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Recently it was found that, due to Weyl anomaly, an external magnetic field can induce anomalous
currents near a boundary. In this paper, we study anomalous currents for complex scalars and Dirac fields in
general dimensions. We develop a perturbation method to calculate Green’s function in the spacetime with
boundaries. By applying this method, we obtain anomalous currents up to the linear order of magnetic
fields in a half space and in a strip. To the best of our knowledge, the results for Dirac fermions and for
strips are new. It is remarkable that, unlike the scalars and holographic boundary conformal field theory, the
anomalous currents of Dirac fields are independent of boundary conditions in general dimensions. Besides,
the currents of Dirac fields are always larger than those of complex scalars. Finally, we find an exact formal
expression of the anomalous current in a half space. The result is expressed in momentum integrals, which
can be evaluated numerically. We find that the mass suppresses the anomalous currents as expected.
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I. INTRODUCTION

The anomaly-induced transport is an important phe-
nomenon, which has a wide range of applications [1].
The well-known examples include chiral magnetic effect
(CME) [2-6] and chiral vortical effect (CVE) [7-13],
which refer to the generation of currents due to an external
magnetic field and the rotational motion in the charged
fluid, respectively. It is interesting that the CME current is
topologically protected and hence nondissipative [1].
Similar to chiral anomaly, Weyl anomaly [14] can also
induce anomalous currents in an external electromagnetic
field [15-18]. See [19-26] for related works. It is remark-
able that a similar mechanism leads to novel Fermi
condensations when a background scalar field is turned
on [27]. The scalar field can either be the Higgs field in a
fundamental theory or the phonon in a condensed matter
system.

On the other hand, the boundary effect of quantum field
theory is another interesting phenomenon. Famous exam-
ples include the Casimir effect [28-30] and topological
insulator [31]. Recently, much attention has been drawn on
boundary conformal field theory (BCFT) [32,33] and its
holographic dual (AdS/BCFT) [34]. Please see [19-22,
35-57] for some recent developments. It is interesting that
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a-type anomalies of BCFT/ dCFT can depend on marginal
couplings [57].

Weyl anomaly measures the breaking of scaling sym-
metry of CFT/BCFT due to quantum effects [14]. It is
closely related to the UV logarithmic divergent term of
effective action [17,21]. As a result, one can derive a key
relation [17]

0= ([ V) )

loge

between the renormalized current (J#) and the boundary
part of the variation of the Weyl anomaly .A. Here A, is the
gauge field and e denotes the cutoff of the theory. By
applying (1), [17,18] find that, due to the Weyl anomaly,

A= [ Vs rer ©)

an external electromagnetic field can induce an universal
current

v
() = —2PFn, ,
X

near the boundary, where f is the beta function, F** are the
field strength, x is the proper distance to the boundary, n;
are the normal vectors and ... denotes higher order terms
in O(x). Note that there are boundary contributions to
the current, which can cancel the “bulk” divergence of (3)
and make finite the total current [17]. It is remarkable
that the leading term of the anomalous current (3) is
universal in four dimensions. It is independent of the
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boundary conditions (BC), the temperature, and the details
of theories. What is more, it applies to not only conformal
field theory but also the general quantum field theory [17].
In higher dimensions, the anomalous current is expected to
take the following form [17]:

b F*n,

<JZ>:W+“" x~0, (4)

where b, are central charges of Weyl anomaly and d denote
the dimensions. Note that b, depend on boundary con-
ditions in dimensions other than four.

In this paper, we investigate the anomalous current in a
spacetime with a boundary. The previous works [17,18]
mainly discuss the general characteristics of anomalous
currents. In particular, they focus on the region close to the
boundary. In this paper, we study more specific examples
such as complex scalars and Dirac fermions, and try to
explore the anomalous current in the full region of the
system. By applying Green’s function method, we derive
the anomalous currents for free theories up to the linear
order of external magnetic field in a half space and in a
strip. Our results agree with the work of [58] for complex
scalars in a half space. To the best of our knowledge, the
anomalous currents for Dirac fermions and for strips are
new. Our results are exact in the size of strip, and hence
work well in the full region of a strip. We also obtain an
exact formal expression of the anomalous current for
complex scalars in a half space. The formal formula is
expressed in momentum integrals, which can be evaluated
numerically. Let us summarize the properties of anomalous
currents for free theories below.

(1) Unlike the holographic BCFT [18] and complex
scalars, the anomalous currents of Dirac fields are
independent of BCs in general dimensions.

(2) The anomalous currents of complex scalars have
different signs for Dirichlet boundary condition
(DBC) and Neumann boundary condition (NBC)
in dimensions higher than four. See Fig. 2 for
example.

(3) The anomalous currents of Dirac fields are larger
than those of complex scalars in four dimensions.
See Fig. 3 for example.

(4) The mass suppresses the anomalous current and the
current approaches zero far away from the boundary.
See Fig. 5 for example.

The paper is organized as follows. In Sec. II, we develop

a perturbation method to calculate Green’s function. Our
method includes only a bulk integral, which is slightly
different from that of [59,60]. In Sec. III, by applying the
perturbation method, we derive the anomalous currents for
a complex scalar and a Dirac field in a half space in general
dimensions. In Sec. IV, we study the anomalous current
in a strip. In Sec. V, we obtain a formal expression of the
anomalous current in a half space. Finally, we conclude

with discussions in Sec. VI. We use conventions of [61] and
the signature of metric is (1,—1,...,—1).

II. GREEN’S FUNCTION

Green’s function is a powerful tool to calculate expect-
ation value of stress-energy tensors and currents near a
boundary [59,60]. Usually, Green’s function is expressed as
a boundary integral for BCFT [59,60]. Here we develop a
slightly different approach where Green’s function includes
only bulk integrals. Our approach has the advantage that the
nth term of a series of Green’s functions is of order O(B")

G:i:Gn,

n=0

G, ~O0(B") (5)

where B denotes the magnetic field or other perturbation
parameters. As a result, to derive the leading term of
anomalous currents of O(B), we only need to calculate one
term G, in Green’s function. To illustrate our approach, let
us take complex scalars and Dirac fields as examples below.

A. Complex scalar

Let us start with the action of free complex scalars in a
curved spacetime

1= / i3/ gD, p (D" )" (6)
M

where d is the dimension of spacetime and D, =
V, —ieA, is the covariant derivative. For simplicity, we
set e = 1 in this paper. Green’s function satisfies equation
of motion (EOM)

D'D,G(x,x') = (VIV, + E)G(x,x') = 6(x,x'), (7)

where we take E = (=2iA*V, — iVFA, — A¥A,) as pertur-
bations. One can impose either DBC

G(x, x)om = 0, (8)
or NBC
D,G(x.x)| gy = 0. ©)
on the boundary OM. Here n denotes the normal direction.
We split Green’s function into the background G and a
correction G,
G =Gy+G,, (10)
where G, obeys EOM

ViV, Go(x.x') = 8(x, %), (11)
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together with either DBC
Golo = 0. (12)
or NBC
V,Goloy = 0. (13)

Applying Green’s formula, we have

Adxd |9|[G.(x,x)D*D,G(x, x")
~ G (¥, x)D™"D;G(x,x")]
:/ dy='\/|h|[G.(x', x)D,G(x, x")
oM

— G (¥, x)D;G(x,x")] (14)

where 5; = 6;¢ + iA, means acting on the left. We choose
the gauge A, = 0 so that D,, = D}, = V,, on the boundary.
Imposing either DBC (8), (12) or NBC (9), (13), we
find that the boundary terms of (14) vanish. From EOM
(7), (11), we derive

G (X, x)D™* D}, = -Gy (¥, x)E", (15)
where

E* = (2iV,AF +iVFA, — AFA,). (16)
Substituting (7) and (15) into (14) and noting that the

boundary terms vanishing due to BCs, we obtain a key
formula

GC(X’,X”)=—AdX" [91Go( ) E"(x)G(x.x")]. (17)

Unlike [59,60], there are only bulk integrals in G..
From (17), we can calculate G, perturbatively

G.(X,x") = —A/Idxd\/EGo(x',x)E*(x)Go(x,x”)
+A4dXd\/m/w dxi’\/wGo(x’,x)E*(x)
XGo(x,xl)g*(xl)Go(xhx”)+"‘ (18)

where the nth line of (18) is of order O(E").

B. Dirac field

Now let us turn to study Green’s function of Dirac fields.
The action of free Dirac fields in a curved spacetime is
given by

1:/ dx4\/|g|Piy"D,¥, (19)
M

where ¥ =¥*y% and D, =V, —iA,. Green’s function
obeys EOM

iy*D,S(x,x') = 6(x,x'), (20)

where §(x,x’) = §%(x — x')/+/|g|. We impose bag boun-
dary condition (BBC)

H_S(X,x/)laM =0, (21)

where I, = (1 £ y)/2 are projection operators and y
satisfy [33]
Xl =~Vls  Xa=Vd- X =X=1(22)

where 7 = y%*y° and n (a) denote the normal (tangent)
directions. From BBC (21), (22), we can derive

S(x". x)rnS(x. x)op = 0. (23)

We split Green’s function into a background S, and a
correction S,

S=3S8y+S., (24)
where S, obeys EOM
iy'*V,So(x,x") = 6(x, x'), (25)
together with BBC
IL_Sy(x. ) s = 0. (26)

From (21), (22), (26), we have

SA(XI/’X)YHSB(X’ x/)|8M = 07 (27)

where S, g denote S, S, S..
Applying Green’s formula for Dirac fields, we have

/ dx? |g|[SC(x’,x)iy”(§ﬂ—iAM)S(x,x”)
M
+ S, )i (V,, + iA,)S(x, ¥")]
:/ xS (¥ x)iy, S(ex")).(28)
oM

Note that the boundary term of (28) vanishes due to (27).
Applying EOM (20), (25), we derive

Sc(x’,x)i}/"(ﬁﬂ +iA,) = So(x', x)r*A,. (29)
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Now (28) can be simplified as

S.(0) = = [ eIy 3 (A ().
(30)

From (30), we can calculate S, perturbatively
&WJUZ—/dWVM%WJW%&MMJ”
M
+ [ gl [ advIalsie oo

x Ay (x)So (o6, xp )y (1 )A, (x1) So (o, x7) + -+
(31)

where the nth line of (31) is of order O(A™).
Now we finish the perturbative derivations of Green’s
function for complex scalars (18) and Dirac fields (31).

III. CURRENT IN A HALF SPACE

In this section we calculate the anomalous current
for complex scalars and Dirac fields in a half space.
For simplicity, we focus on the half space x>0
|

with a constant magnetic field parallel to the boundary.
We have x* = (t,x,y,) = (£, x.y1,....Ya-2), A, = (0,0,
Bx,0,...,0) and g,, = 7, = diag(1,-1,....,=1).

A. Complex scalar

Green’s function of the complex scalar is given by [59]

G(x,x') = i(Th(x)p* (x')) (32)

where T is the time-ordering symbol. The nonrenormalized
current is defined by

A

_ Ol : ,
J,(x) = W = ;}LI}C(D” - D;,)G(x,x") (33)

which is divergent generally. Here /.5 denotes the effective
action. To get the renormalized current J,, one should
subtract the reference current without boundaries

J,(x) = lim(D, = D},)(G(x.x') = G(x. X)), (34)

X' —x

where G is a reference Green’s function in the space-
time without boundaries. By using (18), we can obtain G
and G as

G(¥', %) = Gy(¥, ¥") + 2iB / " dx / " didy*2Gy(x' x)x, Go(x. x") + O(B?), (35)
0 -0

G(¥,x") = Go(x',x") + 2iB / " dx / " dtdy=2Gy(x', x)xd,, Go(x. x") + O(B?). (36)

Note that the integral regions of x are different for G and G. Here G, and G, are Green’s functions without external

magnetic fields

4_ i
G()(X/,x//) :F(Z 1) (

4 [ =4 (=00 -

i, "= rE-1)

(l’ _ t”)z]dT

S +x i 2>, (37)

[0+ ¥+ (=) = (¢ = P

i

Q12 (¥ — X + O, — yZ)z —(f - t//)Z]% ’

(38)

where y = —1 for DBC and y = 1 for NBC. One can check that G, (37) satisfy EOM (11) and BCs (12), (13).
To do the integral along ¢, it is more convenient to perform the Wick rotation = —itg. Substituting (35)—(38) into (34)

and performing the Wick rotation, we get

y d ) 0
Iy :)(zl_dﬂ_flr‘(E - 1>Bx3_d + B/ a’x’/ dr(fi +xf2) + O(B), (39)
0 0

where

(2= d)rt 20 = 1)2((d = 3)r + (d — 1) (x + X')?)

fi=

4ﬂ%(d+1>r(%)(r2 + (x/ +x)2)d

(40)
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B xX'(2 - d)ﬂ_g_%rd_zl“(%’ - 1)
AT (P (x =)D (P 4 ()
+7r2((3d = 5)x* + (3d = 5)x"* + 2(1 = 3d)x*x"?) + (d — 1) (x* = x)?(x* + x'?)] (41)

fa [(d=3)r®+ (3d = 7)r*(x* + x?)

Here 2 = y2 + 12, > = 1 and we have performed angle integrals above. After the radial integration, we get

2=d g 20 (4)x! ()4 (x 4-x) 4!
= R e
dr(fl +)(f2) = 2-d —dr(d) d-1 ( )l 1) (42)
Tl 2 (¥ ()
(1=d)x=T (¥ 4x)41 ’ X <x

Note that the integrals are different for x' > x and x’ < x. Substituting (42) into (39) and integrating along x’, we finally
obtain the anomalous current

d
(g -1) B
=—— 2 ~ _(2—(d-4)(d-1)y)—=+ O(B?), 43
which agree with the results of [58] derived by the heat-kernel method. Recall that y = 1 (y = —1) for NBC (DBC). The
other components of currents vanish. Some comments are in order. First, the anomalous current depends on BCs and has
different sign for different BCs in dimensions other than four. Second, it is remarkable that the current is independent of BC
in four dimensions

Jaa = +0(B%), (44)

' 2417 x
which agrees with the result (3) [17,18]. Note that J** = —J, in our conventions. Third, in the above calculations, we have
assumed d > 3. After the analytical extension, the result (43) works well for DBC in two and three dimensions. However,
this is not the case for NBC. In dimensions lower than four, we have

) By 0(B?), DBC,
Jra = 5’)4’1 ;:(ZZB—Xd) I Bx(4log(x)+22y;l+log(16ﬂ2)) Y o(d- 2332)’ NBC., (45)
. 2+ 0(B?), DBC,
S3a = Oy, 4,,(5_3) B B(4log(x)+3+l(l)§7(‘[16ﬂ2)—2y/(0)(%)) +0(d—-3,B%), NBC, (40)
I
where y is the Euler gamma function and y is the B. Dirac field

polygamma function. One may regularize the currents Let us go on to discuss the anomalous current for the

for NBC by Dirac field. Similarly, we have A, = (0,0, Bx,0,...,0).
Without loss of generality, we choose the chiral bag

JHd=2+¢e)+Jt(d=2—¢) (47) boundary condition [62]

TET
J5, = lim
-0

2 9
JHd =73 JHd =3 M_Y| —M‘PI =0 (49)
. lil’Iol (d=3+¢) ; (d=3- e). (48) -Tlom 5 om =,

where 6 is a constant and n denotes the normal direction,

In this way, the divergences of (45), (46) cancel and we get ie., y" = y'. Equivalently, we have chosen

finite currents for NBC in two and three dimensions. We
leave a careful discussion of the lower-dimensional currents .
to future work. X = -yt (50)
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One can check that it satisfies the conditions (22). Note
that (49) reduces to the usual bag boundary condition when
60 = 0, z. Note also that since y5 is not well defined in odd
dimensions, we set @ = 0, z so that the boundary condition
(49) becomes (1 £ iy")¥|yy, = 0 in odd dimensions.

The Feynman Green’s function of the Dirac field is given
by [61]

from which one can derive the current

JH = —ilimTr[y*(S(x, x') = S(x, )], (52)

X/—>_X

where we have subtracted the reference Green’s func-
tion S without boundaries. From the key formula (31),

S(x,x') = =i{TY(x)P(x)), 51 we get
|
S, x") = So(¥, x") — B/00 dx/oo dtdy®2Sy(x', x)y*xS(x, x") + O(B?), (53)
0 —0
SO, x") = So(x, x") — B/oo dx/Do dtdy®285y(x', x)y*xS(x, x") + O(B?), (54)

where 7> = "1 and

%wﬂijﬂﬁ%%C%uﬂkﬂw—w—ﬁw—%)_WW—M—WF%ﬂﬂ—ﬂ%—w>(ﬁ)
’ 4z’ [ = %)%+ (Vo = )2 = (¢ = ")) [+ X" + (v =y = (=) )
B Z(4=2) 0 (¢ — #7Y — ol (5 — 1Y — a(y) —
SO(xl’x”) = (d )”’( : )y (f t//)z ! ()/C )i/ )2 /(yu " )2)“[,) ' (56)
4r (¥ = ") + (v — ya)? — (¢ = 1")%]2

Substituting (53)—(56) into (52) and performing the Wick rotation, we derive

. . d=-21(d)2 /2[4]—1 d—3)2 d—1 / 2
pm [ [T )

where [| denotes the integer part. After the integrals along x’
and r, we obtain the anomalous current in a half space for
Dirac fields

+ O(B?), 57
AT (P + (¢ 2P (5) (57)
|
and in three dimensions
350\ 87(d—-3) 167

2 0(4)28-4+1 B
(d=3)(d—=1)x3

=6 +o(BY).  (58)

To the best of our knowledge, this result is new. It is
remarkable that the leading term of current (58) is inde-
pendent of choices of BCs (49), that different chiral angles
0 yield the same current. This is quite different from
the currents of complex scalars (43) and holographic
BCFT [18] which depend on BCs. To end this section,
let us list the currents for Dirac fermions (58) in four
dimensions

B
JH =68t —— 4+ O(B?), 59
4d = Oy 67z2x+ (B?) (59)
in two dimensions

Bx
Sy = =8, =+ O(B?), (60)

+0((d-3)".B?). (61)

It is interesting that (58) works well in two dimensions.
Note that since there is no magnetic field in two dimen-
sions, B should be understood as the electric field and J%g
should be understood as charge density in (60). Similar to
the case of scalar, the formula (58) does not work well in
three dimensions. One can regularize the 3d current in the
same way as (48). We leave a careful study of the 3d current
to future work.

IV. CURRENT IN A STRIP

We have investigated the anomalous current in a half
space 0 < x. Now let us go on to study the anomalous
current in a strip 0 < x < L. For simplicity, we mainly
focus on four dimensions in this section.

125010-6
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A. Complex scalar

Let us first discuss the complex scalar. The approach is similar to that of Sec. III A. Applying (18), we get Green’s
function

L © -
G(X,x") = Gy(x, x") + 2iB/ dx/ dtdy™2Gy(x', x)x0,, Go(x,x") + O(B?), (62)
0 —00

with the background one

d 00 .
Go(x’ x//) _ F(E_ 1) < 1
' 474/2 Z (' = x" +2Lm)> + (v, —y")? — (¥ — t//)z]%

m=—0oo

+x : 2)7 (63)

(X7 2Lm) + (v = v = (0 = )7

which can be derived by the mirror method. Note that there are infinite images for two parallel mirrors, and each image
corresponds to one m of (63). The reference Green’s functions are still given by (36), (38). To simplify the deduction, we
rewrite the reference Green’s function (36) as

_ _ © L 00 _ - _
G(x',x") = Go(x',x") + O(B?) + 2iB Z / dx/ dtdy=Go(x', x + mL)(x + mL)d, Go(x +mL,x"),  (64)
m——c0 /0 —0o

where G is given by (38). Now let us focus on four dimensions d = 4. Substituting (62), (63), (64) into (34) and
performing the Wick rotation, we get

Bx = ¥Bx L o0
J, = — ————+8B dx’ d O(B?), 65
= et O gt B[ ¢ [T a0+ 0?) (69)

m#0 m=—00

where

2 P2(Lm+x)3(Lm + x' —x)* +1?)

- , 66
h ,,,Zm 30(Lm + 2 —xP 1 ) (66)

r2x/ o0 ¥ 1 p !

= _2 2
" ZJ ' ((A% +R7 AT =) ((B% w7 B =)
X 1 3y 3 X 1

ar B - 67
i < ' <(A% +r?)? " (A3 + r2)3> (A2 + 1) (A3+ r2)2> <B% 42 + B+ 72 (67)

with Ay =2Lm; +x+x', Ay =2Lm; +x—x', B =2Lm, +x+x/, and B, = 2Lm, — x + x'.
The first two terms of (65) are due to the leading term of Green’s function (G, — G). After the sum, they yield

Bx(3y csc? (%) + 1)
2412

h= (68)

Let us go on to consider the integral of g;. Performing the r integral, we get

L o = L X +Lm
dx' [ drg, = dx’ : 69
A XA & m;x% Y P Py (69)

where || denotes the absolute value. Thus one needs to discuss the cases m > 1,m < —1, and m = 0, respectively. After
some calculations, we derive the current for m # 0
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B(L? — 4Lx + 2x?)
487 x(L — x)?

Jo=— (70)

As for the case m = 0, the integral (69) is divergent. However, the divergence can be canceled by the integral of g, with
my = m, = 0. Combining together the integrals of g; with m = 0 and g, with m; = m, = 0, we get a finite current

B(L3(6y + 1) + 8L%yx — 2Lyx* — 4yx?)

71
487 Lx(L + x)? 1)

J3=-

Now let us turn to the most complicated parts, the contributions from g, (67). After the radial integration, we have

oo - 1 1 X X )
drgy = = ( + ¥ + .m
/0 s 2 (Al +1B:1D* (Aol + 182D (Al + (B2 (JAs] + (B4 )

my,my=—00

One should discuss cases m; > 1,m; < —1,m; =0 and m, > 1,m, < —1,m, =0, respectively. We have already
considered the case m; = m, = 0 in (71). The other eight cases contribute a current

B(3xLx(L?* — x*)* cot(%) + n*Lx’ + n°x%)
72(7*L?x(L — x)*(L + x)?)
B(=3L% + (6 + n*)Lox + (6 + n?)L*x* = 272 L3x* — (3 + 27%)L2x%)
72(x?L2x(L — x)*(L + x)?)
By(L(L(3L —2x) — m*x(L + x)csc? (%)) — mx cot(%)(L? — n*x(L — x)csc? (%))
* 2472 L3x '

o= -

(73)

In the above derivations, we first perform the x’ integral and then the sums for m; and m,. Fortunately, the sum takes a
special form > % | f(m; + m,), which can be transformed into only one sum > % ,(m —1)f(m). From (68), (70),

(71), (73), we finally obtain the anomalous current for complex scalars in a strip

3cot(ZE) (L2 (y + 1) + mxx(x — L) esc?(25)) + nL(L — 2x)(3y csc? (%) + 1)

J"=B8B
72xL3

+ O(B?). (74)

Note that we have J”1 = —J, = —(j; + j, + j3 + ja) and the other components of currents vanish. Since the magnetic
field is a constant in the strip, the current is expected to be antisymmetric, i.e., J* (x) = —J*1(L — x). This is indeed the case
of (74), which is a strong support of our results. Besides, the above currents have the correct limit (44) near the boundary

Lz % -0
, 2472x°
i { . (75)
247%(x—L)’ L
for both DBC y = —1 and NBC y = 1. This is also a test of our calculations. For the convenience of readers, let us draw a

figure for the anomalous current in a strip. Without loss of generality, we set B = L = 1. As showed in Fig. 1, the current of
NBC is larger than the one of DBC.

It is straightforward to generalize the above discussions to higher dimensions. Unfortunately, we do not find a general
formula. Instead, we calculate them case by case. Please see below for some examples
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, -B

o = oA [6L4)((L —x)(L 4 3x) = 24Lx*¢(3) (L — 2x) + 27°x*(Lx — 2m%yx?)csc? (ﬂx>
+ 27%x cscz<L> <L2(27z x +x —2) + 372y (x* — L?)esc? (L) +2rL(y +1 xcot( ))

x* <2L(L(;( +4) —x)y <1 - %) —2L(3Ly + x)y (L> +2L(3Ly — Syx + x)p? (%))

+x4<;((L—x)21//(3)<1——) +)((L+3x)(L—x)l//()(Lz_ )+2L(3L){ Tyx — Xy < ))] (76)

o~ =

Toa = 360L%y(L — x) — 87*Lx*(L — 2x)

B
2880073 L x*

+ 3073 Latosc? (%) ((3L — x) cot (%) —dry(L - 2x) (3csc2 <%> - 2))

+ 15Lx*(=2Ly — 5L + x)y®@ (1 - I)j> + 15Lx*(L(2x + 5) — x)y? <z)

+ 1525 (L — x) <l//(4) (1 —%) —y@ (sz»] (77)

where y denotes the polygamma function. It is interesting that DBC y = —1 and NBC y = 1 yield different directions of
currents in dimensions higher than four. See Fig. 2 for example.

B. Dirac field

In this subsection, let us investigate the anomalous current of a Dirac field in a strip. For simplicity, we mainly focus on
four dimensions. By applying the key formula (31), we get Green’s function for the Dirac field

S, x") = So(x', X" / dx/ dtdy®=2Sy(x', x)y*xSo(x, x") + O(B?), (78)

where

(d=2)T(52) (PO =) —y'2mL +x' —x") —y* (v, — ¥1)
m;,o 4nt ( [(2mL + X' = x")2 + (v, = yi)2 = (' = "))
.yo(t —1") =y'(=2mL = X' = x") = y*(y, —ya)) (79)
[(2mL + X' +x")2 + (v, — yi)2 = (¢ — 1)

Substituting (78), (79), (56) into (52), we get the renormalized current

L o0
JN :B/ dx’/ dr(hy + hy) + O(B?), (80)
0 0
where
L 42 (Lm + X)) (3(Lm + X' — x)* + 1?)
hy = - Z 3 7 7. 2\ ’ (81)
= 37°((Lm + x' —x)* +r%)
e — 2“’: 4r2y/ 3A\By +r° N r* —3A,B, (82)
- 3 \AT+ AP+ P2 (4 + P8+ )

my,my=—00
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Ha
0.10F
0.05[-

Il Il Il Il X

0.2 0.4 0 0.8 1.0

-0.05[-
-0.10-

FIG. 1. Anomalous current for scalars in a strip for DBC (blue

line) and NBC (yellow line) in four dimensions.

Recall that A, =2Lm;+x+x', Ay=2Lm,+x—x', B, =
2Lm, +x+x', and B, = 2Lm, — x + x'. Following the
approaches of Sec. III A, we can derive the current. Since
the calculations are similar to those of Sec. III A, we do not
repeat them here. We obtain

B(6L cot(%) — nL + 27x) Lo

=2, 367L2

(B%).  (83)

which obeys the relation /1 (x) = —J”' (L — x) and reduces
to the current (59) in a half space in the near-boundary limit

_B_
67°x°

Y1

J ~{ ;
6% (x—=L)"’

Similar to the case in a half space, the current (83) in a strip
is independent of BCs (49) too. To compare with the
currents of scalars, let us draw a figure. From Fig. 3, we
notice that the current of the Dirac field is always larger
than those of scalars.

ELRNIEN O
- 0. (84)

x

L

L—x
L

y
g

0.15F

0.05f

i 0.2 0.4 . 1.0
-0.05F

-0.10F

-0.15F

FIG. 3. Current in a strip for Dirac field (green line) and scalars
(blue line for DBC and yellow line for NBC) in four dimensions.

The generalizations to higher dimensions are straightfor-
ward. Following the above approach, we get anomalous
currents for Dirac fields

3 (FAG)L =20 —LyW2 - + Ly ()
312872 L3
1
——— |B+ O(B? 85
B O (55)
in five dimensions and
= 30L cot(%) csc?(%) — zL + 27pr o) (86)

900L*

in six dimensions. Similar to the 4d case, currents of Dirac
fields are independent of BCs (49) in higher dimensions.
Besides, near the boundary, the currents become larger as
the dimensions increase. See Fig. 4 for example.

In summary, we have obtained the anomalous currents
for complex scalars and Dirac fields in a strip. Our results
are exact in the size of strip L. In other words, we have got

Ky K
0.2f
0.05}
01f
L L " L L L 1 r L L X
07 0.4 , 08 1.0 0,2 0.4 0.6 0.8 1.0
-0}
-0.05
-0.2+F+

FIG. 2. The left (right) figure denotes 5d (6d) anomalous current for complex scalars in a strip. Blue line is for DBC and yellow line is

for NBC.
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FIG. 4. Anomalous currents of Dirac fields in a strip in 4, 5, 6
dimensions.

the anomalous currents beyond the near-boundary regions
of [17,18].

V. NONPERTURBATIVE RESULTS

In previous sections, we focus on the anomalous current
at the linear order of O(B). In this section, we try to derive
the current exactly in the magnetic field B. For simplicity,
we focus on the complex scalar in a half space with a
constant magnetic field A, = (0,0, Bx,0, ...,0). We get a

Gfree =

formal expression of currents which can be evaluated
numerically.
Recall that Green’s function obeys EOM
DD, + m)G(x.x) = 5N (x. ). (87)

where m is the mass. Performing Fourier transform for the
tangential coordinates,

-1
G — /(;ﬂ;ﬁé(k)e—ik-% (83)

we can rewrite (87) as

[~0% + (m* + ki) = 2Bxky + B*x*)G = §(x — ). (89)
Here ky =k, kj.Axy=k(t—1)—k%(y,—y,). and
kﬁ = k2 — k3. We split Green’s function G into the one
in free space and a correction due to the boundary

G = Giree + dey’ (90)

where Gy 1S given by [60,63]

o1

(0D, (VAR —2)D_, (VAW ~Ky). x <.

Here D denotes the parabolic cylinder function, A, = (B + m? + kﬁ —k})/(2B), ky = k,/+/B, and ¥ = v/Bx. Note that our

convention of Fourier transform (88) is different from that of [60]. As a result, Gy, (91) differs by a factor 2z from the one
of [60]. Imposing BCs (8), (9), we solve the corrections to Green’s function

—I(A)D_;, (V2k)
27'2V/BD_; (—V2k,)

dey =

for DBC and

I'(4) (V2D -y, (V2ki) = k1 D_;, (V2ky))

D_,(V2(% = ki))D_, (V2(x' ~ k) (92)

D, (V2(x = k))D_;, (V2(x' = k1)) (93)

dey =

27'2v/B(V2D\_;, (—V2k)) + ki D_y, (—V/2k,))

for NBC. Equation (92) for DBC agrees with [60] and (93) for NBC is a new result.
Now we are ready to derive the anomalous current. Substituting (88), (92), (93) into (34) and performing the Wick

rotation k* — ik [64], we get the renormalized current

(x - kl)r(ﬂp)D—x,,(\/E’_ﬁ)

- / ® dpt-2dk,

o Zd_l”d_%D—Ap(—\/ﬁl)

for DBC and

D_;,(V2(x = ki))? (94)
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FIG. 5. The left figure is for 2d current of DBC and the right figure is for 2d current of NBC. Blue line denotes zero mass m = 0 and
yellow line denotes finite mass m = 1.

_— o (x - 761)F(/1p)(\/§D1-/1p(\/§/_<1) - ]_CID—/II,(\/EI_CI)) _ =
e e A o+ Top g iy ER 69

for NBC. Recall that /" = —J, , 4, = (B+ m*+ p*)/
(2B), k; = ky/v/B, and X = v/Bx. In principle, the formal
expressions (94), (95) can be evaluated numerically. Let us
take d = 2 as an example, where the p integral disappears,
which can simplify calculations greatly. Note that, for
d =2, B of (94), (95) should be understood as the electric
field, and J,, should be understood as the charge density.
The results are shown in Fig. 5, which implies that the mass
suppresses the current and the current approaches zero far
away from the boundary. These are the expected behaviors.
Note that the numerical integration does not work well near
the boundary x ~0. In the near-boundary region, we
can obtain the anomalous current by using methods of
Sec. Il A. See (45) and (47) for examples.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the anomalous current
for free theories in the spacetime with boundaries. In a half
space, we get the anomalous current at the linear order of
magnetic fields in general dimensions. The currents of
scalars agree with those in the literature. And the currents
for the Dirac field are new. Our results work well in the
region close to the boundary, i.e., Bx? < 1. We also obtain
the anomalous currents in a strip. The currents are of the

|

linear order of magnetic field B and exact in the size of strip
L. This means that our results apply to the full region of a
strip, as long as the magnetic field is small BL? < 1. It is
remarkable that, unlike the scalar and holographic BCFT,
the anomalous currents of free Dirac fields are independent
of boundary conditions in general dimensions. It should be
mentioned that, although we focus on the constant mag-
netic field in this paper, our approaches apply to arbitrary
electromagnetic fields as well. Finally, we derive a formal
expression of anomalous current for complex scalars in a
half space. The numerical results imply that the mass
suppresses the anomalous currents. In this paper, we mainly
focus on dimensions higher than three. It is interesting to
study carefully the cases in two and three dimensions.
Besides, it is also interesting to study the effect of temper-
ature and the anomalous current with other shapes of
boundaries such as cylinders and balls. We hope we could
address these problem in the future.
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