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A new class of conformal field theories is presented, where the background gravitational field is
conformally flat. Conformally flat (CF) spacetimes enjoy conformal properties quite similar to the ones of
flat spacetime. The conformal isometry group is of maximal rank and the conformal Killing vectors in
conformally flat coordinates are exactly the same as the ones of flat spacetime. In this work, a new concept
of distance is introduced, the conformal distance, which transforms covariantly under all conformal
isometries of the CF space. It is shown that precisely for CF spacetimes, an adequate power of the said
conformal distance is a solution of the nonminimal d’Alembert equation.
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I. INTRODUCTION

The importance of flat spacetime conformal field theo-
ries (CFT) in theoretical physics can be hardly exaggerated
(cf. for example, [1,2]). They are fixed points of the
renormalization group, and as such, they are in some
sense, the simplest of all quantum field theories. It is clear
than the more examples we have to analyze their physical
behavior, the better.
The present paper aims to generalize this whole setup of

conformal field theories to a particular instance of curved
spacetimes, namely to conformally flat (CF) spacetimes.
CF spacetimes can be characterized in an invariant way as
those which are Weyl flat (the Weyl tensor vanishes). They
correspond to type 0 in Petrov’s classification of Einstein
spacetimes [3]; we shall correspondingly denote them as
Weyl-flat spacetimes. The Weyl tensor is the traceless piece
of the Riemann tensor

Wαβγδ ≡Rαβγδ −
1

n− 2
fgαγRβδ − gαδRβγ − gβγRαδ þ gβδRγαg

þ 1

ðn− 1Þðn− 2ÞRfgαγgδβ − gαδgγβg: ð1:1Þ

When the Weyl tensor vanishes, Riemann’s tensor can be
fully expressed in terms of the metric, the Ricci tensor, and
the scalar curvature. It can be then proved [4] that there is a

local system of coordinates such that the metric is con-
formally flat, that is,

ds2 ¼ a2ðxÞημνdxμdxν; ð1:2Þ

where ημν is the Minkowski metric. Quantum field theories
in curved spacetimes are generically nonrenormalizable
because new dimension four operators involving the
gravitational field are generated by quantum effects. It
would be interesting to check whether the implementation
of conformal symmetry generates consistent QFT.
The set of conformally flat spacetimes is quite large. It

includes, in particular, all Friedmann-Robertson-Walker
(FRW) spacetimes, of interest in cosmology. Both de
Sitter and anti-de Sitter spacetimes are particular cases
in which the curvature is constant. In [5] there is a quite
complete classification of these spacetimes.
The plan of the paper is as follows. Section II is devoted

to the exploration of the group of conformal isometries of
CF spacetimes (which is of maximal dimension), where we
find a simple relation between the conformal Killing
vectors of flat spacetimes and the ones of CF spacetimes.
In Sec. III, we discuss a new concept of distance, which
although related to the geodesic distance (Synge’s world
function) is not identical to it. This distance, dubbed by us
as conformal distance, transforms covariantly under all
conformal isometries of the CF space, and gets a very
simple expression in the natural coordinate system. In the
next sections, we explore the possibility that some power of
the said conformal distance is a solution of the d’Alembert
equation. The answer is that only when the Weyl invariant
nonminimal coupling is introduced, is this possible at all,
and in this case, the explicit expressions are similar to the
ones in flat spacetime. Dirac fermions are explored next,
and the simplest violations of conformal invariance owing
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to interactions are also deduced in a simple manner. We end
up with our conclusions and suggestions for future work.

II. THE GROUP OF CONFORMAL ISOMETRIES
OF CF SPACETIMES

We want to show that there is a simple relationship
between the well-known conformal Killing vectors (CKV)
of flat spacetime

∂μkν þ ∂νkμ ¼
2

n
∂λkλημν ð2:1Þ

[with kμ ≡ αμ þ λxμ þ ωμ
νxν þ 2ðx:βÞxμ − βμx2 and x2 ≡

ημνxμxν], and the ones of a conformally flat CF spacetime
with metric gμν ¼ a2ðxÞημν. The definiton for a CKV of a
generic curved spacetime with metric gμν reads

∇μξν þ∇νξμ ¼
2

n
∇λξ

λgμν ≡ wðxÞgμν; ð2:2Þ

where the definition of ωðxÞ as the piece multiplying the
metric in the right-hand side of the equation will be relevant
in subsequent definitions. Although finding the CKV of a
generic metric is not an easy task, one can see that in the
case of CKV for CF spacetimes they are simply related to
the ones of flat spacetime.
For CF spacetimes the connection has the simple form

Γμ
νρ ¼ −

ημλ∂λa
a

ηνρ þ
∂νa
a

δμρ þ ∂ρa

a
δμν ; ð2:3Þ

and we can then write

∇μξ
μ ¼ ∂μξ

μ þ n
2
ξλ∂λ log a2: ð2:4Þ

The equation we have to solve is then1

∂μξν þ ∂νξμ − 2ξλ

�
−
ηλσ∂σa

a
ημν þ

∂μa

a
δλν þ

∂νa
a

δλμ

�

¼ 2

n

�
∂λξ

λ þ n
ξσ∂σa
a

�
a2ημν: ð2:5Þ

We claim that the ansatz

ξμ ≡ a2kμ ⇔ ξμ ¼ kμ ð2:6Þ

does the job. This means that the CKV are exactly the
same, generating a conformal algebra of dimension D ¼
ðnþ1Þðnþ2Þ

2
, namely, SOð2; nÞ.

To summarize, the isometry group of n-dimensional
Minkowski spacetime (generated by all Killing vectors) is
ISOð1; n − 1Þ ∼ SOð1; nÞ, which is (a contraction of the)
de Sitter group. Anti de Sitter SOð2; n − 1Þ has the same
number of generators; they are different real forms of
SOðnþ 1Þ. All those spacetimes have isomorphic con-
formal group, generated by the CKV, namely, some real
form of SOðnþ 2Þ, like SOð2; nÞ. In fact, starting from the
flat space equation

�
£ðkÞημν ¼

2

n
∂λkλημν

�

≡
�
∂μkληλν þ ∂νkληλμ ¼

2

n
∂λkλημν

�
; ð2:7Þ

we easily deduce

�
£ðξÞgμν ¼

2

n
∇λξ

λgμν

�

≡
�
∂μξ

λgλν þ ∂νξ
λgλμ ¼

2

n
∂λξ

λgμν

�
: ð2:8Þ

It is worth noticing that ∂λkλ ¼ 0 (flat spacetime Killing

vectors) does not imply ∇λξ
λ ¼ 0 so that the nðnþ1Þ

2
flat

space Killing vectors generating the ISOð1; n − 1Þ algebra
are not assymptotically flat Killing vectors in general.

Conversely, the nðnþ1Þ
2

Killing vectors generating the isom-
etry algebra SOð1; nÞ of the CF spacetimes (that is,
∇λξ

λ ¼ 0) are just CKV of flat spacetime in general
(because then ∂λkλ ≠ 0).

III. CONFORMAL DISTANCE

Now that we know the simple relation between the CKV
of flat spacetime and the ones of CF spacetimes, let us
further explore other properties of conformal field theories
in this kind of spacetime.
The general definition of Synge’s world function [6] is

σðx; x0Þ≡ λ0 − λ

2

Z
x0

x
gαβ½xðλÞ�

dxα

dλ
dxβ

dλ
dλ ¼ 1

2
s2x;x0 ð3:1Þ

where the integral is done along a geodesic xμðλÞ (assumed
to be unique and timelike) that joins both points. It is
essentially the square of the geodesic arc length, and
is so defined as to be positive semidefinite in pseudo-
Riemannian spacetimes. This definition is the only one
available in the generic manifold without any CKV. The
world function is not easy to compute explicitly, except in
some simple cases, such as constant curvature spacetimes,
which are included in the Appendix. In general spacetimes,
all that can be done is to compute coincidence limits of its
derivatives [7].

1Let us note that we have to be careful with the factors of
a appearing when rising and lowering indices. For example in
(2.5) we have ξμ ¼ a−2ημνξν. We explicitly write the Minkowski
metric to avoid confusion when necessary.
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When the spacetime is such that there exists a non-
vanishing set of CKV, there is another definition, however,
which coincides with a function of the former in flat
spacetime as well as in spacetimes of constant curvature
(cf. Appendix). This new definition determines the con-
formal distance from the physically desirable conditions

ð£kðxÞ þ £kðx0ÞÞCðx; x0Þ ¼
wðxÞ þ wðx0Þ

2
Cðx; x0Þ

≡ ωðx; x0ÞCðx; x0Þ ð3:2Þ

which must hold for all CKV, kμ. This condition demands
that the action of the CKVon the conformal distance is the
natural one. The function wðxÞ≡ 2

n∇λξ
λ appearing in this

definition is defined in (2.2). It could have been expected
that the geometric concept of a world function also satisfies
these criteria in our case so that our two definitions of
distance coincide. The surprising thing is that it does not; at
least not exactly.
Let us compute now the conformal distance in our case.

The defining equation (3.2) leads to

fkμðxÞ∂μ þ kμðx0Þ∂μ0g log
Cðx; x0Þ
aðxÞaðx0Þ

¼ 2λ − 2ημνβ
μðxν − xν

0 Þ ð3:3Þ

which in turn fully determines the conformal world
function to be

Cðx; x0Þ ¼ aðxÞaðx0Þðx − x0Þ2 ð3:4Þ

where x2 ≡ ημνxμxν.
We have then been able to determine the precise form of

the conformal distance for all CF spacetimes. In Appendix
it has been worked out in detail the expression for the world
function in the particular case of constant curvature space-
times (A13) and shown not to be equal to the conformal
distance (A14). The two concepts, although related, are
then not exactly equivalent.

IV. CONFORMAL FIELDS IN CF SPACETIMES

The paradigm of a conformal field is the free massless
scalar field in four-dimensional Minkowski spacetime,
where correlators are determined essentially by dimen-
sional analysis,

h0−jϕðxÞϕðx0Þji ¼
1

ðx − x0Þ2 : ð4:1Þ

Let us try to generalize this idea to our case. After
computing the form of the conformal distance for CF
spacetimes, we can see whether the solution of the
d’Alembertian equation can be written as some power of
this particular distance.

The d’Alembertian for conformally flat spacetimes reads

□CF ≡ 1

an
∂μðan−2ημν∂νÞ ¼ ðn− 2Þ∂μa

a3
ημν∂ν þ

1

a2
ημν∂μ∂ν:

ð4:2Þ

Before analyzing its action on functions of the conformal
distance, let us compute the Minkowskian d’Alembertian
acting on the conformal distance (3.4). After some com-
putations one can see that

□Cðx; x0Þ≡ ημν∂μ∂νCðx; x0Þ ¼ □aðxÞaðx0Þðx − x0Þ2
þ 2naðxÞaðx0Þ þ 4ðx − x0Þμ∂μaðxÞaðx0Þ:

ð4:3Þ

But we are interested in its action on functions that only
depend on the conformal distance, G½Cðx; x0Þ�, so that

□G ¼ G00ð∂μCÞ2 þG0
□C ð4:4Þ

where G0 ≡ ∂G½Cðx;x0Þ�
∂Cðx;x0Þ .

We can then write the action of the CF d’Alembertian on
functions of the conformal distance in terms of the action of
the one in Minkowski spacetime

□CFG½Cðx; x0Þ� ¼
1

a2
½G00ð∂μCÞ2 þG0

□C�

þ ðn − 2ÞG0 ∂μa
a3

∂μC: ð4:5Þ

Using the form of (4.3) and denoting a0 ≡ aðx0Þ in order to
shorten the writing, we finally get

□CFG½Cðx;x0Þ� ¼
G0

a2

��
□a
a

Cþ2naa0 þ4ðx−x0Þμ∂μaa0
�

þðn−2Þη
μλ∂λa
a

�∂μa

a
Cþ2aa0ðx−x0Þμ

��

þ 1

a2
G00

�∂μa

a
Cþ2aðxÞaðx0Þðx−x0Þμ

�
2

:

ð4:6Þ

In order to check whether there is a solution that depends
on the conformal distance only, the terms involving
ðx − x0Þμ∂μa ought to cancel by themselves. This imposes
the condition

4
aðxÞaðx0Þ

a3
G00Cþ 4aðx0Þ

a2
G0 þ ðn − 2Þ2 aðx

0Þ
a2

G0 ¼ 0:

ð4:7Þ

That is
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2G00Cðx; x0Þ þ nG0 ¼ 0; ð4:8Þ

which completely determines the function G½C� up to two
arbitrary constants A1 and A2

G½Cðx; x0Þ� ¼ A1ðCðx; x0ÞÞ1−n
2 þ A2: ð4:9Þ

The remaining terms then read

□CFG ¼ 1

a2
G0
�
□a
a

þ n − 4

2a2
ð∂μaÞ2

�
Cðx; x0Þ

¼ −
R

2ðn − 1ÞG
0Cðx; x0Þ

¼ n − 2

4ðn − 1ÞRðG − A2Þ; ð4:10Þ

and we can always redefine G → G − A2. Finally we find
that

�
□CF −

n − 2

4ðn − 1ÞR
�
G½Cðx; x0Þ� ¼ 0: ð4:11Þ

This equation conveys the fact that in order to get Green
functions that depend on the conformal distance only we
need to consider the Weyl covariant operator. Let us insist
in the remarkable fact that when expressed in terms of the
conformal distance, the Green’s functions for conformal
fields are exactly the same as the ones in flat spacetime. The
only fact is that these conformal fields are necessarily
nonminimally coupled to the gravitational field.

V. DIRAC FERMIONS

In this section, we carry on the same analysis for
fermions (particularized for dimension 4), which neces-
sarily are defined in an inertial frame. In conformally flat
coordinates the simplest coframe is given by eaμ ¼ aðxÞδaμ.
We employ the standard notation ∂afðxÞ≡ e⃗aðfÞ≡
eλa∂λfðxÞ.2 The spin connection in CF spacetimes takes
the form

ωμjbc ≡ eaμωajbc ¼
∂caðxÞ

a
ημb −

∂baðxÞ
a

ημc: ð5:3Þ

With this we can construct the action principle for a Dirac
fermion in a Weyl-flat background, which is given by

S≡
Z

d4xa4fiψ̄γaeμaDμψg; ð5:4Þ

where the conformal factor a4 comes from the volume
factor. The derivative action on the fermion field is
defined as

Dμ ≡∇μ þ Γμ ¼ ∂μ þ ωab
μ Σab ð5:5Þ

with Σab ≡ 1
4
γab ¼ 1

8
½γa; γb�. The piece involving the spin

connection reads

1

4
γaeμaωμjbcγbc ≡ 1

4
γaωajbcγbc

¼ 1

4a2
γaγbcðηab∂ca − ηac∂baÞ

¼ 3

2

γc∂ca
a2

ð5:6Þ

where we have used the fact that γaγab ¼ 3γb.
As in the previous case, we want to explore the Green’s

function that behaves in a easy way in CF spacetimes. We
can compute the Dirac propagator which obeys

=DSðx; x0Þ≡ iγaeμaDμSðx; x0Þ

≡ iγμ
�
1

a
∂μ þ

3

2a2
∂μa

�
Sðx; x0Þ ¼ 0; ð5:7Þ

where all indices are contracted with the flat metric (all the
conformal factors have already been fully revealed) and the
gamma matrices from now on are also the ones corre-
sponding to flat spacetime. This equation can be written as

i=∂ðaðxÞ32Sðx; x0ÞÞ ¼ 0: ð5:8Þ

This means that

□ðaðxÞ32Sðx; x0ÞÞ ¼ 0: ð5:9Þ

Recall that □ is just the flat space wave operator.
Equation (5.8) is equally fulfilled when differentiating at
point x0. In order to incorporate this fact, we can multiply
(5.8) by the corresponding factor of aðx0Þ as it is invisible to
derivatives at the point x. We can then write the solution to
(5.8) at both points as

aðxÞ32aðx0Þ32Sðx;x0Þ ¼ i=∂ 1

ðx−x0Þ2 ¼−2i
=x−x 0

ðx−x0Þ4 : ð5:10Þ

2The structure constants are defined through ½e⃗a; e⃗b� ¼ Cc
abe⃗c

and are given by Cc
ab ¼ δca∂ba−δcb∂aa

a2 . It follows that the spin
connection reads

ωajbc ≡ 1

2
ðCacjb þ Cbajc þ CbcjaÞ ¼

∂caðxÞ
a2

ηab −
∂baðxÞ
a2

ηac:

ð5:1Þ
In order to project to spacetime indices, one has to be careful with
the fact that

∂aaðxÞ≡ ∂aðxÞ
∂xa ≠ eμa∂μaðxÞ ¼ a∂aaðxÞ: ð5:2Þ
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An appealing solution is given by

Sðx; x0Þ ¼ γaSaðx; x0Þ; ð5:11Þ

where3

Saðx; x0Þ ¼ −
1

2π2
aðxÞ1=2aðx0Þ1=2

Cðx; x0Þ2 ðx − x0Þa

¼ −
1

2π2
ðx − x0Þa

aðxÞ3=2aðx0Þ3=2ðx − x0Þ4 : ð5:12Þ

We conclude that elementary fermionic solutions can again
be easily expressed in terms of our conformal distance.
To conclude, let us comment on the square of Dirac’s

operator in an arbitrary gravitational background. The well-
known [9,10] Weitzenböck-Lichnerowicz identity on the
square of this operator (which is the only one that is Weyl
conformally invariant) reads

γαDαγ
βDβ ¼ γαγβDαDβ ¼ gαβDαDβ þ ½γα; γβ�DαDβ

¼ □
s þ ½γα; γβ�ð∇αΓβ −∇βΓα þ ½Γα;Γβ�Þ

¼ □s −
1

4
½γα; γβ�Rαβabγ

ab: ð5:13Þ

The algebraic Bianchi identity now implies that
γμγνγργσRμνρσ ¼ 2R and it follows that we can write

ðγαDα −mÞðγβDβ þmÞ ¼ □
s −m2 −

1

4
R: ð5:14Þ

It is interesting to see that the mass term in ðγαDα −mÞ can
be so arranged that the Dirac spinor obeys the Weyl
invariant formula (in n ¼ 4) ð□ − 1

6
RÞψ ¼ 0 [11].

VI. CFT CORRELATORS

Conformal symmetry is generically broken by quantum
effects once interactions amongst the fields are taken
into account. This is because the regularization process
introduces a mass scale, and some reminders of it are
almost always present in the renormalized theory as well.
Nevertheless, there are theories (usually with at least eight
supersymmetric conserved charges) in which those anoma-
lies are not present.
Our aim in this section is to show how the breaking of

Weyl invariance due to quantum interactions can be
computed in CF spaces as easily as it is computed in flat
spacetime.
It is, of course, possible to renormalize any QFT in

curved space using dimensional regularization in momen-
tum space (cf. for example [12]). In CFT in general and CF

spacetimes in particular, however, it is advantageous to
work in position space, owing to the simplicity of the
propagators when so expressed. Actual calculations are
very similar to flat spacetime ones. Let us examine a couple
of examples to illustrate this point. Consider the conformal
λϕ4 theory in n ¼ 4 dimensions in a Weyl-flat space. We
have seen that the propagator in CF spacetime will have the
form

Δðx; x0Þ ¼ 1

4π2
1

aðxÞaðx0Þðx − x0Þ2 : ð6:1Þ

This two-point function is exact in the free case; that is, it
includes all corrections coming from the existence of a
gravitational background.
When treating the theory in position space, all the tricks

of differential renormalization (DR) [8,13] can then be used
with only slight modifications. Namely, the flat spacetime
distance ðx − x0Þ2 is replaced by aðxÞaðx0Þðx − x0Þ2. The
key point is that the singular coincidence limit x → x0 of the
conformal distance can be trivially computed from the
corresponding limit in the Minkowskian distance. All
diagrams in CFT in CF spacetimes can then be obtained
from the flat spacetime ones just by inserting factors of
aðxÞ and aðx0Þ in the adequate place.
To be specific, let us examine corrections to the two-

point function coming from the self-interaction. The only
diagram to one loop is the tadpole, which vanishes in DR.
The two-loop contribution is given in [8] by

Δð2Þðx; x0Þ ¼ −
λ2

6
ðΔðx; x0ÞÞ3: ð6:2Þ

Introducing the propagator (6.2) for CF spacetimes we get

Δð2Þðx; x0Þ ¼ −
λ2

384π6
1

aðxÞ3aðx0Þ3ðx − x0Þ6 ; ð6:3Þ

where the only difference with the flat spacetime case is
encoded in the conformal factors aðxÞ and aðx0Þ. Once we
have this expression, we need to regularize the 1

ðx−x0Þ6 piece.
This can be regularized [8] with the use of

□
2Hððx − x0Þ2Þ ¼ 1

ðx − x0Þ6 ; ð6:4Þ

where in R4nf0g we can write

Hððx − x0Þ2Þ ¼ −
1

32

log ðμ2ðx − x0Þ2Þ
ðx − x0Þ2 : ð6:5Þ

The parameter μ2 is needed for dimensional reasons and it
corresponds to the renormalization group scale [8]. With
(6.4) we can regularize (6.3) the renormalized two-point
function

3The factors and the sign are just a matter of convention in the
definition [8].
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Δð2Þrðx; x0Þ ¼ λ2

384π6
1

32a3ðxÞa3ðx0Þ□
2
log ðμ2ðx − x0Þ2Þ

ðx − x0Þ2 : ð6:6Þ

This contribution clearly breaks conformal invariance; this breaking is summarized in the corresponding broken Ward
identities (the renormalization group equations) to be introduced momentarily.
To see another example, let us look at the one-loop four-point amplitude where we again use the expression in [8] with the

changes needed for CF spacetimes

Γðx1;x2;x3;x4Þ¼−λδðx2−x1Þδðx3−x1Þδðx4−x1Þþ
λ2

32π4

�
δðx1−x2Þδðx3−x4Þ

1

a2ðx1Þa2ðx3Þðx1−x3Þ4

þδðx1−x3Þδðx2−x4Þ
1

a2ðx1Þa2ðx2Þðx1−x2Þ4
þδðx2−x3Þδðx4−x1Þ

1

a2ðx2Þa2ðx4Þðx2−x4Þ4
�
: ð6:7Þ

This amplitude can be regulated using the identity (valid again in R4nf0g)

1

x4
¼ −

1

4
□
log x2μ2

x2
: ð6:8Þ

This is enough to ensure the existence of a Fourier transform. Actually

−
1

4

Z
d4x eikx□

log x2μ2

x2
¼ π2

k2
log

k2

μ2
: ð6:9Þ

The renormalized four-point function then simply reads

Γrðx1; x2; x3; x4Þ ¼ −λδðx21Þδðx31Þδðx41Þ −
λ2

128π4

�
δðx12Þδðx34Þ

1

a2ðx1Þa2ðx3Þ
□
log x213μ

2

x213

þ δðx13Þδðx24Þ
1

a2ðx1Þa2ðx4Þ
□
log x214μ

2

x214
þ δðx23Þδðx14Þ

1

a2ðx2Þa2ðx4Þ
□
log x224μ

2

x224

�
; ð6:10Þ

where xij ≡ xi − xj. This four-point function obeys a
renormalization group equation summarizing the broken
Ward identity of scale invariance valid for any CF space-
time, namely,

μ
d
dμ

Γðx1; x2; x3; x4Þ ¼
3λ2

16π2
1

a4ðx1Þ
δðx21Þδðx31Þδðx41Þ:

ð6:11Þ

This corresponds in flat spacetime to a beta function

βðλÞ ¼ 3λ

16π2
: ð6:12Þ

Nevertheless, in nonflat (but Weyl-flat) spacetimes the
interpretation of the Ward identity is more involved owing
to the factors of the scale factor in front of the second
member.
Finally, the fermion self-energy owing to a Yukawa

coupling g, is equally easy to compute in CF spacetimes
from the flat spacetime result

Σðx; x0Þ ¼ gSðx; x0ÞΔðx; x0Þ

¼ −
g
8π4

γμ
ðx − x0Þμ

aðxÞ5=2aðx0Þ5=2ðx − x0Þ6 : ð6:13Þ

The tricks of the trade in [8] tell us that

xμ

x6
¼ −

1

4
∂μ 1

x4
¼ ∂μ

�
1

16
□
log μ2x2

x2

�
; ð6:14Þ

in such a way that

Σrðx; x0Þ ¼ −
1

128π4aðxÞ5=2aðx0Þ5=2 =∂□
log μ2ðx − x0Þ2

ðx − x0Þ2 :

ð6:15Þ

It is clear then that we can explicitly compute the lowest
terms in the loop expansion of the breaking of Weyl
symmetry by interactions for CF spacetimes as we can
use the position space techniques with a trivial generali-
zation (introducing the conformal distance) of flat space-
time computations.
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VII. CONCLUSIONS

In this paper, we have shown that in Weyl-flat spacetimes
(that is conformally flat spacetimes) we can define con-
formal fields quite similar to the ones in flat spacetime. The
set of Weyl-flat spacetimes is quite large, including in
particular all FRW cosmological models. De Sitter and
anti–de Sitter are just particular cases corresponding to
constant scalar curvature. In this sense, our work is a
significant generalization of the work in [11,14,15].
We find that the conformal Killing vectors are exactly the

same as the ones in flat spacetime when expressed in terms
of conformally flat coordinates. Their intrinsic definition
can be easily inferred from this.
The guiding principle for our work has been the

systematic use of a novel definition of distance. Indeed,
the basic variable that allows simplifying the equations of
motion is what we have dubbed as the conformal distance, a
biscalar that behaves under conformal Killing transforma-
tions in the same way as the metric itself. This is a
definition that generalizes properties that are shared by
the usual two-point distance in flat spacetime.
Scalar conformal field theories are then obtained when

the Weyl invariant nonminimal coupling is used. This fact
uncovers a fascinating interplay between Weyl invariance
and conformal invariance. This generalizes previously
known relationships between Weyl invariance and the
conformal group (cf. [16]).
Scalar and spinorial Green functions in all those space-

times can then be obtained from the flat space ones simply
by replacing the Euclidean distance by the conformal
distance. The way that Weyl invariance is broken when
interactions are included has also been explicitly worked
out, with the generalization of the use of DR techniques
of [8].
Most nontrivial CFT in flat space are supersymmetric

ones. The next step would be to try and generalize those
theories to conformally flat spacetimes. Actually, it is
known [17,18] that it is precisely in conformally flat
spacetimes where it is possible to define rigid supersym-
metric theories. Work is currently going on in this direction,
and we hope to report on it in due time.
We end with a related point. Even theories that are

conformal in flat space (such as N ¼ 4 super-Yang-Mills
theory) get gravitational contributions to the beta function
when considered in a nontrivial gravitational background.
It would be quite interesting to examine what restrictions
conformal invariance implies for those gravitational
contributions.
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APPENDIX: CONSTANT CURVATURE
SPACETIMES

A particular instance of conformally flat spacetimes is
given by spacetimes of constant curvature. Some of the
formulas in the main text can be made even more explicit in
this case. In particular, the correspondence between CKV in
flat spacetime and in the constant curvature spacetime can
be made explicit [in the general case it depends on the
detailed form of the functions aðxÞ]. We present some
detailed results in this Appendix.
In our conventions constant curvature spacetimes fulfill

Rαβγδ ¼
R

nðn − 1Þ ðgαγgβδ − gαδgβδÞ; ðA1Þ

where the scalar curvature is given in terms of the
cosmological constant by

R≡ −
2n

n − 2
λ: ðA2Þ

A theorem by Lichnerowicz [9] ensures that precisely in
these spacetimes there exist Killing spinors (eigenvectors of
Dirac’s operator). In order to be specific we shall particu-
larize in most of the formulas to de Sitter space dSn

ds2 ¼ L2
dz2 −

P
i¼n−1
i¼1 dy2i
z2

; ðA3Þ

which in our conventions has negative curvature but
positive cosmological constant

R ¼ −
nðn − 1Þ

L2
≡ −

2n
n − 2

λ: ðA4Þ

Let us study in some detail the group generated by all CKV.
Although it is mathematically isomorphic to the flat space
conformal group, the correspondence is not one to one
between the generators. Let us recall the definition of CKV

∇μξν þ∇νξμ ¼
2

n
∇λξ

λgμν ≡ wðxÞgμν: ðA5Þ
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In de Sitter space, in particular, we have the formula

wdS ¼ wflat −
2

z
ξz: ðA6Þ

To be specific
(i) dilatations are implemented by a real Killing vectors,

because

w ¼ 2λ −
2

z
λz ¼ 0: ðA7Þ

(ii) On the other hand, translations obey

∇μξ
μ ¼ −

n
z
az; ðA8Þ

so that the n − 1 translations with az ¼ 0 are real
Killing vectors, and a ¼ ð1; 0⃗Þ is a CKV with

wðxÞ ¼ −
2

z
: ðA9Þ

(iii) Lorentz transformations obey

∇μξ
μ ¼ −

n
z
ωz

jyj; ðA10Þ

so that the ðn−1Þðn−2Þ
2

transformations with ωz
j ¼ 0

are real Killing vectors and the n − 1 remaining ones
are CKV with

wðxÞ ¼ −
2

z
ωz

jyj: ðA11Þ

(iv) Finally the n special conformal transformations
yield

wðxÞ ¼ 2x2
βz

z
: ðA12Þ

These transformations are then implemented by
CKV except when βz ¼ 0; and there are n − 1
of those.

Altogether there are nðnþ1Þ
2

Killing vectors and (1þ n)
which are only CKV. Let us summarize the classification of
all generators into those which are real Killing vectors and
those that are conformal Killing vectors in the follow-
ing table.

Killing Flat de Sitter

Translations w ¼ 0 w ¼ − 2az
z

Dilatations 2λ w ¼ 0
Lorentz w ¼ 0 w ¼ − 2ωz

jyj

z
Special CT w ¼ 4β:x w ¼ 2x2

z βz

Let us note that the geodesic distance and the conformal
distance are not equivalent, as can be seen in this particular
case. It is well known that the geodesic distance in de Sitter
space between timelike separated points obeys

cosh
s
L
¼ z2 þ ðz0Þ2 − ðy0i − yiÞ2

2zz0
¼ 1þΔz2 −Δy2

2zz0
ðA13Þ

as in [19]. This distance is not equivalent to the conformal
distance definition (3.4) that in this case yields

Cðx; x0ÞdS ¼
L2

zz0
ðΔz2 − Δy2Þ: ðA14Þ

As it is mentioned in the text, we can see that the world
distance can be expressed as a function of the conformal
distance.
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