the transformation since
Rð∂μAa

μÞ ¼ 0 hence ∂μA0a
μ ¼ ∂μAa

μ to any given order.
Due to the presence of the gauge fixing δ-functional in
(3.2) the vector propagator is

hAa
μðxÞAb

νðyÞi0 ¼ C⊥
μνðx − yÞ≡ δab

�
δμν −

∂μ∂ν

□

�
Cðx − yÞ:

ð3:4Þ

For both the interacting and the free theory one can make
use of the ’t Hooft trick of shifting the argument of the δ-
functional by ca and integrating with a Gaussian weight
over the dummy variable ca to remove the δ-functional,
and implement the gauge condition via the Gaussian factor
∝ exp ð− 1

2ξ

R ð∂ · AÞ2Þ in the functional integral, thereby
introducing the gauge parameter ξ. While the Landau gauge

corresponds to ξ ¼ 0 we shall work here in the Feynman
gauge (ξ ¼ 1) for which the propagator takes the more
convenient form

hAa
μðxÞAb

νðyÞi0 ¼ δabδμνCðx − yÞ: ð3:5Þ
Equivalently, we can ignore the longitudinal contributions as
they will drop out in all gauge invariant expressions. Below
we will therefore use the propagator in the form (3.5).
Let us also note that with either choice, the free measure

is already properly normalized for supersymmetric theories
because

Z
DAe

1
2

R
A□A ∼ ½detð−□Þ�−D=2;

Z
DCDC̄e

R
C̄□C ∼ detð−□Þ;

Z
Dχe

1
2

R
χ̄=∂χ ∼ ½ðdetð−□Þ�rD=4 ð3:6Þ
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if rD ¼ 2ðD − 2Þ, which implies that bosonic and fer-
mionic degrees of freedom match on shell.
In summary, by means of (3.1) we are able to express any

bosonic correlator of the fully supersymmetric theory as a
purely bosonic correlator with a purely bosonic functional
measure. In fact, the same statement also applies to
fermionic correlators if we replace the fermionic two-point
functions by the full propagator Sðx; y;AÞ in a gauge field
background (and a 2n-point correlator by the correspond-
ing Wick product). Alternatively, one may invoke super-
symmetry to reduce fermionic correlators to bosonic ones

via superconformal Ward identities [20]. Analogous
relations also hold for composite operators, as we will
illustrate below.
As a simple example we compute the two-point function

to second order

⟪Aa
μðxÞAb

νðyÞ⟫ ¼ hT−1
g ½Aa

μ�ðxÞT−1
g ½Ab

ν �ðyÞi0: ð3:7Þ

At Oðg2Þ there are two contributions from (2.15), namely
the free Wick contractions of the product of twoOðgÞ terms

g2facdfbmn

Z
dudv ∂λCðx − uÞ∂ρCðy − vÞhAc

μðuÞAd
λðuÞAm

ν ðvÞAn
ρðvÞi0

¼ g2Nδab
Z

dudv ∂λCðx − uÞ∂ρCðy − vÞðC⊥
μνðu − vÞC⊥

λρðu − vÞ − C⊥
μρðu − vÞC⊥

λνðu − vÞÞ ð3:8Þ

as well as the contractions emerging from the product of the leading order term with the order Oðg2Þ terms

1

2
g2Nδab

Z
dudv½−∂ρCðx − uÞC⊥

σρðu − vÞ∂σCðu − vÞC⊥
μνðv − yÞ

þ ∂ρCðx − uÞC⊥
σμðu − vÞ∂σCðu − vÞC⊥

ρνðv − yÞ
þ ∂ρCðx − uÞC⊥

σσðu − vÞ∂ρCðu − vÞC⊥
μνðv − yÞ

− ∂ρCðx − uÞC⊥
σμðu − vÞ∂ρCðu − vÞC⊥

σνðv − yÞ
− ∂ρCðx − uÞC⊥

σσðu − vÞ∂μCðu − vÞC⊥
ρνðv − yÞ

þ ∂ρCðx − uÞC⊥
σρðu − vÞ∂μCðu − vÞC⊥

σνðv − yÞ
þ 2∂ρCðx − uÞC⊥

μσðu − vÞ∂σCðu − vÞC⊥
ρνðv − yÞ

− 2∂ρCðx − uÞC⊥
μρðu − vÞ∂σCðu − vÞC⊥

σνðv − yÞ
− 2∂ρCðx − uÞC⊥

ρσðu − vÞ∂σCðu − vÞC⊥
μνðv − yÞ

þ 2∂ρCðx − uÞC⊥
ρμðu − vÞ∂σCðu − vÞC⊥

σνðv − yÞ� þ ðx ↔ yÞ: ð3:9Þ

For the reasons explained above we can neglect longitudinal contributions, and thus replace the transversal propagator
C⊥
μνðxÞ by the simpler expression δμνCðxÞ in (3.5). Then a straightforward calculation gives

⟪Aa
μðxÞAb

νðyÞ⟫ ¼ δabδμν

�
Cðx − yÞ þ g2N

6 −D
2

Z
du Cðx − uÞCðy − uÞ2

�

− δabg2N
6 −D
2

∂
∂xμ

∂
∂yν

Z
dudv Cðx − uÞCðy − vÞCðu − vÞ2; ð3:10Þ

where all that was used were suitable partial integrations.
Recall that du is a shorthand notation for the
D-dimensional measure dDu. Inspecting the integrands
near four dimensions reveals a logarithmic divergence in
both integrals when the argument of the squared Green’s
function CðzÞ vanishes. Therefore, the two-point function
exhibits a divergence, illustrating the (known) fact that

“finiteness” of the theory does not mean that every
correlator is finite. Curiously, the D ¼ 6 theory, and thus
also the N ¼ 2 theory in D ¼ 4, has a vanishing next-to-
leading order contribution.
Similarly one may obtain the three-point function at the

leading perturbative order upon expanding T−1
g to OðgÞ in

each term
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⟪Aa1
μ1ðx1ÞAa2

μ2ðx2ÞAa3
μ3ðx3Þ⟫ ¼ hT−1

g ½Aa1
μ1 �ðx1ÞT−1

g ½Aa2
μ2 �ðx2ÞT−1

g ½Aa3
μ3 �ðx3Þi0

¼ fa1a2a3g

�
δμ1μ2

� ∂
∂xμ32 −

∂
∂xμ31

�
þ δμ2μ3

� ∂
∂xμ13 −

∂
∂xμ12

�

þ δμ3μ1

� ∂
∂xμ21 −

∂
∂xμ23

�Z
duCðx1 − uÞCðx2 − uÞCðx3 − uÞ

�
; ð3:11Þ

reproducing the standard three-gluon vertex of Yang-Mills
theory. In order to compute the one-loop correction to
this result we would need to know the map T−1

g to cubic
order Oðg3Þ.

IV. SCALAR CORRELATION FUNCTIONS
AT ONE LOOP IN THE N = 4 THEORY

Next we turn to the extended theories in four dimensions
which can be obtained by dimensional reduction. To this
aim we split the indices as μ → fμ; ig where μ; ν;… ¼
1;…; 4 and i; j;… label the remaining internal dimensions.
Likewise we decompose the coordinates as xμ → fxμ; yig
and the fields and indices in (2.15) in an analogous fashion:

Aa
μðx; yÞ → fAa

μðxÞ;ϕa
i ðxÞg: ð4:1Þ

The dependence on the internal coordinates yi is dropped
for the dimensionally reduced theory. We then proceed to
compute the scalar two- and four-point functions up to the
next-to-leading perturbative order in the gauge coupling
constant g. In the remainder we shall focus on the N ¼ 4
super-Yang-Mills theory, for which the internal indices
run over six dimensions: i; j;… ¼ 1;…; 6. In the reduced
and regulated theory all loop integrals are performed in

D ¼ 4 − 2ε dimensions while the number of scalars is
S ¼ 6þ 2ε. This prescription maintains the balance of
fermionic and bosonic degrees of freedom in the original
supersymmetric theory and is known as dimensional
regularization by dimensional reduction [22].1

For the computation of correlation functions of the scalar
fields ϕa

i ðxÞ to next-to-leading order, i.e.,Oðg2Þ, we need to
consider the inverse map T−1

g of the interacting scalar fields
ϕa
i ðxÞ to the free-field correlators

⟪ϕa1
i1
ðx1Þϕa2

i2
ðx2Þ⟫ ¼ hT−1

g ½ϕa1
i1
�ðx1ÞT−1

g ½ϕa2
i2
�ðx2Þi0 ð4:2Þ

as well as

⟪ϕa1
i1
ðx1Þϕa2

i2
ðx2Þϕa3

i3
ðx3Þϕa4

i4
ðx4Þ⟫

¼ hT−1
g ½ϕa1

i1
�ðx1ÞT−1

g ½ϕa2
i2
�ðx2ÞT−1

g ½ϕa3
i3
�ðx3ÞT−1

g ½ϕa4
i4
�ðx4Þi0:

ð4:3Þ

For N ¼ 4 super-Yang-Mills theory, the action of
inverse map T−1

g on the vector fields Aa
μ and the six scalar

fields ϕa
i is easily derived by applying the split (4.1) to the

formula (2.15). For the gauge field this gives

ðT−1
g AÞaμðxÞ ¼ Aa

μðxÞ − gfabc
Z

du ∂λCðx − uÞAb
μðuÞAc

λðuÞ

þ 1

2
g2fabcfbde

Z
dvdw½−∂ρCðx − vÞAc

σðvÞ∂σCðv − wÞAd
ρðwÞAe

μðwÞ

þ ∂ρCðx − vÞAc
σðvÞ∂ρCðv − wÞAd

σðwÞAe
μðwÞ

þ ∂ρCðx − vÞϕc
jðvÞ∂ρCðv − wÞϕd

j ðwÞAe
μðwÞ

− ∂ρCðx − vÞAc
σðvÞ∂μCðv − wÞAd

σðwÞAe
ρðwÞ

− ∂ρCðx − vÞϕc
jðvÞ∂μCðv − wÞϕd

j ðwÞAe
ρðwÞ

þ 2∂ρCðx − vÞAc
μðvÞ∂σCðv − wÞAd

σðwÞAe
ρðwÞ

− 2∂ρCðx − vÞAc
ρðvÞ∂σCðv − wÞAd

σðwÞAe
μðwÞ� þOðg3Þ ð4:4Þ

while for the scalar fields we obtain

1Note that for the D ¼ 4 and N ¼ 1 or N ¼ 2 super-Yang-Mills theories this would amount to include S ¼ 2ε and S ¼ 2þ 2ε
scalars respectively.
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ðT−1
g ϕÞai ðxÞ ¼ ϕa

i ðxÞ − gfabc
Z

dDu∂λCðx − uÞϕb
i ðuÞAc

λðuÞ

þ g2

2
fabcfbde

Z
dDudDv½−∂ρCðx − uÞAc

λðuÞ∂λCðu − vÞAd
ρðvÞϕe

i ðvÞ

þ ∂ρCðx − uÞAc
λðuÞ∂ρCðu − vÞAd

λðvÞϕe
i ðvÞ

þ ∂ρCðx − uÞϕc
jðuÞ∂ρCðu − vÞϕd

j ðvÞϕe
i ðvÞ

þ 2∂ρCðx − uÞϕc
i ðuÞ∂λCðu − vÞAd

λðvÞAe
ρðvÞ

− 2∂ρCðx − uÞAc
ρðuÞ∂λCðu − vÞAd

λðvÞϕe
i ðvÞ� þOðg3Þ: ð4:5Þ

In the calculation we will apply regularization by dimensional reduction with

D ¼ δμμ ¼ 4 − 2ϵ; S ¼ δii ¼ 6þ 2ϵ: ð4:6Þ

This implies Dþ S ¼ 10 which in fact is the combination always arising in our computations up to one-loop order. The
D-dimensional scalar propagator in position space reads

CðxÞ ≔
Z

d2ωp
ð2πÞ2ω

1

p2
eip·x ¼ Γðω − 1Þ

4πω
½x2�1−ω: ð4:7Þ

In particular, we set the self-contraction Cð0Þ ¼ 0 as a consequence of dimensional regularization for scaleless integrals.

A. Two-point function

To compute the scalar two-point function toOðg2Þwe insert the expansion (4.5), retaining only terms of orderOðg2Þ (the
first-order contributions vanish trivially), and then perform the necessary Wick contractions. Just as before in the
computation of the gauge fields in (3.7) there are two contributions to this correlator: The contractions of the OðgÞ terms
emerging from each operator T−1

g ½ϕa
i � as well as the contractions of theOðg2Þ terms of one T−1

g ½ϕa
i �with the leading ϕa

i term
of the other. A straightforward calculation gives the result

hT−1
g ½ϕa1

i1
�ðxÞT−1

g ½ϕa2
i2
�ðyÞi0 ¼ δi1i2δ

a1a2Cðx − yÞ þ g2Nδi1i2δ
a1a2

Z
dDudDv

��
Dþ S

2
− 2

�

× ½Cðx − uÞCðu − vÞ∂ρCðy − vÞ∂ρCðv − uÞ þ ðx ↔ yÞ�

þ Cðu − vÞ2∂ρCðx − uÞ∂ρCðy − vÞ
�
þOðg4Þ ð4:8Þ

where the Oð1Þ ×Oðg2Þ contractions yield the term pro-
portional to ð1

2
ðDþ SÞ − 2Þ while the OðgÞ ×OðgÞ con-

tractions yield the second term in the above. Importantly, in
the course of performing the Oð1Þ ×Oðg2Þ Wick contrac-
tions one also takes into account the self-contractions of the
Oðg2Þ terms, i.e., the operator insertions T−1

g ½ϕa
i � are not to

be understood as normal ordered.
All integrals appearing in (4.8) may in fact be reduced to

the bubble integral

ð4:9Þ

which is symmetric in (x ↔ y) and which appeared already
in (3.10). To see the symmetry, we integrate by parts, using
□CðxÞ ¼ −δðxÞ to obtain the integral relations

Z
dDudDvCðx − uÞCðu − vÞ∂ρCðy − vÞ∂ρCðv − uÞ ¼ −

1

2
IxyZ

dDudDvCðu − vÞ2∂ρCðx − uÞ∂ρCðy − vÞ ¼ Ixy: ð4:10Þ
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The complete result for the two-point scalar correlation function inN ¼ 4 super-Yang-Mills theory up to one-loop accuracy
therefore reads

⟪ϕa1
i1
ðx1Þϕa2

i2
ðx2Þ⟫ ¼ δi1i2δ

a1a2Cðx − yÞ
�
1 − 2g2N

Ixy
Cðx − yÞ

�
þOðg4Þ; ð4:11Þ

reproducing established results in the literature, see e.g., [23,24]. We note that

Ixy
Cðx − yÞ ¼

1

16πωð2 − ωÞ ½ðx − yÞ2�2−ω with D ¼ 2ω; ð4:12Þ

yielding the expected logarithmic divergence near D ¼ 4.

B. Four-point functions

For the computation of the four-point function

hT−1
g ½ϕa1

i1
�ðx1ÞT−1

g ½ϕa2
i2
�ðx2ÞT−1

g ½ϕa3
i3
�ðx3ÞT−1

g ½ϕa4
i4
�ðx4Þi0 ð4:13Þ

we proceed from (4.5). When expanding out this formula to Oðg2Þ the combinatorics of Wick contractions grows
considerably. Again one insertsOðgÞ terms twice orOðg2Þ terms once next to the leading terms in the other slots. Here there
are two types of color structures emerging: the connected terms are proportional to two structure constants faiajefakale while
the disconnected terms are proportional to δaiajδakal .
Gathering the connected terms one encounters the following integral identities:

Z
dudv Cðx1 − uÞCðx2 − uÞCðu − vÞ∂μCðx3 − vÞ∂μCðx4 − vÞ ¼ ∂3 · ∂4H12;34;Z
dudv Cðx1 − uÞCðx3 − vÞCðx4 − vÞ∂μCðx2 − uÞ∂μCðu − vÞ ¼ −C12Y234 þ ∂1 · ∂2H12;34 ð4:14Þ

where we defined the H- and Y-functions

ð4:15Þ

The connected part may then be brought into the form [with C12 ≡ Cðx1 − x2Þ]

ð4.13Þconnected ¼ fa1a2efa3a4e
�
δi1i2δi3i4ð∂1 − ∂2Þ · ð∂3 − ∂4ÞH12;34

þ ðδi1i3δi2i4 − δi1i4δi2i3Þ
�
ð∂1 · ∂2 þ ∂3 · ∂4ÞH12;34 −

1

2
C12ðY134 þ Y234Þ −

1

2
C34ðY123 þ Y124Þ

��

þ permutations: ð4:16Þ

The integrals in the last line may be reduced upon noting that

∂1 · ∂2H12;34 ¼
1

2
C12ðY134 þ Y234Þ −

1

2
X1234 ð4:17Þ

using partial integrations and where we introduced the X integral
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ð4:18Þ

The H, Y and X integrals are also known analytically, cf. [25]. Putting everything together we obtain the connected part of
the four-point function up to Oðg2Þ

⟪ϕa1
i1
ðx1Þϕa2

i2
ðx2Þϕa3

i3
ðx3Þϕa4

i4
ðx4Þ⟫connected

¼ g2fa1a2efa3a4e½δi1i2δi3i4ð∂1 − ∂2Þ · ð∂3 − ∂4ÞH12;34 − ðδi1i3δi2i4 − δi1i4δi2i3ÞX1234�
þ g2fa1a3efa2a4e½δi1i3δi2i4ð∂1 − ∂3Þ · ð∂2 − ∂4ÞH13;24 − ðδi1i2δi3i4 − δi1i4δi2i3ÞX1234�
þ g2fa1a4efa2a3e½δi1i4δi2i3ð∂1 − ∂4Þ · ð∂2 − ∂3ÞH14;23 − ðδi1i2δi3i4 − δi1i3δi2i4ÞX1234�
þOðg4Þ: ð4:19Þ

For the disconnected terms one consistently finds pairwise appearances of two-point function contractions

⟪ϕa1
i1
ðx1Þϕa2

i2
ðx2Þϕa3

i3
ðx3Þϕa4

i4
ðx4Þ⟫disconnected

¼ δa1a2δa3a4δi1i2δi3i4ðCðx1 − x2Þ − 2g2NI12ÞðCðx3 − x4Þ − 2g2NI34Þ þ permutationsþOðg4Þ; ð4:20Þ

using the identical integral relations of (4.10). These results
of (4.19) and (4.20) reproduce the known results obtained
in the standard perturbative computation in N ¼ 4 super-
Yang-Mills theory, see e.g., [24]. In consequence, any
n-point scalar field correlation function will be reproduced
up to theOðg2Þ order using the inverse nonlocal map T−1

g to
the free gauge theory. This is due to the fact that the
connected part of n-point scalar correlators are of order
Oðgn−2Þ. Hence, at order Oðg2Þ accuracy only the dis-
connected parts will contribute for n > 4.

V. DERIVING THE ONE-LOOP DILATATION
OPERATOR

A central class of gauge invariant observables in N ¼ 4
super-Yang-Mills theory are the anomalous scaling dimen-
sions of composite operators. They have been subject to
intense studies and remarkable results were produced in the
AdS=CFT integrability program, including exact results to
all orders in g2N in the planar N → ∞ limit of the SUðNÞ
gauge theory [13]. Focusing on the class of composite
operators built from scalar fields, these are constructed as
traces of the scalar fields ϕiðxÞ≡ taϕa

i ðxÞ at a common
space-time point [with the SUðNÞ generators ta]. These
take the schematic form

Oα ¼ Trðϕiϕjϕk…ÞTrðϕlϕmϕn…Þ � � � ð5:1Þ

where α is a superindex labeling all possible compositions.
As a consequence of the conformal symmetry the two-point
functions of these (renormalized) operators take canonical
form

⟪Oren
α ðxÞOren

β ð0Þ⟫ ¼ δαβ

½x2�Δαðg2;NÞ ; ð5:2Þ

where the scaling dimensions receive perturbative correc-
tions in an expansion in g2 starting out with the naive
classical (tree-level) scaling dimension obtained by stan-
dard power counting. In order to achieve this the operator
mixing problem needs to be resolved. A superior tool for
doing this [and thereby finding the Δnðg2; NÞ] is the
construction of the dilatation operator D̂ as developed in
[26], following initial results at one loop in [27,28]. The
dilatation operator D̂ acts on states at the origin of space-
time (in a radial quantization scheme)—its eigenvalues
correspond to the anomalous dimensions

D̂Oα ¼ Δαðg2; NÞOα: ð5:3Þ

We now wish to extract the dilatation operator from
our inverse map T−1

g to order g2 by taking the two-point
limit of the four-point results in Sec. IV B. For this we
need to establish some technology following [26]. To begin
with, we distinguish the fields at points x and 0 by the
superscript �

Φþ
i ≡ taϕa

i ðxÞ; Φ−
i ≡ taϕa

i ð0Þ: ð5:4Þ

The tree-level two-point function of composite operators at
these points may then formally be written as

⟪Oþ
αO−

β⟫tree
¼ exp½W0ðx; Φ̌þ; Φ̌−Þ�Oþ

αO
þ
β jΦ¼0 ð5:5Þ

with the field derivatives
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Φ̌þ
i ≔ ta

δ

δϕa
i ðxÞ

; Φ̌−
i ≔ ta

δ

δϕa
i ð0Þ

; ð5:6Þ

and the tree-level generator W0 inserting free field scalar
propagators in between Φþ

i and Φ−
i

W0ðx; Φ̌þ; Φ̌−Þ ¼ CðxÞTrΦ̌þ
i Φ̌

−
i : ð5:7Þ

The exponentiated W0 in Eq. (5.5) performs free Wick
contractions between all constituent fields of theOþ

α andO−
β

and thus computes the tree-level correlator. The one-loop
correction to this two-point correlator then takes the form

⟪Oþ
αO−

β⟫one-loop ¼ exp½W0ðx; Φ̌þ; Φ̌−Þ�
× ð1þ g2W2ðx; Φ̌þ; Φ̌−ÞÞOþ

αO
þ
β

���
Φ¼0

:

ð5:8Þ

Let us now extract W2ðx; Φ̌þ; Φ̌−Þ from the pinching
limits of our four-point functions (4.19) and (4.20) by
taking x1;2 → x and x3;4 → 0. In order to do this we need
the following integral identities obtained by standard
one-loop Feynman integral techniques in dimensional
regularization

ð5:9Þ

with the common divergent factor

ΩðxÞ ¼ 1

16πω
1

2 − ω
½x2�2−ω; D ¼ 2ω ¼ 4 − 2ϵ ð5:10Þ

and the scalar propagator CðxÞ ¼ Γðω−1Þ
4πω ½x2�1−ω. More subtle are the pinching limits of the derivatives of the H functions

appearing in (4.15) which amount to two-loop Feynman integrals. Defining the relevant integral as

H̃12;34 ¼ ð∂1 − ∂2Þ · ð∂3 − ∂4ÞH12;34 ð5:11Þ
the key identities we found are

H̃00;xx ¼ 0;

H̃0x;0x ¼ 2ΩðxÞCðxÞ2 þOðϵÞ: ð5:12Þ
Whereas the first relation is easy to see, reaching the second relation we made use of the TARCER package [29]. We also
cross checked our result with the results of [26] in Appendix B. Concretely the identities established are

ð5:13Þ

where the dots on the graphs indicate the contracted indices of the derivatives. Importantly the second integral is not
divergent and does not contribute to the anomalous dimensions. Using theses results the connected part of the pinched
four-point function of (4.19) in the limit x1;2 → x and x3;4 → 0 takes the form

⟪ϕa1
i1
ðxÞϕa2

i2
ðxÞϕa3

i3
ð0Þϕa4

i4
ð0Þ⟫connected ¼ 2ΩðxÞCðxÞ2g2ðfa1a2efa3a4e½δi1i4δi2i3 − δi1i3δi2i4 �

þ fa1a3efa2a4e½δi1i3δi2i4 − δi1i2δi3i4 þ δi1i4δi2i3 �
þ fa1a4efa2a3e½δi1i4δi2i3 − δi1i2δi3i4 þ δi1i3δi2i4 �Þ: ð5:14Þ
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Using the matrix variation notation introduced above this correlator may be translated to the operator2

WC
2 ¼ ΩðxÞCðxÞ2fTr½Φ̌þ

i ; Φ̌
þ
j �½Φ̌−

i ; Φ̌−
j � þ

1

2
Tr½Φ̌þ

i ; Φ̌
−
j �½Φ̌þ

i ; Φ̌
−
j � − 2Tr½Φ̌þ

i ; Φ̌
þ
i �½Φ̌−

j ; Φ̌−
j �g ð5:15Þ

which acts on the two operators Oþ
αO−

β located at x and 0. It yields the correlation function in the sense of (5.8).
The disconnected contribution arises from (4.20) and takes the form

⟪ϕa1
i1
ðxÞϕa2

i2
ðxÞϕa3

i3
ð0Þϕa4

i4
ð0Þ⟫disconnected ¼ ðδi1i3δi2i4δa1a3δa2a4 þ δi1i4δi2i3δ

a1a4δa2a3Þf1 − 4g2NΩðxÞg: ð5:16Þ

Translating the one-loop Oðg2Þ contribution to the matrix
variation notation yields

WD
2 ¼ 2ΩðxÞCðxÞ2Tr½ta; Φ̌þ

i �½ta; Φ̌−
i �: ð5:17Þ

In order to extract the dilatation operator from these results
we return to (5.8) and now change the argument ofW2 from
Φ̌þ to CðxÞ−1Φ− at the cost of normal ordering the W2

hOþ
αO−

β ione-loop ¼ exp½W0ðx; Φ̌þ; Φ̌−Þ�
× ð1þ g2V2ðxÞÞOþ

αO
þ
β jΦ¼0 ð5:18Þ

with the normal ordered one-loop effective vertex [26]

V2ðxÞ≕W2ðx; CðxÞ−1Φ−;Φ−Þ∶: ð5:19Þ
This replacement may be done, as the result hOαOβi
vanishes unless every Φ− is contracted with a Φþ before
the fields are set to zero. Here, the only possibility is to
contract with a term in W0 which effectively changes the
argument back to Φ̌þ. Normal ordering ∶∶ secures that no
new contractions are introduced within W2. Operator
renormalization is then performed via

Oren ¼
�
1 −

1

2
g2V2ðx0Þ

�
O ð5:20Þ

with an arbitrary reference point x0. The resulting two-point
function is finite

hOrenþ
α Oren−

β ione-loop ¼ exp½W0ðx; Φ̌þ; Φ̌−Þ�ð1þ g2V2ðxÞ
− g2V2ðx0ÞÞOþ

αO
þ
β jΦ¼0: ð5:21Þ

The dilatation operator D2 is now extracted upon sending
the regulator to zero

lim
ϵ→0

ðV2ðxÞ − V2ðx0ÞÞ ¼ logðx20=x2ÞD̂2 ð5:22Þ

with

D̂2 ¼ −lim
ϵ→0

ϵV2ðxÞ ð5:23Þ

as the log x2 contribution to V2ðxÞ is always paired with the
1=ϵ pole in dimensional regularization. The final answer for
the renormalized two-point function then reads

hOrenþ
α Oren−

β ione-loop ¼ exp½W0ðx; Φ̌þ; Φ̌−Þ� exp½g2 logðx20=x2ÞD2�Oþ
αO

þ
β jΦ¼0: ð5:24Þ

Applying this rationale to our results (5.15) and (5.17) we find

D̂2 ¼ −
1

8π2

�
∶Tr½Φi;Φj�½Φ̌i; Φ̌j�∶ −

1

2
∶Tr½Φi; Φ̌j�½Φi; Φ̌j�∶

�
þ 1

8π2
V̂D ð5:25Þ

where we separated off the piece VD which turns out to just amount to a gauge transformation generated by Ĝa ¼
Tr½ta;Φi�Φ̌i as

V̂D ≕Tr½Φi; Φ̌i�½Φj; Φ̌j�∶þ Tr½Φi; ta�½ta; Φ̌i�
¼ Tr½Φi; Φ̌i�½Φj; Φ̌j� ¼ Trð½ta;Φi�Φ̌iÞTrð½ta;Φj�Φ̌jÞ ¼ ĜaĜa: ð5:26Þ

Hence VD vanishes on gauge invariant composite operators and the one-loop dilatation operator in the scalar sector reads

D̂2 ¼ −
1

8π2

�
∶Tr½Φi;Φj�½Φ̌i; Φ̌j�∶ −

1

2
∶Tr½Φi; Φ̌j�½Φi; Φ̌j�∶

�
: ð5:27Þ

2Our conventions are ½ta; tb� ¼ ifabctc and Trtatb ¼ δab, we also note faeffbef ¼ Nδab.
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It precisely coincides with the dilatation operator estab-
lished in [26] upon adapting the conventions for the gauge
coupling constants. As a consequence all scaling dimen-
sions in the scalar SOð6Þ sector of N ¼ 4 SYM are
reproduced with the map Tg up to the g2 order.

VI. OUTLOOK

In principle there are now many topics to explore in
terms of the map Tg. One especially interesting question is
how the present formalism applies to the computation of
the Wilson loop integral

⟪WðCÞ⟫≡
		
P exp

�
ig
I
C
Aa
μtadxμ

�


ð6:1Þ

with C a closed curve in R4 and fundamental SUðNÞ
generators ta. In principle we can evaluate this by consid-
ering

	
P exp

�
ig
I
C
ðT−1

g AÞaμtadxμ
�


0

ð6:2Þ

which again can be determined up to Oðg2Þ for special
cases of interest, making use of the results of the previous
chapters. As the n-point correlators agree to Oðg2Þ, as was
shown, the perturbative evaluation of the Wilson loop (6.2)
using the inverse map T−1

g is guaranteed to reproduce the

original expectation value (6.1) using standard perturbation
theory to that order.
An interesting extension of the above lies in the study of

supersymmetric Maldacena-Wilson loops [30]. Here the
path couples to the gauge fields and the scalars, i.e., the
loop exponent takes the form

WSðCÞ ¼ P exp

�
ig
Z

1

0

ðAa
μ _xμ þ iϕa

i j_xjθiÞtads
�

with θiθi ¼ 1; ð6:3Þ

where we have parametrized the loop C by xμ ¼ xμðsÞ with
0 ≤ s ≤ 1. For special curves such as a straight line or a
circle the Maldacena-Wilson loop expectation value
⟪WSðCÞ⟫ does not receive contributions from bulk inter-
actions [31,32] in a Feynman diagrammatic evaluation. Put
differently it is equal to the same Wilson loop operator in
the free gauge theory

⟪WSðCÞ⟫ ¼ hWSðCÞi0: ð6:4Þ

Hence from the perspective of this work for these special
geometries the Maldacena-Wilson loop operator should be
invariant under the R map. Evaluating the R on (6.1) we
deduce with (2.8) (now interpreting the gauge fields as 10
dimensional)

R⟪WðCÞ⟫ ¼ ⟪WðCÞ⟫

−
1

2rD

Z
1

0

ds
Z

dudvΠμνðxðsÞ − uÞTrðγνγρσSbaðv − uÞÞfbcdAc
ρðvÞAd

σðvÞ

×

		�
P exp

�
ig
Z

s

0

dtAμðxðtÞÞ_xμðtÞdt
��

ta _xμðsÞ
�
P exp

�
ig
Z

1

s
dtAμðxðtÞÞ_xμðtÞ

��


: ð6:5Þ

Note that the first term on the right-hand side (resulting
from the application of d=dg) is again the Wilson loop
operator. Invariance underR thus amounts to the vanishing
of the remaining expressions for special contours. Working
this out in detail is left to future work.
A central question concerns the existence of the N ¼ 4

theory beyond perturbation theory. As is well known, the
construction of an interacting quantum field theory in four
space-time dimensions obeying the Wightman axioms
remains an outstanding problem of quantum field theory
(see e.g., [33]). In that framework, the nontriviality of the
theory would be ensured by ascertaining the nontriviality of
the S-matrix. Among all rigidly supersymmetric theories
the N ¼ 4 theory would seem to come closest to realizing
this quantum field theorist’s dream. However, being an
exactly conformal theory without asymptotic one-particle
states, it has no S-matrix in the usual sense. Hence standard

arguments do not apply; rather, it appears that the
Wightman axioms of ordinary quantum field theory must
be replaced by the axioms of the conformal bootstrap
program [19]. Finally, an important question is what the
existence of the map Tg and its properties imply for
the AdS=CFT correspondence. For instance, is there an
AdS5 × S5 dual in terms of a string path integral to the
gauge theory operations described in this paper? Indeed,
one of the main goals of the present work is to direct
attention to the fact that many pertinent questions can now
be addressed in a completely new way.
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