PHYSICAL REVIEW D 101, 125011 (2020)

Analytic SU(N) Skyrmions at finite baryon density
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We construct analytic (3 + 1)-dimensional Skyrmions living at finite baryon density in the SU(N)
Skyrme model that are not trivial embeddings of SU(2) into SU(N). We use Euler angle decomposition for
arbitrary N and the generalized hedgehog ansatz at finite baryon density. The skyrmions of high topological
charge that we find represent smooth baryonic layers whose properties can be computed explicitly. In
particular, we determine the energy-to-baryon charge ratio for any N showing the smoothness of the large-
N limit. The closeness to the BPS bound of these configurations can also be analyzed. The energy density
profiles of these finite density skyrmions have a “lasagna-like” shape, in agreement with recent
experimental findings. The shear modulus can be precisely estimated as well, and our analytical result

is close to recent numerical studies in the literature.
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I. INTRODUCTION

The characterization of the phase diagram of the low-
energy limit of QCD at finite baryon density and low
temperatures has motivated intense research in the last two
decades (see Ref. [1] and references therein). Analytic
models are scarce, and new exact results are hard to obtain.
A well-known example is the (3 + 1)-dimensional Nambu-
Jona-Lasinio (NJL) model, which shares some of the
analytical difficulties of the low-energy limit of QCD
(see Ref. [2] for a review). Together with the uselessness
of perturbation theory at low energy, this means that the
complicated phase diagram of low-energy QCD cannot be
easily analyzed with the available analytic techniques (see
Refs. [3-5] and references therein).
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A remarkable feature of low-energy QCD at finite
baryon density is that at low temperatures, very complex
structures appear. When the baryon density is increased, a
phase that is commonly defined as “nuclear pasta” appears.
In Refs. [6-13], the presence of “baryonic layers” was
disclosed, which will be the main focus of the present
paper. Such a name arises from the fact that most of the
baryonic charge and energy density are concentrated within
lasagna-shaped regions in three dimensions." Many physi-
cal properties of these configurations are currently under
investigation, such as the elasticity of nuclear pasta and its
transport properties [10-13]. The high topological charge
of nuclear pasta makes it hard to study analytically.

As powerful numerical techniques are available to analyze
these configurations (see, for instance, Refs. [10-13] and
references therein), why should one insist on finding analytic
solutions? There are many reasons to strive for analytic
solutions even when numerical techniques are available.
First, it could be enough to note all the fundamental concepts
that we have understood thanks to the availability of the Kerr
solutions in general relativity and of the non-Abelian mono-
poles and instantons in Yang-Mills-Higgs theory. Second, as

"The phases nuclear spaghetti and nuclear gnocchi also appear
in the literature; see the references quoted above.
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in the present case, analytic solutions can disclose relevant
physical properties of very complex structures which are
difficult to analyze even numerically.

Until recently, these types of nonhomogeneous conden-
sates in the low-energy limit of QCD in (3 + 1) dimensions
could not be properly understood analytically. A further
problem is that, computationally, the large-N ; and large-N .
limits must be addressed carefully [14,15]. One of the goals
of the present paper is to shed light on the large-N
behavior of these complex structures.

A simplified version of the low-energy limit of QCD that
encodes many relevant features is the (1 + 1)-dimensional
version of the NJL model, also known as the chiral Gross-
Neveu model [16-19]. Such a model possesses a crystalline
phase at low temperature and finite baryon density [20-23].
These results suggest that ordered structures must also
appear in the low-energy limit of QCD. At leading order
in the 't Hooft expansions [24-26], the low-energy limit
of QCD is described by the Skyrme theory [27] (see
Refs. [28,29] for reviews). Despite the bosonic nature of
the skyrmion field U, its solitons represent baryons (see
Refs. [26,30-33]).

Here, we analyze the appearance of complex structures
at finite baryon density in the SU(N) Skyrme model in
(3 + 1) dimensions. We focus on the analytic computations
of relevant physical properties, such as the energy density,
the energy per baryon, and the shear modulus of nuclear-
lasagna-like structures living at finite density.2 We compute
their corresponding scaling with N.

We combine the use of Euler angles for SU(N) devel-
oped in Refs. [39-41] together with the use of nonspherical
hedgehog ansatz introduced in Refs. [42-50].

II. SKYRME ACTION

The action of the Skyrme model in four dimensions is

K A
S=7 / d*x\/=gtr (R”R” + 8FWFW), (2.1)

where R, =U~'0,U = R}t; with U € SU(N), t; the
SU(N) generators, K and 4 the Skyrme couplings, g
the metric determinant,’ and F = [Rﬂ,Ru]. The field
equations are

v <Rﬂ + % R, F,w]> =0. (2.2)

We construct topologically nontrivial solutions at finite
baryon density. Our main goal is to determine the scaling
with N of relevant physical quantities. As we want to

2Pioneering works on the Skyrme model at finite density are
Refs. [34-38] and references therein.

We remind the reader that the N of the SU(N) of the Skyrme
model corresponds to Ny.

analyze skyrmions of high topological charge living in flat
spaces at finite baryon density, we consider the following
metric:

ds? = —dt* + L2dr* + LfdyQ + L?,,d(pz, (2.3)
while the range of coordinates is
0<r<2nm, 0<y<2nm, 0<¢p<2r, (24)

with the caveat that, despite the chosen values, they are not
periodic. The parameters L,, L,, and L, represent the size
of the box within which the skyrmion is confined.

A. Quantities of high physical interest

First, the main goal of the paper is to compute the energy
per baryon and its large-N behavior. Therefore, only
solutions with nonvanishing baryon charge have been
considered. The usual definition of baryon charge in the
Skyrme model (see Refs. [26,27,31,32]) is

1
Wep=_L_ / .
24x* {t=const} £

pp = e (U™'0,U) (U 0,U) (U9, U),

(2.5)

(2.6)

so a necessary condition in order to have nontrivial
topological charge is

pp # 0. (2.7)

From the geometrical point of view, the above condition
can be interpreted as saying that the skyrmion “fills a three-
dimensional spatial volume,” at least locally. On the other
hand, such a condition is not sufficient, in general. One also
has to require that the spatial integral of pp be a non-
vanishing integer:

1
— eZ.
24n? /{tconst} Pi

Usually, this second requirement allows us to fix some of
the parameters and integration constants of the ansatz, as
we will see in the following. However, there are more
global conditions to be satisfied, as will be explained below.
Hence, in the following we will only consider solutions
satisfying both the condition in Eq. (2.7) and the one
in Eq. (2.8).

Second, the energy density (the 0-0 component of the
energy-momentum tensor) reads

(2.8)

K 1
Ty = —Etf RoRy — EgooRaRa

pl
+ 1 <g“/’FO(,F0ﬂ - g4ﬂ F,,,,F””)} . (29)
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where F,, = [R,.R,]. Thus, the total energy E of the
skyrmion is the spatial integral of the above quantity,

E = V—QT00~

{r=const}

We define a skyrmion U to be static if its energy density
defined above is static. In other words, a skyrmion is static
if it corresponds to a static distribution of energy density. It
is worth noting that this definition is more general than the
naive definition of a static skyrmion as a static SU(N)-
valued configuration U which does not depend on time. In
particular, an elegant approach to avoid Derrick’s famous
no-go theorem on the existence of solitons corresponds to
searching for a time-periodic ansatz such that the energy
density of the configuration is still static, as it happens for
boson stars [51] [in the simpler case of U(1)-charged scalar
field; see Ref. [52] and references therein]. The ansatz to be
defined in the next sections have exactly this property.
Moreover, unlike what happens for the usual boson star
ansatz for U(1)-charged scalar fields, the present ansatz for
SU(N)-valued scalar fields also possesses a nontrivial
topological charge. Thus, we are interested in solutions
in which the energy density has nontrivial local maxima,
which could be identified with the position of the
skyrmions.

Given a solution of SU(N) with baryonic charge B and
energy E living in the metric (2.3) we have already
mentioned, it is very interesting to analyze the following
quantity [which is nothing but the energy per baryon of the
configuration g(N, a)]:

(2.10)

where a is any set of integration constants which character-
ize the given solution. It is especially interesting to under-
stand the behavior of g(N,a) defined above when N is
large (the ’t Hooft limit). Here and in the following, we will
call the function g(N,a) the “g-factor”” The very deep
question is whether or not, in the given family of solutions
one is considering, one can define

g'(a) = lim g(N.a) (2.11)
and if this limit is well defined. In particular, one might like
to find whether or not “the closeness to the BPS bound"
improves when N is large. Indeed, it is worth noting that in
the SU(2) case, all the known solutions with nonvanishing
topological charge exceed the bound by at least 20%.
Hence, one might like to find whether, in the "t Hooft limit,
the “closeness of skyrmions to the BPS bound” is finite or
whether it grows without bound. This issue is deeply
related to the so-called Veneziano limit [25], which is a
variant of the "t Hooft limit in which the flavor number N,

also goes to infinity in such a way that N./N  stays finite.
The Veneziano limit allows us to take into account the
effects of quarks while keeping the advantages of the ’t
Hooft topological expansion. Since, to arrive at the Skyrme
model as an effective low-energy limit of QCD, N, must
already be large, the large-N limit that we are considering
here [in which N is the one from the SU(N) Skyrme model]
can be considered as a sort of Veneziano limit applied to the
Skyrme model itself. The fact that such a limit is smooth is
a very nontrivial result which would be very difficult to
prove directly in the QCD Lagrangian.

The above discussion clearly shows that in order to
declare a solution of the Skyrme field equations as
“physically interesting,” two criteria must be satisfied:

(1) The topological charge of the solution must be

nonvanishing.

(2) The energy density T, as a function of the coor-

dinates must have an interesting pattern.

III. LOCAL SOLUTIONS

Using the Euler angles for SU(N) determined in
Refs. [39,40] together with the ansatz for nonspherical
skyrmions living at finite baryon density in Refs. [42-50],
one arrives at the following ansatz for the SU(N) skyrmion:
(I)keh(r) emyk’

Ult,r,p,y] = e (3.1)

(3.2)

with a suitable choice of k in 3u(N) and A(r) in the Cartan
subalgebra H to be specified below, m a nonvanishing
integer number, and where we recall that the metric is given
by Eq. (2.3). When necessary to expand with respect to the
basis of 3u(N), we also write

h(r) =y (r)J1 + -+ yn_1 (1) In, (33)
with (see Appendix A)
‘]k:i(Ek,k_Ek+1.k+l)’ k: 1,,N—1 (34)
In general, we use the simplifying notations
d d?
W =—h(r), hW=—h 3.5
dr (I") er (I”) ( )

As for k, for ¢; arbitrary complex numbers, forming the

components of the vector ¢ € CV~!, we choose

N—-1
k=k. =) (cjdj—cia)),
=

(3.6)
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A= /1aj being the eigenmatrices of the simple roots

(Appendix A). We get the following proposition.
Proposition 1: From the ansatz (3.1), (3.2), and (2.3),
the equations of motion reduce to

W =2 (. ) -

iE (AUATRIE

(3.7)

Z(%‘(h')z —ap(W)? —i(a;(h") = a(h")))c;cx[Aj 4] = Hee. = 0,

j<k

where the prime indicates derivation with respect to r.

The proof is given in Appendix B. Exploiting Eqgs. (3.3)
and (3.6), we can further simplify the equations of motion,
which can be put in the following form:

2N1

lﬂ+——§:ah”MPJ—0 (3.8)

(3.9)

where H.c. stands for the Hermitian conjugate, and a; are a suitable choice of simple roots of SU(N), defined in
Appendix A 1. Indeed, using Eqs. (B3) and (B5), we can rewrite Eq. (3.7) as

N-1

m2
h' = am {Z[i(aj(h”) —a(h")) = (a;j(h)? — o (W')?)]ejerldj, 4] —Hec. — 2Zaj(h”)|cj|2jj}. (3.10)

2
4L7 Jj<k

Now, we use general properties of simple roots. Since 4;
are eigenmatrices relative to simple roots, we get that
[4j,4] =0 or that it is an eigenmatrix relative to a
positive root.* Similar considerations follow for /1; with
respect to negative roots. It follows that none of these
terms can lie in H; thus, projecting Eq. (3.10) on H, we
get (h" belongs in H by definition) Eq. (3.8), while
projecting on the complement, we get Eq. (3.9). These
equations could be expressed even more explicitly in
components, by exploiting Eq. (3.3) and using that
a;j(Jy) = Cayyjy are the components of the Cartan

|

N=-2

= g () = iy () -

Jj=1

We assume ¢ to be generic, meaning that all the c; are
nonzero. Since E; ; ,, including their conjugates, are all
linearly independent, this gives

a;(h')? = aj (W)? = i(a;(h")
j=1,..N=-2.

—a;a (') =

Since a; are real valued, we also get

a;(h") =

j=1,..,

(W), a(H)? ~
N-2.

1 (R)? =0,
(3.12)

4, . . . . . .
That is, a linear combination of simple roots with non-
negative integer coefficients.

Jj=1

[

matrix of SU(N), as defined in Appendix A2, so that
a;(h") = 2)’5'") - yﬂ)l - yﬁ'li)l-
expression is not necessary in order to get the general
solution.

However, such an explicit

A. Explicit solutions

Now, we want to find all the solutions of Egs. (3.8) and
(3.9). To this end, we make use of some technical facts
explained in Appendix A 2. Let us first consider Eq. (3.9).
Using Eq. (A16) it becomes

j+1(h’ )))C Cj+lEjj+2 H.c. =0. (311)
|
The first two equations give

a;(h") = ay(h"), j=2,...,.N—-1 (3.13)

We have two possibilities: 2/ = 0 or not. We now show that
the second case leads to a contradiction. First, notice that if
h" # 0 then it must be a;(h") # 0 for at least one j (since
the a; are linearly independent) so that all a;(4") are equal
and different from zero. From the second equation of (3.12)
we have that there must exist signs ; such that

a;(h') = gja; ('),

: N1,

j=2,... (3.14)
Deriving it with respect to r must give (3.13); thus, &; = 1

for all j, and we are left with the linear system of equatlons

125011-4
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a;(h') = a; (1), N -1
Since the a; are linearly independent (of rank N — 1) this is
a set of N — 2 linearly independent equations for 7’ € H.
Since H is N — 1 dimensional, the space of solutions is one
dimensional, and its general solution is

= f(r)v,

where f is an arbitrary function and v € H is the unique
matrix satisfying a;(v) = 1 for all j (which we will
compute later; for now it is sufficient to know it exists).
We now replace this solution in Eq. (3.8). We immediately
get

j=2.... (3.15)

h'(r)

2N1
( 2L2Z|C 21)

Since we have assumed /7" #0, we have [ # 0 and,
therefore,

2 Nl

= 2L2 Z |c; |2J

After applying «; to this equality, using that a;(v) = 1 and
noticing that ay(J;) = C,, pj are the components of the
Cartan matrix, we get

2N1

§ : AN-1k,j

This relation can be inverted easily: If we consider 1 at
varying j to be the components of a vector in R¥~!, we can
apply the inverse Cartan matrix to both members, thus
getting

2
__r C
D Sle
ﬂmkl

Since 4 is positive and the same is true for the elements of
the inverse Cartan matrix (A15), we see that this leads to a
contradiction. Therefore, the only possibility is that
f'(r) = 0, which is equivalent to 4”(r) = 0.
Hence, we proceed in investigating the first possibility,
= 0. In this case Eq. (3.8) is automatically satisfied, and
Eq. (3.9) reduces to Eq. (3.14). Its solution is

|Cj|2 =

W(r)=av (3.16)
where a is a constant and v € H is the unique matrix
solving a;(v) =¢;, j=1,....N—1 where ¢ €{0,1}
(and £, = 1). Since ¢, is fixed, this gives a 2V=2 solution
for every choice of ¢; in k. As we will see in the explicit

example of SU(4), however, not all of these are really
distinct solutions. There is a convenient way to express v
explicitly. Indeed, let us write’ h = arv,, where a is a
constant and v, € H is a matrix,

v, = diag(vy, ..., vy) (3.17)
such that a;(v,) =¢;, & ==+1, i=1,....,N—1 and of
course Y N, v; = 0. These equations are easily solved by
writing v = Z;‘;} w;J; so that the equations are

N-1
€k = 2 :CAN—]k.jo
Jj=1

and the solution is
(3.18)

and

(3.19)

We have thus proved the following proposition.

Proposition 2: All the solutions of the equations of
motion (2.2) determined by the ansitze (3.1), (3.2), and
(2.3) are given by

h(r) = arv,,
_§ : -1
Ve = CAN—lj.kngj’
J.k

where a is a real constant and ¢; are signs, with &; = 1.

These solutions are only local solutions, which means
that they solve the differential equations. They do not
extend automatically to global solutions, which are sol-
utions with a well-defined baryon number. Looking for

global solutions is the task of the next section.

(3.20)

(3.21)

IV. GLOBAL SOLUTIONS

Up to now we have found the most general solution of
the differential Skyrme equation. Nevertheless, it is not
sufficient to determine a skyrmion, since global conditions
have to be imposed in order to get a solution with a well-
defined topological charge. This condition is not simply
equivalent to imposing that the topological charge must be
integer (this is just a consequence of the right topological
condition) but that it has to wrap a homological cycle an
entire number of times (mathematically, it has to cover a

>We omit an irrelevant additive integration constant.
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cycle, which means to be a surjective map with a well-
defined degree). We normalize the parametrizations so that
all ranges are in [0, 27].

A. Statement of the problem

The difficulty in passing from local solutions to global
solutions is twofold. In order to illustrate it, let us consider
the specific example of SU(4) when k is given by ¢; = 1.
For getting a well-defined global solution, the function

gly) = e"™* (4.1)

is expected to provide a good coordinate of the image of the
solution. Since the target space of the map is compact, this
requires that if we extend the range of y to the whole R,
g(y) must result in a periodic function. Now, a simple
calculation shows that the eigenvalues of k are +u, +u_,
with

pe =§(\/§i 1). (4.2)

This means that, for a suitable unitary constant matrix U,
we have
g(y) — Udiag(emﬂu’ e_mylbr’ e’”}’ﬂ—’ e—M}’/‘—)UT. (43)

In particular, its elements have periodicities 7. with

2w
= . 4.4
- mu| 44
But since
T, 1
— == 4.5
- =503+V5) (4.5)

is not rational, they do not have a common period and the
orbit never closes; thus, it is not a periodic function but,
rather, its orbit describes a curve which densely covers a
bitorus in SU(4). In particular, it is not possible to use g(y)
as a good factor to get a finite covering of a cycle, even
though it gives a solution of the equations of motion. It does
not provide a solution with a well-defined topological
number and must be discarded. One has to tackle the
problem of looking for acceptable matrices k that are
matrices generating a well-defined period.

Assuming we have solved the periodicity problem,
there is a second subtlety to be tackled: how to determine
the right range of the coordinates in order to correctly cover
a cycle. First, notice that z3(SU(N)) = Z. This suggests
that, homotopically, we have just one representative for
any given topological (baryonic) charge. Moreover,
since 7,(SU(N)) = 0, we also have H3(SU(N),Z) = Z,
so we also have a unique homological representative.
Nevertheless, the solutions do not have to be identified

under deformation but, at most, under gauge equivalence.
But since the action is not gauge invariant, in our case all
the different representatives in a given equivalence class
must be considered as different solutions.

We distinguish three different classes of solutions. The
first two classes have canonical representatives: the SU(2)
type, which belong in every class, and the SO(3) type,
which belong in even classes only. They can be simply
understood as follows. For any given N we can embed the
representations of su(2) into su(N). Exponentiating, they
will give realizations of SU(2) or SO(3), depending on the
specific representation. These realizations give rise to pure
SU(2)-type or SO(3)-type solutions. However, they can be
continuously deformed by varying the corresponding ¢
when allowed, giving rise to solutions that are not embed-
dings; thus, we can consider them as true SU(N) solutions.
But there exists a third class of solutions that cannot
be obtained as continuous deformations of embeddings.
Their existence is due to the fact that SU(N) has a center
isomorphic to Zy, which acts continuously on SU(N); see
Appendix A. In particular, if I" is a normal subgroup of the
center, then one can construct the group SU(N)p :=
SU(N)/T. The new class of solutions is generated by
cycles in SU(N) that reduce to cycles of SU(N) after
the quotient. We call them genuine SU(N) solutions. We
consider them carefully in the explicit examples of SU(3)
and SU(4), where everything is exactly computable, but
now we briefly describe the SU(2)-type and SO(3)-type
solutions, where some details are a priori known; see
Appendix C.

An SU(2)-type cycle has the form

U((b, 7, 9) — ed)keh/remyk’

where /' is constant and the coordinate must run as follows.
The range of r must be T /4, where T is the period of e
The range of y must be T, the period of e’* (with m = 11),
and the range of ¢ must be T /2. Therefore, the convenient
choice for the coordinates is

@ €10,T;/2],

rel0,T/4], y €10, Ty,

corresponding to the baryon number
B = mBo,
where By is the fundamental charge of the given skyrmion.
For SO(3)-type cycles the interval for ¢ must cover an

integer period, so the ranges must be

@ €[0,T,], rel0,7/2], y €0, Ty,
and the corresponding baryon number is

B = 2mBO

125011-6
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The SO(3)-type can be defined as the “dibaryon class” after
the seminal works [31,32]. These results were extended,
keeping spherical symmetry, to the SU(N) case in
Refs. [53-56] leading to numerical nonembedded configu-
rations in the SU(N) Skyrme model. In the present paper
we generalize those findings to the nonspherical case at
finite baryon density, achieving, moreover, analytic
solutions.

B. SU(3) skyrmions

Let us apply the above formalism to the case N = 3. In
this case the problem of periodicity will not arise.

1. SO(3)-type solutions and genuine SU(3) solutions

The matrix k is

0 C1 0
ke=1-ci 0 o (4.6)
0 —¢; 0

We put |c||?> = |¢1]> + |c»|*. Then, the characteristic equa-
tion is

(42 +[lel*)2 = 0. (4.7)
The eigenvalues are 4y = 0 and 1, = =+i||c||, so that
gly) = e (4.8)
is periodic with period
2r
y (4.9)
el

Now, we determine the Cartan element. We have two
possibilities according to the two possible choices for &:

1
= . 4.10
e= () @10
The inverse Cartan matrix for SU(3) is
L ! (4.11)
A3\ 2 ) ’
Thus, we find the two solutions
ho(r)=ar(J, + J,), (4.12)
a
h_(r):§r(J1—J2). (413)

The period of exp i, (r) is

27
T, =2, 4.14
= (4.14)
while the one of exp A (r) is
67
T, =—. 4.15
= (4.15)

Now, we discuss the global properties in order to fix
the ranges of the parameters. To this end, according to
Appendix C, we have to look for the intersection between
the orbit of 4 and the one of yk,.. Using the characteristic

equation we immediately see that (see Appendix E 1)

llell

Sinz(T)/)
lel?

K2, (4.16)

so that the intersection we are looking for is just the unit
matrix /. However, we notice that the orbit of exp h_(r)
contains the elements
exph_(2z/a) = ™1, exph_(4x/a) = eI, (4.17)
which are both in the center of SU(3). Following
Appendix C, we conclude that i_(r) defines a genuine
SU(3) solution, while only A, (r) is of SO(3)-type.

In order to correctly define the solution, we thus have to
identify the ranges as follows. First, it is convenient to
normalize ¢ so that ||c|| = 1. This is equivalent to rescaling
the coordinates ® and y. Therefore, we fix once for all the
metric to be

ds* = —di* + L3dr* + Lidy* + L, dg?, (4.18)
with a range of coordinates
0<r<2nm, 0<y<2r, 0<¢p<2z, (4.19)

with the caveat that, despite the chosen values, none of the
coordinates is periodic. Our skyrmions are living in a
rectangular box.

SO(3)-type solutions.—We already know that r must cover
1/2 of the period of the Cartan torus, which implies that we
have to fix a = % Hence, our solutions are

VS [t.r. 7] = ePhee@Uith)emrhe  (4.00)
t

o=t _, (4.21)
L,

o.7.r € 0,24], (4.22)

B —2m. (4.23)
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More explicitly,

c . D N (. , .
Uslt.r.g.7] = (I + sin(®)k, + 2 sin’ Eké) diag <e’i, 1, e_’7> <I + sin(my)k, + 2 sin® ﬂkﬁ) :

2

We can now compute the energy and the factor g, = % We omit details here, since particular cases of the general one for

generic N are considered below. We get

Kn® [ 4 1 A
g+<m’ Q) = LrLqu)7 L_gg
where |c;|? + |¢,|*> = 1. In particular, for each value of m,
( )= L,LL Kn [ 4 n 1
m,c) = — | =+
R I VR

Some comments are in order here. The reason that the
solution we have just described is of SO(3)-type can be
understood by remembering that we are working with 3 x 3
matrices, which naturally carry a representation of spin 1 of
the rotation group. Indeed, the minimum energy case just
discussed, in which |c;| = 1/ /2, corresponds exactly to
the case when the matrices /., and k. are the generators of
the group SO(3) in the representation of spin 1. The other
solutions, for every fixed m, are continuous deformations
obtained by varying ¢, which does not change their
topological nature, and, in particular, the baryon number,
but it changes the energy. One can easily check that for
generic ¢ the matrices h, and k. do not generate a
subgroup. One may wonder if this is related to the fact

|

g.(m, ¢)| takes its minimum at |c,| = |¢,

+

m2

PR
o T L (=3 Ple?) )
+8L%+16L§,L3+L3< ot -3lallal )>]

¢

, which is

6202 12\" 302 23)]

that their energy is not a minimum. The present remark
suggests how to look for SU(2)-type solutions.

Genuine SU(3)-type solutions.—Since this case does not
enter in the canonical classes, we have to manage sepa-
rately the determination of the correct ranges (then nor-
malized to 2z as specified above). As for r, we will prove in
Proposition 3 that in order to have r in the range [0, 2], one
has to fix a = 4. For what concerns the other coordinates,
let us note that i_(r) does not commute with k. but it

commutes with k2. Therefore, for g(y) = e’*, we see that

g(T;/2) commutes with e-("), This means that we
can write

9@+ T/2)e"-g(y) = g(@)g(Tr/2)e"- M g(y) = g(®@)e"-g(T/2)g(y) = g(®)e" gy + Ty/2).

If we assume that US[®, r, y] = g(®)e"g(y) is covering a cycle, the relation US[® + T}/2, 7, 7] = U=[®, r,y + T;/2]
shows that we are covering it twice unless we restrict one of the two ranges, of ®@ and of y, to one-half the period of g. We
choose to reduce ®, so we replace ® with ®/2. Thus, our solution is

USltr,.7] = et e, (4.24)
® = Li o, (4.25)

@.y.r €[0,2x], (4.26)

B =m, (4.27)

where B has been computed as in Appendix F. Explicitly,

C . ® . Q . Ha i ;T . .
Ut r.p.7] = (I + smfkf + 2 sin? 7 ki) diag <e’a, e, e’E) <I + sin(my)k, + 2 sin® ?kﬁ) )

For U_, ¢ is independent from c,

g-(m,c)=L,L,L

Kr3 [ 4 2
?om

A m? A A
LI I, S R —
EAETERTEVEN L2( +16L3+4L§5>}

14
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2. SU(2)-type solutions
It is now clear that in order to find SU(2)-type solutions
we have to consider deformations of spin % representations.
This can be obtained by “reducing matrices” down to 2 x 2,
and it can be achieved by choosing

0 ¢ O
k=k. =] - 0 0],

0 00

(4.28)

where ¢ is a phase. This is not the same thing as simply
putting ¢, = 0 in k. in the sense that we have to choose
k = k. before solving Eq. (3.9). Indeed, in Eq. (3.9) we
assumed that all simple roots are involved. This fixes the set
of possible choices of 4(r), and if in the above solutions we
deform smoothly ¢ to (c,0), we cannot move away from
our topological classes. This is confirmed by the fact that if
we put ¢, = 0, the matrix k reduces to a 2 x 2 matrix, but
the k. do not allow us to reduce the representation down to
C?. We have to make a discontinuous deformation. The
point is that for ¢, = 0 the root a, does not enter into
Eq. (3.9), which, indeed, for N =3 becomes just an
identity. This means that when ¢, =0 we can choose

for h(r) any combination
h(r) = arJ; + brJ,, (4.29)

with the only caveat that ¢"(") must be periodic, so a and b
must be in a rational ratio. We can set

K32 1
go(n,c) = —

C. SU(N) skyrmions

We now consider the class of skyrmions associated with
the matrix k given by

=

—1
kg = (chj’j+1 — C;kE‘/+1j) (436)

~
Il
-

We will limit ourselves to the case when all the c; are
different from zero. Here, we have to face the problem of

establishing for which choices of c¢; the matrix et is

periodic. For now, let us assume this problem is solved and
write down the corresponding solution:

Gq)kgeav;r m}/k£
9

Uelt,rop.r] = e e (4.37)

t
O=—-—0,

i (4.38)

L +”2 41t t
0z ez sz 2" Az Tz |

h,(r) = arJ, 4 aqrJ,, qg € Q. (4.30)
For ¢ = 1 we return to the previous SO(3) solutions,
while, of course, ¢ = 0 provides a canonical embedding of
SU(2) into SU(3), thus identifying an SU(2)-type solution.
It is worthwhile to mention that since g € Q, it cannot be
deformed continuously among the three values, which is
compatible with the fact that the case ¢ = 0 is not in the
same topological class as the other ones and, indeed, we
may wonder what happens for all the other values of ¢
since they would generate new genuine SU(3) solutions.
However, they have vanishing baryon number, so we will
not consider them further.
Thus, we get the solutions

Uslt, r. . 7] = e®eiemrt, (4.31)
@ = LL -, (4.32)
P
p.7.r € [0,24], (4.33)
B =n. (4.34)

The 1/2 factor in the first exponent has been added to
ensure that when @ varies in [0, 27|, it covers half of the
period. Finally, we can compute the factor g:

(4.35)
@.y,r €10,2x], (4.39)
B = o2m||c||?, (4.40)

where 6 = 1 for SO(3)-type solutions and ¢ = 1/2 for
SU(2)-type solutions, and v, is given by Eq. (3.21). For
general genuine solutions the value of ¢ must be computed
case by case. For any admissible ¢ these are 2¥~2 solutions
(since € = 1). In principle, a could depend on N and e.
However, we now show that this is not the case and that the
value of a is completely fixed by requiring that the
normalized interval [0,27] for r must have the extension
necessary to cover a cycle once:

Proposition 3: If exp(awv,r) is such that r € [0, 2],
and the corresponding map U%[t, r, @,y] does not have to
cover a cycle more than once, then necessarily a = %

Proof—The proof is simply based on the same
strategy used in Ref. [39]: One first constructs the invariant
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measure restricted to the hypothetical cycle; the resulting

suitable interval for r is [0, 7/a]. Since we want it to be

measure will depend explicitly on some of the coordinates [0,27], it must be a = % m
and will vanish at a specific value of that coordinate. The Therefore, we definitely have

good range for such a coordinate to cover a cycle just once

is any range between two vanishing points. The Haar a= % (4.41)

measure that is restricted to a cycle, apart from an eventual
normalization constant, is just pz, which is computed in
Appendix F. Since it depends on r via sin(ar), we see that a

|

in any case. Now, we can compute the g-factor for our
solutions. To this end, first note that

K | . A oo A s
TOO:—ETI' E(RR7+RR>+16FPGF +R,Rt+zg Ft(lFlﬁ
K_ (R? R} Ki K K\ _ (F% Fo
=——Tr L) ——=Tr(F,)? —=TrR? - —Tr( -2 + =X 4.42
4 <L2+L%> 16 [T(Fyr)” =5 TeR; 8L2 <L2+L2> (4.42)
according to Appendix B, and we use
1 1
RZ‘ :L—(qu), Fta —L—(/}Fq;a (443)
According to Egs. (B6)—(B8), with a =3, we have
TrR? = —T k2 — llc|l*e?, (4.44)
L Lg,
TrR; = m*Trk; = —2m (4.45)
1
THR? = Tra = ——ZCAN et =g leelP. (4.46)
m2
Te(F, ) = mPTe([K k] = =2 el (447)
2 2 n2 o
Tr(Fy,)* = o°Tr([x, h']?) = —7||g|| , (4.48)
, /Nl N-2 1
Tr(Fy,)? = *m*Tr([x, k,])? = —8m?c? sinz5 <Z el + > |c.,.|2|cj+1|25 (1- 35.,.;,“)). (4.49)
=1 =1
Replacing this in the expression for Ty, and using that the energy is
2 2
/ dr/ d(p/ dyL,L,L,To(r), (4.50)
we get
|| vell? 6%
E—LLLylclP X167
rley r/)HQH |: H ||2L2 LéL%
m’ A 4 2
85 1+16L2+L2|| P Z|c,| +Z|c,| il (5 =5 : (4.51)

In a similar way, one can compute the baryon number. This is done in Appendix F, with the result
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B = 2mo||c|]%. (4.52)
From these results we immediately get the g-factor:

Kr? o’ v |I* )

N,m,c,e)=L,LLyj— 16—+ —5— + — "

9N m.c.e) " 4om { ||c||2L2 L2102

m2 A 4 2
+8 5 1+ 16L2+L2” P Z|c]| +Z|c]| ¢l 2 2 €€ : (4.53)
14

Up to now, we have assumed ¢ to be normalized so that g(y) = ¢’*< has period 2z. However, we will not find a solution until
we are able to specify for which ¢ the function g is periodic. Therefore, we cannot further postpone tackling this problem.
However, before considering it, in general, we concentrate on a very particular case, when &; = 1 for all ;. In this case

lv]1?

K
gWN.m.0) = LiLyLy o 16L2+|| B L2L2

m? A Ac? 4 =2 5 )
v r Pl =1 j=1
It is clear that, among all possible choices for ¢, this (4.59)

minimizes the energy, apart from possible effects due to
|v]|. We also want minimize with respect to the c;,
assuming the normalization of ||c|| is fixed. Introducing
a Lagrange multiplier A, we have to extremize the function

_ —1
v= ZCANflj,kJJ'
Jk

Moreover, we have the following proposition.
Proposition 4: If ¢; are given by Eq. (4.58) and v is as

in Eq. (4.59), then

N-1 N-2
=S lel = S lejPlejl? - AllelP. (4.55) P = Anave - 1), (4.60)
j=1 j=1 12
Deriving with respect to |c;|?, we get the system [o]* = EN(NZ - 1), (4.61)
Ca,lcf* = AL (4.56) and
N-1 N-2 A2
with 1 being the vector in R¥~! having all elements equal to Z |Cj‘4 - Z |cj|2|cj+1 > = ﬂN(Nz - 1)
1. This gives the solution =1 =1
A
= el (4.62)

A
ci]>==j(N-}j). 4.57
J
2 Proof.—The first result follows immediately from the
well-known formulas

Interestingly, this also automatically solves the periodicity

problem. It is easy to see (Appendix D) that N-1 N(N =1
j= ¥ (4.63)
= 2
A . 1 for odd N
€= EJ(N_])’ A= {; for even N (4.58) N-1 N(N = 12N =1
2= W-1EN=-1) (4.64)

6

=1

~.

where {; are arbitrary phases, given a matrix e’ that is

periodic in y with period 2z. For v we find For the second expression notice that, by using Eq. (A15),
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ol =Yl

where f is given by Eq. (4.55). From this we get

Jk
1 {Z . N-1
— | =+ Tk - ) or _
N <k =k kz:;cka—ck—o (467)
1 : .
= _NZ]I“L ZJ + Zk
ik <k Jzk Now, f is the sum of two homogeneous pieces, one of
1= N2 M ) Nl degree 4 and the other of degree 2. Therefore, we can use
Y <Z J> + Z](N —j-1+ Zk(N — k), the Euler theorem® to rewrite the last as
=1 j=1 k=1
(4.65) et Voo
- 4 _ 20~ 12) 2
and the final expression again follows after applying the 0= 4<Zl <)l Zl lejl*lejsl ) 2A[[c]]?,  (4.68)
above well-known formulas. = =
For the last formula, notice that the c¢; are solutions of
which completes the proof. ]
of =0, k=1,...N—1, (4.66) Using these results and noticing that 6>A = 1/2, we find
dcy for the energy per baryon
|
[ 6> o 6% m? A A
N, =LLL,—|45+—+-—5+2—5|1+—+-—]]. 4.69
gN- ) i o PR TER TR R » < ez " 4L§,>] (4.69)
—1)N 41
A=200" g=2 (4.70)
B=2"% m s N(N? = 1) (4.71)
I
Notice that g(N,m) depends on N only through o. Va Vv m~/A
We can also notice that L,= i L= 3 L=—7+,
Z o i
Iy = N(N*-1) with the corresponding minimal value
6
Imin = KV (1 +2V/2). (4.72)

is the Dynkin index of the given representation of the
principal representation of s/(2) in sI(N), so the funda-
mental baryonic charge associated with it is

1
B=o"ly.

Notice that for N odd, I is even; thus, B is always
integer.

Finally, we are also interested in minimizing expression
(4.69) with respect to L,, a = ¢, r,y. This is done, in
general, in Appendix G. By using the formulas therein and
the ones in the last proposition, we find that the minimum is
reached at

®That is for a homogeneous function f: RN — R of degree L,
one has

X-gradf = Lf.

Using normalized units [corresponding to A =1 and
K = (62?)7'] we get

142v2

~ 2.00456. (4.73)

Ymin,stand = T

Notice that this is independent from NV, and it is expected to
be the absolute minimum with respect to any choice of ¢;.
We will not try to prove this conjecture here; we will limit
ourselves to checking it for N = 4 below. The comparison
with Ref. [57] is very interesting. The present results are
slightly above the bound in Ref. [57] due to the time
dependence in the ansatz. Note, however, that the present
time dependence cannot be undone as the present solutions
also wrap, in a topologically nontrivial way, around the
time direction. To the best of our knowledge, this is the first
analytic computation showing explicitly how the closeness

125011-12



ANALYTIC SU(N) SKYRMIONS AT FINITE BARYON ...

PHYS. REV. D 101, 125011 (2020)

to the BPS bound “evolves” with N in the SU(N)
Skyrme model.

To be more specific, as has already been emphasized, we
are interested in topologically nontrivial solutions. In the
present context this means that we only consider SU(N)
ansatz such that

pg = Tr(U'dU)? #0.

As has been discussed in the previous sections, pp
represents the baryon density when it is nonvanishing
along three-dimensional spacelike hypersurfaces Z,_ qnq-

In these cases, the integral of pg over X,_ ., represents
the baryon charge, while mathematically these integrals
represent how many times the SU(N)-valued skyrmions
wrap around X,_... On the other hand, pp can be
topologically trivial also along timelike hypersurfaces. In
this case, one can also consider the wrapping of the SU(N)-
valued configurations along three-dimensional timelike
hypersurfaces. The configurations which have been con-
structed here are—as a direct check easily reveals—
topologically nontrivial in two ways. Not only do they
possess nonvanishing baryonic charge, but they are also
wrapped nontrivially along timelike hypersurfaces. Indeed,
if one considers

ﬂq’kg e4ver mJ’kg ,

Ug[t, royl=e e

® t
:——(p’
L(ﬂ

then the corresponding topological density has one space-
like component and one timelike component:

pB~dr/\d(p/\d}/—dr/\d<£> A dy.

In particular, this implies that these SU(N) skyrmions wrap
nontrivially around the three-dimensional timelike {¢ =
const} hypersurfaces. The consequence of this fact is that
the time dependence of the present configuration ‘“cannot
be undone”; otherwise the winding number corresponding
to the {¢ = const} hypersurfaces would change.

D. Solving the periodicity problem

The solution to this problem is provided in Appendix E.
We discuss the main results here. The vectors ¢ € CN~!,
having all components different from zero and allowing for
a periodic function g(y) = e’*, with period 2z, form a
family

(4.74)

'SL.C. is particularly grateful to Laurent Lafforgue for
suggesting how to tackle this problem in full generality.

where m = (my,...,m,), is a finite, strictly increasing
sequence of strictly positive coprime integer numbers, n
is the integer part of N/2, a € [0,27)¥~!, and t€ W C
RN="=1 is a set of parameters parametrizing the strictly
positive real solutions of the algebraic system

N-1 n
o= m, (4.75)
j=1 a=1
Yoo Giol= ) me g,
J1<K...<jr<N-1 a;<...<ay<n
k=2,...n, (4.76)

in real variables ;, j=1,....N —1.

The parameters a and ¢ form a moduli space TV=! x W.
The relevant physical quantities depend only on |c;|, so
they are independent on the components in the N — 1-
dimensional torus. Therefore, we can say that only W
represents the relevant moduli. As one could expect, in
particular, the baryon number associated with a solution
constructed with ¢(m, a, t) depends only on m and not on
the continuous moduli:

B=2omY m. (4.77)
a=1
The general form of g(y) is
) N-1 _
e’ = folr.m)I + ij(%m)ké(m,%), (4.78)
=1

where the f5, # =0, ..., N — 1 are linear combinations of 1
and sin(m,y), cos(m,y), with rational functions of m as
coefficients, and satisfying f(0,m) = 1, f;(0,m) = 0 for
j > 0. In particular, the dependence on the continuous
moduli is only through kJ£

E. Back to N=4

Following Appendix E 3, for any two coprime positive
integers p and ¢ such that p > ¢, for N = 4, we can find
four families of solutions, each one parametrized by three
real phases @, @,, a3 and a real modulus 7 € [g, p|. Each of
these families is specified by one of the four possible
inequivalent choices for the discrete vector e. Recall that in
this case the inverse Cartan matrix is

. 3
1

[NCIEEE N )

1
2 |. (4.79)
3

We also have (see Appendix E 3)
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2 2 2 2
xk,. P . q .
ga(x) =€ = ( cos(gx) — cos(px))]l + <7 sin(gx) — sm(px))kc
P-q P-q a(p* - %) p(p* = 4%
1 sin(gx)  sin(px)
+ (cos(gx) — cos(px))> K2 + < < k2, (4.80)
<p2 - -4\ g p ‘
with
0 el 0 0
—e"ing 0 ey 0
k. = . . , 4.81
(4 0 —e"”’2y/ 0 %em& ( )
0 0 i g
—72 0 ei(a]+a2)ﬂ/j 0
. 0 (P +g-rh) 0 el 24y .
Ch emil@+am) oy 0 -(p*+¢* -7 0 ’ .
0 emila+as) 24y, 0 _rg
0 _eia,T(p2 + q2 _ %) 0 ei(rz|+az+a3)pqw
—ia 2 2 _ ﬁ _ i (42 2
i 0 e (p* + ¢*)w 0 —Ze™(p* +¢* - 1)
_e—i(a1+az+a3)pqv/ 0 P_;Ie—ia3 (P2 T q2 _ ,[2) 0
and
)
,,,:\/p2+q2—r2—p2q. (4.84)
T

1. The almost SU(2)-type solutions

The SU(2) solution is expected to be identified by
e, = (1,1,1). Indeed, from Eq. (3.21) we have

vy = édiag(& 1L-1,-3),  |wP=5 ~ (4.85)

which is exactly the matrix representing the diagonal
generator of SU(2) in the spin-3/2 representation.
However, this is not true, in general, and we see that in
this series only the one with (p, g) = (3, 1) is deformable
to an SU(2) embedding. Let us first look at the coordinate
ranges. Regarding the range of r, it is completely fixed by
Proposition 3. As for the remaining ranges, they must
correspond to the period of g, unless there are (finite
discrete) subgroups of the U(1) group generated by gy,
which commute with »,. Since v, does not commute with

125011-

kﬁ, Jj = 1,2, 3 (or any linear combination thereof), we have

to look for the values of x, such that f;(x) =0, j = 1,2, 3
(Appendix E 3). Looking at f5, this means
cos(px) = cos(gx), (4.86)

that is,
px ==Eqx +2¢rn (4.87)

for some integer 7. For the x satisfying this condition, call
them x,m, one has for f3

1
P —q

(l _ l) sin(gx.),  (4.88)

q P

falxE) =

which is zero for x = jz for some integer j. Since our
coordinates are forced to vary in [0, 2z], the only nontrivial
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possibility is x = z. Putting this back into the previous
condition, we must also have
p—q=2¢, (4.89)
which means that, since p and g are coprime, this happens
only when both p and ¢ are odd. In this case g4(7) = —
Therefore, we see that for p — g odd, there are no discrete

symmetries, and the ranges of ® and y must coincide with
the whole period, so ¢ = 1. Instead, for p — ¢ even we have

94(® + m)e' gy (v + 1)
= 94(®)(-T)ex"" (-1)gu(y)

= gs(®@)e 2 94 (), (4.90)

so we see that, to any point on the image, there correspond
two different coordinates (®,y) and (® + x,y + x), unless
we restrict one of the two ranges to half a period. We

choose to use @, and, in order to keep its range as [O, 27:],
we fix o = 1/2.
The field is

ar 00 0
0 e 0 0
U,=g4(6,_,P L my),
g4( P—q ) 0 0 o-lir 0 94( 7)
0 0 0 er
(4.91)
o—_ (4.92)
e L(p §0, .
1 if p —qis even
Cpy= {2 . . (4.93)
1 if p—gis odd.

The baryon number is B, = 20,,_
the g-factor we get

m(p? + ¢*), while for

K 1662 _ 5 yer m? A
,g,m,7)=L.L,L b=q r=a g™ (4
ga(p q,m T) r~y (/)4ap—qm |: Lgi (p2 + qZ)L% L;Lz + L2 t 16L2
Lgp2 MR ) (1 L 4’ 3ptqt 1 3¢ i)}
P q L2 L<20 p2 + q2 (pZ + q2)2 (pZ + q2)2 (pZ + q2>2 1.4 p2 + q2 1.2

(4.94)

The corresponding minimal energy, expressed in normalized units, is given by Eq. (G16), which in this case becomes

2 3 1'4

4p*q? 3ptgt 1 3pq

9a(p.q.7) = 3\[{2%[( pe

+61

We can further minimize with respect to 7. Setting x = 72,

we have to find the stationary points in
> <x < p’ (4.96)

Deriving the expression in the square root with respect to x
and multiplying by (p? + ¢%)*>x?/6, we get the equation

0= (x* = p’q’) (xz - % (P’ +4%) + quz>_ (4.97)

This gives the admissible solutions (x is positive)
\/ (P + )
16

Note that x, is always present, while x, are stationary
points only when the square root is real, that is, when

2, 2
—p+qi

2.2
Xy = 4

g
(4.98)

X0 = P9q,

(p* + ¢*)?* = 16p*¢*> > 0. (4.99)

_|_
(P* +4*)?

1 (4.95)

(P* +4*)*

)]

Setting z = p/q this means x* — 14x%> +1 > 0 so (since
p/a>1)

(P*+¢*)* e p*+q’t

[
2> T+HV48 = (2+V3)?, (4.100)

and, finally,

PooyVa (4.101)
q

Taking the second derivative of the above expression and
evaluating it in x,, we get that x, is the absolute minimum
(at fixed p and gq) if

gL 1, (4.102)
q p
that is (recalling p > g), for
1<? o> (9+\/_) (4.103)
q

125011-15



ALVAREZ, CACCIATORI, CANFORA, and CERCHIAI

PHYS. REV. D 101, 125011 (2020)

otherwise the minimum is placed in x,. In conclusion

Jamin(P- @) = —= 2+ V57.(p. )] (4.104)
f
L+ 107 — 6 2L, if 1 <2 <5(9+V77)
+ + q "2
Xa(P.q) = pz 2q r . (4.105)
1-2 otherwise.

(P*+4*)*

The absolute minimum in the family is the minimum of the
first row. Setting x = pq/(p* + ¢*), we see that 1+
10x*> — 6x has a minimum for x = 3/10, which corre-

Regarding the ranges, we can use the same exact reasoning
as for the previous case, so we get

sponds to p =3, g=1. The corresponding absolute im0 0 0
minimal energy is exactly Eq. (4.73). This is not surprising 0O 1 0 0
at all since (p,q)=(3,1), e=(1,1,1) correspond to Up(t..1.7) = ga(0,_,P) 0 0 ¥ o ga(my),
solution (4.69) for N = 4 [if we use Eq. (4.57) with A = ¢
2 in Eq. (E59)]. This corresponds to the undeformed SU(2) 0 0 0 1
embedding, as anticipated. (4.107)
2. The case e,=(1,1,-1) o ‘ 1 for p—gqodd 4108
In this case we get L, — ¢ Or=a = {% for p — geven. (4.108)
vy, = idiag(1,0,-1,0), [0p]1> = 2. (4.106) The baryonic charge is
|
B =20, ,m(p* + ¢*). (4.109)
For the g-factor we get
Kn® [166%_ 2 03—y m? A
k) ’ ’ = LrL L - 87 1 Tr72
g5(P.q.m.7) ¢ 4 gl [ L(%; (p2 +q2) L2L2 * L2 ( + 16L%>
2 2 yi 2 2 2.2 3 4 3 2
mz%(J(pz—Fq)Q‘F 2pq22 ZT 22~ 2T 2)] (4.110)
L L; (P*+4q°) (pP*+4¢°)° p*+gq
The corresponding minimal energy, given by Eq. (G16), in this case becomes
P 4 2\
pq 37 3 2
95(P-q:7) = {2+f< S+ -~ ﬂ (4.111)
3\@ P+a)? PP+a)? PP+
! 1
We can further minimize with respect to 7. Setting x = 72, (p.q) = 24 \/’ P’q’ 2
it is immediate to see that in this case the minimum is  92min\P>4 3\/_ ( PrP+q¢*)?*) |
reached for (4.113)

PP +yq
2

Xo = (4.112)

’

For fixed g, this is a monotonic decreasing function of p, so

there is not an absolute minimum in this family. However,

corresponding to the value

125011

notice that the lower bound is

-16



ANALYTIC SU(N) SKYRMIONS AT FINITE BARYON ...

PHYS. REV. D 101, 125011 (2020)

242 3 Reasoning as before, we see that the field is now
rq 2 g )
9b.bound = lim |:2 + \/_< ﬁ) :|
N P+ ) )
=2(1+2v2), (4.114) e 000
6 0 e# 0 0
Ue = gs(0p-¢®) L, g4(my),
which is Eq. (4.73). 0 0 e 0
We finally notice that these kinds of solutions are not 0 0 0 edir
deformations of an SU(2) or SO(3) embedding, despite 4116
what one might suspect. Indeed, v;, may at most belong to (4.116)
the representation8 %69 00 or 1D 0 embedded in
SU(4). If so, there should exist a deformation of k., that - _ 0
is a particular value of the moduli, such that k. belongs to L, ’
the same representation. But in both cases the particular 1 for p—qodd
solution would also be embedded in SU(3), and then it | (4.117)
. 5 for p —geven.
would require ¢ = 0 or p = 0. 2
3. The case e,=(1,-1.,1) The baryonic charge is
In this case we have IS
B =20,_,m(p°+q°). (4.118)
=—(1,-1,1,-1 P =1 4.115
Ve 2( ) vl ( ) For the g-factor we get
|
Kn® [1662_ 1 Ao? m? y)
(p,q,m,p)=L,L,L L rma g™ —
gc(p q mp) rlby (/)Gp_qm|: L(zp 2( +q2)L2+L2L2+ L2 +16L%
m* A(p* + ¢°) ( 2p*q’ )}
+80%_,— - . (4.119)
P12 L2 P>+ )
The corresponding minimal energy, given by Eq. (G16), in P V17
this case becomes Gebound = 9c(2,1) = —= (2 + —> ~2.0916. (4.122)
3V2 5
(p-q.lol) == [2+<1 )P0 )2] (4.120) 4. The case 4= (1.-1,-1)
c s Y - = D ey Y ) . . . qd= ,—=1,—
N (P* +4°)? :
In this case
This is independent on 7, and for fixed ¢ it is a monotonic vy =i(0,-1,0,1), [vg|? = 2.

increasing function of p. It follows that the lower bound is
reached for p = g =1 (the value 1 is enforced by the
request that p and ¢ are coprime, but the result depends

only on p/q),

(14+2v2), (4.121)

Yebound = gc(l’ 1) = g
which, again, is Eq. (4.73). However, this is not allowed
since for p = g = 1 the functions f; are not periodic and
the solution of the equations does not yield a well-defined
global solution. In this particular family the absolute
minimum is instead

*We are using the convention that s indicates the representation
of spin s.

This case seems to be very similar to the case b. Indeed, one
can easily check that the matrices v;, k. transform into v,

k. under the map

Mat(N, C) — Mat(N, C),

Ajx > Ay Nk (4.123)
TxW-o>T xW,
(e, e, e, 7) = (€', €™, e pq/7).  (4.124)

Under this map the inverse Cartan matrix is invariant and
&, = —e, = g4, where the last equivalence is by a global
rescaling. This sort of duality makes the two families
perfectly equivalent, giving the same minima.
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Remark: We see that of the four predicted sequences of
families, the true inequivalent ones are the first three, while
the d case is not really new. It is natural to expect that such
duality extends to any N, but this would require a deeper
understanding of the global properties of the relevant
moduli space W. To this aim, it would be interesting to
investigate the explicit cases N = 5 and N = 6. However,
this goes beyond the scope of the present work.

V. SHEAR MODULUS FOR LASAGNA STATES

On the crust of ultracompact objects, like neutron stars,
nucleons form large structures called pasta states. Knowing
the elasticity properties of the crust may be very important
to understand the structure of the gravitational waves
emitted in a collision with a black hole. An important
recent result has been found in Ref. [12] where, using
numerical simulations based on the phenomenological
nucleon-nucleon potential, the authors showed that the
shear modulus for nuclear lasagna can have a value much
larger than previous estimates. Here we give a first-
principles explanation of it as an application of the sky-
rmionic model. To compute the shear modulus associated
with lasagna states, our strategy will be to first compute it
for the SU(2) case for the solutions determined in
Refs. [46,49], by employing its relation with the 1+ 1
computations presented in Ref. [58].

Let us begin with a review [49]. We consider the
symmetric case’ in Egs. (13) and (16) of Ref. [49], namely,
pP=4q, 12 = l3 = \/IK
This means that we are considering configurations in which

the SU(2) skyrmions live in a box of volume V,

Vtot = 1671'31411

where [; is the length along the r direction [which is the
coordinate of the profile H in Eq. (13) of Ref. [49]]. The
baryonic charge corresponding to the ansatz in Eqgs. (12)—
(14) of Ref. [49] is

B=pq=p’ (5.1)
[see below Eq. (24) of Ref. [49]]. Then, the SU(2) field
equations for the ansatz in Egs. (12)—(14) and (16) of
Ref. [49], with a static profile H = H(r), reduce to

d*u

02 +TZsinu =0,

(5.2)

where

Notice that we are referring to the p and ¢ in Ref. [49], which
have different meaning than the p and ¢ used in the previous
section.

0<r<2nr,

F2: E 2 /”%
A) 4+228

where % can be interpreted as the baryon density per unit of
area of the lasagna configuration (up to z factors). In order
to directly compare the present results with the ones in
Ref. [58], it is convenient to define the rescaled coordinate
y as follows:

(5.3)

(5.4)

y=TIr, 0 <y<2al, (5.3)
so that the field equation (5.2) becomes
&2 duy2
—d—y;tJrsinu—O@(d;) =1l-cosu+C, (5.6)

and the boundary conditions, in order to have baryonic
charge B = pq = p?, are

H(2r) = g & u(2T) = 2. (5.7)
Now, Eqgs. (5.5)—(5.7) (which are equivalent to the results in
Ref. [49]) can be compared directly with Egs. (2.4), (2.7),

and (2.9) of Ref. [58]. In particular, the difference between
the results of Ref. [58] and the present ones is

P(x) = u(y), (5.8)
L — 2aTl, (5.9)
2
k 2 =, (5.10)
, Cc
k' — 12 (5.11)

where the left-hand side (with respect to the “—”) is from
Ref. [58] while the right-hand side comes from the above
equations. Equations (2.9) and (2.10) of Ref. [58] read
L =2t]_(1),
/2
Lap(e) = [ s - sty
0

that is,

2 [ 2 -1/
=/ [ Tay(1- in? . (512
d=yorz ) o(i-ceity) e

which fixes the integration constant C in Eq. (5.6) in terms
of T,
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c =c(),

which depends on the baryon charge as well as the size of
the box in which the configuration lives. Now, with the
above dictionary, we can write the speed of sound of the
phonons using Eq. (3.15) of Ref. [58]:

v \/E zl
phonons — \/ & B
2 f(;[/z dy(1 — C%rzsmz y)1/?

Gsug)

Ty

’

where T is given in Eq. (28) of Ref. [49]. Thus, we have
the following expression for the shear modulus Gy (2) in
the SU(2) case:

GSU(Z) = (Vph0n0n5)2 Top.

We can then estimate it as follows. In place of T, we use its
mean value, computed as
0
T _ E minB

0 16m3,A°

where EV. is the minimal energy corresponding to B = 1.
From Table 1 of Ref. [58], we see that B/A is independent
from B for the minimal energy configuration. Using the
values in the table,'’ we get

Too =~ 1.2610%* erg/cm?.
With the same values, from Eq. (5.4) we obtain
I'~0.371, al ~1.166.

Therefore, condition (5.12), which is easily solved numeri-
cally after noticing that /_y(r) = K (%), the first complete

elliptic integral, gives
C~273
and
V shonons = 0.1198.
Finally,

Gsyp) ~ 1.810°% erg/cnr’.

"“Notice that with these values the baryon density is

n~0.0468 fm— ~ 0.05 fm—3, the same value used in the sim-
ulations of Ref. [12].

Notice that the present value is expected, to an approxi-
mation, from above since we are using a skyrmionic
effective model. From the above analysis, taking into
account Eq. (4.73), we can infer that, in any case, the true
value should be Ggy o) 2 10% erg/cm®. The comparison
with Ref. [12] is very good, especially taking into account
that we only used the Skyrme model.

At this point we can use the new solutions found in the
present work to relate the shear modulus for the SU(N)
case to the one for SU(2).

Let us consider the minimal energy per nucleon (4.72).
After multiplying by B and dividing by the volume, which,

because of (IV C) is proportional to 2, we get
- K
TOO X 71\,(1\,2 - 1)

On the other hand, the baryon density is

B N(N2=1)
"TReLLL S pr
Ll by

which, when solved for 4 and replaced in Ty, gives

TOO X l’l2/3\3/N(N2 - 1)

Assuming the speed of sound to be essentially independent
from N, as suggested by the fact that all the components of
T, scale in the same way with N, we get that the
dependence of the shear modulus from N is

Gsyv) & \/N(N* = 1),

so we get the final estimate for the value of the shear
modulus Ggy ) of the SU(N) Skyrme model as

Gsunvy = a(N)Ggy(2),

NN =)

alN) = {7

VI. CONCLUSION AND PERSPECTIVES

In conclusion, we constructed the first examples of
analytic (3 + 1)-dimensional skyrmions living at finite
baryon density in the SU(N) Skyrme model [which are
not trivial embeddings of SU(2) into SU(N)] for any N.
These results allow us to explicitly compute the energy-to-
baryon charge ratio for any N and to discuss its smooth
large-N limit as well as the closeness to the BPS bound.
The energy density profiles of these finite density sky-
rmions have a lasagna-like shape. A quite remarkable by-
product of the present analysis is that we have been able to
analytically estimate the shear modulus of lasagna-shaped
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configurations which appear at finite baryon density. Our
estimate agrees with recent results [12] based on many-
body simulations in nuclear physics using phenomenologi-
cal nucleon-nucleon interaction potentials.
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APPENDIX A: GENERAL FACTS AND
CONVENTIONS ABOUT SU(N)

In this section we collect some general facts we applied
for finding the solutions. Let V,(|) the N-dimensional
complex vector space isomorphic to CV, endowed with the
canonical Hermitian product

n
(zlw)=> zZw,.  zwecC
=

(x+iy)* =x—1iy, x,y €R.

The unitary group U(N) = U(V) is the group of unitary
transformations of V. Looking at U(V) as automorphisms
of V determines the smallest fundamental representation,
simply called V. The action of U(V) over V induces an
action on the external products AFV of V, and the
corresponding homomorphisms

U(V) = Aut(A* V), k=1,...N

are all representations, also called A V. For k=1, ...,
N —1 are all faithful (that is the kernel of the map is the
identity transformation) and are called the fundamental
representations. Any other finite-dimensional representa-
tion is obtained by their tensor products. Note that AN V is
not faithful. The corresponding kernel is a normal subgroup
of U(N) called the special group SU(N) = SU(V).
Here, SU(N) is a compact, simply connected, simple Lie
group of rank N — 1. This essentially means that it contains
a maximal Abelian torus 7y of dimension N — 1. On V, it
is represented by the diagonal N x N matrices T such that

Tj;=1,

1

N
j=1,...N.

J

The center Zy of SU(N) is the subgroup of T consisting of
the elements commuting with the whole SU(N) (equiv-
alently, it is the kernel of the adjoint representation). It
consists of matrices of the form wl, where @ = 1 and I is

the identity matrix. Therefore, Zy ~ Zy. All of the other
compact simple Lie groups locally isomorphic to SU(N')
are the quotients SU(N)p := SU(N)/T", where T" is any
given subgroup of Zy. They are not simply connected since
their first homotopy group is z; (SU(N)p) = Zy/T'. Note
that SU(N) is the universal covering for all of them. In
particular, for N = 2 we have just two groups, which are
SU(2) and SU(2)z, ~SO(3).

To any Lie group G, one associates the corresponding
Lie algebra L(G), which is the algebra of left-invariant
vector fields'' over G, endowed with the Lie bracket
product. In matrix representation it reduces to the commu-
tator [, |. Since the groups SU(N ) are locally isomorphic to
SU(N), their Lie algebras are all isomorphic. One gets

8u(N) = Lie(SU(N))

={X € Mat(N)|X" = =X, TrX =0}, (Al)
that is the anti-Hermitian traceless N x N complex
matrices.

In particular, H := Lie(Ty) is a maximal Abelian sub-
algebra of 3u(N), having the property that, for any X € H,
the linear map ady:8u(N)— 8u(N) defined by'
adx(Y) =[X,Y] for any Y € 3u(N) is diagonalizable
(on the complexification of the algebra).

We see from the definition that 3u(N) is a real vector
space of dimension N? — 1. A basis can be easily obtained
as follows. Forany j, k = 1, ..., N we define the matrix E; ;
with elements

(Ej,k)mn - 5jm5kn' (A2)
They are called the elementary matrices. With these
notations, a basis of 8u(N) is given by

Ajx = (Ejx = Epj).
1<j<k<N,

Six =i(Ejx + Ey)).
(A3)

Jh:i(Ejsj_EH‘lJJrl)’ hzl,...,N—l. (A4)

In particular, the matrices J;, span the Cartan subalgebra H.

1. Roots and simple roots

A concept that is particularly helpful for most of the
calculations we need is the one of roots. This is related to
the above observation regarding the diagonalizability of
ady for any X € H. The diagonalizability must be checked
on 81(N) ® C, which is generated by the complex span of
the basis given above, in place of the real span. Notice that

"'That is the vector fields invariant under the action of the left
translation L,:G— G, Lg(h) = gh, for any given g € G.

“This is called the adjoint action, and it defines the adjoint
representation of the algebra over itself.
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the complex span contains the matrices E; j, i # j. This is
sufficient to determine all the eigenvectors and eigenvalues
of ady for any given X € H.

To this aim, let us specify H as follows:

H:<X:iz”:chj,j Zici=0> . (AS)
j=1 R

where by (- - -)r we mean the span over R of - - -. Thus, we
immediately see that

(X, E;i] = i(c; = cp)Ejx (A6)

(X, /)] =0, (A7)
so that E; ; and J), are eigenmatrices of the adjoint action of
X, with eigenvalues i(c; —c;) and 0, respectively. The
point is that the eigenvalues depend linearly on X. Let us
consider the linear operators L;, j = 1,..., N defined by

L;:Mat(N) - C, A A

Then, we can write ic; = L;(X) so that
ady(Ejy) = (Lj— Li)(X)Ej;.
The linear operators

are said to be the nonvanishing roots of 8u(N). The
corresponding eigenspaces are one dimensional. Beyond
these, there is a vanishing root defining the 0 eigenvalue,
whose eigenspace is H, so it has degeneration equal to the
rank r = N — 1.

In particular, the set of nonvanishing roots contains a set
of r linearly independent roots, having the property that all
the remaining roots are a combination of them, with all
nonpositive or all non-negative integer coefficients. These
are called the simple roots, and they are

ﬁ] :L]_Lj+1’ ]:1,,N_1 (Ag)
Finally, for convenience, we introduce the less conventional
concept of real valued roots aj; = —if;y, a; = —ip;,
which we simply call roots and simple roots. With this
convention, for the simple roots «;, we can also write
which is useful for practical purposes. This also shows that
the ; are linearly independent. We name the corresponding
eigenvectors 4, =4; = E; ;;, so that

" (A11)

Notice that /I_a/_ = /IZj, SO

(X, A1) = —ia(X)A].

y (A12)

2. Some further technical facts

There is a canonical way to introduce a scalar product on
the real space spanned by the simple roots. However, we
bypass the historical construction and employ Eq. (A10) to
define the scalar product

(aj|ay) = =Tr(J;Jy). (A13)

Hﬁ = <a1, ...,aN_1>R

it is a Euclidean scalar product. One then defines the r x r
Cartan matrix” C Ay, With components

(0{;'|05k)
(aj|aj)

=20k = 0jk+1 — Oji-1-

(CAN,I)J',/{ =2 = (aj|ak)

The Cartan matrix is strictly positive definite. Indeed, for
any vector (xl, ..., x") € R", we have

r r—1
ik _ 2
E WX (Cuy )ik =2 E :xj - E :ijxi,-ﬂ
ik = =1

r—1

=x}+x7+ Z(xj -xi11)% (Al4)
=

which is strictly positive and vanishes only for x; = 0 for
all j. In particular, the Cartan matrix is invertible and,
indeed, one can easily check that

.. ;
= len(J, k)(N — max(j, k)).

(Cay_ )ik (A15)

Another important fact to notice is that for j, k one has

(s A = 6,11 4Ej jio- (A16)

APPENDIX B: PROOF OF PROPOSITION 1

In order to prove the proposition, it is convenient to work
with the coordinates ® and 7' = ¢ + L ,¢. The metric takes
the form ds* = —L,dTd® + Lidr* + Ldy*. With the
given ansatz, after replacing @ with oc® for constant ¢
(for convenience), for the L, we get

PThe name comes from the fact that in the Dynkin classi-
fication, the algebra su(N) is called A,, where r is the rank.
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R; =0, RT — — i Ro, Using the fact that nothing depends on 7 and that there are
L, no lower T components, these reduce to
1 =729 r T~ 72 n .

R, = e—m}/khl<r)emyk’ R — FRF’ Ly 4 Ly 4 vl

lr But
R, = mk, R = —R,.

Ly o,R, =0,

For F,, = [R,.R,], with x = e~"("ke"") we get the non- O,R, = e " ek,

vanishing components

m2
oL, —0, (L_ e, TH k]}e’"yk)

Fo, = —F, = ce™"[x, h']e™*, m?
Fo, = —F,p = ome™""*[x, kle™*, = L—ge_myk [k, [0 K]]e""*,
F,, =-F, = me "k, k], L, = L_%a (e k(! [, k)]
Setting L, := [LY, FW], the equations of motion are B ,2122 ok e [ [ A mrk
0=0"R, + %aﬂﬁw (BI) so Eq. (B1) becomes

m2
0= e (4 = 37 (k[ 1) = 6 . AT ),

412

r 14

which proves the proposition.

1. Further details
Making use of Egs. (3.6) and (A1l), we can write

N—-1 N—-
LNSED VAR vN) Z ) (cid; + c5ah).
j=1 j=1

Repeating the same calculation, we get

N—

=

(W0 K =0y (aj(h)e; [l ) + a; (W) e R AT]) Z = A,
=1 j=1
Finally,
N—-1 N-1
[k, [W' [W k]| = - ai (W) {exe; P 2] + ¢iesl A7) = exe i 4] = e 41}
k=1 j=1
N—1 N-1
=- a; (' {exe;lh Ajl + ;e i, 4] = el 4] + ey, 4]}
k=1 j=1

The last two terms cancel after summation, while the first terms vanish for j = k; thus, we get

[k, [h == (W) (cjchlhe 4] + i kAL AT) =Y ai ()2 (cjexlh Aj] + 5 kAL A1)
Jj<k k<j
= Z — o (')?)(cjenldj ] + C;C*kw‘;’llt])’
Jj<k
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where we have changed the order of commutators in the first sum and exchanged the name of the variable in the second sum.
Therefore,

[k, [ (K] = (a(B)? = a(B)) (el ] + €5ei A0, A7) (B3)
Jj<k
Similarly,
N-1 '
[k, W] = =[1" K] = =iy a;(h")(c;d; + ¢j4))
=1
and
N-1 N-1
kT 1) = =SS a (W) ejenle ] = el A = ejeildl ] + cjealg. AL
J=1 k=1
The first two terms can be treated as above, giving the Trk2 = =2]|c||?, (B6)
contribution h
ot Te([i k] k.]) = Te((W 2] x]) = 2a?|c|%.  (BT)
iy (a;(h") = a(h") (el A = ¢5eilA] ). =T
j<k
and
while the last two terms, after renaming the labels in the
first of the sums, give the contribution Tr([x, kJ[x. k.]) = —8sin*(ar)
Nel N— 1 N-1 N=2 1
—i a;(h") + a(h"))cics [/Ik,,ﬂ]. (Z'Cj|4+2|cj2|cj+1|2§(l _3€j8j+1)>' (B3)
=1 k=1 7= =1
Now, Proof —First, we have
[/lkﬁflj‘] = [Exis1, Ejr jls N-1 N1 ‘ot
Trk; = {ejexTr(Aa) + e Tr(4;4;)
which in components is j=1 k=1
— e Tr(ALA) = ¢ Tr(4;A0)}, (B9)

(EtisrsEjvrjlmr = 6x(Ejj = Ejvijit)myr
where we used the notation 4; = E; ;. Since 4; is upper

so that diagonal so is A;4; hence Tr(4;4;) = 0. Similarly,
[/1,(,/1;] = =i, ;. (B4) Tr(4;4;) = 0. On the other hand,
We finally get . N N
Tr(AfA) = Z Z(Eﬂ»lj)nm(Ek k1)
k h// Z h// _a h//)) n=1 m=1
<k N N
= Z Z 6j+1,n§jm5k+l,n6km
(cjeldj. ] = i AL AY)) 2Za (h")|e; P15 (BS) n=lm=1
— & = Tr(A;4)). (B10)
This proves Eq. (B6).
2. A further proposition Now, notice that
We now want to state another technical proposition:
Proposition 5: Assume k. =YY" (c;E; ;1 — GEji1,); (W x] = [, e "ke"T] = e[ ke (BI1)
h' € H a matrix such that a; (h/) =:¢;a where ¢; is a sign,
j=1,...N—1,and x := e‘h ’kgeh . Then since k' commutes with e””. Therefore,

125011-23



ALVAREZ, CACCIATORI, CANFORA, and CERCHIAI PHYS. REV. D 101, 125011 (2020)

Tr([n' x][W, x]) = Tr(e™"" [0 k][N k]e"™)
Tr([7' k] [h' k.]) (B12)

because of the cyclicity property of the trace. So we are left with the computation of Tr([/’, k|[1', k.]). Using Eq. (B2) and

the fact that the only nonvanishing traces are Tr(/ljfxlk) = 6, We get

N=1 N=1
Te([H kW k,]) = Tr(Z( i(WAje; + iay(W)e;A0) > (o (W) Agey + lak(h’)c,’;/lk)>
j=1 k=1
N-1
= —ZZaj(h’)%jcj =-2a (B13)
where we used a;(h')* = (¢;a)> = a®. This proves ar
Eq. (B7). g (€Xre™) = efady(Y)e™ |
Let us write & = h'r. Therefore, =0
= ady(Y). (B17)

N1
X = et el = Z(c-e"’/l-e" —Hc.). (B14) S0 Eq. (BIS) is the Taylor expansion of eXYe~™X. For
. S Y=k, X=h and t=—1, and using that ad,(4;) =

ia;(h) = ie;at, we then have

J=1

Using the notation ady(Y) = [X, Y] for any pair of matrices

X,Y € su(N), we first notice the identit N 0
®) Y eheh =3 (~1)yady(2,)
n=0"""
[s+] l 0
eXYe X =N  —tad}(Y), B15 I . n
2 adk(Y) (B15) =3 iegar,
where by ady we mean the iterated application of ady. = e ;. (B18)
Indeed, S
0
d Xy, —ix X —1X = :
E(é Ye ) =e adX(Y)e . (B16) X = (Cje_lgfar/l c}keze/ar/ﬁ)’ (B19)
j=1
Hence, and
|
[x. k.| = Z(c e (A ] + c*c*e’b/“’[ﬂ,ﬂu —cjcie (4, 4] = ¢ cke”/‘”[/l’:,ﬂk]). (B20)

Jjk

|
By using Eq. (B4), we see that the last two terms sum up to so that

ZCjCke_igjar[/’{j, /1](]

N-1 —
— Z |Cj|2jjl~(e—i8jar _ eiejar) J»
— N-2 ' ‘
: N-1 = cjej(eT o — e maE; L, (B23)
= -2 |¢;|? sin(e;ar)J ;. (B21) !
j= and, similarly, by taking the Hermitian conjugate,
r{T T
On the other hand, ZC et ’1 )
A =Ej 1. E = ‘ :
At = B B =Y e (e E (B2
=0 j+1Ejji2 = 01 jEj jr2n (B22) =1

125011-24



ANALYTIC SU(N) SKYRMIONS AT FINITE BARYON ...

PHYS. REV. D 101, 125011 (2020)

This leads to

N-2
[)C, kg] — [CjCjJrl (e—iejar _ e—isjﬂar)Ejijrz _ C;C;+1 (eisjar _ eiej+|ar)Ej+2,j]
j=1
N-1
-2 Z |c;|? sin(e;ar)J;. (B25)
=1
If the only nonvanishing traces are
Tr(Ej ji2Erian) = Tr(Ejy2Eriia) = 0. Tr(JjJi) = =28 + 8441 + 114 (B26)
we get
N-2 N-1
Tr(fe. Al kD) = =22 e Plejy Plemio — e~ 8 3 [e, 4 sin(ear)
J=1 J=1
N-2
+ Z |cj?[c;y1|* sin(e;ar) sin(e; yar). (B27)
=1
|
Now, with Zg() as akernel. Note that SO(3) has a trivial kernel,
' _ and 7,(SO(3)) =~ Zgy(2). We can also write
le~ieiar — e=ieinar|2 = (] — cos(ar(e; —€j11)))

= 4sin? <ar %) (B28)
Since (&; —€;.,1)/2 = 0, %1, we can write
R, —e. 1 \2
sin? <ar7€" 28’“) = sin’(ar) (—gj ;ﬁl)
1 -
=3 (1 —¢je;41)sin*(ar). (B29)
Also
sin(g;ar) sin(e; ar) = sin*(ar)e;e;;  (B30)

and sin®(g;ar) = sin®(ar); thus, summing everything up
we get Eq. (BS). u

APPENDIX C: SU(2) VERSUS SO(3)

Despite these being very well-known facts, in this
appendix we discuss the difference between SU(2) and
SO(3) since it is crucial to identify our solutions. Locally,
the two groups coincide; they have the same Lie algebra.
However, SU(2) is simply connected, while SO(3) is not.
Indeed, SU(2) is the universal covering of SO(3). It has a
nontrivial center Zgy;) = £/, with [ being the unit
element, and there is a surjective projection

7:SU(2) = SO(3) (C1)

SO(3)~SU(2)/Zsy(2)- (C2)
Now, let us illustrate the crucial difference we are interested
in. Let z;, i = 1, 2, 3 be a canonical basis of Lie(G), where
G is one of the two groups. We can then realize the group
by means of the Euler parametrization. This means that the
generic element g of the group has the form

gla,b,c) = eBebm e, (C3)
where a, b, c are the Euler angles. Each of the exponentials
has a period (depending on the normalization of the
matrices), say, T3 for a and ¢, and T, for b. The strategy
to correctly cover G exactly one time is explained in
Ref. [40] and works as follows. To be sure to cover G one
integer number of times, one first allows the coordinates to
run each one in the respective period. This number, in
general, is larger than 1 because of redundancies, due to
two reasons. The first reason is that the central element,
parametrized by b, is chosen in the maximal torus (the
exponential of the Cartan matrix). The redundancies
correspond to the action of the Weyl group to the torus.
This action is determined by the algebra and is the same for
both SU(2) and SO(3). It shows that indeed moving b
along a period quadruplicates the determination of the
points for SU(2) and duplicates that for SO(3), and one can
reduce the range of b down to T, /4 or T,/2, respectively.
At this point, the difference between SU(2) and SO(3)
appears. Indeed, for SO(3) this is the end, as it is already
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covered just one time, while for SU(2) it remains a
redundancy and we cover it twice. This redundancy is
due to the fact that

1 if G=50(3)

ebtz N e = ! <C4)
A= if G =SU(2).

Therefore, since A2 = I,
g(a, b, C) — 473 pb72 pCT3

= 473 ehTZ A_zec'[.%
fd e(lT3 A_lehsz_lecﬁ
=gla—Ts3/2,b,c —T3/2). (C5)

This redundancy is eliminated by reducing the range of a
down to T3/2 for SU(2). This is the way, relevant to our
case, to distinguish the two kinds of solutions: If the above
intersection is A, then the ranges of the variables a, b, ¢ are
T3/2,T,/4,T;, respectively, and the group is SU(2);
otherwise the ranges are T3,7,/2,T3, and the group
is SO(3).

Finally, we add a final remark relevant for recognizing
genuine solutions: For the SO(3) generator 7 the orbit
exp(x7) never meets the center, while if 7 is an SU(2)
generator, then exp(x/27) is the only nontrivial generator
of the center of SU(2). No other elements of the center of
SU(N) can meet these kinds of orbits.

APPENDIX D: REPRESENTATIONS OF SU(2)
AND PERIODICITY

It is well known from representation theory that the spin
J representation of SU(2) has generators T, T, T3 given
by the N x N matrices, with N =2J + 1,

(7)) = 5 /N = )30,
+§\/ m(N —m),_1 . (D1)

(T2) i =5 VO = )80
N, (D2)
(T3)pp = i(J + 1 =m)s,, . (D3)

Each of these matrices is diagonalizable, with eigenvalues
given by the ones of 7’5. Since
U'exp(xT;)U = exp(xU'T;U) (D4)

it follows that the periodicity of

£(x) = exp(xT) (D3)
depends only on the eigenvalues, so all f; have the same
periodicity, which is obviously 2z for odd N and 4z for
even N.

On the other hand, let us consider the matrices k. and
g(x) = exp(xk,). The possible periodicity of g depends on
the eigenvalues_ of k.. Itis easy to see that the coefficients of
the characteristic polynomial of k. depend only on the |c; 2,
so the phases of c; are irrelevant for the periodicity. In

particular, this means that the matrix exp(x7,) with

z:m
(TZ)m,n = 7 m(N - m)(sm,n—l

Cn
——=/n

) (N_ n)ém—l.n’ |é’/| =1,

(Do)
has the same periodicity of f,(x).

APPENDIX E: SOLVING THE PERIODICITY
PROBLEM

In Sec. IV we showed that for N higher than 3, there is a
further difficulty to overcome in order to find a global
solution: Generically, the matrix g(x) = e** is not periodic,
and its orbit densely fills a torus of dimension strictly
higher than 1. This phenomenon corresponds to the fact
that the one parameter subgroup g(x) is not a Lie subgroup
but only an imbedded subgroup. Therefore, for arbitrary
choices of the coefficients c;, the matrix

=

-1

c (¢iEjjr1 = C¢jEj1)
=1

(E1)

~
Il

cannot be used to generate global solutions unless the
corresponding g(x) is periodic. We now tackle this prob-
lem, in general. For the sake of completeness, we first show
that no problems arise in the case N = 3.

1. The case N=3

In this simple case we have

0 C1 0
ke=1-ci 0 o (E2)
0 —=c¢5 O
The corresponding characteristic polynomial is
Py(2) = det(Al — k) = A(A* + ||c|]*). (E3)

The eigenvalues are therefore 0,=il[c||, which are in
rational ratios so g(y) = exp(rk,) is periodic, in particular,
with period 27z/||¢c||. For other purposes, we explicitly
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compute ¢(y). To this aim, let us first notice that, using the
Cayley-Hamilton theorem, k. satisfies

ke (ke + [lc|PT) = O, (E4)

where I and O are the identity and the null 3 x 3 matrices.
This implies k? = —||c||*k, so that any power of k, can be
reduced to a power lower than 3. Hence,

eykﬁ = g (}/)]I + gz(]/)k£ + g3 (},)ki’ (ES)

for three functions satisfying g, (0) = 1, ¢,(0) = ¢3(0) =0,
since e® = I. Deriving Eq. (E5) with respect to y and using
the characteristic equation, we get
G+ Gh(r)ke + gh(7)kE = kee'™
= g1(Nke + )k + g3 () k2
= (01(r) = llelPgs (ke + g2(r)k. (E6)

s0 that
gi(r) =0. (E7)
% (1) = 91(r) = llclPg (). (E8)
9(r) = 92(1). (E9)

with the Cauchy conditions ¢;(0) = 1, g,(0) = g3(0) =0
[so that ¢} (0) = 1]. From the first equation we immediately
get g, (y) = 1, while deriving the second one and replacing
from the third, we get

%) ==llclPa(r). 9000 =0, ¢(0)=1  (EL0)
with the solution
sin(]lcly)
9(7) =l (E11)
Finally, from the third equation we get
v sin(flefly) _ 1 —cos(]lc[l7)
9(r) = / dx =
0 ]l lell?
sin?(I51y)
2 (E12)
le|f?
Therefore,
. o llell
e — 1 75“1?"&””7) ke + 275”](”22 iz (E13)
c - c °

2. The general case

One can, in principle, solve this problem as follows.
Since k is anti-Hermitian, it can be diagonalized in C, with
pure imaginary eigenvalues. Moreover, if 1 is an eigen-
value, so is —4 = A*. Therefore, if S is the integer part of
N/2 (so that N =2S or N = 2S5 + 1 for N even and odd,
respectively), generically we have S distinct nonvanishing
eigenvalues. Let U be a unitary matrix such that

k=U'oU, (E14)

where o is the diagonal form of k, say,

diag(idy, —ily, ..., ids, —ids) Neven

o= { G T (E15)
dlag(llll, —1/11, Ceey l/ls, —lls, O) Nodd,

with A ;> 0. Since

etk = V'V = UferU, (E16)
e** is periodic if and only if e** is. Now, e’ is the identity
if and only if

e =1 (E17)
for all j=1,...,S; that means T1; = n;2z, with n; a

positive integer (obviously, we assume 7 > 0) for any
j=1,...,8. Therefore,

S= (E18)

so all pairs of eigenvalues must have rational quotients. Of
course, this condition is satisfied for N < 3, and any choice
of ¢ is allowed. But for N > 4 we cannot choose the ¢ j
arbitrarily: Only those values such that k admits eigenval-
ues with rational ratios are allowed. Notice that ¢ remains
defined up to a real multiplicative constant: If r € R,
then k,. = tk,.

The eigenvalues are the solutions of the characteristic
polynomial

Py(x) = det(xI — k), (E19)

of degree N in x. Since k. is anti-Hermitian, its eigenvalues
are purely imaginary and, moreover, if 4 is a nonvanishing
eigenvalue, then y* = —p is also an eigenvalue. So the
nonvanishing eigenvalues are in pairs and, if N is odd, there
is at least one zero eigenvalue. Moreover, since in the
factorization of the polynomial the nonvanishing eigenval-
ues y must appear in the factors (x — u)(x + u) = x> — 2,
we see that the general form of the polynomial must be
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_ @)t a@?) T tay
Fal) = { ()" +ay () 4t 4y

The coefficients a; are not the same for N odd and for N
even, but it is convenient to keep the same name so that we
can generically write the equation for the nonvanishing
eigenvalues as
Y'tay" ' -t a,y+a, =0, y=x* (E21)
We can be more precise with the following proposition.

Proposition 6: Using the notation j < k for k — j > 2,
we have

2

ap = |lc|l*, (E22)

2 k=2,..,n.

ay, = Z

JI<h < K

|Cj1 |2|Cj2|2 "

’ |Cjk
(E23)

Proof.—It can be easily proven by induction. We have
already seen this for N = 3. A direct computation shows
that it is true also for N =4 since P,(x)=x*+
x*(|er > + |ea* + |esl?) + |ei]?|es[*. Now, assume this is
true for N and N — 1. Let k,, be the matrix n x n defined as
k. with components cy, ..., c,. This way, we see k, as a

|

Po(x) = x° +[lc]®x* + X (|eaP(le1 P + [ea?) + ler Ples + [esP(Jer]? + leal + [es]?) + lereses].

Notice that, assuming that all ¢; are different from zero, we
always have a,, # 0, so these are truly nonzero eigenvalues.
Now, condition (E18) is equivalent to requiring that there
must exist a positive real number z and n positive integers
mj, j = 1, ..., n such that the nonvanishing eigenvalues of
k. must have the form /If = +im;z. This happens if the

solutions of Eq. (E21) are
Vi = —zzmjz-. (E29)

At this point, we notice that the coefficient of the above
polynomial can be written in terms of the solutions as

N
ay =-— E Yjs
=1

(E30)

for N =2n

(E20)
for N =2n+ 1.

I
submatrix of k,,, obtained by erasing the last row and
column. Let
P,(x) = det(xL,,, — k,). (E24)

Developing the determinant with the Laplace rule applied
to the last row, we easily find

Pyp1(x) = xPy(x) + ey [*Py_y (%) (E25)
The first addendum contains all the monomials of the
stated form except the terms containing |cy|*. The second
addendum contains all the terms of the stated form

containing |cy|?. This completes our proof. =
So, for example,

Py(x) = x* + (e P+ [ea* + [ea?) + ler Ples],

(E26)
Ps(x) = x(x* + 2% c[?
+ (lealPler[* + [ealPlea* + [esPler[?), (B27)
(E28)
a = z (=yi)(=y5,) (E31)
J1<J2

(E32)
ay = Z (=yj,) - (=y;,)- (E33)

J1<<Jn

Comparing with the last proposition, we get the follow-
ing set of equations for |c12| =:({;
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N-1

> =23

— 2k 2 2
L

a<...<ap<n

J1<.. < <N-1

This is a set of n equations in N — 1 real positive variables.
We now show that it generically has an (N —1—n)-
dimensional space of solutions in the interesting region,
which is positive for ;. To this end, we assume the generic
situation where all m,, are different, and we order them in an
increasing sequence m; < mp < --- < m,. We will show
later that the condition on the m, cannot be weakened in
order to get periodic solutions. Then, we show that there is
a simple solution on the boundary of the region of interest,
which is (if N is odd, we assume the null eigenvalue to be
the last one, 4,,,; = 0)

2 2
CZa— - ma )

(0 =0, a=1,...,n. (E36)
Next, we claim that starting from this point, we can find a
smooth family of solutions {5,_;({{5;}) in a small open
neighborhood of {5, = 0. In particular, it implies that there
are positive (by continuity) {,,_;’s parametrized by small
positive {,’s. This is sufficient to show that there is
generically a moduli space of real dimension N —n —1
for the solutions for the above system.

Proof of the claim.—To prove the claim, let us consider

the functions

N-1
Fl(Cl,---,CN—l):ZCﬁ (E37)
=
Fr(yseonsCyat) = Z S i
J1<K.. < <N-1
k=2,..n (E38)

and the square submatrix M of its Jacobian defined by

OF,
Oap—y ¢=z

Ma.b - N (E39)

where ¢ ; are defined by Eq. (E36). Therefore, we have

M],b = l, (E40)
My, =Y 2m? (E41)
c#b
= zm2m2,. (E42)
l]<(2

,#IJ.

(E34)
k=2,....n (E35)
............ (E43)
Mk,b = zzk—zm%] m%k_l s (E44)
!
............ (E45)
Moo= S 2w omd . (E46)
L‘1< ..<(‘n 1
cj#b.

We want to compute the determinant of this matrix. It does
not change if we subtract the first column from all the other
ones. In doing this, the first line becomes §; ;, so we can
compute the determinant by applying the Laplace formula
to the first line. So, the determinant is equal to the
determinant of the new matrix with the first row and the
first column canceled out. To understand how this matrix
appears, let us note that the second row is

Mz.b_MZ,lzzzz sz =72 m —m%)

c#b c#l
(E47)
and, more in general,
_ k=22 2
My, — My = E T Mg Mgy
Cl<"'<ck71
cj#b,
} : 222 2
— é 2 “ee ka_] s
<o <Cp_1s
Py
= — m1 E mcl . Ck s (E48)
(]< <Lk 2
l;éuj#b.

Therefore, from the bth column of the reduced matrix, b =
2, ..., nhas afactor z(m} — m?), and since the determinant
is multilinear on the columns, we get

det(M

Hz m2 —m?)det(#),  (E49)

where M is an (n — 1) x (n — 1) matrix whose first row has
all elements equal to 1 and
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Mk,b = Z Z2k_2m%1 e m%kfl > (ESO)

In other words, we see that M is like M but in one lower
dimension and where m; has disappeared. We can then
inductively repeat the same construction, finally arriving at
the conclusion

det(M Hz

a<b

(E51)

Since m2 < mj for a < b, we see that this determinant

is different from zero. The proof of the claim then is

an immediate consequence of the implicit function

theorem. (]
Going back to c¢;, we then see that, in general,

=&/ ¢(m, 1), (E52)

for arbitrary phases &;, j=1,....,N—1, with m €NZ,
t€ W c R¥="~!. The parameters ¢; parametrize the above
family of solutions. We can always assume that the integer
m; is coprime. Indeed, if m is a common divisor of m; so
that m; = ms;, then we can write m = ms and m can be
reabsorbed in z. Having assumed this, we can now fix z in
such a way that ™ has period 2z. Indeed, since the
nonvanishing eigenvalues of k. are /li +izmj, since the
m; is coprime, the common penod of the associated
exponential is 27/z. This fixes z = 1.
Notice, in particular, that in this case

llell? = Zmz = ||m|*. (E53)
The associated baryon number is
B = 2om||m|* (E54)

We have proved the following proposition.

Proposition 7. For N = 2n or N = 2n + 1 and for any
n-tuple of strictly increasing coprime positive integers m,,,
n, the matrices k.., such that e**c has period 27,
are a family of dimension 2N —2 4 n, where n is the
integer part of N/2. Beyond m, this family is described by
N — 1 phases and by N — n — 1 real parameters varying in a
set W, parametrizing the solutions of the system,

a=1,...,

N-1 n
S-S )
=1 a=1
le T Cjk = Z mﬂl ﬂk’
J1<...<J <N-1 a;<...<aip<n
k=2...n. (ES6)

Correspondingly, the fundamental baryon number is By =
20 |m .

One says that these matrices have a moduli space

M=TN-TxW, (E57)

where TV=! is the torus generated by the phases and W C
RN="=1 is the moduli space of the system. It is difficult to
say something general about the global properties of W. We
study, in general, the case N = 4 where all computations
are explicitly feasible.

Remark: For N =3 we have n =1 and, therefore,
only one integer m must be equal to 1 (“coprime”). So ¢

must have norm 1, and the fundamental baryon number
is B = 2o.

3. The N =4 case

Let us apply the above results to the case of SU(4). We
have n = 2, so we expect the dimension of W to be 1. The
eigenvalue equation for k is

0=2%+2lcl? + le1 les . (E58)

—iA_, with

el lerlles] \/||£|2 le]|es]
- E1 _lallesl g
\/4 T 4 2 (E59)

Let g < p be a pair of positive coprime integer numbers.
Then, we have to solve the system

The four solutions are id,,il_,—il,,

O+0+G=p+ (E60)
618 =p’q. (E61)
Notice that this gives
Ay =p, I_=gq. (E62)
Now, let us replace
= p*q*/¢ (E63)
in the first equation, so that
Q+%?(ﬁ+fﬁ~g (E64)
Since we have to require {, > 0, we see that it must be
&= (P’ + 4%+ p*q* <0. (E65)
This is equivalent to saying
q* < < pP (E66)
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So we can use 7 = /¢, as a modulus to represent W. The
moduli space, including the boundary, is therefore

My =T x[q, p]. (E67)
For
(eia] , eiuzz7 ei(l3’ T) c ./\/147 (E68)
we have
2.2
c= (Eia]T; €i"2 \/pz + q2 _ ’[2 _ 14 ;I ;ﬂei@) . (E69)
T
The corresponding period is of course
T =2r, (E70)
and the fundamental baryon number is
By = 206(p* + ¢%). (E71)

Finally, we can compute the exponential. Rewriting the
characteristic polynomial as

P(x) = x* +x*(p* + ¢*) + p*¢*, (E72)
we see that the matrix k£ = k£ satisfies
K =—(p* + ¢*)k* - p*¢°L (E73)

This implies that there must exist four functions f;(x),
j=0,1, 2, 3 such that

e = fo)I+ f1(0)k+ fo(x)k + f3(x)k,  (ET4)
with fo(0) =1, f,(0) =0, a =1, 2, 3. From
i xk __ xk
e = ke (E75)
we get
Fo)I+ f1(x)k+ fr(x)k* + f3(x)k°
= fo()k + f1(x)k* + f2(x)k
+ [3(0)(=(p? + @)k = p*¢°I). (E76)
which gives the system of differential equations
fo=-raf3. (E77)
f1=Jo. (E78)

=15 =+ @)fs (E79)

with the Cauchy conditions f;(0) = §;. Using the fourth
equation in the third one, we get
fi=f =P +a)fs

70)=0. (ES1)

Deriving this again using the second equation, we get

Y =fo— (P* + )[4 F0)=1.  (E82)
Deriving this a last time using the first equation, we finally
get the Cauchy problem

Y+ PP+ )+ 3 =0 (E83)

f3(0) =0,£3(0) =0, f5(0)=0, f5(0)=1. (E84)

This is easily solved, and it also gives f, = f%,

fi=r5+(p*+4*)fs and finally fo = fi. For p > ¢,
we get

P’ q’
folx) = p2 _ qg cos(gx) — p2 ) cos(px), (E8S)
P ¢
filx) = = sin(gx) — 2P =) sin(px), (E86)
1
fz(x) = p2 _ 6]2 (cos(qx) - cos(px)), (E87)
| . .
f30) = s <Sm;qx) - Sm;p x>>. (ES8)
In the case p = ¢ = 1 we have
filx) = —%xcosx—l—%sinx. (E89)

This is sufficient to show that the case p = g must be
excluded, since the solution is no longer periodic.

APPENDIX F: BARYONIC NUMBER
The baryon number is defined by the integral

B ¢UNTe(R;R;R, ) /gdrdpdy.  (F1)

Now,
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Replacing this in the integral and integrating, we get

ei.fkTr(RiRJ.Rk) = €ry[/)TI'(Rr[R},, R(/,])

rlbytg
= O Tk, x)), B = 2mo|c]* (F2)
LLL, ‘
where we used the explicit expressions for the R,. After Remark: The form
using Eq. (B25), we get
6om N o = ¢'*Tr(R,R;Ry)\/gdrd¢pdy (F3)
e*Tr(R,R;R;) = — |cj|%e;sin(ar)Tr(h'J;),
L,L,L, %=

is nothing but the pullback on the rectangular box of the
and using volume form Tr(R A R A R) over the cycle; see, for
example, Ref. [39].

—&;Tr(W'J;) = a,

we finally get APPENDIXPI(E}I:l 1\]/3[21\11112/131\15 ENERGY
€IFTr(R; RiR) = 60_’” l|lc||?a sin(ar). Let us minimize expression (4.53) with respect to the L,
g a = ¢, r,y. Let us rewrite it in the form

A2 B2 C2 M2 a2 ﬂZ
g(Lw,L,,Ly) = DL[/,L,LJ, L_g, +L_% +—L(ZPL% +L_}% <1 +L_§,+L—%):| s (Gl)
where
K v,
pK2 44 gl
dom llc
A
C:cf\//—l, M:2\/§m, ﬁz%,
& /N N-2 1 3 i
a = \/ZW (Z |Cj|4 + Z |Cj|2|Cj+1|2 <§_§8j8j+1>> . (GZ)
L \=1 j=1
Deriving with respect to L; and setting B A%x + B?y + C?xy (G7)
N 1—|—a2x+ﬂ2y ’
1 1 B M? 3
x—fé, y—f%, Z—LT%, (G3) 0= B2y + B2 — a®x2(A% + C%y), (G8)

_ A2 2 2.,2( B2 2
we get the equations for the stationary points: 0= A%x(1 +a’x) - f°y*(B* + Cx). (G9)

5 ) ) 5 ) From the third equation we get
A*x + B*y + C*xy — z(1 + a*x + *y) =0, (G4)

, Al 1+a%x

2 2 2 2 2 Y = pr oy (G10)
A’x — By 4+ C°xy —z(1 —a*x + p*y) = 0, (G5) p +Cx

which, when replaced in the second term of the second
—A’x + B’y + C*xy —z(1 + @>x — ?y) =0. (G6)  equation, gives

A2x

Solving the first equation with respect to z and replacing (x2C2 =By +———
B? + Cx

this in the remaining equations, we get

> =0. (Gl1)
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Since we are looking for positive x, y, z, the second factor is

strictly positive, and the only allowed solution is x = %.

Replacing in Eq. (G10) and then in Eq. (G7), we get

AB

Y=g T (G12)

Therefore,

2

(ZIWZI%I P (3-3em))

(G13)

g(c. €)

b

™
T <Z| ,|4+Z|c,| 1P (

1 16
— =, Gl4
12
L}% Am?
-
(Z el + Z eiPlesul (5= 3ere00 ) )
(G15)
and the corresponding energy per baryon in standard units
[K = (62%)"!, 1=1]is

(G16)

o)

[1] N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014).

[2] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

[3] K. Rajagopal and F. Wilczek, in At the Frontier of
Particle Physics. Handbook of QCD. Vol. 1-3, edited by
M. Shifman and B. Ioffe (World Scientific, Singapore,
2000), pp. 2061-2151.

[4] M. G. Alford, J. A. Bowers, and K. Rajagopal, Phys. Rev. D
63, 074016 (2001).

[5] R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263
(2004).

[6] D. G. Ravenhall, C.J. Pethick, and J. R. Wilson, Phys. Rev.
Lett. 50, 2066 (1983).

[7]1 M. Hashimoto, H. Seki, and M. Yamada, Prog. Theor. Phys.
71, 320 (1984).

[8] C.J. Horowitz, D. K. Berry, C. M. Briggs, M. E. Caplan,
A. Cumming, and A.S. Schneider, Phys. Rev. Lett. 114,
031102 (2015).

[9] D. K. Berry, M. E. Caplan, C.J. Horowitz, G. Huber, and
A.S. Schneider, Phys. Rev. C 94, 055801 (2016).

[10] C.O. Dorso, G. A. Frank, and J. A. Lépez, Nucl. Phys.
A978, 35 (2018).

[11] A. da Silva Schneider, M. E. Caplan, D. K. Berry, and C.J.
Horowitz, Phys. Rev. C 98, 055801 (2018).

[12] M. E. Caplan, A.S. Schneider, and C.J. Horowitz, Phys.
Rev. Lett. 121, 132701 (2018).

[13] R. Nandi and S. Schramm, J. Astrophys. Astron. 39, 40
(2018).

[14] L. McLerran and R.D. Pisarski, Nucl. Phys. A796, 83
(2007); Y. Hidaka, L.D. McLerran, and R.D. Pisarski,
Nucl. Phys. A808, 117 (2008).

[15] L. Ya. Glozman and R.F. Wagenbrunn, Phys. Rev. D 77,
054027 (2008).

[16] D.J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).

[17] R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D
12, 2443 (1975).

[18] S.-S. Shei, Phys. Rev. D 14, 535 (1976).

[19] J. Feinberg and A. Zee, Phys. Rev. D 56, 5050 (1997).

[20] G. Basar and G.V. Dunne, Phys. Rev. D 78, 065022
(2008).

[21] V. Schon and M. Thies, Phys. Rev. D 62, 096002 (2000).

[22] M. Thies, J. Phys. A 39, 12707 (2006).

[23] G. Basar, G. V. Dunne, and M. Thies, Phys. Rev. D 79,
105012 (2009).

[24] G. ’t Hooft, Nucl. Phys. B75, 461 (1974).

[25] G. Veneziano, Nucl. Phys. B117, 519 (1976).

[26] E. Witten, Nucl. Phys. B160, 57 (1979); B223, 433 (1983).

[27] T. H. R. Skyrme, Proc. R. Soc. A 260, 127 (1961); 262, 237
(1961); Nucl. Phys. 31, 556 (1962).

[28] N.S. Manton and P. Sutcliffe, Topological Solitons,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2004).

[29] M. Shifman and A. Yung, Supersymmetric Solitons, Cam-
bridge Monographs on Mathematical Physics (Cambridge
University Press, Cambridge, England, 2009).

[30] D. Finkelstein and J. Rubinstein, J. Math. Phys. (N.Y.) 9,
1762 (1968).

[31] A.P. Balachandran, V. P. Nair, N. Panchapakesan, and S. G.
Rajeev, Phys. Rev. D 28, 2830 (1983).

[32] A.P. Balachandran, A. Barducci, F. Lizzi, V. G.J. Rodgers,
and A. Stern, Phys. Rev. Lett. 52, 887 (1984); A.P.
Balachandran, F. Lizzi, V.G.J. Rodgers, and A. Stern,
Nucl. Phys. B256, 525 (1985).

[33] G.S. Adkins, C. R. Nappi, and E. Witten, Nucl. Phys. B228,
552 (1983).

125011-33


https://doi.org/10.1140/epjc/s10052-014-2981-5
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1143/PTP.71.320
https://doi.org/10.1143/PTP.71.320
https://doi.org/10.1103/PhysRevLett.114.031102
https://doi.org/10.1103/PhysRevLett.114.031102
https://doi.org/10.1103/PhysRevC.94.055801
https://doi.org/10.1016/j.nuclphysa.2018.07.008
https://doi.org/10.1016/j.nuclphysa.2018.07.008
https://doi.org/10.1103/PhysRevC.98.055801
https://doi.org/10.1103/PhysRevLett.121.132701
https://doi.org/10.1103/PhysRevLett.121.132701
https://doi.org/10.1007/s12036-018-9533-6
https://doi.org/10.1007/s12036-018-9533-6
https://doi.org/10.1016/j.nuclphysa.2007.08.013
https://doi.org/10.1016/j.nuclphysa.2007.08.013
https://doi.org/10.1016/j.nuclphysa.2008.05.009
https://doi.org/10.1103/PhysRevD.77.054027
https://doi.org/10.1103/PhysRevD.77.054027
https://doi.org/10.1103/PhysRevD.10.3235
https://doi.org/10.1103/PhysRevD.12.2443
https://doi.org/10.1103/PhysRevD.12.2443
https://doi.org/10.1103/PhysRevD.14.535
https://doi.org/10.1103/PhysRevD.56.5050
https://doi.org/10.1103/PhysRevD.78.065022
https://doi.org/10.1103/PhysRevD.78.065022
https://doi.org/10.1103/PhysRevD.62.096002
https://doi.org/10.1088/0305-4470/39/41/S04
https://doi.org/10.1103/PhysRevD.79.105012
https://doi.org/10.1103/PhysRevD.79.105012
https://doi.org/10.1016/0550-3213(74)90088-1
https://doi.org/10.1016/0550-3213(76)90412-0
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/0550-3213(83)90064-0
https://doi.org/10.1016/0029-5582(62)90775-7
https://doi.org/10.1063/1.1664510
https://doi.org/10.1063/1.1664510
https://doi.org/10.1103/PhysRevD.28.2830
https://doi.org/10.1103/PhysRevLett.52.887
https://doi.org/10.1016/0550-3213(85)90407-9
https://doi.org/10.1016/0550-3213(83)90559-X
https://doi.org/10.1016/0550-3213(83)90559-X

ALVAREZ, CACCIATORI, CANFORA, and CERCHIAI

PHYS. REV. D 101, 125011 (2020)

[34] L. Brey, H. A. Fertig, R. Cote, and A. H. MacDonald, Phys.
Rev. Lett. 75, 2562 (1995).

[35] L. R. Klebanov, Nucl. Phys. B262, 133 (1985).

[36] E. Wuest, G.E. Brown, and A.D. Jackson, Nucl. Phys.
A468, 450 (1987).

[37] N.S. Manton, Phys. Lett. B 192, 177 (1987).

[38] A.S. Goldhaber and N. S. Manton, Phys. Lett. B 198, 231
(1987).

[39] S. Bertini, S.L. Cacciatori, and B.L. Cerchiai, J. Math.
Phys. (N.Y.) 47, 043510 (2006).

[40] S. L. Cacciatori, F. Dalla Piazza, and A. Scotti, Trans. Am.
Math. Soc. 369, 4709 (2017).

[41] T.E. Tilma and G. Sudarshan, J. Geom. Phys. 52, 263
(2004).

[42] F. Canfora, Phys. Rev. D 88, 065028 (2013); Eur. Phys. J. C
78, 929 (2018).

[43] S. Chen, Y. Li, and Y. Yang, Phys. Rev. D 89, 025007
(2014).

[44] F. Canfora, M. Di Mauro, M. A. Kurkov, and A. Naddeo,
Eur. Phys. J. C 75, 443 (2015).

[45] E. Ayon-Beato, F. Canfora, and J. Zanelli, Phys. Lett. B 752,
201 (2016).

[46] P.D. Alvarez, F. Canfora, N. Dimakis, and A. Paliathanasis,
Phys. Lett. B 773, 401 (2017).

[47] L. Avilés, F. Canfora, N. Dimakis, and D. Hidalgo, Phys.
Rev. D 96, 125005 (2017).

[48] F. Canfora, M. Lagos, S. H. Oh, J. Oliva, and A. Vera, Phys.
Rev. D 98, 085003 (2018).

[49] F. Canfora, N. Dimakis, and A. Paliathanasis, Eur. Phys. J. C
79, 139 (2019).

[50] F. Canfora, S. H. Oh, and A. Vera, Eur. Phys. J. C 79, 485
(2019).

[51] D.J. Kaup, Phys. Rev. 172, 1331 (1968).

[52] S.L. Liebling and C. Palenzuela, Living Rev. Relativity 15,
6 (2012); 20, 5 (2017).

[53] V. B. Kopeliovich, B. Schwesinger, and B. E. Stern, Pis’'ma
Zh. Eksp. Teor. Fiz. 62, 177 (1995) [JETP Lett. 62, 185
(1995)].

[54] Y. Brihaye, B. Hartmann, T. Ioannidou, and W. Zakrzewski,
Phys. Rev. D 69, 124035 (2004).

[55] A.M. Din and W.J. Zakrzewski, Nucl. Phys. B174, 397
(1980).

[56] T. A. Ioannidou, B. Piette, and W.J. Zakrzewski, J. Math.
Phys. (N.Y.) 40, 6223 (1999).

[57] P. Sutcliffe, J. High Energy Phys. 08 (2010) 019.

[58] K. Takayama and M. Oka, Nucl. Phys. AS551, 637
(1993).

125011-34


https://doi.org/10.1103/PhysRevLett.75.2562
https://doi.org/10.1103/PhysRevLett.75.2562
https://doi.org/10.1016/0550-3213(85)90068-9
https://doi.org/10.1016/0375-9474(87)90178-3
https://doi.org/10.1016/0375-9474(87)90178-3
https://doi.org/10.1016/0370-2693(87)91162-2
https://doi.org/10.1016/0370-2693(87)91502-4
https://doi.org/10.1016/0370-2693(87)91502-4
https://doi.org/10.1063/1.2190898
https://doi.org/10.1063/1.2190898
https://doi.org/10.1090/tran/6795
https://doi.org/10.1090/tran/6795
https://doi.org/10.1016/j.geomphys.2004.03.003
https://doi.org/10.1016/j.geomphys.2004.03.003
https://doi.org/10.1103/PhysRevD.88.065028
https://doi.org/10.1140/epjc/s10052-018-6404-x
https://doi.org/10.1140/epjc/s10052-018-6404-x
https://doi.org/10.1103/PhysRevD.89.025007
https://doi.org/10.1103/PhysRevD.89.025007
https://doi.org/10.1140/epjc/s10052-015-3647-7
https://doi.org/10.1016/j.physletb.2015.11.065
https://doi.org/10.1016/j.physletb.2015.11.065
https://doi.org/10.1016/j.physletb.2017.08.073
https://doi.org/10.1103/PhysRevD.96.125005
https://doi.org/10.1103/PhysRevD.96.125005
https://doi.org/10.1103/PhysRevD.98.085003
https://doi.org/10.1103/PhysRevD.98.085003
https://doi.org/10.1140/epjc/s10052-019-6647-1
https://doi.org/10.1140/epjc/s10052-019-6647-1
https://doi.org/10.1140/epjc/s10052-019-6994-y
https://doi.org/10.1140/epjc/s10052-019-6994-y
https://doi.org/10.1103/PhysRev.172.1331
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.1007/s41114-017-0007-y
https://doi.org/10.1103/PhysRevD.69.124035
https://doi.org/10.1016/0550-3213(80)90291-6
https://doi.org/10.1016/0550-3213(80)90291-6
https://doi.org/10.1063/1.533088
https://doi.org/10.1063/1.533088
https://doi.org/10.1007/JHEP08(2010)019
https://doi.org/10.1016/0375-9474(93)90270-8
https://doi.org/10.1016/0375-9474(93)90270-8

