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We construct analytic (3þ 1)-dimensional Skyrmions living at finite baryon density in the SUðNÞ
Skyrme model that are not trivial embeddings of SUð2Þ into SUðNÞ. We use Euler angle decomposition for
arbitraryN and the generalized hedgehog ansatz at finite baryon density. The skyrmions of high topological
charge that we find represent smooth baryonic layers whose properties can be computed explicitly. In
particular, we determine the energy-to-baryon charge ratio for any N showing the smoothness of the large-
N limit. The closeness to the BPS bound of these configurations can also be analyzed. The energy density
profiles of these finite density skyrmions have a “lasagna-like” shape, in agreement with recent
experimental findings. The shear modulus can be precisely estimated as well, and our analytical result
is close to recent numerical studies in the literature.
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I. INTRODUCTION

The characterization of the phase diagram of the low-
energy limit of QCD at finite baryon density and low
temperatures has motivated intense research in the last two
decades (see Ref. [1] and references therein). Analytic
models are scarce, and new exact results are hard to obtain.
Awell-known example is the (3þ 1)-dimensional Nambu-
Jona-Lasinio (NJL) model, which shares some of the
analytical difficulties of the low-energy limit of QCD
(see Ref. [2] for a review). Together with the uselessness
of perturbation theory at low energy, this means that the
complicated phase diagram of low-energy QCD cannot be
easily analyzed with the available analytic techniques (see
Refs. [3–5] and references therein).

A remarkable feature of low-energy QCD at finite
baryon density is that at low temperatures, very complex
structures appear. When the baryon density is increased, a
phase that is commonly defined as “nuclear pasta” appears.
In Refs. [6–13], the presence of “baryonic layers” was
disclosed, which will be the main focus of the present
paper. Such a name arises from the fact that most of the
baryonic charge and energy density are concentrated within
lasagna-shaped regions in three dimensions.1 Many physi-
cal properties of these configurations are currently under
investigation, such as the elasticity of nuclear pasta and its
transport properties [10–13]. The high topological charge
of nuclear pasta makes it hard to study analytically.
As powerful numerical techniques are available to analyze

these configurations (see, for instance, Refs. [10–13] and
references therein), why should one insist on finding analytic
solutions? There are many reasons to strive for analytic
solutions even when numerical techniques are available.
First, it could be enough to note all the fundamental concepts
that we have understood thanks to the availability of the Kerr
solutions in general relativity and of the non-Abelian mono-
poles and instantons in Yang-Mills-Higgs theory. Second, as
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1The phases nuclear spaghetti and nuclear gnocchi also appear
in the literature; see the references quoted above.
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in the present case, analytic solutions can disclose relevant
physical properties of very complex structures which are
difficult to analyze even numerically.
Until recently, these types of nonhomogeneous conden-

sates in the low-energy limit of QCD in (3þ 1) dimensions
could not be properly understood analytically. A further
problem is that, computationally, the large-Nf and large-Nc

limits must be addressed carefully [14,15]. One of the goals
of the present paper is to shed light on the large-Nf

behavior of these complex structures.
A simplified version of the low-energy limit of QCD that

encodes many relevant features is the (1þ 1)-dimensional
version of the NJL model, also known as the chiral Gross-
Neveu model [16–19]. Such a model possesses a crystalline
phase at low temperature and finite baryon density [20–23].
These results suggest that ordered structures must also
appear in the low-energy limit of QCD. At leading order
in the ’t Hooft expansions [24–26], the low-energy limit
of QCD is described by the Skyrme theory [27] (see
Refs. [28,29] for reviews). Despite the bosonic nature of
the skyrmion field U, its solitons represent baryons (see
Refs. [26,30–33]).
Here, we analyze the appearance of complex structures

at finite baryon density in the SUðNÞ Skyrme model in
(3þ 1) dimensions. We focus on the analytic computations
of relevant physical properties, such as the energy density,
the energy per baryon, and the shear modulus of nuclear-
lasagna-like structures living at finite density.2 We compute
their corresponding scaling with N.
We combine the use of Euler angles for SUðNÞ devel-

oped in Refs. [39–41] together with the use of nonspherical
hedgehog ansatz introduced in Refs. [42–50].

II. SKYRME ACTION

The action of the Skyrme model in four dimensions is

S ¼ K
4

Z
d4x

ffiffiffiffiffiffi
−g

p
tr

�
RμRμ þ

λ

8
FμνFμν

�
; ð2:1Þ

where Rμ ¼ U−1∂μU ¼ Rj
μtj with U ∈ SUðNÞ, ti the

SUðNÞ generators, K and λ the Skyrme couplings, g
the metric determinant,3 and Fμν ¼ ½Rμ; Rν�. The field
equations are

∇μ

�
Rμ þ

λ

4
½Rν; Fμν�

�
¼ 0: ð2:2Þ

We construct topologically nontrivial solutions at finite
baryon density. Our main goal is to determine the scaling
with N of relevant physical quantities. As we want to

analyze skyrmions of high topological charge living in flat
spaces at finite baryon density, we consider the following
metric:

ds2 ¼ −dt2 þ L2
rdr2 þ L2

γdγ2 þ L2
φdφ2; ð2:3Þ

while the range of coordinates is

0 ≤ r ≤ 2π; 0 ≤ γ ≤ 2π; 0 ≤ φ ≤ 2π; ð2:4Þ

with the caveat that, despite the chosen values, they are not
periodic. The parameters Lr, Lγ , and Lφ represent the size
of the box within which the skyrmion is confined.

A. Quantities of high physical interest

First, the main goal of the paper is to compute the energy
per baryon and its large-N behavior. Therefore, only
solutions with nonvanishing baryon charge have been
considered. The usual definition of baryon charge in the
Skyrme model (see Refs. [26,27,31,32]) is

W ¼ B ¼ 1

24π2

Z
ft¼constg

ρB; ð2:5Þ

ρB ¼ ϵijktrðU−1∂iUÞðU−1∂jUÞðU−1∂kUÞ; ð2:6Þ

so a necessary condition in order to have nontrivial
topological charge is

ρB ≠ 0: ð2:7Þ

From the geometrical point of view, the above condition
can be interpreted as saying that the skyrmion “fills a three-
dimensional spatial volume,” at least locally. On the other
hand, such a condition is not sufficient, in general. One also
has to require that the spatial integral of ρB be a non-
vanishing integer:

1

24π2

Z
ft¼constg

ρB ∈ Z: ð2:8Þ

Usually, this second requirement allows us to fix some of
the parameters and integration constants of the ansatz, as
we will see in the following. However, there are more
global conditions to be satisfied, as will be explained below.
Hence, in the following we will only consider solutions
satisfying both the condition in Eq. (2.7) and the one
in Eq. (2.8).
Second, the energy density (the 0-0 component of the

energy-momentum tensor) reads

T00 ¼ −
K
2
tr

�
R0R0 −

1

2
g00RαRα

þ λ

4

�
gαβF0αF0β −

g00
4

FσρFσρ

��
; ð2:9Þ

2Pioneering works on the Skyrme model at finite density are
Refs. [34–38] and references therein.

3We remind the reader that the N of the SUðNÞ of the Skyrme
model corresponds to Nf .
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where Fμν ¼ ½Rμ; Rν�. Thus, the total energy E of the
skyrmion is the spatial integral of the above quantity,

E ¼
Z
ft¼constg

ffiffiffiffiffiffi
−g

p
T00:

We define a skyrmion U to be static if its energy density
defined above is static. In other words, a skyrmion is static
if it corresponds to a static distribution of energy density. It
is worth noting that this definition is more general than the
naive definition of a static skyrmion as a static SUðNÞ-
valued configuration U which does not depend on time. In
particular, an elegant approach to avoid Derrick’s famous
no-go theorem on the existence of solitons corresponds to
searching for a time-periodic ansatz such that the energy
density of the configuration is still static, as it happens for
boson stars [51] [in the simpler case ofUð1Þ-charged scalar
field; see Ref. [52] and references therein]. The ansatz to be
defined in the next sections have exactly this property.
Moreover, unlike what happens for the usual boson star
ansatz for Uð1Þ-charged scalar fields, the present ansatz for
SUðNÞ-valued scalar fields also possesses a nontrivial
topological charge. Thus, we are interested in solutions
in which the energy density has nontrivial local maxima,
which could be identified with the position of the
skyrmions.
Given a solution of SUðNÞ with baryonic charge B and

energy E living in the metric (2.3) we have already
mentioned, it is very interesting to analyze the following
quantity [which is nothing but the energy per baryon of the
configuration gðN; aÞ]:

E
B
¼defgðN; aÞ; ð2:10Þ

where a is any set of integration constants which character-
ize the given solution. It is especially interesting to under-
stand the behavior of gðN; aÞ defined above when N is
large (the ’t Hooft limit). Here and in the following, we will
call the function gðN; aÞ the “g-factor.” The very deep
question is whether or not, in the given family of solutions
one is considering, one can define

g�ðaÞ ¼ lim
N→∞

gðN; aÞ ð2:11Þ

and if this limit is well defined. In particular, one might like
to find whether or not “the closeness to the BPS bound"
improves when N is large. Indeed, it is worth noting that in
the SUð2Þ case, all the known solutions with nonvanishing
topological charge exceed the bound by at least 20%.
Hence, one might like to find whether, in the ’t Hooft limit,
the “closeness of skyrmions to the BPS bound” is finite or
whether it grows without bound. This issue is deeply
related to the so-called Veneziano limit [25], which is a
variant of the ’t Hooft limit in which the flavor number Nf

also goes to infinity in such a way that Nc=Nf stays finite.
The Veneziano limit allows us to take into account the
effects of quarks while keeping the advantages of the ’t
Hooft topological expansion. Since, to arrive at the Skyrme
model as an effective low-energy limit of QCD, Nc must
already be large, the large-N limit that we are considering
here [in whichN is the one from the SUðNÞ Skyrme model]
can be considered as a sort of Veneziano limit applied to the
Skyrme model itself. The fact that such a limit is smooth is
a very nontrivial result which would be very difficult to
prove directly in the QCD Lagrangian.
The above discussion clearly shows that in order to

declare a solution of the Skyrme field equations as
“physically interesting,” two criteria must be satisfied:
(1) The topological charge of the solution must be

nonvanishing.
(2) The energy density T00 as a function of the coor-

dinates must have an interesting pattern.

III. LOCAL SOLUTIONS

Using the Euler angles for SUðNÞ determined in
Refs. [39,40] together with the ansatz for nonspherical
skyrmions living at finite baryon density in Refs. [42–50],
one arrives at the following ansatz for the SUðNÞ skyrmion:

U½t; r;φ; γ� ¼ eΦkehðrÞemγk; ð3:1Þ

Φ ¼ t
Lφ

− φ; ð3:2Þ

with a suitable choice of k in suðNÞ and hðrÞ in the Cartan
subalgebra H to be specified below, m a nonvanishing
integer number, and where we recall that the metric is given
by Eq. (2.3). When necessary to expand with respect to the
basis of suðNÞ, we also write

hðrÞ ¼ y1ðrÞJ1 þ � � � þ yN−1ðrÞJN−1; ð3:3Þ

with (see Appendix A)

Jk ¼ iðEk;k − Ekþ1;kþ1Þ; k ¼ 1;…; N − 1: ð3:4Þ

In general, we use the simplifying notations

h0 ¼ d
dr

hðrÞ; h00 ¼ d2

dr2
hðrÞ: ð3:5Þ

As for k, for cj arbitrary complex numbers, forming the
components of the vector c ∈ CN−1, we choose

k≡ kc ¼
XN−1

j¼1

ðcjλj − c�jλ
†
jÞ; ð3:6Þ
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λj ≡ λαj being the eigenmatrices of the simple roots
(Appendix A). We get the following proposition.
Proposition 1: From the ansatz (3.1), (3.2), and (2.3),

the equations of motion reduce to

h00 ¼ λm2

4L2
γ
ð½k; ½k; h00�� − ½k; ½h0; ½h0; k���Þ; ð3:7Þ

where the prime indicates derivation with respect to r.
The proof is given in Appendix B. Exploiting Eqs. (3.3)

and (3.6), we can further simplify the equations of motion,
which can be put in the following form:

h00 þ λm2

2L2
γ

XN−1

j¼1

αjðh00Þjcjj2Jj ¼ 0; ð3:8Þ

X
j<k

ðαjðh0Þ2 − αkðh0Þ2 − iðαjðh00Þ − αkðh00ÞÞÞcjck½λj; λk� − H:c: ¼ 0; ð3:9Þ

where H.c. stands for the Hermitian conjugate, and αj are a suitable choice of simple roots of SUðNÞ, defined in
Appendix A 1. Indeed, using Eqs. (B3) and (B5), we can rewrite Eq. (3.7) as

h00 ¼ λm2

4L2
γ

�X
j<k

½iðαjðh00Þ − αkðh00ÞÞ − ðαjðh0Þ2 − αkðh0Þ2Þ�cjck½λj; λk� − H:c: − 2
XN−1

j¼1

αjðh00Þjcjj2Jj
�
: ð3:10Þ

Now, we use general properties of simple roots. Since λj
are eigenmatrices relative to simple roots, we get that
½λj; λk� ¼ 0 or that it is an eigenmatrix relative to a
positive root.4 Similar considerations follow for λ†j with
respect to negative roots. It follows that none of these
terms can lie in H; thus, projecting Eq. (3.10) on H, we
get (h00 belongs in H by definition) Eq. (3.8), while
projecting on the complement, we get Eq. (3.9). These
equations could be expressed even more explicitly in
components, by exploiting Eq. (3.3) and using that
αjðJkÞ ¼ CAN−1 j;k are the components of the Cartan

matrix of SUðNÞ, as defined in Appendix A 2, so that

αjðhðnÞÞ ¼ 2yðnÞj − yðnÞjþ1 − yðnÞj−1. However, such an explicit
expression is not necessary in order to get the general
solution.

A. Explicit solutions

Now, we want to find all the solutions of Eqs. (3.8) and
(3.9). To this end, we make use of some technical facts
explained in Appendix A 2. Let us first consider Eq. (3.9).
Using Eq. (A16) it becomes

XN−2

j¼1

ðαjðh0Þ2 − αjþ1ðh0Þ2 − iðαjðh00Þ − αjþ1ðh00ÞÞÞcjcjþ1Ej;jþ2 − H:c: ¼ 0: ð3:11Þ

We assume c to be generic, meaning that all the cj are
nonzero. Since Ej;jþ2, including their conjugates, are all
linearly independent, this gives

αjðh0Þ2 − αjþ1ðh0Þ2 − iðαjðh00Þ − αjþ1ðh00ÞÞ ¼ 0;

j ¼ 1;…; N − 2:

Since αj are real valued, we also get

αjðh00Þ ¼ αjþ1ðh00Þ; αjðh0Þ2 − αjþ1ðh0Þ2 ¼ 0;

j ¼ 1;…; N − 2: ð3:12Þ

The first two equations give

αjðh00Þ ¼ α1ðh00Þ; j ¼ 2;…; N − 1: ð3:13Þ

We have two possibilities: h00 ¼ 0 or not. We now show that
the second case leads to a contradiction. First, notice that if
h00 ≠ 0 then it must be αjðh00Þ ≠ 0 for at least one j (since
the αj are linearly independent) so that all αjðh00Þ are equal
and different from zero. From the second equation of (3.12)
we have that there must exist signs εj such that

αjðh0Þ ¼ εjα1ðh0Þ; j ¼ 2;…; N − 1: ð3:14Þ

Deriving it with respect to r must give (3.13); thus, εj ¼ 1

for all j, and we are left with the linear system of equations
4That is, a linear combination of simple roots with non-

negative integer coefficients.
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αjðh0Þ ¼ α1ðh0Þ; j ¼ 2;…; N − 1: ð3:15Þ

Since the αj are linearly independent (of rank N − 1) this is
a set of N − 2 linearly independent equations for h0 ∈ H.
SinceH is N − 1 dimensional, the space of solutions is one
dimensional, and its general solution is

h0ðrÞ ¼ fðrÞv;

where f is an arbitrary function and v ∈ H is the unique
matrix satisfying αjðvÞ ¼ 1 for all j (which we will
compute later; for now it is sufficient to know it exists).
We now replace this solution in Eq. (3.8). We immediately
get

f0ðrÞ
�
vþ λm2

2L2
γ

XN−1

j¼1

jcjj2Jj
�

¼ 0:

Since we have assumed h00 ≠ 0, we have f0 ≠ 0 and,
therefore,

v ¼ −
λm2

2L2
γ

XN−1

j¼1

jcjj2Jj:

After applying αk to this equality, using that αkðvÞ ¼ 1 and
noticing that αkðJjÞ ¼ CAN−1k;j are the components of the
Cartan matrix, we get

1 ¼ −
λm2

2L2
γ

XN−1

j¼1

CAN−1k;jjcjj2; j ¼ 1;…; N − 1:

This relation can be inverted easily: If we consider 1 at
varying j to be the components of a vector in RN−1, we can
apply the inverse Cartan matrix to both members, thus
getting

jcjj2 ¼ −
2L2

γ

λm2

XN−1

k¼1

C−1
AN−1k;j

:

Since λ is positive and the same is true for the elements of
the inverse Cartan matrix (A15), we see that this leads to a
contradiction. Therefore, the only possibility is that
f0ðrÞ ¼ 0, which is equivalent to h00ðrÞ ¼ 0.
Hence, we proceed in investigating the first possibility,

h00 ¼ 0. In this case Eq. (3.8) is automatically satisfied, and
Eq. (3.9) reduces to Eq. (3.14). Its solution is

h0ðrÞ ¼ av ð3:16Þ

where a is a constant and v ∈ H is the unique matrix
solving αjðvÞ ¼ εj, j ¼ 1;…; N − 1 where εj ∈ f0; 1g
(and ε1 ¼ 1). Since ε1 is fixed, this gives a 2N−2 solution
for every choice of cj in k. As we will see in the explicit

example of SUð4Þ, however, not all of these are really
distinct solutions. There is a convenient way to express v
explicitly. Indeed, let us write5 h ¼ arvε, where a is a
constant and vε ∈ H is a matrix,

vε ¼ diagðv1;…; vNÞ ð3:17Þ

such that αiðvεÞ ¼ εi, εi ¼ �1, i ¼ 1;…; N − 1 and of
course

P
N
i¼1 vi ¼ 0. These equations are easily solved by

writing v ¼Pn−1
j¼1 wjJj so that the equations are

εk ¼
XN−1

j¼1

CAN−1k;jwj

and the solution is

wj ¼
XN−1

k¼1

C−1
AN−1 j;k

εj ð3:18Þ

and

vε ¼
X
j;k

C−1
AN−1 j;k

εkJj: ð3:19Þ

We have thus proved the following proposition.
Proposition 2: All the solutions of the equations of

motion (2.2) determined by the ansätze (3.1), (3.2), and
(2.3) are given by

hðrÞ ¼ arvε; ð3:20Þ

vε ¼
X
j;k

C−1
AN−1 j;k

εkJj; ð3:21Þ

where a is a real constant and εj are signs, with ε1 ¼ 1.
These solutions are only local solutions, which means

that they solve the differential equations. They do not
extend automatically to global solutions, which are sol-
utions with a well-defined baryon number. Looking for
global solutions is the task of the next section.

IV. GLOBAL SOLUTIONS

Up to now we have found the most general solution of
the differential Skyrme equation. Nevertheless, it is not
sufficient to determine a skyrmion, since global conditions
have to be imposed in order to get a solution with a well-
defined topological charge. This condition is not simply
equivalent to imposing that the topological charge must be
integer (this is just a consequence of the right topological
condition) but that it has to wrap a homological cycle an
entire number of times (mathematically, it has to cover a

5We omit an irrelevant additive integration constant.
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cycle, which means to be a surjective map with a well-
defined degree). We normalize the parametrizations so that
all ranges are in ½0; 2π�.

A. Statement of the problem

The difficulty in passing from local solutions to global
solutions is twofold. In order to illustrate it, let us consider
the specific example of SUð4Þ when k is given by ci ¼ 1.
For getting a well-defined global solution, the function

gðγÞ ¼ emγk ð4:1Þ

is expected to provide a good coordinate of the image of the
solution. Since the target space of the map is compact, this
requires that if we extend the range of γ to the whole R,
gðγÞ must result in a periodic function. Now, a simple
calculation shows that the eigenvalues of k are �μþ;�μ−,
with

μ� ¼ i
2
ð
ffiffiffi
5

p
� 1Þ: ð4:2Þ

This means that, for a suitable unitary constant matrix U,
we have

gðγÞ ¼ Udiagðemγμþ ; e−mγμþ ; emγμ− ; e−mγμ−ÞU†: ð4:3Þ

In particular, its elements have periodicities T� with

T� ¼ 2π

mjμ�j
: ð4:4Þ

But since

Tþ
T−

¼ 1

2
ð3þ

ffiffiffi
5

p
Þ ð4:5Þ

is not rational, they do not have a common period and the
orbit never closes; thus, it is not a periodic function but,
rather, its orbit describes a curve which densely covers a
bitorus in SUð4Þ. In particular, it is not possible to use gðγÞ
as a good factor to get a finite covering of a cycle, even
though it gives a solution of the equations of motion. It does
not provide a solution with a well-defined topological
number and must be discarded. One has to tackle the
problem of looking for acceptable matrices k that are
matrices generating a well-defined period.
Assuming we have solved the periodicity problem,

there is a second subtlety to be tackled: how to determine
the right range of the coordinates in order to correctly cover
a cycle. First, notice that π3ðSUðNÞÞ ¼ Z. This suggests
that, homotopically, we have just one representative for
any given topological (baryonic) charge. Moreover,
since π2ðSUðNÞÞ ¼ 0, we also have H3ðSUðNÞ;ZÞ ¼ Z,
so we also have a unique homological representative.
Nevertheless, the solutions do not have to be identified

under deformation but, at most, under gauge equivalence.
But since the action is not gauge invariant, in our case all
the different representatives in a given equivalence class
must be considered as different solutions.
We distinguish three different classes of solutions. The

first two classes have canonical representatives: the SUð2Þ
type, which belong in every class, and the SOð3Þ type,
which belong in even classes only. They can be simply
understood as follows. For any given N we can embed the
representations of suð2Þ into suðNÞ. Exponentiating, they
will give realizations of SUð2Þ or SOð3Þ, depending on the
specific representation. These realizations give rise to pure
SUð2Þ-type or SOð3Þ-type solutions. However, they can be
continuously deformed by varying the corresponding c
when allowed, giving rise to solutions that are not embed-
dings; thus, we can consider them as true SUðNÞ solutions.
But there exists a third class of solutions that cannot
be obtained as continuous deformations of embeddings.
Their existence is due to the fact that SUðNÞ has a center
isomorphic to ZN , which acts continuously on SUðNÞ; see
Appendix A. In particular, if Γ is a normal subgroup of the
center, then one can construct the group SUðNÞΓ ≔
SUðNÞ=Γ. The new class of solutions is generated by
cycles in SUðNÞ that reduce to cycles of SUðNÞΓ after
the quotient. We call them genuine SUðNÞ solutions. We
consider them carefully in the explicit examples of SUð3Þ
and SUð4Þ, where everything is exactly computable, but
now we briefly describe the SUð2Þ-type and SOð3Þ-type
solutions, where some details are a priori known; see
Appendix C.
An SUð2Þ-type cycle has the form

Uðϕ; γ; θÞ ¼ eϕkeh
0remγk;

where h0 is constant and the coordinate must run as follows.
The range of r must be T=4, where T is the period of eh

0r.
The range of γ must be Tk, the period of eγk (with m ¼ 1!),
and the range of ϕmust be Tk=2. Therefore, the convenient
choice for the coordinates is

φ ∈ ½0; Tk=2�; r ∈ ½0; T=4�; γ ∈ ½0; Tk�;

corresponding to the baryon number

B ¼ mB0;

where B0 is the fundamental charge of the given skyrmion.
For SOð3Þ-type cycles the interval for ϕ must cover an

integer period, so the ranges must be

φ ∈ ½0; Tk�; r ∈ ½0; T=2�; γ ∈ ½0; Tk�;

and the corresponding baryon number is

B ¼ 2mB0:
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The SOð3Þ-type can be defined as the “dibaryon class” after
the seminal works [31,32]. These results were extended,
keeping spherical symmetry, to the SUðNÞ case in
Refs. [53–56] leading to numerical nonembedded configu-
rations in the SUðNÞ Skyrme model. In the present paper
we generalize those findings to the nonspherical case at
finite baryon density, achieving, moreover, analytic
solutions.

B. SUð3Þ skyrmions

Let us apply the above formalism to the case N ¼ 3. In
this case the problem of periodicity will not arise.

1. SOð3Þ-type solutions and genuine SUð3Þ solutions
The matrix k is

kc ¼

0
B@

0 c1 0

−c�1 0 c2
0 −c�2 0

1
CA: ð4:6Þ

We put kck2 ¼ jc1j2 þ jc2j2. Then, the characteristic equa-
tion is

ðλ2 þ kck2Þλ ¼ 0: ð4:7Þ

The eigenvalues are λ0 ¼ 0 and λ� ¼ �ikck, so that

gðγÞ ¼ eγkc ð4:8Þ

is periodic with period

Tk ¼
2π

kck : ð4:9Þ

Now, we determine the Cartan element. We have two
possibilities according to the two possible choices for ε:

ε� ¼
�

1

�1

�
: ð4:10Þ

The inverse Cartan matrix for SUð3Þ is

C−1
A2

¼ 1

3

�
2 1

1 2

�
: ð4:11Þ

Thus, we find the two solutions

hþðrÞ ¼ arðJ1 þ J2Þ; ð4:12Þ

h−ðrÞ ¼
a
3
rðJ1 − J2Þ: ð4:13Þ

The period of exp hþðrÞ is

Thþ ¼ 2π

a
; ð4:14Þ

while the one of exp hþðrÞ is

Th− ¼ 6π

a
: ð4:15Þ

Now, we discuss the global properties in order to fix
the ranges of the parameters. To this end, according to
Appendix C, we have to look for the intersection between
the orbit of h� and the one of γkc. Using the characteristic
equation we immediately see that (see Appendix E 1)

eγkc ¼ I þ sinðkckγÞ
kck kc þ 2

sin2ðkck
2
γÞ

kck2 k2c; ð4:16Þ

so that the intersection we are looking for is just the unit
matrix I. However, we notice that the orbit of exph−ðrÞ
contains the elements

exph−ð2π=aÞ ¼ e
2
3
πiI; exp h−ð4π=aÞ ¼ e

4
3
πiI; ð4:17Þ

which are both in the center of SUð3Þ. Following
Appendix C, we conclude that h−ðrÞ defines a genuine
SUð3Þ solution, while only hþðrÞ is of SOð3Þ-type.
In order to correctly define the solution, we thus have to

identify the ranges as follows. First, it is convenient to
normalize c so that kck ¼ 1. This is equivalent to rescaling
the coordinates Φ and γ. Therefore, we fix once for all the
metric to be

ds2 ¼ −dt2 þ L2
rdr2 þ L2

γdγ2 þ L2
φdφ2; ð4:18Þ

with a range of coordinates

0 ≤ r ≤ 2π; 0 ≤ γ ≤ 2π; 0 ≤ φ ≤ 2π; ð4:19Þ

with the caveat that, despite the chosen values, none of the
coordinates is periodic. Our skyrmions are living in a
rectangular box.

SOð3Þ-type solutions.—We already know that r must cover
1=2 of the period of the Cartan torus, which implies that we
have to fix a ¼ 1

2
. Hence, our solutions are

Uc
�½t; r;φ; γ� ¼ eΦkcearðJ1�J2Þemγkc ; ð4:20Þ

Φ ¼ t
Lφ

− φ; ð4:21Þ

φ; γ; r ∈ ½0; 2π�; ð4:22Þ

B ¼ 2m: ð4:23Þ
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More explicitly,

Uc
þ½t; r;φ; γ� ¼

�
I þ sinðΦÞkc þ 2 sin2

Φ
2
k2c

�
diag

�
ei

r
2; 1; e−i

r
2

��
I þ sinðmγÞkc þ 2 sin2

mγ

2
k2c

�
:

We can now compute the energy and the factor gþ ¼ E
2m. We omit details here, since particular cases of the general one for

generic N are considered below. We get

gþðm; cÞ ¼ LrLγLφ
Kπ3

m

�
4

L2
ϕ

þ 1

8L2
r
þ λ

16L2
ϕL

2
r
þm2

L2
γ

�
2þ λ

32L2
r
þ 2λ

L2
ϕ

ð1 − 3jc1j2jc2j2Þ
��

;

where jc1j2 þ jc2j2 ¼ 1. In particular, for each value of m, jgþðm; cÞj takes its minimum at jc1j ¼ jc2j, which is

gþðm; cÞ ¼ LrLγLφ
Kπ3

m

�
4

L2
ϕ

þ 1

8L2
r
þ λ

16L2
ϕL

2
r
þm2

L2
γ

�
2þ λ

32L2
r
þ λ

2L2
ϕ

��
:

Some comments are in order here. The reason that the
solution we have just described is of SOð3Þ-type can be
understood by remembering that we are working with 3 × 3
matrices, which naturally carry a representation of spin 1 of
the rotation group. Indeed, the minimum energy case just
discussed, in which jcjj ¼ 1=

ffiffiffi
2

p
, corresponds exactly to

the case when the matrices hþ and kc are the generators of
the group SOð3Þ in the representation of spin 1. The other
solutions, for every fixed m, are continuous deformations
obtained by varying c, which does not change their
topological nature, and, in particular, the baryon number,
but it changes the energy. One can easily check that for
generic c the matrices hþ and kc do not generate a
subgroup. One may wonder if this is related to the fact

that their energy is not a minimum. The present remark
suggests how to look for SUð2Þ-type solutions.

Genuine SUð3Þ-type solutions.—Since this case does not
enter in the canonical classes, we have to manage sepa-
rately the determination of the correct ranges (then nor-
malized to 2π as specified above). As for r, we will prove in
Proposition 3 that in order to have r in the range ½0; 2π�, one
has to fix a ¼ 1

2
. For what concerns the other coordinates,

let us note that h−ðrÞ does not commute with kc but it

commutes with k2c. Therefore, for gðγÞ ¼ eγkc, we see that

gðTk=2Þ commutes with eh−ðrÞ. This means that we
can write

gðΦþ Tk=2Þeh−ðrÞgðγÞ ¼ gðΦÞgðTk=2Þeh−ðrÞgðγÞ ¼ gðΦÞeh−ðrÞgðTk=2ÞgðγÞ ¼ gðΦÞeh−ðrÞgðγ þ Tk=2Þ:
If we assume that Uc

−½Φ; r; γ� ¼ gðΦÞeh−ðrÞgðγÞ is covering a cycle, the relation Uc
−½Φþ Tk=2; r; γ� ¼ Uc

−½Φ; r; γ þ Tk=2�
shows that we are covering it twice unless we restrict one of the two ranges, of Φ and of γ, to one-half the period of g. We
choose to reduce Φ, so we replace Φ with Φ=2. Thus, our solution is

Uc
−½t; r;φ; γ� ¼ e

Φ
2
kcearðJ1�J2Þemγkc ; ð4:24Þ

Φ ¼ t
Lφ

− φ; ð4:25Þ

φ; γ; r ∈ ½0; 2π�; ð4:26Þ
B ¼ m; ð4:27Þ

where B has been computed as in Appendix F. Explicitly,

Uc
−½t; r;φ; γ� ¼

�
I þ sin

Φ
2
kc þ 2 sin2

Φ
4
k2c

�
diag

�
ei

r
6; e−i

r
3; ei

r
6

��
I þ sinðmγÞkc þ 2 sin2

mγ

2
k2c

�
:

For U−, g is independent from c,

g−ðm; cÞ ¼ LrLγLφ
Kπ3

2m

�
4

L2
ϕ

þ 2

3L2
r
þ λ

4L2
ϕL

2
r
þ 8

m2

L2
γ

�
1þ λ

16L2
r
þ λ

4L2
ϕ

��
:
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2. SUð2Þ-type solutions

It is now clear that in order to find SUð2Þ-type solutions
we have to consider deformations of spin 1

2
representations.

This can be obtained by “reducing matrices” down to 2 × 2,
and it can be achieved by choosing

k≡ kc ¼

0
B@

0 c 0

−c� 0 0

0 0 0

1
CA; ð4:28Þ

where c is a phase. This is not the same thing as simply
putting c2 ¼ 0 in kc in the sense that we have to choose
k ¼ kc before solving Eq. (3.9). Indeed, in Eq. (3.9) we
assumed that all simple roots are involved. This fixes the set
of possible choices of hðrÞ, and if in the above solutions we
deform smoothly c to ðc; 0Þ, we cannot move away from
our topological classes. This is confirmed by the fact that if
we put c2 ¼ 0, the matrix k reduces to a 2 × 2 matrix, but
the k� do not allow us to reduce the representation down to
C2. We have to make a discontinuous deformation. The
point is that for c2 ¼ 0 the root α2 does not enter into
Eq. (3.9), which, indeed, for N ¼ 3 becomes just an
identity. This means that when c2 ¼ 0 we can choose
for hðrÞ any combination

hðrÞ ¼ arJ1 þ brJ2; ð4:29Þ
with the only caveat that ehðrÞ must be periodic, so a and b
must be in a rational ratio. We can set

hqðrÞ ¼ arJ1 þ aqrJ2; q ∈ Q: ð4:30Þ

For q ¼ �1 we return to the previous SOð3Þ solutions,
while, of course, q ¼ 0 provides a canonical embedding of
SUð2Þ into SUð3Þ, thus identifying an SUð2Þ-type solution.
It is worthwhile to mention that since q ∈ Q, it cannot be
deformed continuously among the three values, which is
compatible with the fact that the case q ¼ 0 is not in the
same topological class as the other ones and, indeed, we
may wonder what happens for all the other values of q
since they would generate new genuine SUð3Þ solutions.
However, they have vanishing baryon number, so we will
not consider them further.
Thus, we get the solutions

Uc
0½t; r;φ; γ� ¼ e

1
2
Φkce

r
4
J1enγkc ; ð4:31Þ

Φ ¼ t
Lφ

− φ; ð4:32Þ

φ; γ; r ∈ ½0; 2π�; ð4:33Þ

B ¼ n: ð4:34Þ

The 1=2 factor in the first exponent has been added to
ensure that when Φ varies in ½0; 2π�, it covers half of the
period. Finally, we can compute the factor g:

g0ðn; cÞ ¼
Kπ3

n

�
2

L2
ϕ

þ 1

4L2
r
þ λ

8L2
ϕL

2
r
þ n2

L2
γ

�
4þ λ

4L2
r
þ λ

L2
ϕ

��
: ð4:35Þ

C. SUðNÞ skyrmions

We now consider the class of skyrmions associated with
the matrix k given by

kc ¼
XN−1

j¼1

ðcjEj;jþ1 − c�jEjþ1;jÞ: ð4:36Þ

We will limit ourselves to the case when all the cj are
different from zero. Here, we have to face the problem of
establishing for which choices of cj the matrix eγkc is
periodic. For now, let us assume this problem is solved and
write down the corresponding solution:

Uc
ε ½t; r;φ; γ� ¼ eσΦkceavεremγkc ; ð4:37Þ

Φ ¼ t
Lφ

− φ; ð4:38Þ

φ; γ; r ∈ ½0; 2π�; ð4:39Þ

B ¼ σ2mkck2; ð4:40Þ

where σ ¼ 1 for SOð3Þ-type solutions and σ ¼ 1=2 for
SUð2Þ-type solutions, and vε is given by Eq. (3.21). For
general genuine solutions the value of σ must be computed
case by case. For any admissible c these are 2N−2 solutions
(since ε1 ¼ 1). In principle, a could depend on N and ε.
However, we now show that this is not the case and that the
value of a is completely fixed by requiring that the
normalized interval ½0; 2π� for r must have the extension
necessary to cover a cycle once:
Proposition 3: If expðavεrÞ is such that r ∈ ½0; 2π�,

and the corresponding map Uc
ε ½t; r;φ; γ� does not have to

cover a cycle more than once, then necessarily a ¼ 1
2
.

Proof.—The proof is simply based on the same
strategy used in Ref. [39]: One first constructs the invariant
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measure restricted to the hypothetical cycle; the resulting
measure will depend explicitly on some of the coordinates
and will vanish at a specific value of that coordinate. The
good range for such a coordinate to cover a cycle just once
is any range between two vanishing points. The Haar
measure that is restricted to a cycle, apart from an eventual
normalization constant, is just ρB, which is computed in
Appendix F. Since it depends on r via sinðarÞ, we see that a

suitable interval for r is ½0; π=a�. Since we want it to be
½0; 2π�, it must be a ¼ 1

2
. ▪

Therefore, we definitely have

a ¼ 1

2
ð4:41Þ

in any case. Now, we can compute the g-factor for our
solutions. To this end, first note that

T00 ¼ −
K
2
Tr

�
1

2
ðRγRγ þ RrRrÞ þ

λ

16
FρσFρσ þ RtRt þ

λ

4
gαβFtαFtβ

�

¼ −
K
4
Tr

�
R2
γ

L2
γ
þ R2

r

L2
r

�
−
Kλ
16

TrðFγrÞ2 −
K
2
TrR2

t −
Kλ

8L2
φ
Tr

�
F2
Φr

L2
r
þ F2

Φγ

L2
γ

�
: ð4:42Þ

according to Appendix B, and we use

Rt ¼
1

Lφ
RΦ; Ftα ¼

1

Lφ
FΦα: ð4:43Þ

According to Eqs. (B6)–(B8), with a ¼ 1
2
, we have

TrR2
t ¼

σ2

L2
φ
Trk2c ¼ −

2

L2
φ
kck2σ2; ð4:44Þ

TrR2
γ ¼ m2Trk2c ¼ −2m2kck2; ð4:45Þ

TrR2
r ¼

1

4
Trv2ε ¼ −

1

4

X
j;k

C−1
AN−1 j;k

εjεk ≡ −
1

4
kvεk2; ð4:46Þ

TrðFγrÞ2 ¼ m2Trð½h0; kc�Þ2 ¼ −
m2

2
kck2; ð4:47Þ

TrðFϕrÞ2 ¼ σ2Trð½x; h0�2Þ ¼ −
σ2

2
kck2; ð4:48Þ

TrðFϕγÞ2 ¼ σ2m2Trð½x; kc�Þ2 ¼ −8m2σ2 sin2
r
2

�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
1

2
ð1 − 3εjεjþ1Þ

�
: ð4:49Þ

Replacing this in the expression for T00 and using that the energy is

E ¼
Z

2π

0

dr
Z

2π

0

dφ
Z

2π

0

dγLrLφLγT00ðrÞ; ð4:50Þ

we get

E ¼ LrLγLϕkck2
K
2
π3
�
16

σ2

L2
φ
þ kvεk2
kck2L2

r
þ σ2λ

L2
φL2

r

þ 8
m2

L2
γ

�
1þ λ

16L2
r
þ λσ2

L2
φkck2

�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
�
1

2
−
3

2
εjεjþ1

����
: ð4:51Þ

In a similar way, one can compute the baryon number. This is done in Appendix F, with the result
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B ¼ 2mσkck2: ð4:52Þ

From these results we immediately get the g-factor:

gðN;m; c; εÞ ¼ LrLγLϕ
Kπ3

4σm

�
16

σ2

L2
φ
þ kvεk2
kck2L2

r
þ σ2λ

L2
φL2

r

þ 8
m2

L2
γ

�
1þ λ

16L2
r
þ λσ2

L2
φkck2

�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
�
1

2
−
3

2
εjεjþ1

����
: ð4:53Þ

Up to now, we have assumed c to be normalized so that gðγÞ ¼ eγkc has period 2π. However, we will not find a solution until
we are able to specify for which c the function g is periodic. Therefore, we cannot further postpone tackling this problem.
However, before considering it, in general, we concentrate on a very particular case, when εj ¼ 1 for all j. In this case

gðN;m; cÞ ¼ LrLγLϕ
Kπ3

4σm

�
16

σ2

L2
φ
þ kvk2
kck2L2

r
þ σ2λ

L2
φL2

r

þ 8
m2

L2
γ

�
1þ λ

16L2
r
þ λσ2

L2
φkck2

�XN−1

j¼1

jcjj4 −
XN−2

j¼1

jcjj2jcjþ1j2
���

: ð4:54Þ

It is clear that, among all possible choices for εj, this
minimizes the energy, apart from possible effects due to
kvk. We also want minimize with respect to the cj,
assuming the normalization of kck is fixed. Introducing
a Lagrange multiplier Λ, we have to extremize the function

fðcÞ ¼
XN−1

j¼1

jcjj4 −
XN−2

j¼1

jcjj2jcjþ1j2 − Λkck2: ð4:55Þ

Deriving with respect to jcjj2, we get the system

CAN−1
jcj2 ¼ Λ1; ð4:56Þ

with 1 being the vector inRN−1 having all elements equal to
1. This gives the solution

jcjj2 ¼
Λ
2
jðN − jÞ: ð4:57Þ

Interestingly, this also automatically solves the periodicity
problem. It is easy to see (Appendix D) that

cj ¼ ζj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
2
jðN − jÞ

r
; Λ ¼

� 1
2

for oddN

2 for evenN
ð4:58Þ

where ζj are arbitrary phases, given a matrix eγkc that is
periodic in γ with period 2π. For v we find

v ¼
X
j;k

C−1
AN−1 j;k

Jj: ð4:59Þ

Moreover, we have the following proposition.
Proposition 4: If cj are given by Eq. (4.58) and v is as

in Eq. (4.59), then

kck2 ¼ Λ
12

NðN2 − 1Þ; ð4:60Þ

kvk2 ¼ 1

12
NðN2 − 1Þ; ð4:61Þ

and

XN−1

j¼1

jcjj4 −
XN−2

j¼1

jcjj2jcjþ1j2 ¼
Λ2

24
NðN2 − 1Þ

¼ Λ
2
kck2: ð4:62Þ

Proof.—The first result follows immediately from the
well-known formulas

XN−1

j¼1

j ¼ NðN − 1Þ
2

; ð4:63Þ

XN−1

j¼1

j2 ¼ NðN − 1Þð2N − 1Þ
6

: ð4:64Þ

For the second expression notice that, by using Eq. (A15),
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kvk2 ¼
X
j;k

C−1
AN−1 j;k

¼ 1

N

�X
j<k

jðN − kÞ þ
X
j≥k

kðN − jÞ
�

¼ −
1

N

X
j;k

jkþ
X
j<k

jþ
X
j≥k

k

¼ −
1

N

�XN−1

j¼1

j

�
2

þ
XN−1

j¼1

jðN − j − 1Þ þ
XN−1

k¼1

kðN − kÞ;

ð4:65Þ

and the final expression again follows after applying the
above well-known formulas.
For the last formula, notice that the cj are solutions of

∂f
∂ck ¼ 0; k ¼ 1;…; N − 1; ð4:66Þ

where f is given by Eq. (4.55). From this we get

XN−1

k¼1

ck
∂f
∂ck ¼ 0: ð4:67Þ

Now, f is the sum of two homogeneous pieces, one of
degree 4 and the other of degree 2. Therefore, we can use
the Euler theorem6 to rewrite the last as

0 ¼ 4

�XN−1

j¼1

jcjj4 −
XN−2

j¼1

jcjj2jcjþ1j2
�
− 2Λkck2; ð4:68Þ

which completes the proof. ▪
Using these results and noticing that σ2Λ ¼ 1=2, we find

for the energy per baryon

gðN;mÞmin ¼ LrLγLφ
Kπ3

σm

�
4
σ2

L2
φ
þ σ2

2L2
r
þ σ2λ

4L2
φL2

r
þ 2

m2

L2
γ

�
1þ λ

16L2
r
þ λ

4L2
φ

��
; ð4:69Þ

Λ ¼ 2ð−1ÞN ; σ ¼ 2−
ð−1ÞNþ1

2 ; ð4:70Þ

B ¼ 2
1þð−1ÞN

2 m
1

12
NðN2 − 1Þ: ð4:71Þ

Notice that gðN;mÞ depends on N only through σ.
We can also notice that

IN ¼ NðN2 − 1Þ
6

is the Dynkin index of the given representation of the
principal representation of slð2Þ in slðNÞ, so the funda-
mental baryonic charge associated with it is

B ¼ 1

2σ
IN:

Notice that for N odd, IN is even; thus, B is always
integer.
Finally, we are also interested in minimizing expression

(4.69) with respect to La, a ¼ φ; r; γ. This is done, in
general, in Appendix G. By using the formulas therein and
the ones in the last proposition, we find that the minimum is
reached at

Lφ ¼
ffiffiffi
λ

p

2
3
4

; Lr ¼
ffiffiffi
λ

p

4
; Lγ ¼

m
σ

ffiffiffi
λ

p

2
5
4

;

with the corresponding minimal value

gmin ¼ K
ffiffiffi
λ

p
π3ð1þ 2

ffiffiffi
2

p
Þ: ð4:72Þ

Using normalized units [corresponding to λ ¼ 1 and
K ¼ ð6π2Þ−1] we get

gmin;stand ¼ π
1þ 2

ffiffiffi
2

p

6
≈ 2.00456: ð4:73Þ

Notice that this is independent from N, and it is expected to
be the absolute minimum with respect to any choice of εj.
We will not try to prove this conjecture here; we will limit
ourselves to checking it for N ¼ 4 below. The comparison
with Ref. [57] is very interesting. The present results are
slightly above the bound in Ref. [57] due to the time
dependence in the ansatz. Note, however, that the present
time dependence cannot be undone as the present solutions
also wrap, in a topologically nontrivial way, around the
time direction. To the best of our knowledge, this is the first
analytic computation showing explicitly how the closeness

6That is for a homogeneous function f∶RN → R of degree L,
one has

x⃗ · gradf ¼ Lf:
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to the BPS bound “evolves” with N in the SUðNÞ
Skyrme model.
To be more specific, as has already been emphasized, we

are interested in topologically nontrivial solutions. In the
present context this means that we only consider SUðNÞ
ansatz such that

ρB ¼ TrðU−1dUÞ3 ≠ 0:

As has been discussed in the previous sections, ρB
represents the baryon density when it is nonvanishing
along three-dimensional spacelike hypersurfaces Σt¼const.
In these cases, the integral of ρB over Σt¼const represents

the baryon charge, while mathematically these integrals
represent how many times the SUðNÞ-valued skyrmions
wrap around Σt¼const. On the other hand, ρB can be
topologically trivial also along timelike hypersurfaces. In
this case, one can also consider the wrapping of the SUðNÞ-
valued configurations along three-dimensional timelike
hypersurfaces. The configurations which have been con-
structed here are—as a direct check easily reveals—
topologically nontrivial in two ways. Not only do they
possess nonvanishing baryonic charge, but they are also
wrapped nontrivially along timelike hypersurfaces. Indeed,
if one considers

Uc
ε ½t; r;φ; γ� ¼ eσΦkceavεremγkc ;

Φ ¼ t
Lφ

− φ;

then the corresponding topological density has one space-
like component and one timelike component:

ρB ∼ dr ∧ dφ ∧ dγ − dr ∧ d

�
t
L

�
∧ dγ:

In particular, this implies that these SUðNÞ skyrmions wrap
nontrivially around the three-dimensional timelike fφ ¼
constg hypersurfaces. The consequence of this fact is that
the time dependence of the present configuration “cannot
be undone”; otherwise the winding number corresponding
to the fφ ¼ constg hypersurfaces would change.

D. Solving the periodicity problem

The solution to this problem is provided in Appendix E.7

We discuss the main results here. The vectors c ∈ CN−1,
having all components different from zero and allowing for
a periodic function gðγÞ ¼ eγkc , with period 2π, form a
family

c ¼ cðm; α; tÞ; ð4:74Þ

where m ¼ ðm1;…; mnÞ, is a finite, strictly increasing
sequence of strictly positive coprime integer numbers, n
is the integer part of N=2, α ∈ ½0; 2πÞN−1, and t ∈ W ⊂
RN−n−1 is a set of parameters parametrizing the strictly
positive real solutions of the algebraic system

XN−1

j¼1

ζj ¼
Xn
a¼1

m2
a; ð4:75Þ

X
j1≪…≪jk≤N−1

ζj1 � � � ζjk ¼
X

a1<…<ak≤n
m2

a1 � � �m2
ak ;

k ¼ 2;…; n; ð4:76Þ

in real variables ζj, j ¼ 1;…; N − 1.
The parameters α and t form a moduli space TN−1 ×W.

The relevant physical quantities depend only on jcjj, so
they are independent on the components in the N − 1-
dimensional torus. Therefore, we can say that only W
represents the relevant moduli. As one could expect, in
particular, the baryon number associated with a solution
constructed with cðm; α; tÞ depends only on m and not on
the continuous moduli:

B ¼ 2σm
Xn
a¼1

m2
a: ð4:77Þ

The general form of gðγÞ is

eγkc ¼ f0ðγ; mÞI þ
XN−1

j¼1

fjðγ; mÞkjcðm;α;tÞ; ð4:78Þ

where the fβ, β ¼ 0;…; N − 1 are linear combinations of 1
and sinðmaγÞ, cosðmaγÞ, with rational functions of m as
coefficients, and satisfying f0ð0; mÞ ¼ 1, fjð0; mÞ ¼ 0 for
j > 0. In particular, the dependence on the continuous
moduli is only through kjc.

E. Back to N = 4

Following Appendix E 3, for any two coprime positive
integers p and q such that p > q, for N ¼ 4, we can find
four families of solutions, each one parametrized by three
real phases α1, α2, α3 and a real modulus τ ∈ ½q; p�. Each of
these families is specified by one of the four possible
inequivalent choices for the discrete vector ε. Recall that in
this case the inverse Cartan matrix is

C−1
A3

¼ 1

4

0
B@

3 2 1

2 4 2

1 2 3

1
CA: ð4:79Þ

We also have (see Appendix E 3)
7S.L.C. is particularly grateful to Laurent Lafforgue for

suggesting how to tackle this problem in full generality.
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g4ðxÞ≡ exkc ¼
�

p2

p2 − q2
cosðqxÞ − q2

p2 − q2
cosðpxÞ

�
I þ
�

p2

qðp2 − q2Þ sinðqxÞ −
q2

pðp2 − q2Þ sinðpxÞ
�
kc

þ
�

1

p2 − q2
ðcosðqxÞ − cosðpxÞÞ

�
k2c þ

�
1

p2 − q2

�
sinðqxÞ

q
−
sinðpxÞ

p

��
k3c; ð4:80Þ

with

kc ¼

0
BBB@

0 eiα1τ 0 0

−e−iα1τ 0 eiα2ψ 0

0 −e−iα2ψ 0 pq
τ eiα3

0 0 − pq
τ e−iα3 0

1
CCCA; ð4:81Þ

k2c ¼

0
BBBBB@

−τ2 0 eiðα1þα2Þτψ 0

0 −ðp2 þ q2 − p2q2

τ2
Þ 0 eiðα2þα3Þ pq

τ ψ

e−iðα1þα2Þτψ 0 −ðp2 þ q2 − τ2Þ 0

0 e−iðα2þα3Þ pq
τ ψ 0 − p2q2

τ2

1
CCCCCA; ð4:82Þ

k3c ¼

0
BBBBB@

0 −eiα1τðp2 þ q2 − p2q2

τ2
Þ 0 eiðα1þα2þα3Þpqψ

e−iα1τðp2 þ q2 − p2q2

τ2
Þ 0 −eiα2ðp2 þ q2Þψ 0

0 e−iα2ðp2 þ q2Þψ 0 − pq
τ eiα3ðp2 þ q2 − τ2Þ

−e−iðα1þα2þα3Þpqψ 0 pq
τ e−iα3ðp2 þ q2 − τ2Þ 0

1
CCCCCA; ð4:83Þ

and

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 − τ2 −

p2q2

τ2

s
: ð4:84Þ

1. The almost SUð2Þ-type solutions

The SUð2Þ solution is expected to be identified by
εa ¼ ð1; 1; 1Þ. Indeed, from Eq. (3.21) we have

va ¼
i
2
diagð3; 1;−1;−3Þ; kvak2 ¼ 5; ð4:85Þ

which is exactly the matrix representing the diagonal
generator of SUð2Þ in the spin-3=2 representation.
However, this is not true, in general, and we see that in
this series only the one with ðp; qÞ ¼ ð3; 1Þ is deformable
to an SUð2Þ embedding. Let us first look at the coordinate
ranges. Regarding the range of r, it is completely fixed by
Proposition 3. As for the remaining ranges, they must
correspond to the period of g4, unless there are (finite
discrete) subgroups of the Uð1Þ group generated by g4,
which commute with va. Since va does not commute with

kjc, j ¼ 1, 2, 3 (or any linear combination thereof), we have
to look for the values of x, such that fjðxÞ ¼ 0, j ¼ 1, 2, 3
(Appendix E 3). Looking at f3, this means

cosðpxÞ ¼ cosðqxÞ; ð4:86Þ
that is,

px ¼ �qxþ 2lπ ð4:87Þ
for some integer l. For the x satisfying this condition, call
them xpm, one has for f3

f3ðx�Þ ¼ 1

p2 − q2

�
1

q
−
1

p

�
sinðqx�Þ; ð4:88Þ

which is zero for x ¼ jπ for some integer j. Since our
coordinates are forced to vary in ½0; 2π�, the only nontrivial
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possibility is x ¼ π. Putting this back into the previous
condition, we must also have

p − q ¼ 2l; ð4:89Þ

which means that, since p and q are coprime, this happens
only when both p and q are odd. In this case g4ðπÞ ¼ −I.
Therefore, we see that for p − q odd, there are no discrete
symmetries, and the ranges of Φ and γ must coincide with
the whole period, so σ ¼ 1. Instead, for p − q even we have

g4ðΦþ πÞe1
2
varg4ðγ þ πÞ

¼ g4ðΦÞð−IÞe1
2
varð−IÞg4ðγÞ

¼ g4ðΦÞe1
2
varg4ðγÞ; ð4:90Þ

so we see that, to any point on the image, there correspond
two different coordinates ðΦ; γÞ and ðΦþ π; γ þ πÞ, unless
we restrict one of the two ranges to half a period. We

choose to use Φ, and, in order to keep its range as ½0; 2π�,
we fix σ ¼ 1=2.
The field is

Ua ¼ g4ðσp−qΦÞ

0
BBB@

e
3
4
ir 0 0 0

0 e
1
4
ir 0 0

0 0 e−
1
4
ir 0

0 0 0 e−
3
4
ir

1
CCCAg4ðmγÞ;

ð4:91Þ

Φ ¼ t
Lφ

− φ; ð4:92Þ

σp−q ¼
� 1

2
if p − q is even

1 if p − q is odd:
ð4:93Þ

The baryon number is Ba ¼ 2σp−amðp2 þ q2Þ, while for
the g-factor we get

gaðp; q;m; τÞ ¼ LrLγLϕ
Kπ3

4σp−qm

�
16σ2p−q
L2
φ

þ 5

ðp2 þ q2ÞL2
r
þ λσ2p−q

L2
φL2

r
þ 8

m2

L2
γ

�
1þ λ

16L2
r

�

þ 8σ2p−q
m2

L2
γ

λðp2 þ q2Þ
L2
φ

�
1 −

3τ2

p2 þ q2
þ 3τ4

ðp2 þ q2Þ2 þ
4p2q2

ðp2 þ q2Þ2 þ
3p4q4

ðp2 þ q2Þ2
1

τ4
−

3p2q2

p2 þ q2
1

τ2

��
:

ð4:94Þ
The corresponding minimal energy, expressed in normalized units, is given by Eq. (G16), which in this case becomes

gaðp; q; τÞ ¼
π

3
ffiffiffi
2

p
�
2þ

ffiffiffi
5

p �
1 −

3τ2

p2 þ q2
þ 3τ4

ðp2 þ q2Þ2 þ
4p2q2

ðp2 þ q2Þ2 þ
3p4q4

ðp2 þ q2Þ2
1

τ4
−

3p2q2

p2 þ q2
1

τ2

�1
2

�
: ð4:95Þ

We can further minimize with respect to τ. Setting x ¼ τ2,
we have to find the stationary points in

q2 < x < p2: ð4:96Þ
Deriving the expression in the square root with respect to x
and multiplying by ðp2 þ q2Þ2x3=6, we get the equation

0 ¼ ðx2 − p2q2Þ
�
x2 −

x
2
ðp2 þ q2Þ þ p2q2

�
: ð4:97Þ

This gives the admissible solutions (x is positive)

x0 ¼ pq; x� ¼ p2 þ q2

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ2

16
− p2q2

r
:

ð4:98Þ

Note that x0 is always present, while x� are stationary
points only when the square root is real, that is, when

ðp2 þ q2Þ2 − 16p2q2 > 0: ð4:99Þ

Setting z ¼ p=q this means x4 − 14x2 þ 1 > 0 so (since
p=q > 1)

x2 > 7þ
ffiffiffiffiffi
48

p
¼ ð2þ

ffiffiffi
3

p
Þ2; ð4:100Þ

and, finally,

p
q
> 2þ

ffiffiffi
3

p
: ð4:101Þ

Taking the second derivative of the above expression and
evaluating it in x0, we get that x0 is the absolute minimum
(at fixed p and q) if

9 −
p
q
−
q
p
> 0; ð4:102Þ

that is (recalling p ≥ q), for

1 ≤
p
q
<

1

2
ð9þ

ffiffiffiffiffi
77

p
Þ; ð4:103Þ
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otherwise the minimum is placed in x�. In conclusion

ga;minðp; qÞ ¼
π

3
ffiffiffi
2

p ½2þ
ffiffiffi
5

p
χaðp; qÞ�; ð4:104Þ

χaðp; qÞ ¼
8<
:

1þ 10 p2q2

ðp2þq2Þ2 − 6 pq
p2þq2 if 1 < p

q <
1
2
ð9þ ffiffiffiffiffi

77
p Þ

1 − 2 p2q2

ðp2þq2Þ2 otherwise:
ð4:105Þ

The absolute minimum in the family is the minimum of the
first row. Setting x ¼ pq=ðp2 þ q2Þ, we see that 1þ
10x2 − 6x has a minimum for x ¼ 3=10, which corre-
sponds to p ¼ 3, q ¼ 1. The corresponding absolute
minimal energy is exactly Eq. (4.73). This is not surprising
at all since ðp; qÞ ¼ ð3; 1Þ, ε ¼ ð1; 1; 1Þ correspond to
solution (4.69) for N ¼ 4 [if we use Eq. (4.57) with Λ ¼
2 in Eq. (E59)]. This corresponds to the undeformed SUð2Þ
embedding, as anticipated.

2. The case εb = ð1;1;− 1Þ
In this case we get

vb ¼ idiagð1; 0;−1; 0Þ; kvbk2 ¼ 2: ð4:106Þ

Regarding the ranges, we can use the same exact reasoning
as for the previous case, so we get

Ubðt;φ; r; γÞ ¼ g4ðσp−qΦÞ

0
BBB@

e
1
2
ir 0 0 0

0 1 0 0

0 0 e−
1
2
ir 0

0 0 0 1

1
CCCAg4ðmγÞ;

ð4:107Þ

Φ ¼ t
Lφ

− φ; σp−q ¼
�
1 for p − q odd
1
2

for p − q even:
ð4:108Þ

The baryonic charge is

B ¼ 2σp−qmðp2 þ q2Þ: ð4:109Þ

For the g-factor we get

gbðp; q;m; τÞ ¼ LrLγLϕ
Kπ3

4σp−qm

�
16σ2p−q
L2
φ

þ 2

ðp2 þ q2ÞL2
r
þ σ2p−qλ

L2
φL2

r
þ 8

m2

L2
γ

�
1þ λ

16L2
r

�

þ 8
m2

L2
γ

σ2p−qλðp2 þ q2Þ
L2
φ

�
1þ p2q2

ðp2 þ q2Þ2 þ
3τ4

ðp2 þ q2Þ2 −
3τ2

p2 þ q2

��
: ð4:110Þ

The corresponding minimal energy, given by Eq. (G16), in this case becomes

gbðp; q; τÞ ¼
π

3
ffiffiffi
2

p
�
2þ

ffiffiffi
2

p �
1þ p2q2

ðp2 þ q2Þ2 þ
3τ4

ðp2 þ q2Þ2 −
3τ2

p2 þ q2

�1
2

�
: ð4:111Þ

We can further minimize with respect to τ. Setting x ¼ τ2,
it is immediate to see that in this case the minimum is
reached for

x0 ¼
p2 þ q2

2
; ð4:112Þ

corresponding to the value

gb;minðp; qÞ ¼
π

3
ffiffiffi
2

p
�
2þ

ffiffiffi
2

p �
1

4
þ p2q2

ðp2 þ q2Þ2
�1

2

�
:

ð4:113Þ

For fixed q, this is a monotonic decreasing function of p, so
there is not an absolute minimum in this family. However,
notice that the lower bound is
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gb;bound ¼
π

3
ffiffiffi
2

p lim
p→∞

�
2þ

ffiffiffi
2

p �
1

4
þ p2q2

ðp2 þ q2Þ2
�1

2

�

¼ π

6
ð1þ 2

ffiffiffi
2

p
Þ; ð4:114Þ

which is Eq. (4.73).
We finally notice that these kinds of solutions are not

deformations of an SUð2Þ or SOð3Þ embedding, despite
what one might suspect. Indeed, vb may at most belong to
the representation8 1

2 ⊕ 0 ⊕ 0 or 1 ⊕ 0 embedded in
SUð4Þ. If so, there should exist a deformation of kc, that
is a particular value of the moduli, such that kc belongs to
the same representation. But in both cases the particular
solution would also be embedded in SUð3Þ, and then it
would require q ¼ 0 or p ¼ 0.

3. The case εc = ð1;− 1;1Þ
In this case we have

vc ¼
i
2
ð1;−1; 1;−1Þ; kvck2 ¼ 1: ð4:115Þ

Reasoning as before, we see that the field is now

Uc ¼ g4ðσp−qΦÞ

0
BBB@

e
1
4
ir 0 0 0

0 e−
1
4
ir 0 0

0 0 e
1
4
ir 0

0 0 0 e−
1
4
ir

1
CCCAg4ðmγÞ;

ð4:116Þ

Φ ¼ t
Lφ

− φ;

σp−q ¼
�
1 for p − q odd
1
2

for p − q even:
ð4:117Þ

The baryonic charge is

B ¼ 2σp−qmðp2 þ q2Þ: ð4:118Þ

For the g-factor we get

gcðp; q;m; ρÞ ¼ LrLγLϕ
Kπ3

σp−qm

�
16σ2p−q
L2
φ

þ 1

2ðp2 þ q2ÞL2
r
þ λσ2p−q

L2
φL2

r
þ 8

m2

L2
γ

�
1þ λ

16L2
r

�

þ 8σ2p−q
m2

L2
γ

λðp2 þ q2Þ
L2
φ

�
1 −

2p2q2

ðp2 þ q2Þ2
��

: ð4:119Þ

The corresponding minimal energy, given by Eq. (G16), in
this case becomes

gcðp; q; jρjÞ ¼
π

3
ffiffiffi
2

p
�
2þ

�
1 − 2

p2q2

ðp2 þ q2Þ2
�1

2

�
: ð4:120Þ

This is independent on τ, and for fixed q it is a monotonic
increasing function of p. It follows that the lower bound is
reached for p ¼ q ¼ 1 (the value 1 is enforced by the
request that p and q are coprime, but the result depends
only on p=q),

gc;bound ¼ gcð1; 1Þ ¼
π

6
ð1þ 2

ffiffiffi
2

p
Þ; ð4:121Þ

which, again, is Eq. (4.73). However, this is not allowed
since for p ¼ q ¼ 1 the functions fj are not periodic and
the solution of the equations does not yield a well-defined
global solution. In this particular family the absolute
minimum is instead

gc;bound ¼ gcð2; 1Þ ¼
π

3
ffiffiffi
2

p
�
2þ

ffiffiffiffiffi
17

p

5

�
≃ 2.0916: ð4:122Þ

4. The case εd = ð1;− 1;− 1Þ
In this case

vd ¼ ið0;−1; 0; 1Þ; kvdk2 ¼ 2:

This case seems to be very similar to the case b. Indeed, one
can easily check that the matrices vb, kc transform into vd,
kc under the map

MatðN;CÞ → MatðN;CÞ;
aj;k ⟼ aN−j;N−k; ð4:123Þ

T3 ×W → T3 ×W;

ðeiα1 ; eiα2 ; eiα3 ; τÞ ⟼ ðeiα3 ; eiα2 ; eiα1 ; pq=τÞ: ð4:124Þ

Under this map the inverse Cartan matrix is invariant and
εb ↦ −εd ≡ εd, where the last equivalence is by a global
rescaling. This sort of duality makes the two families
perfectly equivalent, giving the same minima.

8We are using the convention that s indicates the representation
of spin s.
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Remark: We see that of the four predicted sequences of
families, the true inequivalent ones are the first three, while
the d case is not really new. It is natural to expect that such
duality extends to any N, but this would require a deeper
understanding of the global properties of the relevant
moduli space W. To this aim, it would be interesting to
investigate the explicit cases N ¼ 5 and N ¼ 6. However,
this goes beyond the scope of the present work.

V. SHEAR MODULUS FOR LASAGNA STATES

On the crust of ultracompact objects, like neutron stars,
nucleons form large structures called pasta states. Knowing
the elasticity properties of the crust may be very important
to understand the structure of the gravitational waves
emitted in a collision with a black hole. An important
recent result has been found in Ref. [12] where, using
numerical simulations based on the phenomenological
nucleon-nucleon potential, the authors showed that the
shear modulus for nuclear lasagna can have a value much
larger than previous estimates. Here we give a first-
principles explanation of it as an application of the sky-
rmionic model. To compute the shear modulus associated
with lasagna states, our strategy will be to first compute it
for the SUð2Þ case for the solutions determined in
Refs. [46,49], by employing its relation with the 1þ 1
computations presented in Ref. [58].
Let us begin with a review [49]. We consider the

symmetric case9 in Eqs. (13) and (16) of Ref. [49], namely,

p ¼ q; l2 ¼ l3 ¼
ffiffiffiffi
A

p
:

This means that we are considering configurations in which
the SUð2Þ skyrmions live in a box of volume V tot,

V tot ¼ 16π3Al1

where l1 is the length along the r direction [which is the
coordinate of the profile H in Eq. (13) of Ref. [49]]. The
baryonic charge corresponding to the ansatz in Eqs. (12)–
(14) of Ref. [49] is

B ¼ pq ¼ p2 ð5:1Þ

[see below Eq. (24) of Ref. [49]]. Then, the SU(2) field
equations for the ansatz in Eqs. (12)–(14) and (16) of
Ref. [49], with a static profile H ¼ HðrÞ, reduce to

−
d2u
dr2

þ Γ2 sin u ¼ 0; ð5:2Þ

where

uðrÞ ¼ 4HðrÞ; 0 ≤ r ≤ 2π; ð5:3Þ

Γ2 ¼
�
B
A

�
2 λl21
4þ 2λ B

A

; ð5:4Þ

where B
A can be interpreted as the baryon density per unit of

area of the lasagna configuration (up to π factors). In order
to directly compare the present results with the ones in
Ref. [58], it is convenient to define the rescaled coordinate
y as follows:

y ¼ Γr; 0 ≤ y ≤ 2πΓ; ð5:5Þ

so that the field equation (5.2) becomes

−
d2u
dy2

þ sin u ¼ 0 ⇔
ðdudyÞ2
2

¼ 1 − cos uþ C; ð5:6Þ

and the boundary conditions, in order to have baryonic
charge B ¼ pq ¼ p2, are

Hð2πÞ ¼ π

2
⇔ uð2πΓÞ ¼ 2π: ð5:7Þ

Now, Eqs. (5.5)–(5.7) (which are equivalent to the results in
Ref. [49]) can be compared directly with Eqs. (2.4), (2.7),
and (2.9) of Ref. [58]. In particular, the difference between
the results of Ref. [58] and the present ones is

ϕðxÞ → uðyÞ; ð5:8Þ

L → 2πΓ; ð5:9Þ

k →

ffiffiffiffiffiffiffiffiffiffiffiffi
2

Cþ 2

r
≡ τ; ð5:10Þ

k0 →

ffiffiffiffiffiffiffiffiffiffiffiffi
C

Cþ 2

r
ð5:11Þ

where the left-hand side (with respect to the “→”) is from
Ref. [58] while the right-hand side comes from the above
equations. Equations (2.9) and (2.10) of Ref. [58] read

L ¼ 2τI−1=2ðτÞ;

I−1=2ðτÞ ¼
Z

π=2

0

dyð1 − τ2 sin2 yÞ−1=2;

that is,

πΓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Cþ 2

r Z
π=2

0

dy

�
1 −

2

Cþ 2
sin2 y

�
−1=2

; ð5:12Þ

which fixes the integration constant C in Eq. (5.6) in terms
of Γ,

9Notice that we are referring to the p and q in Ref. [49], which
have different meaning than the p and q used in the previous
section.
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C ¼ CðΓÞ;

which depends on the baryon charge as well as the size of
the box in which the configuration lives. Now, with the
above dictionary, we can write the speed of sound of the
phonons using Eq. (3.15) of Ref. [58]:

Vphonons ¼
ffiffiffiffi
C
2

r
πΓR π=2

0 dyð1 − 2
Cþ2

sin2 yÞ1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GSUð2Þ
T00

s
;

where T00 is given in Eq. (28) of Ref. [49]. Thus, we have
the following expression for the shear modulus GSUð2Þ in
the SUð2Þ case:

GSUð2Þ ¼ ðVphononsÞ2T00:

We can then estimate it as follows. In place of T00 we use its
mean value, computed as

T̄00 ¼
E0
minB

16π3l1A
;

where E0
min is the minimal energy corresponding to B ¼ 1.

From Table 1 of Ref. [58], we see that B=A is independent
from B for the minimal energy configuration. Using the
values in the table,10 we get

T̄00 ≃ 1.261034 erg=cm3:

With the same values, from Eq. (5.4) we obtain

Γ ≃ 0.371; πΓ ≃ 1.166:

Therefore, condition (5.12), which is easily solved numeri-
cally after noticing that I−1

2
ðτÞ ¼ Kðτ2Þ, the first complete

elliptic integral, gives

C ≃ 2.73

and

Vphonons ≃ 0.1198:

Finally,

GSUð2Þ ≃ 1.81032 erg=cm3:

Notice that the present value is expected, to an approxi-
mation, from above since we are using a skyrmionic
effective model. From the above analysis, taking into
account Eq. (4.73), we can infer that, in any case, the true
value should be GSUð2Þ ≳ 1031 erg=cm3. The comparison
with Ref. [12] is very good, especially taking into account
that we only used the Skyrme model.
At this point we can use the new solutions found in the

present work to relate the shear modulus for the SUðNÞ
case to the one for SUð2Þ.
Let us consider the minimal energy per nucleon (4.72).

After multiplying by B and dividing by the volume, which,
because of (IV C) is proportional to λ

3
2, we get

T̄00 ∝
K
λ
NðN2 − 1Þ:

On the other hand, the baryon density is

n ¼ B
8π2LφLrLγ

∝
NðN2 − 1Þ

λ3=2
;

which, when solved for λ and replaced in T̄00, gives

T̄00 ∝ n2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ3

q
:

Assuming the speed of sound to be essentially independent
from N, as suggested by the fact that all the components of
Tμν scale in the same way with N, we get that the
dependence of the shear modulus from N is

GSUðNÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ3

q
;

so we get the final estimate for the value of the shear
modulus GSUðNÞ of the SUðNÞ Skyrme model as

GSUðNÞ ¼ aðNÞGSUð2Þ;

aðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ

6

3

r
:

VI. CONCLUSION AND PERSPECTIVES

In conclusion, we constructed the first examples of
analytic (3þ 1)-dimensional skyrmions living at finite
baryon density in the SU(N) Skyrme model [which are
not trivial embeddings of SUð2Þ into SUðNÞ] for any N.
These results allow us to explicitly compute the energy-to-
baryon charge ratio for any N and to discuss its smooth
large-N limit as well as the closeness to the BPS bound.
The energy density profiles of these finite density sky-
rmions have a lasagna-like shape. A quite remarkable by-
product of the present analysis is that we have been able to
analytically estimate the shear modulus of lasagna-shaped

10Notice that with these values the baryon density is
n ≃ 0.0468 fm−3 ≈ 0.05 fm−3, the same value used in the sim-
ulations of Ref. [12].
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configurations which appear at finite baryon density. Our
estimate agrees with recent results [12] based on many-
body simulations in nuclear physics using phenomenologi-
cal nucleon-nucleon interaction potentials.
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APPENDIX A: GENERAL FACTS AND
CONVENTIONS ABOUT SUðNÞ

In this section we collect some general facts we applied
for finding the solutions. Let V; ðjÞ the N-dimensional
complex vector space isomorphic to CN , endowed with the
canonical Hermitian product

ðzjwÞ ¼
Xn
j¼1

z�jwj; z; w ∈ Cn;

ðxþ iyÞ� ¼ x − iy; x; y ∈ R:

The unitary group UðNÞ≡UðVÞ is the group of unitary
transformations of V. Looking at UðVÞ as automorphisms
of V determines the smallest fundamental representation,
simply called V. The action of UðVÞ over V induces an
action on the external products ∧k V of V, and the
corresponding homomorphisms

UðVÞ → Autð∧k VÞ; k ¼ 1;…; N

are all representations, also called ∧k V. For k ¼ 1;…;
N − 1 are all faithful (that is the kernel of the map is the
identity transformation) and are called the fundamental
representations. Any other finite-dimensional representa-
tion is obtained by their tensor products. Note that ∧N V is
not faithful. The corresponding kernel is a normal subgroup
of UðNÞ called the special group SUðNÞ≡ SUðVÞ.
Here, SUðNÞ is a compact, simply connected, simple Lie

group of rank N − 1. This essentially means that it contains
a maximal Abelian torus TN of dimension N − 1. On V, it
is represented by the diagonal N × N matrices T such that

YN
j¼1

Tjj ¼ 1; jTjjj ¼ 1; j ¼ 1;…; N:

The center ZN of SUðNÞ is the subgroup of T consisting of
the elements commuting with the whole SUðNÞ (equiv-
alently, it is the kernel of the adjoint representation). It
consists of matrices of the form ωI, where ωN ¼ 1 and I is

the identity matrix. Therefore, ZN ≃ ZN . All of the other
compact simple Lie groups locally isomorphic to SUðNÞ
are the quotients SUðNÞΓ ≔ SUðNÞ=Γ, where Γ is any
given subgroup of ZN . They are not simply connected since
their first homotopy group is π1ðSUðNÞΓÞ ¼ ZN=Γ. Note
that SUðNÞ is the universal covering for all of them. In
particular, for N ¼ 2 we have just two groups, which are
SUð2Þ and SUð2ÞZ2

≃ SOð3Þ.
To any Lie group G, one associates the corresponding

Lie algebra LðGÞ, which is the algebra of left-invariant
vector fields11 over G, endowed with the Lie bracket
product. In matrix representation it reduces to the commu-
tator ½; �. Since the groups SUðNÞΓ are locally isomorphic to
SUðNÞ, their Lie algebras are all isomorphic. One gets

suðNÞ≡ LieðSUðNÞÞ
¼ fX ∈ MatðNÞjX† ¼ −X;TrX ¼ 0g; ðA1Þ

that is the anti-Hermitian traceless N × N complex
matrices.
In particular, H ≔ LieðTNÞ is a maximal Abelian sub-

algebra of suðNÞ, having the property that, for any X ∈ H,
the linear map adX∶suðNÞ → suðNÞ defined by12

adXðYÞ ¼ ½X; Y� for any Y ∈ suðNÞ is diagonalizable
(on the complexification of the algebra).
We see from the definition that suðNÞ is a real vector

space of dimension N2 − 1. A basis can be easily obtained
as follows. For any j; k ¼ 1;…; N we define the matrix Ej;k

with elements

ðEj;kÞmn ¼ δjmδkn: ðA2Þ

They are called the elementary matrices. With these
notations, a basis of suðNÞ is given by

Aj;k ¼ ðEj;k − Ek;jÞ; Sj;k ¼ iðEj;k þ Ek;jÞ;
1 ≤ j < k ≤ N; ðA3Þ

Jh ¼ iðEj;j − Ejþ1;jþ1Þ; h ¼ 1;…; N − 1: ðA4Þ

In particular, the matrices Jh span the Cartan subalgebraH.

1. Roots and simple roots

A concept that is particularly helpful for most of the
calculations we need is the one of roots. This is related to
the above observation regarding the diagonalizability of
adX for any X ∈ H. The diagonalizability must be checked
on suðNÞ ⊗ C, which is generated by the complex span of
the basis given above, in place of the real span. Notice that

11That is the vector fields invariant under the action of the left
translation Lg∶G → G, LgðhÞ ¼ gh, for any given g ∈ G.

12This is called the adjoint action, and it defines the adjoint
representation of the algebra over itself.
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the complex span contains the matrices Ei;j, i ≠ j. This is
sufficient to determine all the eigenvectors and eigenvalues
of adX for any given X ∈ H.
To this aim, let us specify H as follows:

H ¼
	
X ¼ i

Xn
j¼1

cjEj;j





Xi
ci ¼ 0

�
R

; ðA5Þ

where by h� � �iR we mean the span over R of � � �. Thus, we
immediately see that

½X;Ej;k� ¼ iðcj − ckÞEj;k; ðA6Þ

½X; Jh� ¼ 0; ðA7Þ

so that Ej;k and Jh are eigenmatrices of the adjoint action of
X, with eigenvalues iðcj − ckÞ and 0, respectively. The
point is that the eigenvalues depend linearly on X. Let us
consider the linear operators Lj, j ¼ 1;…; N defined by

Lj∶MatðNÞ → C; A ↦ Aj;j:

Then, we can write icj ¼ LjðXÞ so that

adXðEj;kÞ ¼ ðLj − LkÞðXÞEj;k:

The linear operators

βi;j ≔ Lj − Lk∶H → C ðA8Þ

are said to be the nonvanishing roots of suðNÞ. The
corresponding eigenspaces are one dimensional. Beyond
these, there is a vanishing root defining the 0 eigenvalue,
whose eigenspace is H, so it has degeneration equal to the
rank r ¼ N − 1.
In particular, the set of nonvanishing roots contains a set

of r linearly independent roots, having the property that all
the remaining roots are a combination of them, with all
nonpositive or all non-negative integer coefficients. These
are called the simple roots, and they are

βj ≔ Lj − Ljþ1; j ¼ 1;…; N − 1: ðA9Þ

Finally, for convenience, we introduce the less conventional
concept of real valued roots αj;k ¼ −iβj;k, αj ¼ −iβj,
which we simply call roots and simple roots. With this
convention, for the simple roots αj, we can also write

αj∶H → R; X ↦ −TrðJjXÞ; ðA10Þ

which is useful for practical purposes. This also shows that
the αj are linearly independent. We name the corresponding
eigenvectors λαj ≡ λj ¼ Ej;jþ1, so that

½X; λj� ¼ iαjðXÞλj; ∀ X ∈ H: ðA11Þ

Notice that λ−αj ¼ λ†αj , so

½X; λ†j � ¼ −iαðXÞλ†j : ðA12Þ

2. Some further technical facts

There is a canonical way to introduce a scalar product on
the real space spanned by the simple roots. However, we
bypass the historical construction and employ Eq. (A10) to
define the scalar product

ðαjjαkÞ ≔ −TrðJjJkÞ: ðA13Þ
On

H�
R ≔ hα1;…;αN−1iR

it is a Euclidean scalar product. One then defines the r × r
Cartan matrix13 CAN−1

with components

ðCAN−1
Þj;k ≔ 2

ðαjjαkÞ
ðαjjαjÞ

¼ ðαjjαkÞ

¼ 2δj;k − δj;kþ1 − δj;k−1:

The Cartan matrix is strictly positive definite. Indeed, for
any vector ðx1;…; xrÞ ∈ Rr, we have

X
j;k

xjxkðCAN−1
Þj;k ¼ 2

Xr
j¼1

x2j −
Xr−1
j¼1

2xjxjþ1

¼ x21 þ x2r þ
Xr−1
j¼1

ðxj − xjþ1Þ2; ðA14Þ

which is strictly positive and vanishes only for xj ¼ 0 for
all j. In particular, the Cartan matrix is invertible and,
indeed, one can easily check that

ðC−1
AN−1

Þj;k ¼
1

N
minðj; kÞðN −maxðj; kÞÞ: ðA15Þ

Another important fact to notice is that for j, k one has

½λj; λk� ¼ δjþ1;kEj;jþ2: ðA16Þ

APPENDIX B: PROOF OF PROPOSITION 1

In order to prove the proposition, it is convenient to work
with the coordinates Φ and T ¼ tþ Lφφ. The metric takes
the form ds2 ¼ −LφdTdΦþ L2

rdr2 þ L2
γdγ2. With the

given ansatz, after replacing Φ with σΦ for constant σ
(for convenience), for the Lμ we get

13The name comes from the fact that in the Dynkin classi-
fication, the algebra suðNÞ is called Ar, where r is the rank.
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RT ¼ 0; RT ¼ −
2

Lφ
RΦ;

RΦ ¼ σe−mγke−hðrÞkehðrÞemγk; RΦ ¼ 0;

Rr ¼ e−mγkh0ðrÞemγk; Rr ¼ 1

L2
r
Rr;

Rγ ¼ mk; Rγ ¼ 1

L2
γ
Rγ:

For Fμν ¼ ½Rμ; Rν�, with x ¼ e−hðrÞkehðrÞ, we get the non-
vanishing components

FΦr ¼ −FrΦ ¼ σe−mγk½x; h0�emγk;

FΦγ ¼ −FγΦ ¼ σme−mγk½x; k�emγk;

Frγ ¼ −Fγr ¼ me−mγk½h0; k�emγk:

Setting Lμ ≔ ½Lν; Fμν�, the equations of motion are

0 ¼ ∂μRμ þ
λ

4
∂μLμ: ðB1Þ

Using the fact that nothing depends on T and that there are
no lower T components, these reduce to

0 ¼ 1

L2
r
∂r

�
Rr þ

λ

4
Lr

�
þ 1

L2
γ
∂γ

�
Rγ þ

λ

4
Lγ

�
:

But

∂γRγ ¼ 0;

∂rRr ¼ e−mγkh00emγk;

∂rLr ¼ ∂r

�
m2

L2
γ
e−mγk½k; ½h0; k��emγk

�

¼ m2

L2
γ
e−mγk½k; ½h00; k��emγk;

∂γLγ ¼ −
m
L2
r
∂γðe−mγk½h0; ½h0; k��emγkÞ

¼ m2

L2
r
e−mγk½k; ½h0; ½h0; k���emγk;

so Eq. (B1) becomes

0 ¼ 1

L2
r
e−mγk

�
h00 −

λ

4

m2

L2
γ
ð½k; ½k; h00�� − ½k; ½h0; ½h0; k���Þ

�
emγk;

which proves the proposition.

1. Further details

Making use of Eqs. (3.6) and (A11), we can write

½h0; k� ¼
XN−1

j¼1

ðcj½h0; λj� − c�j ½h0; λ†j �Þ ¼ i
XN−1

j¼1

αjðh0Þðcjλj þ c�jλ
†
jÞ: ðB2Þ

Repeating the same calculation, we get

½h0; ½h0; k�� ¼ i
XN−1

j¼1

ðαjðh0Þcj½h0; λj� þ αjðh0Þc�j ½h0; λ†j �Þ ¼ −
XN−1

j¼1

αjðh0Þ2ðcjλj − c�jλ
†
jÞ:

Finally,

½k; ½h0; ½h0; k��� ¼ −
XN−1

k¼1

XN−1

j¼1

αjðh0Þ2fckcj½λk; λj� þ c�kc
�
j ½λ†k; λ†j � − ckc�j ½λk; λ†j � − c�kcj½λ†k; λj�g

¼ −
XN−1

k¼1

XN−1

j¼1

αjðh0Þ2fckcj½λk; λj� þ c�kc
�
j ½λ†k; λ†j � − ckc�j ½λk; λ†j � þ c�kcj½λj; λ†k�g:

The last two terms cancel after summation, while the first terms vanish for j ¼ k; thus, we get

½k; ½h0; ½h0; k��� ¼ −
X
j<k

αjðh0Þ2ðcjck½λk; λj� þ c�jc
�k½λ†k; λ†j �Þ −

X
k<j

αjðh0Þ2ðcjck½λk; λj� þ c�jc
�k½λ†k; λ†j �Þ

¼
X
j<k

ðαjðh0Þ2 − αkðh0Þ2Þðcjck½λj; λk� þ c�jc
�k½λ†j ; λ†k�Þ;
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where we have changed the order of commutators in the first sum and exchanged the name of the variable in the second sum.
Therefore,

½k; ½h0; ½h0; k��� ¼
X
j<k

ðαjðh0Þ2 − αkðh0Þ2Þðcjck½λj; λk� þ c�jc
�
k½λ†j ; λ†k�Þ: ðB3Þ

Similarly,

½k; h00� ¼ −½h00; k� ¼ −i
XN−1

j¼1

αjðh00Þðcjλj þ c�jλ
†
jÞ

and

½k; ½k; h00�� ¼ −i
XN−1

j¼1

XN−1

k−1
αjðh00Þ½cjck½λk; λj� − c�jc

�
k½λ†k; λ†j � − cjc�k½λ†k; λj� þ c�jck½λk; λ†j ��:

The first two terms can be treated as above, giving the
contribution

i
X
j<k

ðαjðh00Þ − αkðh00ÞÞðcjck½λj; λk� − c�jc
�
k½λ†j ; λ†k�Þ;

while the last two terms, after renaming the labels in the
first of the sums, give the contribution

−i
XN−1

j¼1

XN−1

k−1
ðαjðh00Þ þ αkðh00ÞÞckc�j ½λk; λ†j �:

Now,

½λk; λ†j � ¼ ½Ek;kþ1; Ejþ1;j�;

which in components is

½Ek;kþ1; Ejþ1;j�m;r ¼ δj;kðEj;j − Ejþ1;jþ1Þm;r

so that

½λk; λ†j � ¼ −iδj;kJj: ðB4Þ

We finally get

½k; ½k; h00�� ¼ i
X
j<k

ðαjðh00Þ − αkðh00ÞÞ

ðcjck½λj; λk� − c�jc
�
k½λ†j ; λ†k�Þ − 2

XN−1

j¼1

αjðh00Þjcjj2Jj: ðB5Þ

2. A further proposition

We now want to state another technical proposition:
Proposition 5: Assume kc¼

P
N−1
j¼1 ðcjEj;jþ1−c�jEjþ1;jÞ,

h0 ∈ H a matrix such that αjðh0Þ≕ εja where εj is a sign,
j ¼ 1;…; N − 1, and x ≔ e−h

0rkceh
0r. Then

Trk2c ¼ −2kck2; ðB6Þ

Trð½h0; kc�½h0; kc�Þ ¼ Trð½h0; x�½h0; x�Þ ¼ −2a2kck2; ðB7Þ

and

Trð½x; kc�½x; kc�Þ ¼ −8sin2ðarÞ�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
1

2
ð1 − 3εjεjþ1Þ

�
: ðB8Þ

Proof.—First, we have

Trk2c ¼
XN−1

j¼1

XN−1

k¼1

fcjckTrðλjλkÞ þ c�jc
�
kTrðλ†jλ†kÞ

− c�jckTrðλ†jλkÞ − cjc�kTrðλjλ†kÞg; ðB9Þ

where we used the notation λj ¼ Ej;jþ1. Since λj is upper
diagonal so is λjλk; hence TrðλjλkÞ ¼ 0. Similarly,

Trðλ†jλ†kÞ ¼ 0. On the other hand,

Trðλ†jλkÞ ¼
XN
n¼1

XN
m¼1

ðEjþ1;jÞnmðEk;kþ1Þmn

¼
XN
n¼1

XN
m¼1

δjþ1;nδjmδkþ1;nδkm

¼ δkj ¼ Trðλjλ†kÞ: ðB10Þ

This proves Eq. (B6).
Now, notice that

½h0; x� ¼ ½h0; e−h0rkceh0r� ¼ e−h
0r½h0; kc�eh0r ðB11Þ

since h0 commutes with eh
0r. Therefore,
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Trð½h0; x�½h0; x�Þ ¼ Trðe−h0r½h0; kc�½h0; kc�eh0rÞ
¼ Trð½h0; kc�½h0; kc�Þ ðB12Þ

because of the cyclicity property of the trace. So we are left with the computation of Trð½h0; kc�½h0; kc�Þ. Using Eq. (B2) and
the fact that the only nonvanishing traces are Trðλ†jλkÞ ¼ δj;k, we get

Trð½h0; kc�½h0; kc�Þ ¼ Tr

�XN−1

j¼1

ðiαjðh0Þλjcj þ iαjðh0Þc�jλ†jÞ
XN−1

k¼1

ðiαkðh0Þλkck þ iαkðh0Þc�kλ†kÞ
�

¼ −2
XN−1

j¼1

αjðh0Þ2cjc�j ¼ −2a2kck2; ðB13Þ

where we used αjðh0Þ2 ¼ ðεjaÞ2 ¼ a2. This proves
Eq. (B7).
Let us write h ¼ h0r. Therefore,

x ¼ e−hkceh ¼
XN−1

j¼1

ðcje−hλjeh − H:c:Þ: ðB14Þ

Using the notation adXðYÞ ¼ ½X; Y� for any pair of matrices
X; Y ∈ suðNÞ, we first notice the identity

etXYe−tX ¼
X∞
n¼0

1

n!
tnadnXðYÞ; ðB15Þ

where by adnX we mean the iterated application of adX.
Indeed,

d
dt

ðetXYe−tXÞ ¼ etXadXðYÞe−tX: ðB16Þ

Hence,

dn

dtn






t¼0

ðetXYe−tXÞ ¼ etXadnXðYÞe−tXjt¼0

¼ adnXðYÞ; ðB17Þ
so Eq. (B15) is the Taylor expansion of etXYe−tX. For
Y ¼ kc, X ¼ h and t ¼ −1, and using that adhðλjÞ ¼
iαjðhÞ ¼ iεjat, we then have

e−hλjeh ¼
X∞
n¼0

1

n!
ð−1ÞnadnhðλjÞ

¼
X∞
n¼0

1

n!
ð−iεjarÞnλj

¼ e−iεjarλj: ðB18Þ
So

x ¼
XN−1

j¼1

ðcje−iεjarλj − c�je
iεjarλ†jÞ; ðB19Þ

and

½x; kc� ¼
X
j;k

ðcjcke−iεjar½λj; λk� þ c�jc
�
ke

iεjar½λ†j ; λ†k� − cjc�ke
−iεjar½λj; λ†k� − c�jcke

iεjar½λ†j ; λk�Þ: ðB20Þ

By using Eq. (B4), we see that the last two terms sum up to

−
XN−1

j¼1

jcjj2Jjiðe−iεjar − eiεjarÞ

¼ −2
XN−1

j¼1

jcjj2 sinðεjarÞJj: ðB21Þ

On the other hand,

½λj; λk� ¼ ½Ej;jþ1; Ek;kþ1�
¼ δk;jþ1Ej;jþ2 − δkþ1;jEj;jþ2; ðB22Þ

so thatX
j;k

cjcke−iεjar½λj; λk�

¼
XN−2

j¼1

cjcjþ1ðe−iεjar − e−iεjþ1arÞEj;jþ2; ðB23Þ

and, similarly, by taking the Hermitian conjugate,X
j;k

c�jc
�
ke

iεjar½λ†j ; λ†k�

¼ −
XN−2

j¼1

c�jc
�
jþ1ðeiεjar − eiεjþ1arÞEjþ2;j: ðB24Þ
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This leads to

½x; kc� ¼
XN−2

j¼1

½cjcjþ1ðe−iεjar − e−iεjþ1arÞEj;jþ2 − c�jc
�
jþ1ðeiεjar − eiεjþ1arÞEjþ2;j�

− 2
XN−1

j¼1

jcjj2 sinðεjarÞJj: ðB25Þ

If the only nonvanishing traces are

TrðEj;jþ2Ekþ2;kÞ ¼ TrðEjþ2;jEk;kþ2Þ ¼ δjk; TrðJjJkÞ ¼ −2δjk þ δj;kþ1 þ δjþ1;k; ðB26Þ

we get

Trð½x; kc�½x; kc�Þ ¼ −2
XN−2

j¼1

jcjj2jcjþ1j2je−iεjar − e−iεjþ1arj2 − 8
XN−1

j¼1

jcjj4 sin2ðεjarÞ

þ
XN−2

j¼1

jcjj2jcjþ1j2 sinðεjarÞ sinðεjþ1arÞ: ðB27Þ

Now,

je−iεjar − e−iεjþ1arj2 ¼ 2ð1 − cosðarðεj − εjþ1ÞÞÞ

¼ 4 sin2
�
ar

εj − εjþ1

2

�
: ðB28Þ

Since ðεj − εjþ1Þ=2 ¼ 0;�1, we can write

sin2
�
ar

εj − εjþ1

2

�
¼ sin2ðarÞ

�
εj − εjþ1

2

�
2

¼ 1

2
ð1 − εjεjþ1Þ sin2ðarÞ: ðB29Þ

Also

sinðεjarÞ sinðεjþ1arÞ ¼ sin2ðarÞεjεjþ1 ðB30Þ

and sin2ðεjarÞ ¼ sin2ðarÞ; thus, summing everything up
we get Eq. (B8). ▪

APPENDIX C: SUð2Þ VERSUS SOð3Þ
Despite these being very well-known facts, in this

appendix we discuss the difference between SUð2Þ and
SOð3Þ since it is crucial to identify our solutions. Locally,
the two groups coincide; they have the same Lie algebra.
However, SUð2Þ is simply connected, while SOð3Þ is not.
Indeed, SUð2Þ is the universal covering of SOð3Þ. It has a
nontrivial center ZSUð2Þ ¼ �I, with I being the unit
element, and there is a surjective projection

π∶SUð2Þ → SOð3Þ ðC1Þ

with ZSUð2Þ as a kernel. Note that SOð3Þ has a trivial kernel,
and π1ðSOð3ÞÞ ≃ ZSUð2Þ. We can also write

SOð3Þ ≃ SUð2Þ=ZSUð2Þ: ðC2Þ

Now, let us illustrate the crucial difference we are interested
in. Let τi, i ¼ 1, 2, 3 be a canonical basis of LieðGÞ, where
G is one of the two groups. We can then realize the group
by means of the Euler parametrization. This means that the
generic element g of the group has the form

gða; b; cÞ ¼ eaτ3ebτ2ecτ3 ; ðC3Þ

where a, b, c are the Euler angles. Each of the exponentials
has a period (depending on the normalization of the
matrices), say, T3 for a and c, and T2 for b. The strategy
to correctly cover G exactly one time is explained in
Ref. [40] and works as follows. To be sure to cover G one
integer number of times, one first allows the coordinates to
run each one in the respective period. This number, in
general, is larger than 1 because of redundancies, due to
two reasons. The first reason is that the central element,
parametrized by b, is chosen in the maximal torus (the
exponential of the Cartan matrix). The redundancies
correspond to the action of the Weyl group to the torus.
This action is determined by the algebra and is the same for
both SUð2Þ and SOð3Þ. It shows that indeed moving b
along a period quadruplicates the determination of the
points for SUð2Þ and duplicates that for SOð3Þ, and one can
reduce the range of b down to T2=4 or T2=2, respectively.
At this point, the difference between SUð2Þ and SOð3Þ
appears. Indeed, for SOð3Þ this is the end, as it is already
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covered just one time, while for SUð2Þ it remains a
redundancy and we cover it twice. This redundancy is
due to the fact that

ebτ2 ∩ ecτ3 ¼
�
I if G ¼ SOð3Þ
Δ ¼ eðT3=2Þτ3 if G ¼ SUð2Þ: ðC4Þ

Therefore, since Δ2 ¼ I,

gða; b; cÞ ¼ eaτ3ebτ2ecτ3

¼ eaτ3ebτ2Δ−2ecτ3

¼ eaτ3Δ−1ebτ2Δ−1ecτ3

¼ gða − T3=2; b; c − T3=2Þ: ðC5Þ

This redundancy is eliminated by reducing the range of a
down to T3=2 for SUð2Þ. This is the way, relevant to our
case, to distinguish the two kinds of solutions: If the above
intersection is Δ, then the ranges of the variables a, b, c are
T3=2; T2=4; T3, respectively, and the group is SUð2Þ;
otherwise the ranges are T3; T2=2; T3, and the group
is SOð3Þ.
Finally, we add a final remark relevant for recognizing

genuine solutions: For the SOð3Þ generator τ the orbit
expðxτÞ never meets the center, while if τ is an SUð2Þ
generator, then expðx=2τÞ is the only nontrivial generator
of the center of SUð2Þ. No other elements of the center of
SUðNÞ can meet these kinds of orbits.

APPENDIX D: REPRESENTATIONS OF SUð2Þ
AND PERIODICITY

It is well known from representation theory that the spin
J representation of SUð2Þ has generators T1, T2, T3 given
by the N × N matrices, with N ¼ 2J þ 1,

ðT1Þm;n ¼
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN −mÞ

p
δm;n−1

þ i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN −mÞ

p
δm−1;n; ðD1Þ

ðT2Þm;n ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN −mÞ

p
δm;n−1

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN −mÞ

p
δm−1;n; ðD2Þ

ðT3Þm;n ¼ iðJ þ 1 −mÞδm;n: ðD3Þ

Each of these matrices is diagonalizable, with eigenvalues
given by the ones of T3. Since

U† expðxTjÞU ¼ expðxU†TjUÞ ðD4Þ

it follows that the periodicity of

fjðxÞ ¼ expðxTjÞ ðD5Þ

depends only on the eigenvalues, so all fj have the same
periodicity, which is obviously 2π for odd N and 4π for
even N.
On the other hand, let us consider the matrices kc and

gðxÞ ¼ expðxkcÞ. The possible periodicity of g depends on
the eigenvalues of kc. It is easy to see that the coefficients of
the characteristic polynomial of kc depend only on the jcjj2,
so the phases of cj are irrelevant for the periodicity. In
particular, this means that the matrix expðxT̃2Þ with

ðT2Þm;n ¼
ζm
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN −mÞ

p
δm;n−1

−
ζ�n
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðN − nÞ

p
δm−1;n; jζjj ¼ 1; ðD6Þ

has the same periodicity of f2ðxÞ.

APPENDIX E: SOLVING THE PERIODICITY
PROBLEM

In Sec. IV we showed that for N higher than 3, there is a
further difficulty to overcome in order to find a global
solution: Generically, the matrix gðxÞ ¼ exk is not periodic,
and its orbit densely fills a torus of dimension strictly
higher than 1. This phenomenon corresponds to the fact
that the one parameter subgroup gðxÞ is not a Lie subgroup
but only an imbedded subgroup. Therefore, for arbitrary
choices of the coefficients cj, the matrix

kc ¼
XN−1

j¼1

ðcjEj;jþ1 − c�jEjþ1;jÞ ðE1Þ

cannot be used to generate global solutions unless the
corresponding gðxÞ is periodic. We now tackle this prob-
lem, in general. For the sake of completeness, we first show
that no problems arise in the case N ¼ 3.

1. The case N = 3

In this simple case we have

kc ¼

0
B@

0 c1 0

−c�1 0 c2
0 −c�2 0

1
CA: ðE2Þ

The corresponding characteristic polynomial is

PkðλÞ ≔ detðλI − kcÞ ¼ λðλ2 þ kck2Þ: ðE3Þ

The eigenvalues are therefore 0;�ikck, which are in
rational ratios so gðγÞ ¼ expðγkcÞ is periodic, in particular,
with period 2π=kck. For other purposes, we explicitly
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compute gðγÞ. To this aim, let us first notice that, using the
Cayley-Hamilton theorem, kc satisfies

kcðk2c þ kck2IÞ ¼ O; ðE4Þ

where I and O are the identity and the null 3 × 3 matrices.
This implies k3c ¼ −kck2kc so that any power of kc can be
reduced to a power lower than 3. Hence,

eγkc ¼ g1ðγÞI þ g2ðγÞkc þ g3ðγÞk2c; ðE5Þ

for three functions satisfying g1ð0Þ ¼ 1, g2ð0Þ ¼ g3ð0Þ ¼ 0,
since eO ¼ I. Deriving Eq. (E5) with respect to γ and using
the characteristic equation, we get

g01ðγÞI þ g02ðγÞkc þ g03ðγÞk2c ¼ kce
γkc

¼ g1ðγÞkc þ g2ðγÞk2c þ g3ðγÞk3c
¼ ðg1ðγÞ − kck2g3ðγÞÞkc þ g2ðγÞk2c; ðE6Þ

so that

g01ðγÞ ¼ 0; ðE7Þ

g02ðγÞ ¼ g1ðγÞ − kck2g3ðγÞ; ðE8Þ

g03ðγÞ ¼ g2ðγÞ; ðE9Þ

with the Cauchy conditions g1ð0Þ ¼ 1; g2ð0Þ ¼ g3ð0Þ ¼ 0
[so that g02ð0Þ ¼ 1]. From the first equation we immediately
get g1ðγÞ ¼ 1, while deriving the second one and replacing
from the third, we get

g002ðγÞ ¼ −kck2g2ðγÞ; g2ð0Þ ¼ 0; g02ð0Þ ¼ 1; ðE10Þ

with the solution

g2ðγÞ ¼
sinðkckγÞ

kck : ðE11Þ

Finally, from the third equation we get

g3ðγÞ ¼
Z

γ

0

dx
sinðkckγÞ

kck ¼ 1 − cosðkckγÞ
kck2

¼ 2
sin2ðkck

2
γÞ

kck2 : ðE12Þ

Therefore,

eγkc ¼ I þ sinðkckγÞ
kck kc þ 2

sin2ðkck
2
γÞ

kck2 k2c: ðE13Þ

2. The general case

One can, in principle, solve this problem as follows.
Since k is anti-Hermitian, it can be diagonalized in C, with
pure imaginary eigenvalues. Moreover, if λ is an eigen-
value, so is −λ ¼ λ�. Therefore, if S is the integer part of
N=2 (so that N ¼ 2S or N ¼ 2Sþ 1 for N even and odd,
respectively), generically we have S distinct nonvanishing
eigenvalues. Let U be a unitary matrix such that

k ¼ U†σU; ðE14Þ

where σ is the diagonal form of k, say,

σ ¼
�
diagðiλ1;−iλ1;…; iλS;−iλSÞ Neven

diagðiλ1;−iλ1;…; iλS;−iλS; 0Þ Nodd;
ðE15Þ

with λj > 0. Since

exk ¼ exU
†σU ¼ U†exσU; ðE16Þ

exk is periodic if and only if exσ is. Now, eTσ is the identity
if and only if

eiTλj ¼ 1 ðE17Þ

for all j ¼ 1;…; S; that means Tλj ¼ nj2π, with nj a
positive integer (obviously, we assume T > 0) for any
j ¼ 1;…; S. Therefore,

λj
λk

¼ nj
nk

; ðE18Þ

so all pairs of eigenvalues must have rational quotients. Of
course, this condition is satisfied for N ≤ 3, and any choice
of c is allowed. But for N ≥ 4 we cannot choose the cj
arbitrarily: Only those values such that k admits eigenval-
ues with rational ratios are allowed. Notice that c remains
defined up to a real multiplicative constant: If t ∈ R,
then ktc ¼ tkc.
The eigenvalues are the solutions of the characteristic

polynomial

PNðxÞ ¼ detðxI − kcÞ; ðE19Þ

of degree N in x. Since kc is anti-Hermitian, its eigenvalues
are purely imaginary and, moreover, if μ is a nonvanishing
eigenvalue, then μ� ¼ −μ is also an eigenvalue. So the
nonvanishing eigenvalues are in pairs and, if N is odd, there
is at least one zero eigenvalue. Moreover, since in the
factorization of the polynomial the nonvanishing eigenval-
ues μ must appear in the factors ðx − μÞðxþ μÞ ¼ x2 − μ2,
we see that the general form of the polynomial must be
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PNðxÞ ¼
� ðx2Þn þ a1ðx2Þn−1 þ � � � þ an for N ¼ 2n

x½ðx2Þn þ a1ðx2Þn−1 þ � � � þ an� for N ¼ 2nþ 1:
ðE20Þ

The coefficients aj are not the same for N odd and for N
even, but it is convenient to keep the same name so that we
can generically write the equation for the nonvanishing
eigenvalues as

yn þ a1yn−1 þ � � � þ an−1yþ an ¼ 0; y ¼ x2: ðE21Þ

We can be more precise with the following proposition.
Proposition 6: Using the notation j ≪ k for k − j ≥ 2,

we have

a1 ¼ kck2; ðE22Þ

ak ¼
X

j1≪j2≪…≪jk

jcj1 j2jcj2 j2 � � � jcjk j2; k ¼ 2;…; n:

ðE23Þ

Proof.—It can be easily proven by induction. We have
already seen this for N ¼ 3. A direct computation shows
that it is true also for N ¼ 4 since P4ðxÞ ¼ x4 þ
x2ðjc1j2 þ jc2j2 þ jc3j2Þ þ jc1j2jc3j2. Now, assume this is
true for N and N − 1. Let kn be the matrix n × n defined as
kc with components c1;…; cn. This way, we see kn as a

submatrix of knþ1 obtained by erasing the last row and
column. Let

PnðxÞ ¼ detðxIn×n − knÞ: ðE24Þ

Developing the determinant with the Laplace rule applied
to the last row, we easily find

PNþ1ðxÞ ¼ xPNðxÞ þ jcN j2PN−1ðxÞ: ðE25Þ

The first addendum contains all the monomials of the
stated form except the terms containing jcN j2. The second
addendum contains all the terms of the stated form
containing jcN j2. This completes our proof. ▪
So, for example,

P4ðxÞ ¼ x4 þ x2ðjc1j2 þ jc2j2 þ jc3j2Þ þ jc1j2jc3j2;
ðE26Þ

P5ðxÞ ¼ xðx4 þ x2kck2
þ ðjc4j2jc1j2 þ jc4j2jc2j2 þ jc3j2jc1j2ÞÞ; ðE27Þ

P6ðxÞ ¼ x6 þ kck2x4 þ x2ðjc4j2ðjc1j2 þ jc2j2Þ þ jc1j2jc3j2 þ jc5j2ðjc1j2 þ jc2j2 þ jc3j2ÞÞ þ jc1c3c5j2: ðE28Þ

Notice that, assuming that all cj are different from zero, we
always have an ≠ 0, so these are truly nonzero eigenvalues.
Now, condition (E18) is equivalent to requiring that there
must exist a positive real number z and n positive integers
mj, j ¼ 1;…; n such that the nonvanishing eigenvalues of
kc must have the form λ�j ¼ �imjz. This happens if the
solutions of Eq. (E21) are

yj ¼ −z2m2
j : ðE29Þ

At this point, we notice that the coefficient of the above
polynomial can be written in terms of the solutions as

a1 ¼ −
XN
j¼1

yj; ðE30Þ

a2 ¼
X
j1<j2

ð−yj1Þð−yj2Þ; ðE31Þ

� � � ðE32Þ

an ¼
X

j1<���<jn

ð−yj1Þ � � � ð−yjnÞ: ðE33Þ

Comparing with the last proposition, we get the follow-
ing set of equations for jc2j j≕ ζj:
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XN−1

j¼1

ζj ¼ z2
Xn
a¼1

m2
a; ðE34Þ

X
j1≪…≪jk≤N−1

ζj1 � � � ζjk ¼ z2k
X

a1<…<ak≤n
m2

a1 � � �m2
ak ; k ¼ 2;…; n: ðE35Þ

This is a set of n equations in N − 1 real positive variables.
We now show that it generically has an ðN − 1 − nÞ-
dimensional space of solutions in the interesting region,
which is positive for ζj. To this end, we assume the generic
situation where allma are different, and we order them in an
increasing sequence m1 < m2 < � � � < mn. We will show
later that the condition on the ma cannot be weakened in
order to get periodic solutions. Then, we show that there is
a simple solution on the boundary of the region of interest,
which is (if N is odd, we assume the null eigenvalue to be
the last one, λ2nþ1 ¼ 0)

ζ2a ¼ 0; ζ2a−1 ¼ z2m2
a; a ¼ 1;…; n: ðE36Þ

Next, we claim that starting from this point, we can find a
smooth family of solutions ζ2a−1ðfζ2bgÞ in a small open
neighborhood of ζ2b ¼ 0. In particular, it implies that there
are positive (by continuity) ζ2a−1’s parametrized by small
positive ζb’s. This is sufficient to show that there is
generically a moduli space of real dimension N − n − 1
for the solutions for the above system.
Proof of the claim.—To prove the claim, let us consider

the functions

F1ðζ1;…; ζN−1Þ ¼
XN−1

j¼1

ζj; ðE37Þ

Fkðζ1;…; ζN−1Þ ¼
X

j1≪…≪jk≤N−1
ζj1 � � � ζjk ;

k ¼ 2;…; n; ðE38Þ

and the square submatrix M of its Jacobian defined by

Ma;b ¼
∂Fa

∂ζ2b−1





ζj¼z̄j

; ðE39Þ

where ζ̄j are defined by Eq. (E36). Therefore, we have

M1;b ¼ 1; ðE40Þ

M2;b ¼
X
c≠b

z2m2
c; ðE41Þ

M3;b ¼
X
c1<c2 ;
cj≠b;

z4m2
c1m

2
c2 ; ðE42Þ

� � � � � � � � � � � � ðE43Þ

Mk;b ¼
X

c1<…<ck−1 ;
cj≠b;

z2k−2m2
c1 � � �m2

ck−1 ; ðE44Þ

� � � � � � � � � � � � ðE45Þ

Mn;b ¼
X

c1<…<cn−1 ;
cj≠b:

z2n−2m2
c1 � � �m2

cn−1 ; ðE46Þ

We want to compute the determinant of this matrix. It does
not change if we subtract the first column from all the other
ones. In doing this, the first line becomes δ1;j, so we can
compute the determinant by applying the Laplace formula
to the first line. So, the determinant is equal to the
determinant of the new matrix with the first row and the
first column canceled out. To understand how this matrix
appears, let us note that the second row is

M2;b −M2;1 ¼
X
c≠b

z2m2
c −
X
c≠1

z2m2
c ¼ z2ðm2

b −m2
1Þ;

ðE47Þ

and, more in general,

Mk;b −Mk;1 ¼
X

c1<…<ck−1 ;
cj≠b;

z2k−2m2
c1 � � �m2

ck−1 ;

−
X

c1<…<ck−1 ;
cj≠1;

z2k−2m2
c1 � � �m2

ck−1 ;

¼ z2ðm2
b −m2

1Þ
X

c1<…<ck−2 ;
1≠cj≠b:

m2
c1 � � �m2

ck−2 ; ðE48Þ

Therefore, from the bth column of the reduced matrix, b ¼
2;…; n has a factor z2ðm2

b −m2
1Þ, and since the determinant

is multilinear on the columns, we get

detðMÞ ¼
Yn
b¼2

z2ðm2
b −m2

1Þ detðM̃Þ; ðE49Þ

where M̃ is an ðn − 1Þ × ðn − 1Þmatrix whose first row has
all elements equal to 1 and
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M̃k;b ¼
X

c1<…<ck−1 ;
1≠cj≠b:

z2k−2m2
c1 � � �m2

ck−1 ; ðE50Þ

In other words, we see that M̃ is like M but in one lower
dimension and where m1 has disappeared. We can then
inductively repeat the same construction, finally arriving at
the conclusion

detðMÞ ¼
Y
a<b

z2ðm2
b −m2

aÞ: ðE51Þ

Since m2
a < m2

b for a < b, we see that this determinant
is different from zero. The proof of the claim then is
an immediate consequence of the implicit function
theorem. ▪
Going back to cj, we then see that, in general,

cj ¼ ξj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζjðm; tÞ

q
; ðE52Þ

for arbitrary phases ξj, j ¼ 1;…; N − 1, with m ∈ Nn
>,

t ∈ W ⊂ RN−n−1. The parameters tj parametrize the above
family of solutions. We can always assume that the integer
mj is coprime. Indeed, if m is a common divisor of mj so
that mj ¼ msj, then we can write m ¼ ms and m can be
reabsorbed in z. Having assumed this, we can now fix z in
such a way that exkc has period 2π. Indeed, since the
nonvanishing eigenvalues of kc are λ�j ¼ �izmj, since the
mj is coprime, the common period of the associated
exponential is 2π=z. This fixes z ¼ 1.
Notice, in particular, that in this case

kck2 ¼
Xn
j¼1

m2
j ≡ kmk2: ðE53Þ

The associated baryon number is

B ¼ 2σmkmk2: ðE54Þ
We have proved the following proposition.
Proposition 7. For N ¼ 2n or N ¼ 2nþ 1 and for any

n-tuple of strictly increasing coprime positive integers ma,
a ¼ 1;…; n, the matrices kc, such that exkc has period 2π,
are a family of dimension 2N − 2þ n, where n is the
integer part of N=2. Beyond m, this family is described by
N − 1 phases and byN − n − 1 real parameters varying in a
set W, parametrizing the solutions of the system,

XN−1

j¼1

ζj ¼
Xn
a¼1

m2
a; ðE55Þ

X
j1≪…≪jk≤N−1

ζj1 � � � ζjk ¼
X

a1<…<ak≤n
m2

a1 � � �m2
ak ;

k ¼ 2;…; n: ðE56Þ

Correspondingly, the fundamental baryon number is B0 ¼
2σkmk2.
One says that these matrices have a moduli space

M ¼ TN−1 ×W; ðE57Þ

where TN−1 is the torus generated by the phases and W ⊂
RN−n−1 is the moduli space of the system. It is difficult to
say something general about the global properties ofW. We
study, in general, the case N ¼ 4 where all computations
are explicitly feasible.
Remark: For N ¼ 3 we have n ¼ 1 and, therefore,

only one integer m must be equal to 1 (“coprime”). So c
must have norm 1, and the fundamental baryon number
is B ¼ 2σ.

3. The N = 4 case

Let us apply the above results to the case of SUð4Þ. We
have n ¼ 2, so we expect the dimension of W to be 1. The
eigenvalue equation for k is

0 ¼ λ4 þ λ2kck2 þ jc1j2jc3j2: ðE58Þ

The four solutions are iλþ; iλ−;−iλþ;−iλ−, with

λ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kck2
4

þ jc1jjc3j
2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kck2
4

−
jc1jjc3j

2

r
: ðE59Þ

Let q ≤ p be a pair of positive coprime integer numbers.
Then, we have to solve the system

ζ1 þ ζ2 þ ζ3 ¼ p2 þ q2; ðE60Þ

ζ1ζ3 ¼ p2q2: ðE61Þ

Notice that this gives

λþ ¼ p; λ− ¼ q: ðE62Þ

Now, let us replace

ζ3 ¼ p2q2=ζ1 ðE63Þ

in the first equation, so that

ζ1 þ
p2q2

ζ1
− ðp2 þ q2Þ ¼ −ζ2: ðE64Þ

Since we have to require ζ2 > 0, we see that it must be

ζ21 − ðp2 þ q2Þζ1 þ p2q2 < 0: ðE65Þ

This is equivalent to saying

q2 < ζ1 < p2: ðE66Þ
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So we can use τ ¼ ffiffiffiffiffi
ζ1

p
as a modulus to represent W. The

moduli space, including the boundary, is therefore

M4 ¼ T 3 × ½q; p�: ðE67Þ

For

ðeiα1 ; eiα2 ; eiα3 ; τÞ ∈ M4; ðE68Þ

we have

c ¼
 
eiα1τ; eiα2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 − τ2 −

p2q2

τ2

s
;
pq
τ
eiα3

!
: ðE69Þ

The corresponding period is of course

T ¼ 2π; ðE70Þ

and the fundamental baryon number is

B0 ¼ 2σðp2 þ q2Þ: ðE71Þ

Finally, we can compute the exponential. Rewriting the
characteristic polynomial as

PðxÞ ¼ x4 þ x2ðp2 þ q2Þ þ p2q2; ðE72Þ

we see that the matrix k≡ kc satisfies

k4 ¼ −ðp2 þ q2Þk2 − p2q2I: ðE73Þ

This implies that there must exist four functions fjðxÞ,
j ¼ 0, 1, 2, 3 such that

exk ¼ f0ðxÞI þ f1ðxÞkþ f2ðxÞk2 þ f3ðxÞk3; ðE74Þ

with f0ð0Þ ¼ 1, fað0Þ ¼ 0, a ¼ 1, 2, 3. From

d
dx

exk ¼ kexk ðE75Þ

we get

f00ðxÞI þ f01ðxÞkþ f02ðxÞk2 þ f03ðxÞk3
¼ f0ðxÞkþ f1ðxÞk2 þ f2ðxÞk3
þ f3ðxÞð−ðp2 þ q2Þk2 − p2q2IÞ; ðE76Þ

which gives the system of differential equations

f00 ¼ −p2q2f3; ðE77Þ

f01 ¼ f0; ðE78Þ

f02 ¼ f1 − ðp2 þ q2Þf3; ðE79Þ

f03 ¼ f2; ðE80Þ

with the Cauchy conditions fjð0Þ ¼ δj;0. Using the fourth
equation in the third one, we get

f003 ¼ f1 − ðp2 þ q2Þf3; f003ð0Þ ¼ 0: ðE81Þ

Deriving this again using the second equation, we get

f0003 ¼ f0 − ðp2 þ q2Þf03; f0003 ð0Þ ¼ 1: ðE82Þ

Deriving this a last time using the first equation, we finally
get the Cauchy problem

f0003 þ ðp2 þ q2Þf003 þ p2q2f3 ¼ 0 ðE83Þ

f3ð0Þ ¼ 0; f03ð0Þ ¼ 0; f003ð0Þ ¼ 0; f0003 ð0Þ ¼ 1: ðE84Þ

This is easily solved, and it also gives f2 ¼ f03,
f1 ¼ f02 þ ðp2 þ q2Þf3, and finally f0 ¼ f01. For p > q,
we get

f0ðxÞ ¼
p2

p2 − q2
cosðqxÞ − q2

p2 − q2
cosðpxÞ; ðE85Þ

f1ðxÞ ¼
p2

qðp2 − q2Þ sinðqxÞ −
q2

pðp2 − q2Þ sinðpxÞ; ðE86Þ

f2ðxÞ ¼
1

p2 − q2
ðcosðqxÞ − cosðpxÞÞ; ðE87Þ

f3ðxÞ ¼
1

p2 − q2

�
sinðqxÞ

q
−
sinðpxÞ

p

�
: ðE88Þ

In the case p ¼ q ¼ 1 we have

f3ðxÞ ¼ −
1

2
x cos xþ 1

2
sin x: ðE89Þ

This is sufficient to show that the case p ¼ q must be
excluded, since the solution is no longer periodic.

APPENDIX F: BARYONIC NUMBER

The baryon number is defined by the integral

B ¼ 1

24π2

Z
ϵijkTrðRiRjRkÞ

ffiffiffi
g

p
drdϕdγ: ðF1Þ

Now,
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ϵijkTrðRiRjRkÞ ¼
3

LrLγLφ
ϵrγϕTrðRr½Rγ; Rφ�Þ

¼ −
3σm

LrLγLφ
Trðh0½kc; x�Þ;

where we used the explicit expressions for the Ra. After
using Eq. (B25), we get

ϵijkTrðRiRjRkÞ ¼ −
6σm

LrLγLφ

XN−1

j¼1

jcjj2εj sinðarÞTrðh0JjÞ;

and using

−εjTrðh0JjÞ ¼ a;

we finally get

ϵijkTrðRiRjRkÞ ¼
6σmffiffiffi

g
p kck2a sinðarÞ:

Replacing this in the integral and integrating, we get

B ¼ 2mσkck2: ðF2Þ

Remark: The form

ω ¼ ϵijkTrðRiRjRkÞ
ffiffiffi
g

p
drdϕdγ ðF3Þ

is nothing but the pullback on the rectangular box of the
volume form TrðR ∧ R ∧ RÞ over the cycle; see, for
example, Ref. [39].

APPENDIX G: MINIMAL ENERGY
PER BARYON

Let us minimize expression (4.53) with respect to the La,
a ¼ φ; r; γ. Let us rewrite it in the form

gðLφ; Lr; LγÞ ¼ DLφLrLγ

�
A2

L2
φ
þ B2

L2
r
þ C2

L2
φL2

r
þM2

L2
γ

�
1þ α2

L2
φ
þ β2

L2
r

��
; ðG1Þ

where

D ¼ Kπ3

4σm
; A ¼ 4σ; B ¼ kvεk

kck ;

C ¼ σ
ffiffiffi
λ

p
; M ¼ 2

ffiffiffi
2

p
m; β ¼

ffiffiffi
λ

p

4
;

α ¼
ffiffiffi
λ

p σ

kck
�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
�
1

2
−
3

2
εjεjþ1

��1
2

: ðG2Þ

Deriving with respect to Lj and setting

x ¼ 1

L2
φ
; y ¼ 1

L2
r
; z ¼ M2

L2
γ
; ðG3Þ

we get the equations for the stationary points:

A2xþ B2yþ C2xy − zð1þ α2xþ β2yÞ ¼ 0; ðG4Þ

A2x − B2yþ C2xy − zð1 − α2xþ β2yÞ ¼ 0; ðG5Þ

−A2xþ B2yþ C2xy − zð1þ α2x − β2yÞ ¼ 0: ðG6Þ

Solving the first equation with respect to z and replacing
this in the remaining equations, we get

z ¼ A2xþ B2yþ C2xy
1þ α2xþ β2y

; ðG7Þ

0 ¼ B2yþ B2β2y2 − α2x2ðA2 þ C2yÞ; ðG8Þ

0 ¼ A2xð1þ α2xÞ − β2y2ðB2 þ C2xÞ: ðG9Þ

From the third equation we get

y2 ¼ A2x
β2

1þ α2x
B2 þ C2x

; ðG10Þ

which, when replaced in the second term of the second
equation, gives

ðα2x2C2 − B2Þ
�
yþ A2x

B2 þ C2x

�
¼ 0: ðG11Þ
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Since we are looking for positive x, y, z, the second factor is
strictly positive, and the only allowed solution is x ¼ B

αC.
Replacing in Eq. (G10) and then in Eq. (G7), we get

x ¼ B
αC

; y ¼ A
βC

; z ¼ AB
αβ

: ðG12Þ

Therefore,

1

L2
φ
¼ kvεk

λσ2

�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
�
1

2
−
3

2
εjεjþ1

��−1
2

;

ðG13Þ

1

L2
r
¼ 16

λ
; ðG14Þ

1

L2
γ
¼ 2kvεk

λm2

×

�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
�
1

2
−
3

2
εjεjþ1

��−1
2

;

ðG15Þ

and the corresponding energy per baryon in standard units
[K ¼ ð6π2Þ−1, λ ¼ 1] is

gðc; εÞ ¼ π

3
ffiffiffi
2

p
�
2þ kvεk

kck2
�XN−1

j¼1

jcjj4 þ
XN−2

j¼1

jcjj2jcjþ1j2
�
1

2
−
3

2
εjεjþ1

��1
2
�
: ðG16Þ
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